Motif 29 (n=8,243)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A087X0R7 | SENP3-EIF4A1 | S237 | ochoa | SENP3-EIF4A1 readthrough (NMD candidate) | None |
A0A0B4J203 | None | S304 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A0A0B4J269 | None | S519 | ochoa | Melanocyte-stimulating hormone receptor (Melanocortin receptor 1) | Receptor for MSH (alpha, beta and gamma) and ACTH. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. Mediates melanogenesis, the production of eumelanin (black/brown) and phaeomelanin (red/yellow), via regulation of cAMP signaling in melanocytes. {ECO:0000256|ARBA:ARBA00023428}. |
A0A0G2JLL6 | None | S90 | ochoa | Proline-rich transmembrane protein 2 | None |
A0A0J9YX44 | TRBV5-5 | S26 | ochoa | T cell receptor beta variable 5-5 | None |
A0A0U1RQJ8 | ATRIP | S37 | ochoa | ATR interacting protein | None |
A0A1B0GTI1 | CCDC201 | S17 | ochoa | Coiled-coil domain-containing protein 201 | None |
A0A1B0GTI1 | CCDC201 | S24 | ochoa | Coiled-coil domain-containing protein 201 | None |
A0A1B0GUH1 | None | S413 | ochoa | Aminomethyltransferase (EC 2.1.2.10) (Glycine cleavage system T protein) | The glycine cleavage system catalyzes the degradation of glycine. {ECO:0000256|ARBA:ARBA00003631, ECO:0000256|RuleBase:RU003981}. |
A0A1C7CYW4 | ATP6AP2 | S24 | ochoa | Renin receptor (ATPase H(+)-transporting lysosomal accessory protein 2) (ATPase H(+)-transporting lysosomal-interacting protein 2) (Renin/prorenin receptor) | Multifunctional protein which functions as a renin, prorenin cellular receptor and is involved in the assembly of the lysosomal proton-transporting V-type ATPase (V-ATPase) and the acidification of the endo-lysosomal system. May mediate renin-dependent cellular responses by activating ERK1 and ERK2. By increasing the catalytic efficiency of renin in AGT/angiotensinogen conversion to angiotensin I, may also play a role in the renin-angiotensin system (RAS). Through its function in V-type ATPase (v-ATPase) assembly and acidification of the lysosome it regulates protein degradation and may control different signaling pathways important for proper brain development, synapse morphology and synaptic transmission. {ECO:0000256|ARBA:ARBA00045569}. |
A0A1W2PP11 | None | S376 | ochoa | Presenilin-associated rhomboid-like protein, mitochondrial (EC 3.4.21.105) | None |
A0AV02 | SLC12A8 | S665 | ochoa | Solute carrier family 12 member 8 (Cation-chloride cotransporter 9) | Cation/chloride cotransporter that may play a role in the control of keratinocyte proliferation. {ECO:0000269|PubMed:11863360}. |
A0AVT1 | UBA6 | S737 | ochoa | Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) | Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}. |
A0JNW5 | BLTP3B | S423 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A0JNW5 | BLTP3B | S884 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A0JNW5 | BLTP3B | S891 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A0JNW5 | BLTP3B | S1402 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A1L020 | MEX3A | S308 | ochoa | RNA-binding protein MEX3A (RING finger and KH domain-containing protein 4) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. |
A1L170 | C1orf226 | S223 | ochoa | Uncharacterized protein C1orf226 | None |
A1L390 | PLEKHG3 | S1000 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A1L390 | PLEKHG3 | S1115 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A1L4K1 | FSD2 | S599 | ochoa | Fibronectin type III and SPRY domain-containing protein 2 (SPRY domain-containing protein 1) | None |
A1XBS5 | CIBAR1 | S243 | ochoa | CBY1-interacting BAR domain-containing protein 1 | Plays a critical role in regulating mitochondrial ultrastructure and function by maintaining the integrity of mitochondrial morphology, particularly the organization of cristae (PubMed:30404948). Preferentially binds to negatively charged phospholipids like cardiolipin and phosphatidylinositol 4,5-bisphosphate enhancing its interaction with mitochondrial membranes (PubMed:30404948). Induces membrane curvature and tubulation, which are critical for maintaining mitochondrial ultrastructure and the organization of cristae (PubMed:30404948). Plays a crucial role in ciliogenesis (PubMed:27528616, PubMed:30395363). May play a role in limb development through its role in ciliogenesis (PubMed:30395363). Plays a key role in the correct positioning of the annulus, a septin-based ring structure in the sperm flagellum, serving both as a physical barrier and a membrane diffusion barrier that separates the midpiece (MP) from the principal piece (PP) (By similarity). This positioning is essential for proper sperm motility and function (By similarity). Interacts with CBY3 to form a complex which localizes to the curved membrane region of the flagellar pocket (By similarity). By doing so, may provide stability and rigidity to the periannular membrane to prevent membrane deformation (By similarity). This function is crucial for halting annulus migration at the proximal end of the fibrous sheath-containing PP (By similarity). {ECO:0000250|UniProtKB:Q8BP22, ECO:0000269|PubMed:27528616, ECO:0000269|PubMed:30395363, ECO:0000269|PubMed:30404948}. |
A1YPR0 | ZBTB7C | S215 | ochoa | Zinc finger and BTB domain-containing protein 7C (Affected by papillomavirus DNA integration in ME180 cells protein 1) (APM-1) (Zinc finger and BTB domain-containing protein 36) (Zinc finger protein 857C) | May be a tumor suppressor gene. {ECO:0000269|PubMed:9427755}. |
A2A3K4 | PTPDC1 | S472 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A2A3K4 | PTPDC1 | S534 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A2AJT9 | BCLAF3 | S100 | ochoa | BCLAF1 and THRAP3 family member 3 | None |
A2AJT9 | BCLAF3 | S489 | ochoa | BCLAF1 and THRAP3 family member 3 | None |
A2RRD8 | ZNF320 | S452 | ochoa | Zinc finger protein 320 | May be involved in transcriptional regulation. |
A2RRP1 | NBAS | S1384 | ochoa | NBAS subunit of NRZ tethering complex (Neuroblastoma-amplified gene protein) (Neuroblastoma-amplified sequence) | Involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport; the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:19369418). Required for normal embryonic development (By similarity). May play a role in the nonsense-mediated decay pathway of mRNAs containing premature stop codons (By similarity). {ECO:0000250|UniProtKB:Q5TYW4, ECO:0000269|PubMed:19369418}. |
A2RTX5 | TARS3 | S453 | ochoa | Threonine--tRNA ligase 2, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase protein 3) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage. {ECO:0000250|UniProtKB:Q8BLY2}. |
A2RU67 | FAM234B | S52 | ochoa | Protein FAM234B | None |
A3KMH1 | VWA8 | S1707 | ochoa | von Willebrand factor A domain-containing protein 8 (PEX7-binding protein 2) (P7BP2) | Exhibits ATPase activity in vitro. {ECO:0000250|UniProtKB:Q8CC88}. |
A4D161 | FAM221A | S222 | ochoa | Protein FAM221A | None |
A4D1E1 | ZNF804B | S877 | ochoa | Zinc finger protein 804B | None |
A4D1S0 | KLRG2 | S212 | ochoa | Killer cell lectin-like receptor subfamily G member 2 (C-type lectin domain family 15 member B) | None |
A4UGR9 | XIRP2 | S2969 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A5PL33 | KRBA1 | S288 | ochoa | Protein KRBA1 | None |
A5YKK6 | CNOT1 | S2188 | ochoa | CCR4-NOT transcription complex subunit 1 (CCR4-associated factor 1) (Negative regulator of transcription subunit 1 homolog) (NOT1H) (hNOT1) | Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRNA 3'UTRs. Involved in degradation of AU-rich element (ARE)-containing mRNAs probably via association with ZFP36. Mediates the recruitment of the CCR4-NOT complex to miRNA targets and to the RISC complex via association with TNRC6A, TNRC6B or TNRC6C. Acts as a transcriptional repressor. Represses the ligand-dependent transcriptional activation by nuclear receptors. Involved in the maintenance of embryonic stem (ES) cell identity. Plays a role in rapid sperm motility via mediating timely mRNA turnover (By similarity). {ECO:0000250|UniProtKB:Q6ZQ08, ECO:0000269|PubMed:10637334, ECO:0000269|PubMed:16778766, ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:21976065, ECO:0000269|PubMed:21984185, ECO:0000269|PubMed:22367759, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:32354837}. |
A5YM69 | ARHGEF35 | S450 | ochoa | Rho guanine nucleotide exchange factor 35 (Rho guanine nucleotide exchange factor 5-like protein) | None |
A6ND36 | FAM83G | S666 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A6ND36 | FAM83G | S781 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A6NFI3 | ZNF316 | S112 | ochoa | Zinc finger protein 316 | May be involved in transcriptional regulation. {ECO:0000250}. |
A6NHR9 | SMCHD1 | S1974 | ochoa | Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMC hinge domain-containing protein 1) (EC 3.6.1.-) | Non-canonical member of the structural maintenance of chromosomes (SMC) protein family that plays a key role in epigenetic silencing by regulating chromatin architecture (By similarity). Promotes heterochromatin formation in both autosomes and chromosome X, probably by mediating the merge of chromatin compartments (By similarity). Plays a key role in chromosome X inactivation in females by promoting the spreading of heterochromatin (PubMed:23542155). Recruited to inactivated chromosome X by Xist RNA and acts by mediating the merge of chromatin compartments: promotes random chromatin interactions that span the boundaries of existing structures, leading to create a compartment-less architecture typical of inactivated chromosome X (By similarity). Required to facilitate Xist RNA spreading (By similarity). Also required for silencing of a subset of clustered autosomal loci in somatic cells, such as the DUX4 locus (PubMed:23143600). Has ATPase activity; may participate in structural manipulation of chromatin in an ATP-dependent manner as part of its role in gene expression regulation (PubMed:29748383). Also plays a role in DNA repair: localizes to sites of DNA double-strand breaks in response to DNA damage to promote the repair of DNA double-strand breaks (PubMed:24790221, PubMed:25294876). Acts by promoting non-homologous end joining (NHEJ) and inhibiting homologous recombination (HR) repair (PubMed:25294876). {ECO:0000250|UniProtKB:Q6P5D8, ECO:0000269|PubMed:23143600, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:24790221, ECO:0000269|PubMed:25294876, ECO:0000269|PubMed:29748383}. |
A6NJ78 | METTL15 | S85 | ochoa | 12S rRNA N(4)-cytidine methyltransferase METTL15 (12S rRNA m4C methyltransferase) (EC 2.1.1.-) (Methyltransferase 5 domain-containing protein 1) (Methyltransferase-like protein 15) | N4-methylcytidine (m4C) methyltransferase responsible for the methylation of position C839 in mitochondrial 12S rRNA (PubMed:31665743, PubMed:32371392). Involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits (PubMed:31665743, PubMed:32371392). {ECO:0000269|PubMed:31665743, ECO:0000269|PubMed:32371392}. |
A6NJL1 | ZSCAN5B | S295 | ochoa | Zinc finger and SCAN domain-containing protein 5B | May be involved in transcriptional regulation. {ECO:0000250}. |
A6NJZ7 | RIMBP3C | S1294 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NJZ7 | RIMBP3C | S1322 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NKT7 | RGPD3 | S789 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NNM3 | RIMBP3B | S1294 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NNM3 | RIMBP3B | S1322 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A7E2V4 | ZSWIM8 | S437 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7KAX9 | ARHGAP32 | S592 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S871 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S902 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S1720 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7MBM2 | DISP2 | S1235 | ochoa | Protein dispatched homolog 2 | None |
A7MD48 | SRRM4 | S363 | ochoa | Serine/arginine repetitive matrix protein 4 (Medulloblastoma antigen MU-MB-2.76) (Neural-specific serine/arginine repetitive splicing factor of 100 kDa) (Neural-specific SR-related protein of 100 kDa) (nSR100) | Splicing factor specifically required for neural cell differentiation. Acts in conjunction with nPTB/PTBP2 by binding directly to its regulated target transcripts and promotes neural-specific exon inclusion in many genes that function in neural cell differentiation. Required to promote the inclusion of neural-specific exon 10 in nPTB/PTBP2, leading to increased expression of neural-specific nPTB/PTBP2. Also promotes the inclusion of exon 16 in DAAM1 in neuron extracts (By similarity). Promotes alternative splicing of REST transcripts to produce REST isoform 3 (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells (PubMed:30684677). Plays an important role during embryonic development as well as in the proper functioning of the adult nervous system. Regulates alternative splicing events in genes with important neuronal functions (By similarity). {ECO:0000250|UniProtKB:Q8BKA3, ECO:0000269|PubMed:30684677}. |
A8CG34 | POM121C | S246 | ochoa | Nuclear envelope pore membrane protein POM 121C (Nuclear pore membrane protein 121-2) (POM121-2) (Pore membrane protein of 121 kDa C) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
A8K0R7 | ZNF839 | S348 | ochoa | Zinc finger protein 839 (Renal carcinoma antigen NY-REN-50) | None |
A8K0R7 | ZNF839 | S670 | ochoa | Zinc finger protein 839 (Renal carcinoma antigen NY-REN-50) | None |
A8K979 | ERI2 | S302 | ochoa | ERI1 exoribonuclease 2 (EC 3.1.-.-) (Exonuclease domain-containing protein 1) | None |
A8MPP1 | DDX11L8 | S44 | ochoa | Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) | Putative DNA helicase. {ECO:0000305}. |
A8MW92 | PHF20L1 | S313 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
B0I1T2 | MYO1G | S695 | ochoa | Unconventional myosin-Ig [Cleaved into: Minor histocompatibility antigen HA-2 (mHag HA-2)] | Unconventional myosin required during immune response for detection of rare antigen-presenting cells by regulating T-cell migration. Unconventional myosins are actin-based motor molecules with ATPase activity and serve in intracellular movements. Acts as a regulator of T-cell migration by generating membrane tension, enforcing cell-intrinsic meandering search, thereby enhancing detection of rare antigens during lymph-node surveillance, enabling pathogen eradication. Also required in B-cells, where it regulates different membrane/cytoskeleton-dependent processes. Involved in Fc-gamma receptor (Fc-gamma-R) phagocytosis. {ECO:0000250|UniProtKB:Q5SUA5}.; FUNCTION: [Minor histocompatibility antigen HA-2]: Constitutes the minor histocompatibility antigen HA-2. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and their expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. HA-2 is restricted to MHC class I HLA-A*0201. {ECO:0000269|PubMed:11544309, ECO:0000305}. |
B2RNG4 | TRIM6-TRIM34 | S441 | ochoa | RING-type E3 ubiquitin transferase (EC 2.3.2.27) | None |
B2RTY4 | MYO9A | S1230 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
B2RTY4 | MYO9A | S1317 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
B2RTY4 | MYO9A | S1829 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
B7U540 | KCNJ18 | S405 | ochoa | Inward rectifier potassium channel 18 (Inward rectifier K(+) channel Kir2.6) (Potassium channel, inwardly rectifying subfamily J member 18) | Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. {ECO:0000269|PubMed:20074522, ECO:0000269|PubMed:27008341}. |
B7Z6K7 | ZNF814 | S87 | ochoa | Zinc finger protein 814 | None |
C4P0D8 | TSNAX-DISC1 | S33 | ochoa | Disrupted in schizophrenia 1 isoform 51 (TSNAX-DISC1 readthrough (NMD candidate)) | None |
C9J069 | AJM1 | S499 | ochoa | Apical junction component 1 homolog | May be involved in the control of adherens junction integrity. {ECO:0000250|UniProtKB:A0A1C3NSL9}. |
C9J4A7 | None | S89 | ochoa | PH domain-containing protein | None |
C9JRZ8 | AKR1B15 | S215 | ochoa | Aldo-keto reductase family 1 member B15 (EC 1.1.1.-) (EC 1.1.1.300) (EC 1.1.1.54) (Estradiol 17-beta-dehydrogenase AKR1B15) (Farnesol dehydrogenase) (EC 1.1.1.216) (Testosterone 17beta-dehydrogenase) (EC 1.1.1.64) | [Isoform 1]: Catalyzes the NADPH-dependent reduction of a variety of carbonyl substrates, like aromatic aldehydes, alkenals, ketones and alpha-dicarbonyl compounds (PubMed:21276782, PubMed:26222439). In addition, catalyzes the reduction of androgens and estrogens with high positional selectivity (shows 17-beta-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoAs (PubMed:25577493). Displays strong enzymatic activity toward all-trans-retinal and 9-cis-retinal (PubMed:26222439). May play a physiological role in retinoid metabolism (PubMed:26222439). {ECO:0000269|PubMed:21276782, ECO:0000269|PubMed:25577493, ECO:0000269|PubMed:26222439}.; FUNCTION: [Isoform 2]: No oxidoreductase activity observed with the tested substrates. {ECO:0000269|PubMed:25577493}. |
D6RIA3 | C4orf54 | S895 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
E7ENX8 | None | S455 | ochoa | ABC-type antigen peptide transporter (EC 7.4.2.14) | None |
E7ETH6 | ZNF587B | S205 | ochoa | Zinc finger protein 587B | May be involved in transcriptional regulation. {ECO:0000305}. |
E7EWF7 | None | S93 | ochoa | Uncharacterized protein | None |
E9PAV3 | NACA | S1977 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
F8VUJ3 | POC1B-GALNT4 | S27 | ochoa | Polypeptide N-acetylgalactosaminyltransferase (EC 2.4.1.-) (Protein-UDP acetylgalactosaminyltransferase) | None |
H0YIS7 | RNASEK-C17orf49 | S77 | ochoa | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. {ECO:0000256|ARBA:ARBA00059556}. |
H3BQZ7 | HNRNPUL2-BSCL2 | S228 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
H7C1W4 | None | S242 | ochoa | Uncharacterized protein | None |
H8Y6P7 | GCOM1 | S667 | ochoa | DNA-directed RNA polymerase II subunit GRINL1A (DNA-directed RNA polymerase II subunit M) (Glutamate receptor-like protein 1A) | None |
J3QQQ9 | None | S32 | ochoa | KOW domain-containing protein | None |
M0R1X1 | None | S75 | ochoa | KRAB domain-containing protein | None |
O00139 | KIF2A | S586 | ochoa | Kinesin-like protein KIF2A (Kinesin-2) (hK2) | Plus end-directed microtubule-dependent motor required for normal brain development. May regulate microtubule dynamics during axonal growth. Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate. Required for normal spindle dynamics during mitosis. Promotes spindle turnover. Implicated in formation of bipolar mitotic spindles. Has microtubule depolymerization activity. {ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:30785839}. |
O00151 | PDLIM1 | S90 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00151 | PDLIM1 | S130 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00159 | MYO1C | S408 | ochoa | Unconventional myosin-Ic (Myosin I beta) (MMI-beta) (MMIb) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. Involved in glucose transporter recycling in response to insulin by regulating movement of intracellular GLUT4-containing vesicles to the plasma membrane. Component of the hair cell's (the sensory cells of the inner ear) adaptation-motor complex. Acts as a mediator of adaptation of mechanoelectrical transduction in stereocilia of vestibular hair cells. Binds phosphoinositides and links the actin cytoskeleton to cellular membranes. {ECO:0000269|PubMed:24636949}.; FUNCTION: [Isoform 3]: Involved in regulation of transcription. Associated with transcriptional active ribosomal genes. Appears to cooperate with the WICH chromatin-remodeling complex to facilitate transcription. Necessary for the formation of the first phosphodiester bond during transcription initiation. {ECO:0000250|UniProtKB:Q9WTI7}. |
O00161 | SNAP23 | S110 | ochoa|psp | Synaptosomal-associated protein 23 (SNAP-23) (Vesicle-membrane fusion protein SNAP-23) | Essential component of the high affinity receptor for the general membrane fusion machinery and an important regulator of transport vesicle docking and fusion. |
O00167 | EYA2 | S260 | ochoa | Protein phosphatase EYA2 (EC 3.1.3.48) (Eyes absent homolog 2) | Functions both as protein phosphatase and as transcriptional coactivator for SIX1, and probably also for SIX2, SIX4 and SIX5 (PubMed:12500905, PubMed:23435380). Tyrosine phosphatase that dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph) and promotes efficient DNA repair via the recruitment of DNA repair complexes containing MDC1. 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19351884). Its function as histone phosphatase may contribute to its function in transcription regulation during organogenesis. Plays an important role in hypaxial muscle development together with SIX1 and DACH2; in this it is functionally redundant with EYA1 (PubMed:12500905). {ECO:0000269|PubMed:12500905, ECO:0000269|PubMed:19351884, ECO:0000269|PubMed:21706047, ECO:0000269|PubMed:23435380}. |
O00170 | AIP | S159 | ochoa | AH receptor-interacting protein (AIP) (Aryl-hydrocarbon receptor-interacting protein) (HBV X-associated protein 2) (XAP-2) (Immunophilin homolog ARA9) | May play a positive role in AHR-mediated (aromatic hydrocarbon receptor) signaling, possibly by influencing its receptivity for ligand and/or its nuclear targeting.; FUNCTION: Cellular negative regulator of the hepatitis B virus (HBV) X protein. |
O00178 | GTPBP1 | S69 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O00178 | GTPBP1 | S580 | ochoa | GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) | Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}. |
O00203 | AP3B1 | S29 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00203 | AP3B1 | S609 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00232 | PSMD12 | S335 | ochoa | 26S proteasome non-ATPase regulatory subunit 12 (26S proteasome regulatory subunit RPN5) (26S proteasome regulatory subunit p55) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O00257 | CBX4 | S349 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O00268 | TAF4 | S543 | ochoa | Transcription initiation factor TFIID subunit 4 (RNA polymerase II TBP-associated factor subunit C) (TBP-associated factor 4) (Transcription initiation factor TFIID 130 kDa subunit) (TAF(II)130) (TAFII-130) (TAFII130) (Transcription initiation factor TFIID 135 kDa subunit) (TAF(II)135) (TAFII-135) (TAFII135) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10594036, PubMed:33795473, PubMed:8942982). TAF4 may maintain an association between the TFIID and TFIIA complexes, while bound to the promoter, together with TBP, during PIC assembly (PubMed:33795473). Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone (PubMed:9192867). {ECO:0000269|PubMed:10594036, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:8942982, ECO:0000269|PubMed:9192867}. |
O00291 | HIP1 | S857 | ochoa | Huntingtin-interacting protein 1 (HIP-1) (Huntingtin-interacting protein I) (HIP-I) | Plays a role in clathrin-mediated endocytosis and trafficking (PubMed:11532990, PubMed:11577110, PubMed:11889126). Involved in regulating AMPA receptor trafficking in the central nervous system in an NMDA-dependent manner (By similarity). Regulates presynaptic nerve terminal activity (By similarity). Enhances androgen receptor (AR)-mediated transcription (PubMed:16027218). May act as a proapoptotic protein that induces cell death by acting through the intrinsic apoptosis pathway (PubMed:11007801). Binds 3-phosphoinositides (via ENTH domain) (PubMed:14732715). May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis (PubMed:14732715). May play a functional role in the cell filament networks (PubMed:18790740). May be required for differentiation, proliferation, and/or survival of somatic and germline progenitors (PubMed:11007801, PubMed:12163454). {ECO:0000250|UniProtKB:Q8VD75, ECO:0000269|PubMed:11007801, ECO:0000269|PubMed:11532990, ECO:0000269|PubMed:11577110, ECO:0000269|PubMed:11889126, ECO:0000269|PubMed:12163454, ECO:0000269|PubMed:14732715, ECO:0000269|PubMed:16027218, ECO:0000269|PubMed:18790740, ECO:0000269|PubMed:9147654}. |
O00303 | EIF3F | S258 | ochoa | Eukaryotic translation initiation factor 3 subunit F (eIF3f) (Deubiquitinating enzyme eIF3f) (EC 3.4.19.12) (Eukaryotic translation initiation factor 3 subunit 5) (eIF-3-epsilon) (eIF3 p47) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03005, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: Deubiquitinates activated NOTCH1, promoting its nuclear import, thereby acting as a positive regulator of Notch signaling. {ECO:0000269|PubMed:21124883}. |
O00311 | CDC7 | S302 | ochoa | Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) | Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}. |
O00327 | BMAL1 | S592 | psp | Basic helix-loop-helix ARNT-like protein 1 (Aryl hydrocarbon receptor nuclear translocator-like protein 1) (Basic-helix-loop-helix-PAS protein MOP3) (Brain and muscle ARNT-like 1) (Class E basic helix-loop-helix protein 5) (bHLHe5) (Member of PAS protein 3) (PAS domain-containing protein 3) (bHLH-PAS protein JAP3) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). Essential for the rhythmic interaction of CLOCK with ASS1 and plays a critical role in positively regulating CLOCK-mediated acetylation of ASS1 (PubMed:28985504). Plays a role in protecting against lethal sepsis by limiting the expression of immune checkpoint protein CD274 in macrophages in a PKM2-dependent manner (By similarity). Regulates the diurnal rhythms of skeletal muscle metabolism via transcriptional activation of genes promoting triglyceride synthesis (DGAT2) and metabolic efficiency (COQ10B) (By similarity). {ECO:0000250|UniProtKB:Q9WTL8, ECO:0000269|PubMed:11441146, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:23955654, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}.; FUNCTION: (Microbial infection) Regulates SARS coronavirus-2/SARS-CoV-2 entry and replication in lung epithelial cells probably through the post-transcriptional regulation of ACE2 and interferon-stimulated gene expression. {ECO:0000269|PubMed:34545347}. |
O00410 | IPO5 | S20 | ochoa | Importin-5 (Imp5) (Importin subunit beta-3) (Karyopherin beta-3) (Ran-binding protein 5) (RanBP5) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607, PubMed:9687515). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones. Binds to CPEB3 and mediates its nuclear import following neuronal stimulation (By similarity). In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000250|UniProtKB:Q8BKC5, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:9687515}. |
O00411 | POLRMT | S666 | ochoa | DNA-directed RNA polymerase, mitochondrial (MtRPOL) (EC 2.7.7.6) | DNA-dependent RNA polymerase catalyzes the transcription of mitochondrial DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:21278163, PubMed:33602924). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:29149603). Has DNA primase activity (PubMed:18685103, PubMed:33602924). Catalyzes the synthesis of short RNA primers that are necessary for the initiation of lagging-strand DNA synthesis from the origin of light-strand DNA replication (OriL) (PubMed:18685103, PubMed:33602924). {ECO:0000269|PubMed:18685103, ECO:0000269|PubMed:21278163, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:33602924}. |
O00418 | EEF2K | S18 | ochoa | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O00418 | EEF2K | S359 | psp | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O00423 | EML1 | S113 | ochoa | Echinoderm microtubule-associated protein-like 1 (EMAP-1) (HuEMAP-1) | Modulates the assembly and organization of the microtubule cytoskeleton, and probably plays a role in regulating the orientation of the mitotic spindle and the orientation of the plane of cell division. Required for normal proliferation of neuronal progenitor cells in the developing brain and for normal brain development. Does not affect neuron migration per se. {ECO:0000250|UniProtKB:Q05BC3}. |
O00423 | EML1 | S140 | ochoa | Echinoderm microtubule-associated protein-like 1 (EMAP-1) (HuEMAP-1) | Modulates the assembly and organization of the microtubule cytoskeleton, and probably plays a role in regulating the orientation of the mitotic spindle and the orientation of the plane of cell division. Required for normal proliferation of neuronal progenitor cells in the developing brain and for normal brain development. Does not affect neuron migration per se. {ECO:0000250|UniProtKB:Q05BC3}. |
O00442 | RTCA | S173 | ochoa | RNA 3'-terminal phosphate cyclase (RNA cyclase) (RNA-3'-phosphate cyclase) (EC 6.5.1.4) (RNA terminal phosphate cyclase domain-containing protein 1) (RTC domain-containing protein 1) | Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA (PubMed:9184239). The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product (PubMed:9184239). Likely functions in some aspects of cellular RNA processing (PubMed:25961792, PubMed:9184239). Function plays an important role in regulating axon regeneration by inhibiting central nervous system (CNS) axon regeneration following optic nerve injury (PubMed:25961792). {ECO:0000269|PubMed:25961792, ECO:0000269|PubMed:9184239}. |
O00443 | PIK3C2A | S259 | ochoa|psp | Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PI3K-C2-alpha) (PtdIns-3-kinase C2 subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphoinositide 3-kinase-C2-alpha) | Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers. Has a role in several intracellular trafficking events. Functions in insulin signaling and secretion. Required for translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane and glucose uptake in response to insulin-mediated RHOQ activation. Regulates insulin secretion through two different mechanisms: involved in glucose-induced insulin secretion downstream of insulin receptor in a pathway that involves AKT1 activation and TBC1D4/AS160 phosphorylation, and participates in the late step of insulin granule exocytosis probably in insulin granule fusion. Synthesizes PtdIns3P in response to insulin signaling. Functions in clathrin-coated endocytic vesicle formation and distribution. Regulates dynamin-independent endocytosis, probably by recruiting EEA1 to internalizing vesicles. In neurosecretory cells synthesizes PtdIns3P on large dense core vesicles. Participates in calcium induced contraction of vascular smooth muscle by regulating myosin light chain (MLC) phosphorylation through a mechanism involving Rho kinase-dependent phosphorylation of the MLCP-regulatory subunit MYPT1. May play a role in the EGF signaling cascade. May be involved in mitosis and UV-induced damage response. Required for maintenance of normal renal structure and function by supporting normal podocyte function. Involved in the regulation of ciliogenesis and trafficking of ciliary components (PubMed:31034465). {ECO:0000269|PubMed:10766823, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11239472, ECO:0000269|PubMed:12719431, ECO:0000269|PubMed:16215232, ECO:0000269|PubMed:21081650, ECO:0000269|PubMed:31034465, ECO:0000269|PubMed:9337861}. |
O00444 | PLK4 | S421 | ochoa | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O00472 | ELL2 | S604 | ochoa | RNA polymerase II elongation factor ELL2 | Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). Plays a role in immunoglobulin secretion in plasma cells: directs efficient alternative mRNA processing, influencing both proximal poly(A) site choice and exon skipping, as well as immunoglobulin heavy chain (IgH) alternative processing. Probably acts by regulating histone modifications accompanying transition from membrane-specific to secretory IgH mRNA expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23251033}. |
O00506 | STK25 | S231 | ochoa | Serine/threonine-protein kinase 25 (EC 2.7.11.1) (Ste20-like kinase) (Sterile 20/oxidant stress-response kinase 1) (SOK-1) (Ste20/oxidant stress response kinase 1) | Oxidant stress-activated serine/threonine kinase that may play a role in the response to environmental stress. Targets to the Golgi apparatus where it appears to regulate protein transport events, cell adhesion, and polarity complexes important for cell migration. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:15037601, ECO:0000269|PubMed:18782753}. |
O00512 | BCL9 | S35 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00512 | BCL9 | S857 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00515 | LAD1 | S123 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O00522 | KRIT1 | S391 | ochoa | Krev interaction trapped protein 1 (Krev interaction trapped 1) (Cerebral cavernous malformations 1 protein) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity (By similarity). Negative regulator of angiogenesis. Inhibits endothelial proliferation, apoptosis, migration, lumen formation and sprouting angiogenesis in primary endothelial cells. Promotes AKT phosphorylation in a NOTCH-dependent and independent manner, and inhibits ERK1/2 phosphorylation indirectly through activation of the DELTA-NOTCH cascade. Acts in concert with CDH5 to establish and maintain correct endothelial cell polarity and vascular lumen and these effects are mediated by recruitment and activation of the Par polarity complex and RAP1B. Required for the localization of phosphorylated PRKCZ, PARD3, TIAM1 and RAP1B to the cell junction, and cell junction stabilization. Plays a role in integrin signaling via its interaction with ITGB1BP1; this prevents the interaction between ITGB1 and ITGB1BP1. Microtubule-associated protein that binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing membranes in a GTP-bound RAP1-dependent manner. Plays an important role in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent oxidative cellular damage. Regulates the homeostasis of intracellular ROS through an antioxidant pathway involving FOXO1 and SOD2. Facilitates the down-regulation of cyclin-D1 (CCND1) levels required for cell transition from proliferative growth to quiescence by preventing the accumulation of intracellular ROS through the modulation of FOXO1 and SOD2 levels. May play a role in the regulation of macroautophagy through the down-regulation of the mTOR pathway (PubMed:26417067). {ECO:0000250|UniProtKB:Q6S5J6, ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20332120, ECO:0000269|PubMed:20616044, ECO:0000269|PubMed:20668652, ECO:0000269|PubMed:21633110, ECO:0000269|PubMed:23317506, ECO:0000269|PubMed:26417067}. |
O00566 | MPHOSPH10 | S61 | ochoa | U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) | Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}. |
O00571 | DDX3X | S492 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O00592 | PODXL | S122 | ochoa | Podocalyxin (GCTM-2 antigen) (Gp200) (Podocalyxin-like protein 1) (PC) (PCLP-1) | Involved in the regulation of both adhesion and cell morphology and cancer progression. Functions as an anti-adhesive molecule that maintains an open filtration pathway between neighboring foot processes in the podocyte by charge repulsion. Acts as a pro-adhesive molecule, enhancing the adherence of cells to immobilized ligands, increasing the rate of migration and cell-cell contacts in an integrin-dependent manner. Induces the formation of apical actin-dependent microvilli. Involved in the formation of a preapical plasma membrane subdomain to set up initial epithelial polarization and the apical lumen formation during renal tubulogenesis. Plays a role in cancer development and aggressiveness by inducing cell migration and invasion through its interaction with the actin-binding protein EZR. Affects EZR-dependent signaling events, leading to increased activities of the MAPK and PI3K pathways in cancer cells. {ECO:0000269|PubMed:17616675, ECO:0000269|PubMed:18456258}. |
O00623 | PEX12 | S294 | ochoa | Peroxisome assembly protein 12 (Peroxin-12) (Peroxisome assembly factor 3) (PAF-3) | Component of a retrotranslocation channel required for peroxisome organization by mediating export of the PEX5 receptor from peroxisomes to the cytosol, thereby promoting PEX5 recycling (PubMed:24662292, PubMed:9354782, PubMed:9632816). The retrotranslocation channel is composed of PEX2, PEX10 and PEX12; each subunit contributing transmembrane segments that coassemble into an open channel that specifically allows the passage of PEX5 through the peroxisomal membrane (By similarity). PEX12 also regulates PEX5 recycling by activating the E3 ubiquitin-protein ligase activity of PEX10 (PubMed:24662292). When PEX5 recycling is compromised, PEX12 stimulates PEX10-mediated polyubiquitination of PEX5, leading to its subsequent degradation (By similarity). {ECO:0000250|UniProtKB:Q04370, ECO:0000269|PubMed:24662292, ECO:0000269|PubMed:9354782, ECO:0000269|PubMed:9632816}. |
O00763 | ACACB | S246 | ochoa | Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) | Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism (PubMed:16854592, PubMed:19236960, PubMed:19900410, PubMed:20457939, PubMed:20952656, PubMed:26976583). Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:19236960, PubMed:20457939, PubMed:20952656, PubMed:26976583). Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage (By similarity). {ECO:0000250|UniProtKB:E9Q4Z2, ECO:0000269|PubMed:16854592, ECO:0000269|PubMed:19236960, ECO:0000269|PubMed:19900410, ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:26976583}. |
O00764 | PDXK | S285 | ochoa | Pyridoxal kinase (EC 2.7.1.35) (Pyridoxine kinase) | Catalyzes the phosphorylation of the dietary vitamin B6 vitamers pyridoxal (PL), pyridoxine (PN) and pyridoxamine (PM) to form pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP), respectively (Probable) (PubMed:10987144, PubMed:17766369, PubMed:19351586, PubMed:31187503, PubMed:9099727). PLP is the active form of vitamin B6, and acts as a cofactor for over 140 different enzymatic reactions. {ECO:0000269|PubMed:10987144, ECO:0000269|PubMed:17766369, ECO:0000269|PubMed:19351586, ECO:0000269|PubMed:31187503, ECO:0000269|PubMed:9099727, ECO:0000305}. |
O14490 | DLGAP1 | S397 | ochoa | Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) | Part of the postsynaptic scaffold in neuronal cells. |
O14490 | DLGAP1 | S431 | ochoa | Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) | Part of the postsynaptic scaffold in neuronal cells. |
O14495 | PLPP3 | S19 | ochoa | Phospholipid phosphatase 3 (EC 3.1.3.-) (EC 3.1.3.4) (Lipid phosphate phosphohydrolase 3) (PAP2-beta) (Phosphatidate phosphohydrolase type 2b) (Phosphatidic acid phosphatase 2b) (PAP-2b) (PAP2b) (Vascular endothelial growth factor and type I collagen-inducible protein) (VCIP) | Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, diacylglycerol pyrophosphate/DGPP, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:27694435, PubMed:9607309, PubMed:9705349). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Has both an extracellular and an intracellular phosphatase activity, allowing the hydrolysis and the cellular uptake of these bioactive lipid mediators from the milieu, regulating signal transduction in different cellular processes (PubMed:23591818, PubMed:27694435, PubMed:9607309). Through the dephosphorylation of extracellular sphingosine-1-phosphate and the regulation of its extra- and intracellular availability, plays a role in vascular homeostasis, regulating endothelial cell migration, adhesion, survival, proliferation and the production of pro-inflammatory cytokines (PubMed:27694435). By maintaining the appropriate levels of this lipid in the cerebellum, also ensure its proper development and function (By similarity). Through its intracellular lipid phosphatase activity may act in early compartments of the secretory pathway, regulating the formation of Golgi to endoplasmic reticulum retrograde transport carriers (PubMed:23591818). {ECO:0000250|UniProtKB:Q99JY8, ECO:0000269|PubMed:23591818, ECO:0000269|PubMed:27694435, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349}.; FUNCTION: Independently of this phosphatase activity may also function in the Wnt signaling pathway and the stabilization of beta-catenin/CTNNB1, thereby regulating cell proliferation, migration and differentiation in angiogenesis or yet in tumor growth (PubMed:20123964, PubMed:21569306). Also plays a role in integrin-mediated cell-cell adhesion in angiogenesis (PubMed:12660161, PubMed:16099422). {ECO:0000269|PubMed:12660161, ECO:0000269|PubMed:16099422, ECO:0000269|PubMed:20123964, ECO:0000269|PubMed:21569306}. |
O14497 | ARID1A | S1352 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14508 | SOCS2 | S30 | ochoa | Suppressor of cytokine signaling 2 (SOCS-2) (Cytokine-inducible SH2 protein 2) (CIS-2) (STAT-induced STAT inhibitor 2) (SSI-2) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, such as EPOR and GHR (PubMed:11781573, PubMed:21980433, PubMed:25505247, PubMed:31182716, PubMed:34857742). Specifically recognizes and binds phosphorylated proteins via its SH2 domain, promoting their ubiquitination (PubMed:21980433, PubMed:25505247, PubMed:31182716, PubMed:34857742, PubMed:37816714). The ECS(SOCS2) complex acts as a key regulator of growth hormone receptor (GHR) levels by mediating ubiquitination and degradation of GHR, following GHR phosphorylation by JAK2 (PubMed:21980433, PubMed:25505247, PubMed:34857742). The ECS(SOCS2) also catalyzes ubiquitination and degradation of JAK2-phosphorylated EPOR (PubMed:11781573). {ECO:0000269|PubMed:11781573, ECO:0000269|PubMed:21980433, ECO:0000269|PubMed:25505247, ECO:0000269|PubMed:31182716, ECO:0000269|PubMed:34857742, ECO:0000269|PubMed:37816714}. |
O14513 | NCKAP5 | S600 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O14524 | NEMP1 | S368 | ochoa | Nuclear envelope integral membrane protein 1 | Together with EMD, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). Required for female fertility (By similarity). Essential for normal erythropoiesis (By similarity). Required for efficient nuclear envelope opening and enucleation during the late stages of erythroblast maturation (By similarity). {ECO:0000250|UniProtKB:Q6ZQE4, ECO:0000269|PubMed:32923640}. |
O14578 | CIT | S1432 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14607 | UTY | S716 | ochoa | Histone demethylase UTY (EC 1.14.11.68) (Ubiquitously-transcribed TPR protein on the Y chromosome) (Ubiquitously-transcribed Y chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase UTY) | Male-specific histone demethylase that catalyzes trimethylated 'Lys-27' (H3K27me3) demethylation in histone H3. Has relatively low lysine demethylase activity. {ECO:0000269|PubMed:24798337}. |
O14607 | UTY | S793 | ochoa | Histone demethylase UTY (EC 1.14.11.68) (Ubiquitously-transcribed TPR protein on the Y chromosome) (Ubiquitously-transcribed Y chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase UTY) | Male-specific histone demethylase that catalyzes trimethylated 'Lys-27' (H3K27me3) demethylation in histone H3. Has relatively low lysine demethylase activity. {ECO:0000269|PubMed:24798337}. |
O14628 | ZNF195 | S394 | ochoa | Zinc finger protein 195 | May be involved in transcriptional regulation. |
O14639 | ABLIM1 | S216 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14639 | ABLIM1 | S431 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14646 | CHD1 | S90 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14686 | KMT2D | S1606 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S2019 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S2309 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S2592 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3620 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3837 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3986 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4011 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4215 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4883 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14715 | RGPD8 | S21 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S788 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14733 | MAP2K7 | S35 | ochoa | Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}. |
O14757 | CHEK1 | S331 | ochoa | Serine/threonine-protein kinase Chk1 (EC 2.7.11.1) (CHK1 checkpoint homolog) (Cell cycle checkpoint kinase) (Checkpoint kinase-1) | Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to the presence of DNA damage or unreplicated DNA (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856, PubMed:32357935). May also negatively regulate cell cycle progression during unperturbed cell cycles (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). This regulation is achieved by a number of mechanisms that together help to preserve the integrity of the genome (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). Recognizes the substrate consensus sequence [R-X-X-S/T] (PubMed:11535615, PubMed:12399544, PubMed:12446774, PubMed:14559997, PubMed:14988723, PubMed:15311285, PubMed:15650047, PubMed:15665856). Binds to and phosphorylates CDC25A, CDC25B and CDC25C (PubMed:12676583, PubMed:12676925, PubMed:12759351, PubMed:14559997, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-178' and 'Thr-507' and phosphorylation of CDC25C at 'Ser-216' creates binding sites for 14-3-3 proteins which inhibit CDC25A and CDC25C (PubMed:9278511). Phosphorylation of CDC25A at 'Ser-76', 'Ser-124', 'Ser-178', 'Ser-279' and 'Ser-293' promotes proteolysis of CDC25A (PubMed:12676583, PubMed:12676925, PubMed:12759351, PubMed:14681206, PubMed:19734889, PubMed:9278511). Phosphorylation of CDC25A at 'Ser-76' primes the protein for subsequent phosphorylation at 'Ser-79', 'Ser-82' and 'Ser-88' by NEK11, which is required for polyubiquitination and degradation of CDCD25A (PubMed:19734889, PubMed:20090422, PubMed:9278511). Inhibition of CDC25 leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression (PubMed:9278511). Also phosphorylates NEK6 (PubMed:18728393). Binds to and phosphorylates RAD51 at 'Thr-309', which promotes the release of RAD51 from BRCA2 and enhances the association of RAD51 with chromatin, thereby promoting DNA repair by homologous recombination (PubMed:15665856). Phosphorylates multiple sites within the C-terminus of TP53, which promotes activation of TP53 by acetylation and promotes cell cycle arrest and suppression of cellular proliferation (PubMed:10673501, PubMed:15659650, PubMed:16511572). Also promotes repair of DNA cross-links through phosphorylation of FANCE (PubMed:17296736). Binds to and phosphorylates TLK1 at 'Ser-743', which prevents the TLK1-dependent phosphorylation of the chromatin assembly factor ASF1A (PubMed:12660173, PubMed:12955071). This may enhance chromatin assembly both in the presence or absence of DNA damage (PubMed:12660173, PubMed:12955071). May also play a role in replication fork maintenance through regulation of PCNA (PubMed:18451105). May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones (By similarity). Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes (By similarity). May also phosphorylate RB1 to promote its interaction with the E2F family of transcription factors and subsequent cell cycle arrest (PubMed:17380128). Phosphorylates SPRTN, promoting SPRTN recruitment to chromatin (PubMed:31316063). Reduces replication stress and activates the G2/M checkpoint, by phosphorylating and inactivating PABIR1/FAM122A and promoting the serine/threonine-protein phosphatase 2A-mediated dephosphorylation and stabilization of WEE1 levels and activity (PubMed:33108758). {ECO:0000250|UniProtKB:O35280, ECO:0000269|PubMed:10673501, ECO:0000269|PubMed:11535615, ECO:0000269|PubMed:12399544, ECO:0000269|PubMed:12446774, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:12676583, ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:12759351, ECO:0000269|PubMed:12955071, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988723, ECO:0000269|PubMed:15311285, ECO:0000269|PubMed:15650047, ECO:0000269|PubMed:15659650, ECO:0000269|PubMed:15665856, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:17296736, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:18451105, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422, ECO:0000269|PubMed:31316063, ECO:0000269|PubMed:32357935, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:9278511}.; FUNCTION: [Isoform 2]: Endogenous repressor of isoform 1, interacts with, and antagonizes CHK1 to promote the S to G2/M phase transition. {ECO:0000269|PubMed:22184239}. |
O14795 | UNC13B | S367 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14795 | UNC13B | S912 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14795 | UNC13B | S1251 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O14802 | POLR3A | S370 | ochoa | DNA-directed RNA polymerase III subunit RPC1 (RNA polymerase III subunit C1) (EC 2.7.7.6) (DNA-directed RNA polymerase III largest subunit) (DNA-directed RNA polymerase III subunit A) (RNA polymerase III 155 kDa subunit) (RPC155) (RNA polymerase III subunit C160) | Catalytic core component of RNA polymerase III (Pol III), a DNA-dependent RNA polymerase which synthesizes small non-coding RNAs using the four ribonucleoside triphosphates as substrates. Synthesizes 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (PubMed:19609254, PubMed:19631370, PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33558766, PubMed:34675218, PubMed:35637192, PubMed:9331371). Pol III-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33558766, PubMed:33674783, PubMed:34675218). Forms Pol III active center together with the second largest subunit POLR3B/RPC2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate (PubMed:19609254, PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33674783, PubMed:34675218, PubMed:9331371). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000250, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33335104, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:33674783, ECO:0000269|PubMed:34675218, ECO:0000269|PubMed:35637192, ECO:0000269|PubMed:9331371}. |
O14827 | RASGRF2 | S718 | ochoa | Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2) (Ras guanine nucleotide exchange factor 2) | Functions as a calcium-regulated nucleotide exchange factor activating both Ras and RAC1 through the exchange of bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on their different types of prenylation. Functions in synaptic plasticity by contributing to the induction of long term potentiation. {ECO:0000269|PubMed:15128856}. |
O14867 | BACH1 | S196 | ochoa | Transcription regulator protein BACH1 (BTB and CNC homolog 1) (HA2303) | Transcriptional regulator that acts as a repressor or activator, depending on the context. Binds to NF-E2 DNA binding sites. Plays important roles in coordinating transcription activation and repression by MAFK (By similarity). Together with MAF, represses the transcription of genes under the control of the NFE2L2 oxidative stress pathway (PubMed:24035498). {ECO:0000250|UniProtKB:P97302, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:39504958}. |
O14867 | BACH1 | S417 | ochoa | Transcription regulator protein BACH1 (BTB and CNC homolog 1) (HA2303) | Transcriptional regulator that acts as a repressor or activator, depending on the context. Binds to NF-E2 DNA binding sites. Plays important roles in coordinating transcription activation and repression by MAFK (By similarity). Together with MAF, represses the transcription of genes under the control of the NFE2L2 oxidative stress pathway (PubMed:24035498). {ECO:0000250|UniProtKB:P97302, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:39504958}. |
O14879 | IFIT3 | S203 | ochoa | Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) (CIG49) (ISG-60) (Interferon-induced 60 kDa protein) (IFI-60K) (Interferon-induced protein with tetratricopeptide repeats 4) (IFIT-4) (Retinoic acid-induced gene G protein) (P60) (RIG-G) | IFN-induced antiviral protein which acts as an inhibitor of cellular as well as viral processes, cell migration, proliferation, signaling, and viral replication. Enhances MAVS-mediated host antiviral responses by serving as an adapter bridging TBK1 to MAVS which leads to the activation of TBK1 and phosphorylation of IRF3 and phosphorylated IRF3 translocates into nucleus to promote antiviral gene transcription. Exhibits an antiproliferative activity via the up-regulation of cell cycle negative regulators CDKN1A/p21 and CDKN1B/p27. Normally, CDKN1B/p27 turnover is regulated by COPS5, which binds CDKN1B/p27 in the nucleus and exports it to the cytoplasm for ubiquitin-dependent degradation. IFIT3 sequesters COPS5 in the cytoplasm, thereby increasing nuclear CDKN1B/p27 protein levels. Up-regulates CDKN1A/p21 by down-regulating MYC, a repressor of CDKN1A/p21. Can negatively regulate the apoptotic effects of IFIT2. {ECO:0000269|PubMed:17050680, ECO:0000269|PubMed:20686046, ECO:0000269|PubMed:21190939, ECO:0000269|PubMed:21642987, ECO:0000269|PubMed:21813773}. |
O14893 | GEMIN2 | S166 | ochoa | Gem-associated protein 2 (Gemin-2) (Component of gems 2) (Survival of motor neuron protein-interacting protein 1) (SMN-interacting protein 1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9323129). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG (5Sm) are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A (PubMed:18984161, PubMed:9323129). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Within the SMN complex, GEMIN2 constrains the conformation of 5Sm, thereby promoting 5Sm binding to snRNA containing the snRNP code (a nonameric Sm site and a 3'-adjacent stem-loop), thus preventing progression of assembly until a cognate substrate is bound (PubMed:16314521, PubMed:21816274, PubMed:31799625). {ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9323129}. |
O14901 | KLF11 | S260 | ochoa | Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) | Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}. |
O14908 | GIPC1 | S68 | ochoa | PDZ domain-containing protein GIPC1 (GAIP C-terminus-interacting protein) (RGS-GAIP-interacting protein) (RGS19-interacting protein 1) (Synectin) (Tax interaction protein 2) (TIP-2) | May be involved in G protein-linked signaling. |
O14920 | IKBKB | S550 | ochoa | Inhibitor of nuclear factor kappa-B kinase subunit beta (I-kappa-B-kinase beta) (IKK-B) (IKK-beta) (IkBKB) (EC 2.7.11.10) (I-kappa-B kinase 2) (IKK-2) (IKK2) (Nuclear factor NF-kappa-B inhibitor kinase beta) (NFKBIKB) (Serine/threonine protein kinase IKBKB) (EC 2.7.11.1) | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed:17213322, PubMed:19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylates STAT1 at 'Thr-749' which restricts interferon signaling and anti-inflammatory responses and promotes innate inflammatory responses (PubMed:38621137). IKBKB-mediated phosphorylation of STAT1 at 'Thr-749' promotes binding of STAT1 to the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). It also promotes binding of STAT1 to the IL12B promoter and activation of IL12B transcription (PubMed:32209697). {ECO:0000250|UniProtKB:O88351, ECO:0000269|PubMed:11297557, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17213322, ECO:0000269|PubMed:19716809, ECO:0000269|PubMed:20410276, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20797629, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:30337470, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:38621137, ECO:0000269|PubMed:9346484}. |
O14920 | IKBKB | S672 | ochoa | Inhibitor of nuclear factor kappa-B kinase subunit beta (I-kappa-B-kinase beta) (IKK-B) (IKK-beta) (IkBKB) (EC 2.7.11.10) (I-kappa-B kinase 2) (IKK-2) (IKK2) (Nuclear factor NF-kappa-B inhibitor kinase beta) (NFKBIKB) (Serine/threonine protein kinase IKBKB) (EC 2.7.11.1) | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed:11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed:17213322, PubMed:19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylates STAT1 at 'Thr-749' which restricts interferon signaling and anti-inflammatory responses and promotes innate inflammatory responses (PubMed:38621137). IKBKB-mediated phosphorylation of STAT1 at 'Thr-749' promotes binding of STAT1 to the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). It also promotes binding of STAT1 to the IL12B promoter and activation of IL12B transcription (PubMed:32209697). {ECO:0000250|UniProtKB:O88351, ECO:0000269|PubMed:11297557, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17213322, ECO:0000269|PubMed:19716809, ECO:0000269|PubMed:20410276, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20797629, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:30337470, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:38621137, ECO:0000269|PubMed:9346484}. |
O14936 | CASK | S51 | ochoa | Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) | Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}. |
O14936 | CASK | S395 | ochoa | Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) | Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}. |
O14939 | PLD2 | S888 | ochoa | Phospholipase D2 (PLD 2) (hPLD2) (EC 3.1.4.4) (Choline phosphatase 2) (PLD1C) (Phosphatidylcholine-hydrolyzing phospholipase D2) | Function as phospholipase selective for phosphatidylcholine (PubMed:9582313). May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity). {ECO:0000250|UniProtKB:P97813, ECO:0000269|PubMed:9582313}. |
O14964 | HGS | S240 | ochoa | Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) (Protein pp110) | Involved in intracellular signal transduction mediated by cytokines and growth factors. When associated with STAM, it suppresses DNA signaling upon stimulation by IL-2 and GM-CSF. Could be a direct effector of PI3-kinase in vesicular pathway via early endosomes and may regulate trafficking to early and late endosomes by recruiting clathrin. May concentrate ubiquitinated receptors within clathrin-coated regions. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with STAM (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes. May contribute to the efficient recruitment of SMADs to the activin receptor complex. Involved in receptor recycling via its association with the CART complex, a multiprotein complex required for efficient transferrin receptor recycling but not for EGFR degradation. |
O14974 | PPP1R12A | S299 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14974 | PPP1R12A | S473 | ochoa|psp | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14976 | GAK | S456 | ochoa | Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) | Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}. |
O14978 | ZNF263 | S289 | ochoa | Zinc finger protein 263 (Zinc finger protein FPM315) (Zinc finger protein with KRAB and SCAN domains 12) | Transcription factor that binds to the consensus sequence 5'-TCCTCCC-3' and acts as a transcriptional repressor (PubMed:32051553). Binds to the promoter region of SIX3 and recruits other proteins involved in chromatin modification and transcriptional corepression, resulting in methylation of the promoter and transcriptional repression (PubMed:32051553). Acts as a transcriptional repressor of HS3ST1 and HS3ST3A1 via binding to gene promoter regions (PubMed:32277030). {ECO:0000269|PubMed:32051553, ECO:0000269|PubMed:32277030}. |
O14981 | BTAF1 | S95 | ochoa | TATA-binding protein-associated factor 172 (EC 3.6.4.-) (ATP-dependent helicase BTAF1) (B-TFIID transcription factor-associated 170 kDa subunit) (TAF(II)170) (TBP-associated factor 172) (TAF-172) | Regulates transcription in association with TATA binding protein (TBP). Removes TBP from the TATA box in an ATP-dependent manner. |
O14983 | ATP2A1 | S499 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) (SR Ca(2+)-ATPase 1) (EC 7.2.2.10) (Calcium pump 1) (Calcium-transporting ATPase sarcoplasmic reticulum type, fast twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction (PubMed:10914677). {ECO:0000250|UniProtKB:P04191, ECO:0000269|PubMed:10914677}. |
O15014 | ZNF609 | S252 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S358 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S433 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S491 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S758 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S1313 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15015 | ZNF646 | S33 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15015 | ZNF646 | S230 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15018 | PDZD2 | S1103 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15018 | PDZD2 | S1422 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15018 | PDZD2 | S1919 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15020 | SPTBN2 | S1853 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15027 | SEC16A | S1841 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15042 | U2SURP | S67 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15042 | U2SURP | S485 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15050 | TRANK1 | S2741 | ochoa | TPR and ankyrin repeat-containing protein 1 (Lupus brain antigen 1 homolog) | None |
O15056 | SYNJ2 | S838 | ochoa | Synaptojanin-2 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 2) | Inositol 5-phosphatase which may be involved in distinct membrane trafficking and signal transduction pathways. May mediate the inhibitory effect of Rac1 on endocytosis. |
O15061 | SYNM | S429 | ochoa|psp | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1107 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15063 | GARRE1 | S665 | ochoa | Granule associated Rac and RHOG effector protein 1 (GARRE1) | Acts as an effector of RAC1 (PubMed:31871319). Associates with CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation (PubMed:29395067). May also play a role in miRNA silencing machinery (PubMed:29395067). {ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:31871319}. |
O15067 | PFAS | S569 | ochoa | Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) | Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}. |
O15075 | DCLK1 | S32 | ochoa | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O15078 | CEP290 | S1610 | ochoa | Centrosomal protein of 290 kDa (Cep290) (Bardet-Biedl syndrome 14 protein) (Cancer/testis antigen 87) (CT87) (Nephrocystin-6) (Tumor antigen se2-2) | Involved in early and late steps in cilia formation. Its association with CCP110 is required for inhibition of primary cilia formation by CCP110 (PubMed:18694559). May play a role in early ciliogenesis in the disappearance of centriolar satellites and in the transition of primary ciliar vesicles (PCVs) to capped ciliary vesicles (CCVs). Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1 (PubMed:24421332). Required for the correct localization of ciliary and phototransduction proteins in retinal photoreceptor cells; may play a role in ciliary transport processes (By similarity). Required for efficient recruitment of RAB8A to primary cilium (PubMed:17705300). In the ciliary transition zone is part of the tectonic-like complex which is required for tissue-specific ciliogenesis and may regulate ciliary membrane composition (By similarity). Involved in regulation of the BBSome complex integrity, specifically for presence of BBS2, BBS5 and BBS8/TTC8 in the complex, and in ciliary targeting of selected BBSome cargos. May play a role in controlling entry of the BBSome complex to cilia possibly implicating IQCB1/NPHP5 (PubMed:25552655). Activates ATF4-mediated transcription (PubMed:16682973). {ECO:0000250|UniProtKB:Q6A078, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17705300, ECO:0000269|PubMed:18694559, ECO:0000269|PubMed:24421332, ECO:0000269|PubMed:25552655}. |
O15079 | SNPH | S204 | ochoa | Syntaphilin | Inhibits SNARE complex formation by absorbing free STX1A. {ECO:0000269|PubMed:10707983}. |
O15085 | ARHGEF11 | S1413 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15085 | ARHGEF11 | S1480 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15119 | TBX3 | S409 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15119 | TBX3 | S432 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15151 | MDM4 | S96 | psp | Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) | Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}. |
O15164 | TRIM24 | S613 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15164 | TRIM24 | S811 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15173 | PGRMC2 | S90 | ochoa | Membrane-associated progesterone receptor component 2 (Progesterone membrane-binding protein) (Steroid receptor protein DG6) | Required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan (By similarity). May serve as a universal non-classical progesterone receptor in the uterus (Probable). Intracellular heme chaperone required for delivery of labile, or signaling heme, to the nucleus (By similarity). Plays a role in adipocyte function and systemic glucose homeostasis (PubMed:28111073). In brown fat, which has a high demand for heme, delivery of labile heme in the nucleus regulates the activity of heme-responsive transcriptional repressors such as NR1D1 and BACH1 (By similarity). {ECO:0000250|UniProtKB:Q80UU9, ECO:0000269|PubMed:28111073, ECO:0000305|PubMed:28396637}. |
O15195 | VILL | S723 | ochoa | Villin-like protein | Possible tumor suppressor. |
O15197 | EPHB6 | S637 | ochoa | Ephrin type-B receptor 6 (HEP) (Tyrosine-protein kinase-defective receptor EPH-6) | Kinase-defective receptor for members of the ephrin-B family. Binds to ephrin-B1 and ephrin-B2. Modulates cell adhesion and migration by exerting both positive and negative effects upon stimulation with ephrin-B2. Inhibits JNK activation, T-cell receptor-induced IL-2 secretion and CD25 expression upon stimulation with ephrin-B2. {ECO:0000269|PubMed:12517763, ECO:0000269|PubMed:15955811}. |
O15211 | RGL2 | S409 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O15234 | CASC3 | S477 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15245 | SLC22A1 | S331 | ochoa | Solute carrier family 22 member 1 (Organic cation transporter 1) (hOCT1) | Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:11388889, PubMed:11408531, PubMed:12439218, PubMed:12719534, PubMed:15389554, PubMed:16263091, PubMed:16272756, PubMed:16581093, PubMed:19536068, PubMed:21128598, PubMed:23680637, PubMed:24961373, PubMed:34040533, PubMed:9187257, PubMed:9260930, PubMed:9655880). Functions as a pH- and Na(+)-independent, bidirectional transporter (By similarity). Cation cellular uptake or release is driven by the electrochemical potential (i.e. membrane potential and concentration gradient) and substrate selectivity (By similarity). Hydrophobicity is a major requirement for recognition in polyvalent substrates and inhibitors (By similarity). Primarily expressed at the basolateral membrane of hepatocytes and proximal tubules and involved in the uptake and disposition of cationic compounds by hepatic and renal clearance from the blood flow (By similarity). Most likely functions as an uptake carrier in enterocytes contributing to the intestinal elimination of organic cations from the systemic circulation (PubMed:16263091). Transports endogenous monoamines such as N-1-methylnicotinamide (NMN), guanidine, histamine, neurotransmitters dopamine, serotonin and adrenaline (PubMed:12439218, PubMed:24961373, PubMed:35469921, PubMed:9260930). Also transports natural polyamines such as spermidine, agmatine and putrescine at low affinity, but relatively high turnover (PubMed:21128598). Involved in the hepatic uptake of vitamin B1/thiamine, hence regulating hepatic lipid and energy metabolism (PubMed:24961373). Mediates the bidirectional transport of acetylcholine (ACh) at the apical membrane of ciliated cell in airway epithelium, thereby playing a role in luminal release of ACh from bronchial epithelium (PubMed:15817714). Transports dopaminergic neuromodulators cyclo(his-pro) and salsolinol with lower efficency (PubMed:17460754). Also capable of transporting non-amine endogenous compounds such as prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) (PubMed:11907186). May contribute to the transport of cationic compounds in testes across the blood-testis-barrier (Probable). Also involved in the uptake of xenobiotics tributylmethylammonium (TBuMA), quinidine, N-methyl-quinine (NMQ), N-methyl-quinidine (NMQD) N-(4,4-azo-n-pentyl)-quinuclidine (APQ), azidoprocainamide methoiodide (AMP), N-(4,4-azo-n-pentyl)-21-deoxyajmalinium (APDA) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP) (PubMed:11408531, PubMed:15389554, PubMed:35469921, PubMed:9260930). {ECO:0000250|UniProtKB:O08966, ECO:0000250|UniProtKB:Q63089, ECO:0000269|PubMed:11388889, ECO:0000269|PubMed:11408531, ECO:0000269|PubMed:11907186, ECO:0000269|PubMed:12439218, ECO:0000269|PubMed:12719534, ECO:0000269|PubMed:15389554, ECO:0000269|PubMed:15817714, ECO:0000269|PubMed:16263091, ECO:0000269|PubMed:16272756, ECO:0000269|PubMed:16581093, ECO:0000269|PubMed:17460754, ECO:0000269|PubMed:19536068, ECO:0000269|PubMed:21128598, ECO:0000269|PubMed:23680637, ECO:0000269|PubMed:24961373, ECO:0000269|PubMed:34040533, ECO:0000269|PubMed:35469921, ECO:0000269|PubMed:9187257, ECO:0000269|PubMed:9260930, ECO:0000269|PubMed:9655880, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 1]: Mediates the uptake of 1-methyl-4-phenylpyridinium (MPP(+)). {ECO:0000269|PubMed:11388889}.; FUNCTION: [Isoform 2]: Not able to uptake 1-methyl-4-phenylpyridinium (MPP(+)). {ECO:0000269|PubMed:11388889}.; FUNCTION: [Isoform 3]: Not able to uptake 1-methyl-4-phenylpyridinium (MPP(+)). {ECO:0000269|PubMed:11388889}.; FUNCTION: [Isoform 4]: Not able to uptake 1-methyl-4-phenylpyridinium (MPP(+)). {ECO:0000269|PubMed:11388889}. |
O15265 | ATXN7 | S571 | ochoa | Ataxin-7 (Spinocerebellar ataxia type 7 protein) | Acts as a component of the SAGA (aka STAGA) transcription coactivator-HAT complex (PubMed:15932940, PubMed:18206972). Mediates the interaction of SAGA complex with the CRX and is involved in CRX-dependent gene activation (PubMed:15932940, PubMed:18206972). Probably involved in tethering the deubiquitination module within the SAGA complex (PubMed:24493646). Necessary for microtubule cytoskeleton stabilization (PubMed:22100762). Involved in neurodegeneration (PubMed:9288099). {ECO:0000269|PubMed:15932940, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:22100762, ECO:0000269|PubMed:24493646, ECO:0000269|PubMed:9288099}. |
O15350 | TP73 | S333 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15354 | GPR37 | S594 | ochoa | Prosaposin receptor GPR37 (Endothelin B receptor-like protein 1) (ETBR-LP-1) (G-protein coupled receptor 37) (Parkin-associated endothelin receptor-like receptor) (PAELR) | G-protein-coupled receptor that plays a role in several physiological pathways such as resolution of inflammatory pain and oligodendrocyte differentiation (By similarity). Acts as a receptor for several ligands including prosaposin, osteocalcin or neuroprotectin D1. Ligand binding induces endocytosis, followed by an ERK phosphorylation cascade (PubMed:11439185, PubMed:23690594). Acts as a receptor for osteocalcin (OCN) to regulate oligodendrocyte differentiation and central nervous system myelination. Mechanistically, plays a negative role in oligodendrocyte differentiation and myelination during development via activation of the ERK1/2 signaling pathway. Therefore, regulates the stability of myelin or resistance of myelin itself to demyelination. Upon activation by neuroprotectin D1 (NPD1), promotes the activation of phagocytosis in macrophages as well as the shift in cytokine release toward an anti-inflammatory profile, and thus helps to reverse inflammatory pain. In addition, the increased macrophage phagocytosis mediates protection against sepsis upon pathogen infection. Additionally, extracellular vesicles derived from efferocyte express prosaposin, which binds to macrophage GPR37 to increase expression of the efferocytosis receptor TIM4 via an ERK-AP1-dependent signaling axis, leading to increased macrophage efferocytosis efficiency and accelerated resolution of inflammation (By similarity). May also act as a maturation factor of LRP6, protecting LRP6 from the endoplasmic reticulum (ER)-associated protein degradation (ERAD) and thereby promoting the Wnt/beta-catenin signaling pathway (PubMed:28341812). {ECO:0000250|UniProtKB:Q9QY42, ECO:0000269|PubMed:11439185, ECO:0000269|PubMed:23690594, ECO:0000269|PubMed:25977097, ECO:0000269|PubMed:28341812, ECO:0000269|PubMed:9526070}. |
O15357 | INPPL1 | S241 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (EC 3.1.3.86) (Inositol polyphosphate phosphatase-like protein 1) (INPPL-1) (Protein 51C) (SH2 domain-containing inositol 5'-phosphatase 2) (SH2 domain-containing inositol phosphatase 2) (SHIP-2) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:16824732). Required for correct mitotic spindle orientation and therefore progression of mitosis (By similarity). Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear (PubMed:9660833). While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking (By similarity). Confers resistance to dietary obesity (By similarity). May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane (By similarity). Part of a signaling pathway that regulates actin cytoskeleton remodeling (PubMed:11739414, PubMed:12676785). Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation (PubMed:15668240). Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling (PubMed:21624956). Regulates cell adhesion and cell spreading (PubMed:12235291). Required for HGF-mediated lamellipodium formation, cell scattering and spreading (PubMed:15735664). Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation (PubMed:17135240). Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth (By similarity). Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A) (PubMed:12690104). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems (PubMed:11016922). Involved in EGF signaling pathway (PubMed:11349134). Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3 (PubMed:11349134). Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity (PubMed:11349134). Down-regulates Fc-gamma-R-mediated phagocytosis in macrophages independently of INPP5D/SHIP1 (By similarity). In macrophages, down-regulates NF-kappa-B-dependent gene transcription by regulating macrophage colony-stimulating factor (M-CSF)-induced signaling (By similarity). Plays a role in the localization of AURKA and NEDD9/HEF1 to the basolateral membrane at interphase in polarized cysts, thereby mediates cell cycle homeostasis, cell polarization and cilia assembly (By similarity). Additionally promotion of cilia growth is also facilitated by hydrolysis of (PtdIns(3,4,5)P3) to PtdIns(3,4)P2 (By similarity). Promotes formation of apical membrane-initiation sites during the initial stages of lumen formation via Rho family-induced actin filament organization and CTNNB1 localization to cell-cell contacts (By similarity). May also hydrolyze PtdIns(1,3,4,5)P4, and could thus affect the levels of the higher inositol polyphosphates like InsP6. Involved in endochondral ossification (PubMed:23273569). {ECO:0000250|UniProtKB:F1PNY0, ECO:0000250|UniProtKB:Q6P549, ECO:0000250|UniProtKB:Q9WVR3, ECO:0000269|PubMed:11016922, ECO:0000269|PubMed:11349134, ECO:0000269|PubMed:11739414, ECO:0000269|PubMed:12235291, ECO:0000269|PubMed:12676785, ECO:0000269|PubMed:12690104, ECO:0000269|PubMed:15668240, ECO:0000269|PubMed:15735664, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:17135240, ECO:0000269|PubMed:21624956, ECO:0000269|PubMed:23273569, ECO:0000269|PubMed:9660833}. |
O15360 | FANCA | S1377 | ochoa | Fanconi anemia group A protein (Protein FACA) | DNA repair protein that may operate in a postreplication repair or a cell cycle checkpoint function. May be involved in interstrand DNA cross-link repair and in the maintenance of normal chromosome stability. |
O15371 | EIF3D | S308 | ochoa | Eukaryotic translation initiation factor 3 subunit D (eIF3d) (Eukaryotic translation initiation factor 3 subunit 7) (eIF-3-zeta) (eIF3 p66) | mRNA cap-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, a complex required for several steps in the initiation of protein synthesis of a specialized repertoire of mRNAs (PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:18599441, PubMed:25849773). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). In the eIF-3 complex, EIF3D specifically recognizes and binds the 7-methylguanosine cap of a subset of mRNAs (PubMed:27462815). {ECO:0000269|PubMed:18599441, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
O15379 | HDAC3 | S74 | ochoa | Histone deacetylase 3 (HD3) (EC 3.5.1.98) (Protein deacetylase HDAC3) (EC 3.5.1.-) (Protein deacylase HDAC3) (EC 3.5.1.-) (RPD3-2) (SMAP45) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates (PubMed:21030595, PubMed:21444723, PubMed:23911289, PubMed:25301942, PubMed:28167758, PubMed:28497810, PubMed:32404892, PubMed:22230954). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:23911289). Histone deacetylases act via the formation of large multiprotein complexes, such as N-Cor repressor complex, which activate the histone deacetylase activity (PubMed:23911289, PubMed:22230954). Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression (PubMed:23911289). Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation (By similarity). Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress (PubMed:25190803). Regulates both the transcriptional activation and repression phases of the circadian clock in a deacetylase activity-independent manner (By similarity). During the activation phase, promotes the accumulation of ubiquitinated BMAL1 at the E-boxes and during the repression phase, blocks FBXL3-mediated CRY1/2 ubiquitination and promotes the interaction of CRY1 and BMAL1 (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). Also functions as a deacetylase for non-histone targets, such as KAT5, MEF2D, MAPK14, RARA and STAT3 (PubMed:15653507, PubMed:21030595, PubMed:21444723, PubMed:25301942, PubMed:28167758). Serves as a corepressor of RARA, mediating its deacetylation and repression, leading to inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:34608293, PubMed:35044827). Catalyzes decrotonylation of MAPRE1/EB1 (PubMed:34608293). Mediates delactylation NBN/NBS1, thereby inhibiting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38961290). {ECO:0000250|UniProtKB:O88895, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21444723, ECO:0000269|PubMed:22230954, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25301942, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:32404892, ECO:0000269|PubMed:34608293, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:38961290}. |
O15403 | SLC16A6 | S247 | ochoa | Monocarboxylate transporter 7 (MCT 7) (Monocarboxylate transporter 6) (MCT 6) (Solute carrier family 16 member 6) | Monocarboxylate transporter selective for taurine. May associate with BSG/CD147 or EMB/GP70 ancillary proteins to mediate facilitative efflux or influx of taurine across the plasma membrane. The transport is pH- and sodium-independent. Rather low-affinity, is likely effective for taurine transport in tissues where taurine is present at high concentrations. {ECO:0000250|UniProtKB:Q7TMR7}. |
O15405 | TOX3 | S529 | ochoa | TOX high mobility group box family member 3 (CAG trinucleotide repeat-containing gene F9 protein) (Trinucleotide repeat-containing gene 9 protein) | Transcriptional coactivator of the p300/CBP-mediated transcription complex. Activates transactivation through cAMP response element (CRE) sites. Protects against cell death by inducing antiapoptotic and repressing pro-apoptotic transcripts. Stimulates transcription from the estrogen-responsive or BCL-2 promoters. Required for depolarization-induced transcription activation of the C-FOS promoter in neurons. Associates with chromatin to the estrogen-responsive C3 promoter region. {ECO:0000269|PubMed:21172805}. |
O15409 | FOXP2 | S591 | ochoa | Forkhead box protein P2 (CAG repeat protein 44) (Trinucleotide repeat-containing gene 10 protein) | Transcriptional repressor that may play a role in the specification and differentiation of lung epithelium. May also play a role in developing neural, gastrointestinal and cardiovascular tissues. Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential. Plays a role in synapse formation by regulating SRPX2 levels. Involved in neural mechanisms mediating the development of speech and language. |
O15417 | TNRC18 | S1878 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S2292 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15417 | TNRC18 | S2866 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15498 | YKT6 | S114 | ochoa | Synaptobrevin homolog YKT6 (EC 2.3.1.-) | Vesicular soluble NSF attachment protein receptor (v-SNARE) mediating vesicle docking and fusion to a specific acceptor cellular compartment. Functions in endoplasmic reticulum to Golgi transport; as part of a SNARE complex composed of GOSR1, GOSR2 and STX5. Functions in early/recycling endosome to TGN transport; as part of a SNARE complex composed of BET1L, GOSR1 and STX5. Has a S-palmitoyl transferase activity. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:9211930}. |
O15503 | INSIG1 | S238 | psp | Insulin-induced gene 1 protein (INSIG-1) | Oxysterol-binding protein that mediates feedback control of cholesterol synthesis by controlling both endoplasmic reticulum to Golgi transport of SCAP and degradation of HMGCR (PubMed:12202038, PubMed:12535518, PubMed:16168377, PubMed:16399501, PubMed:16606821, PubMed:32322062). Acts as a negative regulator of cholesterol biosynthesis by mediating the retention of the SCAP-SREBP complex in the endoplasmic reticulum, thereby blocking the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:12202038, PubMed:16399501, PubMed:26311497, PubMed:32322062). Binds oxysterol, including 25-hydroxycholesterol, regulating interaction with SCAP and retention of the SCAP-SREBP complex in the endoplasmic reticulum (PubMed:32322062). In presence of oxysterol, interacts with SCAP, retaining the SCAP-SREBP complex in the endoplasmic reticulum, thereby preventing SCAP from escorting SREBF1/SREBP1 and SREBF2/SREBP2 to the Golgi (PubMed:15899885, PubMed:32322062). Sterol deprivation or phosphorylation by PCK1 reduce oxysterol-binding, disrupting the interaction between INSIG1 and SCAP, thereby promoting Golgi transport of the SCAP-SREBP complex, followed by processing and nuclear translocation of SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497, PubMed:32322062). Also regulates cholesterol synthesis by regulating degradation of HMGCR: initiates the sterol-mediated ubiquitin-mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligases AMFR/gp78 and/or RNF139 (PubMed:12535518, PubMed:16168377, PubMed:22143767). Also regulates degradation of SOAT2/ACAT2 when the lipid levels are low: initiates the ubiquitin-mediated degradation of SOAT2/ACAT2 via recruitment of the ubiquitin ligases AMFR/gp78 (PubMed:28604676). {ECO:0000269|PubMed:12202038, ECO:0000269|PubMed:12535518, ECO:0000269|PubMed:15899885, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16399501, ECO:0000269|PubMed:16606821, ECO:0000269|PubMed:22143767, ECO:0000269|PubMed:26311497, ECO:0000269|PubMed:28604676, ECO:0000269|PubMed:32322062}. |
O15523 | DDX3Y | S490 | ochoa | ATP-dependent RNA helicase DDX3Y (EC 3.6.4.13) (DEAD box protein 3, Y-chromosomal) | Probable ATP-dependent RNA helicase. During immune response, may enhance IFNB1 expression via IRF3/IRF7 pathway (By similarity). {ECO:0000250|UniProtKB:Q62095}. |
O15534 | PER1 | S704 | ochoa | Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) | Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}. |
O15550 | KDM6A | S769 | ochoa | Lysine-specific demethylase 6A (EC 1.14.11.68) (Histone demethylase UTX) (Ubiquitously-transcribed TPR protein on the X chromosome) (Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase 6A) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17761849, PubMed:17851529). Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27' (PubMed:17713478, PubMed:17761849, PubMed:17851529). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A (PubMed:17761849). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression (By similarity). {ECO:0000250|UniProtKB:O70546, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17761849, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914}. |
O15550 | KDM6A | S846 | ochoa | Lysine-specific demethylase 6A (EC 1.14.11.68) (Histone demethylase UTX) (Ubiquitously-transcribed TPR protein on the X chromosome) (Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase 6A) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17761849, PubMed:17851529). Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27' (PubMed:17713478, PubMed:17761849, PubMed:17851529). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A (PubMed:17761849). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression (By similarity). {ECO:0000250|UniProtKB:O70546, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17761849, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914}. |
O43147 | SGSM2 | S123 | ochoa | Small G protein signaling modulator 2 (RUN and TBC1 domain-containing protein 1) | Possesses GTPase activator activity towards RAB32, RAB33B and RAB38 (PubMed:21808068, PubMed:26620560). Regulates the trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes by inactivating RAB32 and RAB38. Inhibits RAB32 and RAB38 activation both directly by promoting their GTPase activity and indirectly by disrupting the RAB9A-HPS4 interaction which is required for RAB32/38 activation (PubMed:26620560). {ECO:0000269|PubMed:21808068, ECO:0000269|PubMed:26620560}. |
O43156 | TTI1 | S106 | ochoa | TELO2-interacting protein 1 homolog (Protein SMG10) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. {ECO:0000269|PubMed:20427287, ECO:0000269|PubMed:20801936, ECO:0000269|PubMed:20810650, ECO:0000269|PubMed:36724785}. |
O43156 | TTI1 | S459 | ochoa | TELO2-interacting protein 1 homolog (Protein SMG10) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. {ECO:0000269|PubMed:20427287, ECO:0000269|PubMed:20801936, ECO:0000269|PubMed:20810650, ECO:0000269|PubMed:36724785}. |
O43166 | SIPA1L1 | S193 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1528 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1734 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43167 | ZBTB24 | S134 | ochoa | Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) | May be involved in BMP2-induced transcription. {ECO:0000250}. |
O43172 | PRPF4 | S240 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp4 (PRP4 homolog) (hPrp4) (U4/U6 snRNP 60 kDa protein) (WD splicing factor Prp4) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:25383878, ECO:0000269|PubMed:28781166}. |
O43172 | PRPF4 | S483 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp4 (PRP4 homolog) (hPrp4) (U4/U6 snRNP 60 kDa protein) (WD splicing factor Prp4) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:25383878, ECO:0000269|PubMed:28781166}. |
O43175 | PHGDH | S326 | ochoa | D-3-phosphoglycerate dehydrogenase (3-PGDH) (EC 1.1.1.95) (2-oxoglutarate reductase) (EC 1.1.1.399) (Malate dehydrogenase) (EC 1.1.1.37) | Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L-serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate. {ECO:0000269|PubMed:11751922, ECO:0000269|PubMed:25406093}. |
O43175 | PHGDH | S371 | ochoa | D-3-phosphoglycerate dehydrogenase (3-PGDH) (EC 1.1.1.95) (2-oxoglutarate reductase) (EC 1.1.1.399) (Malate dehydrogenase) (EC 1.1.1.37) | Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L-serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate. {ECO:0000269|PubMed:11751922, ECO:0000269|PubMed:25406093}. |
O43182 | ARHGAP6 | S939 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43296 | ZNF264 | S177 | ochoa | Zinc finger protein 264 | May be involved in transcriptional regulation. |
O43299 | AP5Z1 | S776 | ochoa | AP-5 complex subunit zeta-1 (Adaptor-related protein complex 5 zeta subunit) (Zeta5) | As part of AP-5, a probable fifth adaptor protein complex it may be involved in endosomal transport. According to PubMed:20613862 it is a putative helicase required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20613862, ECO:0000269|PubMed:22022230}. |
O43303 | CCP110 | S45 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43303 | CCP110 | S170 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43303 | CCP110 | S400 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43303 | CCP110 | S516 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43303 | CCP110 | S551 | ochoa | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43313 | ATMIN | S391 | ochoa | ATM interactor (ATM/ATR-substrate CHK2-interacting zinc finger protein) (ASCIZ) (Zinc finger protein 822) | Transcription factor. Plays a crucial role in cell survival and RAD51 foci formation in response to methylating DNA damage. Involved in regulating the activity of ATM in the absence of DNA damage. May play a role in stabilizing ATM. Binds to the DYNLL1 promoter and activates its transcription. {ECO:0000269|PubMed:15933716, ECO:0000269|PubMed:17525732, ECO:0000269|PubMed:22167198}. |
O43314 | PPIP5K2 | S1152 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43347 | MSI1 | S191 | ochoa | RNA-binding protein Musashi homolog 1 (Musashi-1) | RNA binding protein that regulates the expression of target mRNAs at the translation level. Regulates expression of the NOTCH1 antagonist NUMB. Binds RNA containing the sequence 5'-GUUAGUUAGUUAGUU-3' and other sequences containing the pattern 5'-[GA]U(1-3)AGU-3'. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity). {ECO:0000250}. |
O43361 | ZNF749 | S722 | ochoa | Zinc finger protein 749 | May be involved in transcriptional regulation. |
O43365 | HOXA3 | S263 | ochoa | Homeobox protein Hox-A3 (Homeobox protein Hox-1E) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
O43402 | EMC8 | S103 | ochoa | ER membrane protein complex subunit 8 (Neighbor of COX4) (Protein FAM158B) | Part of the endoplasmic reticulum membrane protein complex (EMC) that enables the energy-independent insertion into endoplasmic reticulum membranes of newly synthesized membrane proteins (PubMed:29242231, PubMed:29809151, PubMed:30415835, PubMed:32439656, PubMed:32459176). Preferentially accommodates proteins with transmembrane domains that are weakly hydrophobic or contain destabilizing features such as charged and aromatic residues (PubMed:29242231, PubMed:29809151, PubMed:30415835). Involved in the cotranslational insertion of multi-pass membrane proteins in which stop-transfer membrane-anchor sequences become ER membrane spanning helices (PubMed:29809151, PubMed:30415835). It is also required for the post-translational insertion of tail-anchored/TA proteins in endoplasmic reticulum membranes (PubMed:29242231, PubMed:29809151). By mediating the proper cotranslational insertion of N-terminal transmembrane domains in an N-exo topology, with translocated N-terminus in the lumen of the ER, controls the topology of multi-pass membrane proteins like the G protein-coupled receptors (PubMed:30415835). By regulating the insertion of various proteins in membranes, it is indirectly involved in many cellular processes (Probable). {ECO:0000269|PubMed:29242231, ECO:0000269|PubMed:29809151, ECO:0000269|PubMed:30415835, ECO:0000269|PubMed:32439656, ECO:0000269|PubMed:32459176, ECO:0000305}. |
O43426 | SYNJ1 | S1318 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43426 | SYNJ1 | S1345 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43432 | EIF4G3 | S230 | ochoa | Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}. |
O43432 | EIF4G3 | S495 | ochoa | Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}. |
O43432 | EIF4G3 | S1409 | ochoa | Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}. |
O43439 | CBFA2T2 | S409 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43439 | CBFA2T2 | S551 | ochoa | Protein CBFA2T2 (ETO homologous on chromosome 20) (MTG8-like protein) (MTG8-related protein 1) (Myeloid translocation-related protein 1) (p85) | Transcriptional corepressor which facilitates transcriptional repression via its association with DNA-binding transcription factors and recruitment of other corepressors and histone-modifying enzymes (PubMed:12559562, PubMed:15203199). Via association with PRDM14 is involved in regulation of embryonic stem cell (ESC) pluripotency (PubMed:27281218). Involved in primordial germ cell (PCG) formation. Stabilizes PRDM14 and OCT4 on chromatin in a homooligomerization-dependent manner (By similarity). Can repress the expression of MMP7 in a ZBTB33-dependent manner (PubMed:23251453). May function as a complex with the chimeric protein RUNX1/AML1-CBFA2T1/MTG8 (AML1-MTG8/ETO fusion protein) which is produced in acute myeloid leukemia with the chromosomal translocation t(8;21). May thus be involved in the repression of AML1-dependent transcription and the induction of G-CSF/CSF3-dependent cell growth. May be a tumor suppressor gene candidate involved in myeloid tumors with the deletion of the 20q11 region. Through heteromerization with CBFA2T3/MTG16 may be involved in regulation of the proliferation and the differentiation of erythroid progenitors by repressing the expression of TAL1 target genes (By similarity). Required for the maintenance of the secretory cell lineage in the small intestine. Can inhibit Notch signaling probably by association with RBPJ and may be involved in GFI1-mediated Paneth cell differentiation (By similarity). {ECO:0000250|UniProtKB:O70374, ECO:0000269|PubMed:23251453, ECO:0000303|PubMed:12559562, ECO:0000303|PubMed:15203199}. |
O43464 | HTRA2 | S400 | psp | Serine protease HTRA2, mitochondrial (EC 3.4.21.108) (High temperature requirement protein A2) (HtrA2) (Omi stress-regulated endoprotease) (Serine protease 25) (Serine proteinase OMI) | [Isoform 1]: Serine protease that shows proteolytic activity against a non-specific substrate beta-casein (PubMed:10873535). Promotes apoptosis by either relieving the inhibition of BIRC proteins on caspases, leading to an increase in caspase activity; or by a BIRC inhibition-independent, caspase-independent and serine protease activity-dependent mechanism (PubMed:15200957). Cleaves BIRC6 and relieves its inhibition on CASP3, CASP7 and CASP9, but it is also prone to inhibition by BIRC6 (PubMed:36758104, PubMed:36758105). Cleaves THAP5 and promotes its degradation during apoptosis (PubMed:19502560). {ECO:0000269|PubMed:10873535, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:19502560, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105}.; FUNCTION: [Isoform 2]: Seems to be proteolytically inactive. {ECO:0000269|PubMed:10995577}. |
O43491 | EPB41L2 | S386 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43491 | EPB41L2 | S598 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43491 | EPB41L2 | S715 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43493 | TGOLN2 | S150 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O43493 | TGOLN2 | S290 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O43526 | KCNQ2 | S476 | ochoa|psp | Potassium voltage-gated channel subfamily KQT member 2 (KQT-like 2) (Neuroblastoma-specific potassium channel subunit alpha KvLQT2) (Voltage-gated potassium channel subunit Kv7.2) | Pore-forming subunit of the voltage-gated potassium (Kv) M-channel which is responsible for the M-current, a key controller of neuronal excitability (PubMed:24277843, PubMed:28793216, PubMed:9836639). M-channel is composed of pore-forming subunits KCNQ2 and KCNQ3 assembled as heterotetramers (PubMed:10781098, PubMed:14534157, PubMed:32884139, PubMed:37857637, PubMed:9836639). The native M-current has a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs (PubMed:14534157, PubMed:28793216, PubMed:9836639). KCNQ2-KCNQ3 M-channel is selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) > Rb(+) > Cs(+) > Na(+) (PubMed:28793216). M-channel association with SLC5A3/SMIT1 alters channel ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) (PubMed:28793216). Suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10684873, PubMed:10713961). {ECO:0000269|PubMed:10684873, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:10781098, ECO:0000269|PubMed:14534157, ECO:0000269|PubMed:24277843, ECO:0000269|PubMed:28793216, ECO:0000269|PubMed:32884139, ECO:0000269|PubMed:37857637, ECO:0000269|PubMed:9836639}. |
O43566 | RGS14 | S132 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43572 | AKAP10 | S52 | ochoa | A-kinase anchor protein 10, mitochondrial (AKAP-10) (Dual specificity A kinase-anchoring protein 2) (D-AKAP-2) (Protein kinase A-anchoring protein 10) (PRKA10) | Differentially targeted protein that binds to type I and II regulatory subunits of protein kinase A and anchors them to the mitochondria or the plasma membrane. Although the physiological relevance between PKA and AKAPS with mitochondria is not fully understood, one idea is that BAD, a proapoptotic member, is phosphorylated and inactivated by mitochondria-anchored PKA. It cannot be excluded too that it may facilitate PKA as well as G protein signal transduction, by acting as an adapter for assembling multiprotein complexes. With its RGS domain, it could lead to the interaction to G-alpha proteins, providing a link between the signaling machinery and the downstream kinase (By similarity). {ECO:0000250}. |
O43602 | DCX | S28 | ochoa|psp | Neuronal migration protein doublecortin (Doublin) (Lissencephalin-X) (Lis-X) | Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development. May act by competing with the putative neuronal protein kinase DCLK1 in binding to a target protein. May in that way participate in a signaling pathway that is crucial for neuronal interaction before and during migration, possibly as part of a calcium ion-dependent signal transduction pathway. May be part with PAFAH1B1/LIS-1 of overlapping, but distinct, signaling pathways that promote neuronal migration. {ECO:0000269|PubMed:22359282}. |
O43639 | NCK2 | S176 | ochoa | Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}. |
O43678 | NDUFA2 | S27 | ochoa | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 (Complex I-B8) (CI-B8) (NADH-ubiquinone oxidoreductase B8 subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O43680 | TCF21 | S67 | ochoa | Transcription factor 21 (TCF-21) (Capsulin) (Class A basic helix-loop-helix protein 23) (bHLHa23) (Epicardin) (Podocyte-expressed 1) (Pod-1) | Involved in epithelial-mesenchymal interactions in kidney and lung morphogenesis that include epithelial differentiation and branching morphogenesis. May play a role in the specification or differentiation of one or more subsets of epicardial cell types. |
O43683 | BUB1 | S459 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43683 | BUB1 | S593 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43683 | BUB1 | S655 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43747 | AP1G1 | S764 | ochoa | AP-1 complex subunit gamma-1 (Adaptor protein complex AP-1 subunit gamma-1) (Adaptor-related protein complex 1 subunit gamma-1) (Clathrin assembly protein complex 1 gamma-1 large chain) (Gamma1-adaptin) (Golgi adaptor HA1/AP1 adaptin subunit gamma-1) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. In association with AFTPH/aftiphilin in the aftiphilin/p200/gamma-synergin complex, involved in the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000269|PubMed:34102099}. |
O43795 | MYO1B | S893 | ochoa | Unconventional myosin-Ib (MYH-1c) (Myosin I alpha) (MMI-alpha) (MMIa) | Motor protein that may participate in process critical to neuronal development and function such as cell migration, neurite outgrowth and vesicular transport. {ECO:0000250}. |
O43896 | KIF1C | S494 | ochoa | Kinesin-like protein KIF1C | Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}. |
O43900 | PRICKLE3 | S122 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O43903 | GAS2 | S282 | ochoa | Growth arrest-specific protein 2 (GAS-2) | Required to maintain microtubule bundles in inner ear supporting cells, affording them with mechanical stiffness to transmit sound energy through the cochlea. {ECO:0000250|UniProtKB:P11862}. |
O43903 | GAS2 | S288 | ochoa | Growth arrest-specific protein 2 (GAS-2) | Required to maintain microtubule bundles in inner ear supporting cells, affording them with mechanical stiffness to transmit sound energy through the cochlea. {ECO:0000250|UniProtKB:P11862}. |
O60216 | RAD21 | S46 | ochoa | Double-strand-break repair protein rad21 homolog (hHR21) (Nuclear matrix protein 1) (NXP-1) (SCC1 homolog) [Cleaved into: 64-kDa C-terminal product (64-kDa carboxy-terminal product) (65-kDa carboxy-terminal product)] | [Double-strand-break repair protein rad21 homolog]: As a member of the cohesin complex, involved in sister chromatid cohesion from the time of DNA replication in S phase to their segregation in mitosis, a function that is essential for proper chromosome segregation, post-replicative DNA repair, and the prevention of inappropriate recombination between repetitive regions (PubMed:11509732). The cohesin complex may also play a role in spindle pole assembly during mitosis (PubMed:11590136). In interphase, cohesins may function in the control of gene expression by binding to numerous sites within the genome (By similarity). May control RUNX1 gene expression (Probable). Binds to and represses APOB gene promoter (PubMed:25575569). May play a role in embryonic gut development, possibly through the regulation of enteric neuron development (By similarity). {ECO:0000250|UniProtKB:Q61550, ECO:0000250|UniProtKB:Q6TEL1, ECO:0000269|PubMed:11509732, ECO:0000269|PubMed:11590136, ECO:0000269|PubMed:25575569, ECO:0000305|PubMed:25575569}.; FUNCTION: [64-kDa C-terminal product]: May promote apoptosis. {ECO:0000269|PubMed:11875078, ECO:0000269|PubMed:12417729}. |
O60218 | AKR1B10 | S23 | ochoa | Aldo-keto reductase family 1 member B10 (EC 1.1.1.300) (EC 1.1.1.54) (ARL-1) (Aldose reductase-like) (Aldose reductase-related protein) (ARP) (hARP) (Small intestine reductase) (SI reductase) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:12732097, PubMed:18087047, PubMed:19013440, PubMed:19563777, PubMed:9565553). Displays strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:18087047). Plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:19013440, PubMed:19563777). Displays no reductase activity towards glucose (PubMed:12732097). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:18087047, ECO:0000269|PubMed:19013440, ECO:0000269|PubMed:19563777, ECO:0000269|PubMed:9565553}. |
O60218 | AKR1B10 | S215 | ochoa | Aldo-keto reductase family 1 member B10 (EC 1.1.1.300) (EC 1.1.1.54) (ARL-1) (Aldose reductase-like) (Aldose reductase-related protein) (ARP) (hARP) (Small intestine reductase) (SI reductase) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:12732097, PubMed:18087047, PubMed:19013440, PubMed:19563777, PubMed:9565553). Displays strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:18087047). Plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:19013440, PubMed:19563777). Displays no reductase activity towards glucose (PubMed:12732097). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:18087047, ECO:0000269|PubMed:19013440, ECO:0000269|PubMed:19563777, ECO:0000269|PubMed:9565553}. |
O60256 | PRPSAP2 | S227 | ochoa | Phosphoribosyl pyrophosphate synthase-associated protein 2 (PRPP synthase-associated protein 2) (41 kDa phosphoribosypyrophosphate synthetase-associated protein) (PAP41) | Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis. |
O60260 | PRKN | S136 | psp | E3 ubiquitin-protein ligase parkin (Parkin) (EC 2.3.2.31) (Parkin RBR E3 ubiquitin-protein ligase) (Parkinson juvenile disease protein 2) (Parkinson disease protein 2) | Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536, PubMed:29311685, PubMed:32047033). Substrates include SYT11 and VDAC1 (PubMed:29311685, PubMed:32047033). Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2 (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context (PubMed:19229105, PubMed:20889974, PubMed:25474007, PubMed:25621951, PubMed:32047033). Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation (PubMed:17846173, PubMed:19229105). Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation (PubMed:11431533, PubMed:11590439, PubMed:15105460, PubMed:15728840, PubMed:19229105). Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy (PubMed:20889974). Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:11439185, PubMed:18957282, PubMed:19029340, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23933751, PubMed:24660806, PubMed:24784582, PubMed:24896179, PubMed:25474007, PubMed:25527291, PubMed:32047033). Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy (PubMed:11439185, PubMed:19029340, PubMed:19801972, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291, PubMed:32047033, PubMed:33499712). Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin (PubMed:24660806, PubMed:24784582, PubMed:25474007, PubMed:25527291). After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:27534820, PubMed:32047033). When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30 (PubMed:19029340, PubMed:19966284, PubMed:21753002, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy (PubMed:25621951, PubMed:32047033). The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2 (PubMed:23620051). This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:23620051). Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma (PubMed:22396657). Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A (PubMed:21376232). Limits the production of reactive oxygen species (ROS) (PubMed:18541373). Regulates cyclin-E during neuronal apoptosis (PubMed:12628165). In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress (PubMed:22082830). Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53 (PubMed:19801972). May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity (PubMed:11439185). May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene (PubMed:12719539). {ECO:0000269|PubMed:10888878, ECO:0000269|PubMed:10973942, ECO:0000269|PubMed:11431533, ECO:0000269|PubMed:11439185, ECO:0000269|PubMed:11590439, ECO:0000269|PubMed:12150907, ECO:0000269|PubMed:12628165, ECO:0000269|PubMed:12719539, ECO:0000269|PubMed:15105460, ECO:0000269|PubMed:15728840, ECO:0000269|PubMed:16135753, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18541373, ECO:0000269|PubMed:18957282, ECO:0000269|PubMed:19029340, ECO:0000269|PubMed:19229105, ECO:0000269|PubMed:19801972, ECO:0000269|PubMed:19966284, ECO:0000269|PubMed:20889974, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:21753002, ECO:0000269|PubMed:22082830, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:23620051, ECO:0000269|PubMed:23685073, ECO:0000269|PubMed:23754282, ECO:0000269|PubMed:23933751, ECO:0000269|PubMed:24660806, ECO:0000269|PubMed:24751536, ECO:0000269|PubMed:24784582, ECO:0000269|PubMed:24896179, ECO:0000269|PubMed:25474007, ECO:0000269|PubMed:25527291, ECO:0000269|PubMed:25621951, ECO:0000269|PubMed:27534820, ECO:0000269|PubMed:29311685, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:33499712}. |
O60264 | SMARCA5 | S171 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O60271 | SPAG9 | S1238 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60281 | ZNF292 | S1462 | ochoa | Zinc finger protein 292 | May be involved in transcriptional regulation. |
O60281 | ZNF292 | S1810 | ochoa | Zinc finger protein 292 | May be involved in transcriptional regulation. |
O60285 | NUAK1 | S455 | ochoa | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O60287 | URB1 | S1097 | ochoa | Nucleolar pre-ribosomal-associated protein 1 (Nucleolar protein 254 kDa) (URB1 ribosome biogenesis 1 homolog) | None |
O60291 | MGRN1 | S342 | ochoa | E3 ubiquitin-protein ligase MGRN1 (EC 2.3.2.27) (Mahogunin RING finger protein 1) (RING finger protein 156) (RING-type E3 ubiquitin transferase MGRN1) | E3 ubiquitin-protein ligase. Mediates monoubiquitination at multiple sites of TSG101 in the presence of UBE2D1, but not of UBE2G1, nor UBE2H. Plays a role in the regulation of endosome-to-lysosome trafficking. Impairs MC1R- and MC4R-signaling by competing with GNAS-binding to MCRs and inhibiting agonist-induced cAMP production. Does not inhibit ADRB2-signaling. Does not promote MC1R ubiquitination. Acts also as a negative regulator of hedgehog signaling (By similarity). {ECO:0000250|UniProtKB:Q9D074, ECO:0000269|PubMed:17229889, ECO:0000269|PubMed:19703557, ECO:0000269|PubMed:19737927}. |
O60292 | SIPA1L3 | S451 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60292 | SIPA1L3 | S1534 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60292 | SIPA1L3 | S1559 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60296 | TRAK2 | S84 | ochoa | Trafficking kinesin-binding protein 2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 3 protein) | May regulate endosome-to-lysosome trafficking of membrane cargo, including EGFR. {ECO:0000250}. |
O60296 | TRAK2 | S757 | ochoa | Trafficking kinesin-binding protein 2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 3 protein) | May regulate endosome-to-lysosome trafficking of membrane cargo, including EGFR. {ECO:0000250}. |
O60303 | KATNIP | S453 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60303 | KATNIP | S660 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60308 | CEP104 | S353 | ochoa | Centrosomal protein of 104 kDa (Cep104) | Required for ciliogenesis and for structural integrity at the ciliary tip. {ECO:0000269|PubMed:23970417}. |
O60308 | CEP104 | S853 | ochoa | Centrosomal protein of 104 kDa (Cep104) | Required for ciliogenesis and for structural integrity at the ciliary tip. {ECO:0000269|PubMed:23970417}. |
O60313 | OPA1 | S478 | ochoa | Dynamin-like GTPase OPA1, mitochondrial (EC 3.6.5.5) (Optic atrophy protein 1) [Cleaved into: Dynamin-like GTPase OPA1, long form (L-OPA1); Dynamin-like GTPase OPA1, short form (S-OPA1)] | Dynamin-related GTPase that is essential for normal mitochondrial morphology by mediating fusion of the mitochondrial inner membranes, regulating cristae morphology and maintaining respiratory chain function (PubMed:16778770, PubMed:17709429, PubMed:20185555, PubMed:24616225, PubMed:28628083, PubMed:28746876, PubMed:31922487, PubMed:32228866, PubMed:32567732, PubMed:33130824, PubMed:33237841, PubMed:37612504, PubMed:37612506). Exists in two forms: the transmembrane, long form (Dynamin-like GTPase OPA1, long form; L-OPA1), which is tethered to the inner mitochondrial membrane, and the short soluble form (Dynamin-like GTPase OPA1, short form; S-OPA1), which results from proteolytic cleavage and localizes in the intermembrane space (PubMed:31922487, PubMed:32228866, PubMed:33237841, PubMed:37612504, PubMed:37612506). Both forms (L-OPA1 and S-OPA1) cooperate to catalyze the fusion of the mitochondrial inner membrane (PubMed:31922487, PubMed:37612504, PubMed:37612506). The equilibrium between L-OPA1 and S-OPA1 is essential: excess levels of S-OPA1, produced by cleavage by OMA1 following loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, inhibiting mitochondrial fusion (PubMed:20038677, PubMed:31922487). The balance between L-OPA1 and S-OPA1 also influences cristae shape and morphology (By similarity). Involved in remodeling cristae and the release of cytochrome c during apoptosis (By similarity). Proteolytic processing by PARL in response to intrinsic apoptotic signals may lead to disassembly of OPA1 oligomers and release of the caspase activator cytochrome C (CYCS) into the mitochondrial intermembrane space (By similarity). Acts as a regulator of T-helper Th17 cells, which are characterized by cells with fused mitochondria with tight cristae, by mediating mitochondrial membrane remodeling: OPA1 is required for interleukin-17 (IL-17) production (By similarity). Its role in mitochondrial morphology is required for mitochondrial genome maintenance (PubMed:18158317, PubMed:20974897). {ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:16778770, ECO:0000269|PubMed:17709429, ECO:0000269|PubMed:18158317, ECO:0000269|PubMed:20038677, ECO:0000269|PubMed:20185555, ECO:0000269|PubMed:20974897, ECO:0000269|PubMed:24616225, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:28746876, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824, ECO:0000269|PubMed:33237841, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Dynamin-like GTPase OPA1, long form]: Constitutes the transmembrane long form (L-OPA1) that plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). L-OPA1 and the soluble short form (S-OPA1) form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32567732, PubMed:33130824). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). {ECO:0000250|UniProtKB:G0SGC7, ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Dynamin-like GTPase OPA1, short form]: Constitutes the soluble short form (S-OPA1) generated by cleavage by OMA1, which plays a central role in mitochondrial inner membrane fusion and cristae morphology (PubMed:31922487, PubMed:32228866, PubMed:32245890, PubMed:37612504, PubMed:37612506). The transmembrane long form (L-OPA1) and the S-OPA1 form higher-order helical assemblies that coordinate the fusion of mitochondrial inner membranes (PubMed:31922487, PubMed:32228866, PubMed:37612504, PubMed:37612506). Inner membrane-anchored L-OPA1 molecules initiate membrane remodeling by recruiting soluble S-OPA1 to rapidly polymerize into a flexible cylindrical scaffold encaging the mitochondrial inner membrane (PubMed:32228866, PubMed:37612504, PubMed:37612506). Once at the membrane surface, the formation of S-OPA1 helices induce bilayer curvature (PubMed:37612504, PubMed:37612506). OPA1 dimerization through the paddle region, which inserts into cardiolipin-containing membrane, promotes GTP hydrolysis and the helical assembly of a flexible OPA1 lattice on the membrane, which drives membrane curvature and mitochondrial fusion (PubMed:28628083, PubMed:37612504, PubMed:37612506). Excess levels of S-OPA1 produced by cleavage by OMA1 following stress conditions that induce loss of mitochondrial membrane potential, lead to an impaired equilibrium between L-OPA1 and S-OPA1, thereby inhibiting mitochondrial fusion (PubMed:20038677). Involved in mitochondrial safeguard in response to transient mitochondrial membrane depolarization by mediating flickering: cleavage by OMA1 leads to excess production of S-OPA1, preventing mitochondrial hyperfusion (By similarity). Plays a role in the maintenance and remodeling of mitochondrial cristae, some invaginations of the mitochondrial inner membrane that provide an increase in the surface area (PubMed:32245890). Probably acts by forming helical filaments at the inside of inner membrane tubes with the shape and dimensions of crista junctions (By similarity). The equilibrium between L-OPA1 and S-OPA1 influences cristae shape and morphology: increased L-OPA1 levels promote cristae stacking and elongated mitochondria, while increased S-OPA1 levels correlated with irregular cristae packing and round mitochondria shape (By similarity). {ECO:0000250|UniProtKB:G0SGC7, ECO:0000250|UniProtKB:P58281, ECO:0000269|PubMed:20038677, ECO:0000269|PubMed:28628083, ECO:0000269|PubMed:31922487, ECO:0000269|PubMed:32228866, ECO:0000269|PubMed:32245890, ECO:0000269|PubMed:37612504, ECO:0000269|PubMed:37612506}.; FUNCTION: [Isoform 1]: Coexpression of isoform 1 with shorter alternative products is required for optimal activity in promoting mitochondrial fusion. {ECO:0000269|PubMed:17709429}.; FUNCTION: [Isoform 4]: Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane. {ECO:0000269|PubMed:20974897}.; FUNCTION: [Isoform 5]: Isoforms that contain the alternative exon 4b are required for mitochondrial genome maintenance, possibly by anchoring the mitochondrial nucleoids to the inner mitochondrial membrane. {ECO:0000269|PubMed:20974897}. |
O60315 | ZEB2 | S71 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60315 | ZEB2 | S353 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60315 | ZEB2 | S505 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60315 | ZEB2 | S647 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60315 | ZEB2 | S705 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60315 | ZEB2 | S741 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60318 | MCM3AP | S430 | ochoa | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
O60318 | MCM3AP | S557 | ochoa | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
O60318 | MCM3AP | S1727 | ochoa | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
O60318 | MCM3AP | S1926 | ochoa | Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) | [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}. |
O60331 | PIP5K1C | S453 | ochoa|psp | Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}. |
O60331 | PIP5K1C | S650 | psp | Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}. |
O60333 | KIF1B | S527 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60333 | KIF1B | S893 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60333 | KIF1B | S1162 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60333 | KIF1B | S1416 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60333 | KIF1B | S1454 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60336 | MAPKBP1 | S18 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60336 | MAPKBP1 | S488 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60336 | MAPKBP1 | S1216 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60343 | TBC1D4 | S370 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60343 | TBC1D4 | S666 | ochoa|psp | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60343 | TBC1D4 | S787 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O60381 | HBP1 | S430 | ochoa | HMG box-containing protein 1 (HMG box transcription factor 1) (High mobility group box transcription factor 1) | Transcriptional repressor that binds to the promoter region of target genes. Plays a role in the regulation of the cell cycle and of the Wnt pathway. Binds preferentially to the sequence 5'-TTCATTCATTCA-3'. Binding to the histone H1.0 promoter is enhanced by interaction with RB1. Disrupts the interaction between DNA and TCF4. {ECO:0000269|PubMed:10562551, ECO:0000269|PubMed:10958660, ECO:0000269|PubMed:11500377}. |
O60488 | ACSL4 | S344 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60496 | DOK2 | S77 | ochoa | Docking protein 2 (Downstream of tyrosine kinase 2) (p56(dok-2)) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK2 may modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3. May be involved in modulating Bcr-Abl signaling. Attenuates EGF-stimulated MAP kinase activation (By similarity). {ECO:0000250}. |
O60499 | STX10 | S108 | ochoa | Syntaxin-10 (Syn10) | SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000269|PubMed:18195106}. |
O60503 | ADCY9 | S1259 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60563 | CCNT1 | S22 | ochoa | Cyclin-T1 (CycT1) (Cyclin-T) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}. |
O60566 | BUB1B | S543 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60566 | BUB1B | S574 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60566 | BUB1B | S670 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60566 | BUB1B | S720 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60566 | BUB1B | S884 | ochoa | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
O60568 | PLOD3 | S702 | ochoa | Multifunctional procollagen lysine hydroxylase and glycosyltransferase LH3 [Includes: Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (EC 1.14.11.4) (Lysyl hydroxylase 3) (LH3); Procollagen glycosyltransferase (EC 2.4.1.50) (EC 2.4.1.66) (Galactosylhydroxylysine-glucosyltransferase) (Procollagen galactosyltransferase) (Procollagen glucosyltransferase)] | Multifunctional enzyme that catalyzes a series of essential post-translational modifications on Lys residues in procollagen (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Plays a redundant role in catalyzing the formation of hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812, PubMed:9582318, PubMed:9724729). Plays a redundant role in catalyzing the transfer of galactose onto hydroxylysine groups, giving rise to galactosyl 5-hydroxylysine (PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Has an essential role by catalyzing the subsequent transfer of glucose moieties, giving rise to 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:10934207, PubMed:11896059, PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Catalyzes hydroxylation and glycosylation of Lys residues in the MBL1 collagen-like domain, giving rise to hydroxylysine and 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:25419660). Essential for normal biosynthesis and secretion of type IV collagens (Probable) (PubMed:18834968). Essential for normal formation of basement membranes (By similarity). {ECO:0000250|UniProtKB:Q9R0E1, ECO:0000269|PubMed:10934207, ECO:0000269|PubMed:11896059, ECO:0000269|PubMed:11956192, ECO:0000269|PubMed:12475640, ECO:0000269|PubMed:18298658, ECO:0000269|PubMed:18834968, ECO:0000269|PubMed:25419660, ECO:0000269|PubMed:30089812, ECO:0000269|PubMed:9582318, ECO:0000269|PubMed:9724729, ECO:0000305}. |
O60669 | SLC16A7 | S219 | ochoa | Monocarboxylate transporter 2 (MCT 2) (Solute carrier family 16 member 7) | Proton-coupled monocarboxylate symporter. Catalyzes the rapid transport across the plasma membrane of monocarboxylates such as L-lactate, pyruvate and ketone bodies, acetoacetate, beta-hydroxybutyrate and acetate (PubMed:32415067, PubMed:9786900). Dimerization is functionally required and both subunits work cooperatively in transporting substrate (PubMed:32415067). {ECO:0000269|PubMed:32415067, ECO:0000269|PubMed:9786900}. |
O60673 | REV3L | S402 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60673 | REV3L | S2171 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60673 | REV3L | S2183 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60673 | REV3L | S2220 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60704 | TPST2 | S40 | ochoa | Protein-tyrosine sulfotransferase 2 (EC 2.8.2.20) (Tyrosylprotein sulfotransferase 2) (TPST-2) | Catalyzes the O-sulfation of tyrosine residues within acidic motifs of polypeptides, using 3'-phosphoadenylyl sulfate (PAPS) as cosubstrate. {ECO:0000269|PubMed:9733778}. |
O60711 | LPXN | S188 | ochoa | Leupaxin | Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}. |
O60711 | LPXN | S208 | ochoa | Leupaxin | Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}. |
O60711 | LPXN | S267 | ochoa | Leupaxin | Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}. |
O60716 | CTNND1 | S651 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60732 | MAGEC1 | S1063 | ochoa | Melanoma-associated antigen C1 (Cancer/testis antigen 7.1) (CT7.1) (MAGE-C1 antigen) | None |
O60762 | DPM1 | S21 | ochoa | Dolichol-phosphate mannosyltransferase subunit 1 (EC 2.4.1.83) (Dolichol-phosphate mannose synthase subunit 1) (DPM synthase subunit 1) (Dolichyl-phosphate beta-D-mannosyltransferase subunit 1) (Mannose-P-dolichol synthase subunit 1) (MPD synthase subunit 1) | Transfers mannose from GDP-mannose to dolichol monophosphate to form dolichol phosphate mannose (Dol-P-Man) which is the mannosyl donor in pathways leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of proteins; catalytic subunit of the dolichol-phosphate mannose (DPM) synthase complex. {ECO:0000269|PubMed:10835346}. |
O60784 | TOM1 | S160 | ochoa | Target of Myb1 membrane trafficking protein (Target of Myb protein 1) | Adapter protein that plays a role in the intracellular membrane trafficking of ubiquitinated proteins, thereby participating in autophagy, ubiquitination-dependent signaling and receptor recycling pathways (PubMed:14563850, PubMed:15047686, PubMed:23023224, PubMed:25588840, PubMed:26320582, PubMed:31371777). Acts as a MYO6/Myosin VI adapter protein that targets MYO6 to endocytic structures (PubMed:23023224). Together with MYO6, required for autophagosomal delivery of endocytic cargo, the maturation of autophagosomes and their fusion with lysosomes (PubMed:23023224). MYO6 links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). Binds to polyubiquitinated proteins via its GAT domain (PubMed:14563850). In a complex with TOLLIP, recruits ubiquitin-conjugated proteins onto early endosomes (PubMed:15047686). The Tom1-Tollip complex may regulate endosomal trafficking by linking polyubiquitinated proteins to clathrin (PubMed:14563850, PubMed:15047686). Mediates clathrin recruitment to early endosomes by ZFYVE16 (PubMed:15657082). Modulates binding of TOLLIP to phosphatidylinositol 3-phosphate (PtdIns(3)P) via binding competition; the association with TOLLIP may favor the release of TOLLIP from endosomal membranes, allowing TOLLIP to commit to cargo trafficking (PubMed:26320582). Acts as a phosphatidylinositol 5-phosphate (PtdIns(5)P) effector by binding to PtdIns(5)P, thereby regulating endosomal maturation (PubMed:25588840). PtdIns(5)P-dependent recruitment to signaling endosomes may block endosomal maturation (PubMed:25588840). Also inhibits Toll-like receptor (TLR) signaling and participates in immune receptor recycling (PubMed:15047686, PubMed:26320582). {ECO:0000269|PubMed:14563850, ECO:0000269|PubMed:15047686, ECO:0000269|PubMed:15657082, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:25588840, ECO:0000269|PubMed:26320582, ECO:0000269|PubMed:31371777}. |
O60825 | PFKFB2 | S175 | ochoa | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (6PF-2-K/Fru-2,6-P2ase 2) (PFK/FBPase 2) (6PF-2-K/Fru-2,6-P2ase heart-type isozyme) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] | Synthesis and degradation of fructose 2,6-bisphosphate. {ECO:0000269|PubMed:11069105}. |
O60828 | PQBP1 | S77 | ochoa | Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) | Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development (PubMed:10198427, PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species (PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery (PubMed:10198427). May be involved in ATXN1 mutant-induced cell death (PubMed:12062018). The interaction with ATXN1 mutant reduces levels of phosphorylated RNA polymerase II large subunit (PubMed:12062018). Involved in the assembly of cytoplasmic stress granule, possibly by participating in the transport of neuronal RNA granules (PubMed:21933836). Also acts as an innate immune sensor of infection by retroviruses, such as HIV, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:26046437). Directly binds retroviral reverse-transcribed DNA in the cytosol and interacts with CGAS, leading to activate the cGAS-STING signaling pathway, triggering type-I interferon production (PubMed:26046437). {ECO:0000269|PubMed:10198427, ECO:0000269|PubMed:10332029, ECO:0000269|PubMed:12062018, ECO:0000269|PubMed:20410308, ECO:0000269|PubMed:21933836, ECO:0000269|PubMed:23512658, ECO:0000269|PubMed:26046437}. |
O60841 | EIF5B | S1168 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60861 | GAS7 | S163 | ochoa | Growth arrest-specific protein 7 (GAS-7) | May play a role in promoting maturation and morphological differentiation of cerebellar neurons. |
O60885 | BRD4 | S1083 | ochoa | Bromodomain-containing protein 4 (Protein HUNK1) | Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation (PubMed:20871596, PubMed:23086925, PubMed:23317504, PubMed:29176719, PubMed:29379197). Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure (PubMed:22334664, PubMed:23317504, PubMed:23589332). During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6 (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II (PubMed:16109376, PubMed:16109377, PubMed:19596240, PubMed:23589332, PubMed:24360279). Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters (By similarity). Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II (PubMed:23086925). According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo (PubMed:22509028). In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B (PubMed:19103749). Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters (PubMed:23317504). {ECO:0000250|UniProtKB:Q9ESU6, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:19596240, ECO:0000269|PubMed:22334664, ECO:0000269|PubMed:22509028, ECO:0000269|PubMed:23086925, ECO:0000269|PubMed:23317504, ECO:0000269|PubMed:23589332, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:29176719}.; FUNCTION: [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation. {ECO:0000269|PubMed:23728299}. |
O60907 | TBL1X | S45 | ochoa | F-box-like/WD repeat-containing protein TBL1X (SMAP55) (Transducin beta-like protein 1X) (Transducin-beta-like protein 1, X-linked) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units (PubMed:14980219). Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange (PubMed:21240272). {ECO:0000269|PubMed:14980219, ECO:0000269|PubMed:21240272}. |
O60941 | DTNB | S394 | ochoa | Dystrobrevin beta (DTN-B) (Beta-dystrobrevin) | Scaffolding protein that assembles DMD and SNTA1 molecules to the basal membrane of kidney cells and liver sinusoids (By similarity). May function as a repressor of the SYN1 promoter through the binding of repressor element-1 (RE-1), in turn regulates SYN1 expression and may be involved in cell proliferation regulation during the early phase of neural differentiation (PubMed:27223470). May be required for proper maturation and function of a subset of inhibitory synapses (By similarity). {ECO:0000250|UniProtKB:O70585, ECO:0000269|PubMed:27223470}. |
O75030 | MITF | S414 | ochoa | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75030 | MITF | S491 | ochoa | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75044 | SRGAP2 | S916 | ochoa | SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) | Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}. |
O75054 | IGSF3 | S1177 | ochoa | Immunoglobulin superfamily member 3 (IgSF3) (Glu-Trp-Ile EWI motif-containing protein 3) (EWI-3) | None |
O75083 | WDR1 | S198 | ochoa | WD repeat-containing protein 1 (Actin-interacting protein 1) (AIP1) (NORI-1) | Induces disassembly of actin filaments in conjunction with ADF/cofilin family proteins (PubMed:15629458, PubMed:27557945, PubMed:29751004). Enhances cofilin-mediated actin severing (By similarity). Involved in cytokinesis. Involved in chemotactic cell migration by restricting lamellipodial membrane protrusions (PubMed:18494608). Involved in myocardium sarcomere organization. Required for cardiomyocyte growth and maintenance (By similarity). Involved in megakaryocyte maturation and platelet shedding. Required for the establishment of planar cell polarity (PCP) during follicular epithelium development and for cell shape changes during PCP; the function seems to implicate cooperation with CFL1 and/or DSTN/ADF. Involved in the generation/maintenance of cortical tension (By similarity). Involved in assembly and maintenance of epithelial apical cell junctions and plays a role in the organization of the perijunctional actomyosin belt (PubMed:25792565). {ECO:0000250|UniProtKB:O88342, ECO:0000250|UniProtKB:Q9W7F2, ECO:0000269|PubMed:15629458, ECO:0000269|PubMed:18494608, ECO:0000269|PubMed:25792565, ECO:0000269|PubMed:27557945, ECO:0000269|PubMed:29751004}. |
O75113 | N4BP1 | S498 | ochoa | NEDD4-binding protein 1 (N4BP1) (EC 3.1.-.-) | Potent suppressor of cytokine production that acts as a regulator of innate immune signaling and inflammation. Acts as a key negative regulator of select cytokine and chemokine responses elicited by TRIF-independent Toll-like receptors (TLRs), thereby limiting inflammatory cytokine responses to minor insults. In response to more threatening pathogens, cleaved by CASP8 downstream of TLR3 or TLR4, leading to its inactivation, thereby allowing production of inflammatory cytokines (By similarity). Acts as a restriction factor against some viruses, such as HIV-1: restricts HIV-1 replication by binding to HIV-1 mRNAs and mediating their degradation via its ribonuclease activity (PubMed:31133753). Also acts as an inhibitor of the E3 ubiquitin-protein ligase ITCH: acts by interacting with the second WW domain of ITCH, leading to compete with ITCH's substrates and impairing ubiquitination of substrates (By similarity). {ECO:0000250|UniProtKB:Q6A037, ECO:0000269|PubMed:31133753}. |
O75116 | ROCK2 | S425 | ochoa | Rho-associated protein kinase 2 (EC 2.7.11.1) (Rho kinase 2) (Rho-associated, coiled-coil-containing protein kinase 2) (Rho-associated, coiled-coil-containing protein kinase II) (ROCK-II) (p164 ROCK-2) | Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of ADD1, BRCA2, CNN1, EZR, DPYSL2, EP300, MSN, MYL9/MLC2, NPM1, RDX, PPP1R12A and VIM. Phosphorylates SORL1 and IRF4. Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation. Positively regulates the activation of p42/MAPK1-p44/MAPK3 and of p90RSK/RPS6KA1 during myogenic differentiation. Plays an important role in the timely initiation of centrosome duplication. Inhibits keratinocyte terminal differentiation. May regulate closure of the eyelids and ventral body wall through organization of actomyosin bundles. Plays a critical role in the regulation of spine and synaptic properties in the hippocampus. Plays an important role in generating the circadian rhythm of the aortic myofilament Ca(2+) sensitivity and vascular contractility by modulating the myosin light chain phosphorylation. {ECO:0000269|PubMed:10579722, ECO:0000269|PubMed:15699075, ECO:0000269|PubMed:16574662, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21147781}. |
O75122 | CLASP2 | S892 | ochoa | CLIP-associating protein 2 (Cytoplasmic linker-associated protein 2) (Protein Orbit homolog 2) (hOrbit2) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules (PubMed:26003921). Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2 (PubMed:16824950). This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle (PubMed:16866869, PubMed:16914514). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16824950, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:26003921}. |
O75123 | ZNF623 | S71 | ochoa | Zinc finger protein 623 | May be involved in transcriptional regulation. |
O75128 | COBL | S455 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75128 | COBL | S741 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75140 | DEPDC5 | S833 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75143 | ATG13 | S44 | psp | Autophagy-related protein 13 | Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1, and the regulation of the ATG13-ULK1-RB1CC1 complex. Through its regulation of ULK1 activity, plays a role in the regulation of the kinase activity of mTORC1 and cell proliferation. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:19211835, ECO:0000269|PubMed:19225151, ECO:0000269|PubMed:19287211, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:21855797}. |
O75143 | ATG13 | S224 | psp | Autophagy-related protein 13 | Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1, and the regulation of the ATG13-ULK1-RB1CC1 complex. Through its regulation of ULK1 activity, plays a role in the regulation of the kinase activity of mTORC1 and cell proliferation. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:19211835, ECO:0000269|PubMed:19225151, ECO:0000269|PubMed:19287211, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:21855797}. |
O75146 | HIP1R | S1017 | ochoa | Huntingtin-interacting protein 1-related protein (HIP1-related protein) (Huntingtin-interacting protein 12) (HIP-12) | Component of clathrin-coated pits and vesicles, that may link the endocytic machinery to the actin cytoskeleton. Binds 3-phosphoinositides (via ENTH domain). May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis. {ECO:0000269|PubMed:11889126, ECO:0000269|PubMed:14732715}. |
O75151 | PHF2 | S625 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75152 | ZC3H11A | S132 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75152 | ZC3H11A | S149 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75153 | CLUH | S723 | ochoa | Clustered mitochondria protein homolog | mRNA-binding protein involved in proper cytoplasmic distribution of mitochondria. Specifically binds mRNAs of nuclear-encoded mitochondrial proteins in the cytoplasm and regulates transport or translation of these transcripts close to mitochondria, playing a role in mitochondrial biogenesis. {ECO:0000255|HAMAP-Rule:MF_03013, ECO:0000269|PubMed:25349259}. |
O75165 | DNAJC13 | S2151 | ochoa | DnaJ homolog subfamily C member 13 (Required for receptor-mediated endocytosis 8) (RME-8) | Involved in membrane trafficking through early endosomes, such as the early endosome to recycling endosome transport implicated in the recycling of transferrin and the early endosome to late endosome transport implicated in degradation of EGF and EGFR (PubMed:18256511, PubMed:18307993). Involved in the regulation of endosomal membrane tubulation and regulates the dynamics of SNX1 on the endosomal membrane; via association with WASHC2 may link the WASH complex to the retromer SNX-BAR subcomplex (PubMed:24643499). {ECO:0000269|PubMed:18256511, ECO:0000269|PubMed:18307993, ECO:0000269|PubMed:24643499}. |
O75170 | PPP6R2 | S771 | ochoa|psp | Serine/threonine-protein phosphatase 6 regulatory subunit 2 (SAPS domain family member 2) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. Involved in the PP6-mediated dephosphorylation of NFKBIE opposing its degradation in response to TNF-alpha. {ECO:0000269|PubMed:16769727}. |
O75175 | CNOT3 | S242 | ochoa | CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}. |
O75175 | CNOT3 | S299 | ochoa | CCR4-NOT transcription complex subunit 3 (CCR4-associated factor 3) (Leukocyte receptor cluster member 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. May be involved in metabolic regulation; may be involved in recruitment of the CCR4-NOT complex to deadenylation target mRNAs involved in energy metabolism. Involved in mitotic progression and regulation of the spindle assembly checkpoint by regulating the stability of MAD1L1 mRNA. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may involve histone deacetylases. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:22342980, ECO:0000269|PubMed:22367759}. |
O75179 | ANKRD17 | S1709 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75182 | SIN3B | S122 | ochoa | Paired amphipathic helix protein Sin3b (Histone deacetylase complex subunit Sin3b) (Transcriptional corepressor Sin3b) | Acts as a transcriptional repressor. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Interacts with MAD-MAX heterodimers by binding to MAD. The heterodimer then represses transcription by tethering SIN3B to DNA. Also forms a complex with FOXK1 which represses transcription. With FOXK1, regulates cell cycle progression probably by repressing cell cycle inhibitor genes expression. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). {ECO:0000250|UniProtKB:Q62141, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
O75182 | SIN3B | S1003 | ochoa | Paired amphipathic helix protein Sin3b (Histone deacetylase complex subunit Sin3b) (Transcriptional corepressor Sin3b) | Acts as a transcriptional repressor. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Interacts with MAD-MAX heterodimers by binding to MAD. The heterodimer then represses transcription by tethering SIN3B to DNA. Also forms a complex with FOXK1 which represses transcription. With FOXK1, regulates cell cycle progression probably by repressing cell cycle inhibitor genes expression. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). {ECO:0000250|UniProtKB:Q62141, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
O75306 | NDUFS2 | S364 | psp | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial (EC 7.1.1.2) (Complex I-49kD) (CI-49kD) (NADH-ubiquinone oxidoreductase 49 kDa subunit) | Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor (PubMed:22036843, PubMed:28031252, PubMed:30922174). Essential for the catalytic activity of complex I (PubMed:22036843, PubMed:30922174). Essential for the assembly of complex I (By similarity). Redox-sensitive, critical component of the oxygen-sensing pathway in the pulmonary vasculature which plays a key role in acute pulmonary oxygen-sensing and hypoxic pulmonary vasoconstriction (PubMed:30922174). Plays an important role in carotid body sensing of hypoxia (By similarity). Essential for glia-like neural stem and progenitor cell proliferation, differentiation and subsequent oligodendrocyte or neuronal maturation (By similarity). {ECO:0000250|UniProtKB:Q91WD5, ECO:0000269|PubMed:22036843, ECO:0000269|PubMed:28031252, ECO:0000269|PubMed:30922174}. |
O75362 | ZNF217 | S106 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S195 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S570 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S1004 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75363 | BCAS1 | S296 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75369 | FLNB | S341 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S886 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S983 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S1988 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2179 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2369 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2465 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2478 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75376 | NCOR1 | S764 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1111 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S2184 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S2202 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75385 | ULK1 | S330 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75396 | SEC22B | S48 | ochoa | Vesicle-trafficking protein SEC22b (ER-Golgi SNARE of 24 kDa) (ERS-24) (ERS24) (SEC22 vesicle-trafficking protein homolog B) (SEC22 vesicle-trafficking protein-like 1) | SNARE involved in targeting and fusion of ER-derived transport vesicles with the Golgi complex as well as Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15272311}. |
O75410 | TACC1 | S591 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75417 | POLQ | S1776 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75417 | POLQ | S2267 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75420 | GIGYF1 | S148 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O75427 | LRCH4 | S589 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O75446 | SAP30 | S138 | ochoa | Histone deacetylase complex subunit SAP30 (30 kDa Sin3-associated polypeptide) (Sin3 corepressor complex subunit SAP30) (Sin3-associated polypeptide p30) | Involved in the functional recruitment of the Sin3-histone deacetylase complex (HDAC) to a specific subset of N-CoR corepressor complexes. Capable of transcription repression by N-CoR. Active in deacetylating core histone octamers (when in a complex) but inactive in deacetylating nucleosomal histones. {ECO:0000250|UniProtKB:O88574, ECO:0000269|PubMed:9651585}.; FUNCTION: (Microbial infection) Involved in transcriptional repression of HHV-1 genes TK and gC. {ECO:0000269|PubMed:21221920}. |
O75469 | NR1I2 | S350 | psp | Nuclear receptor subfamily 1 group I member 2 (Orphan nuclear receptor PAR1) (Orphan nuclear receptor PXR) (Pregnane X receptor) (Steroid and xenobiotic receptor) (SXR) | Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. {ECO:0000269|PubMed:11297522, ECO:0000269|PubMed:11668216, ECO:0000269|PubMed:12578355, ECO:0000269|PubMed:18768384, ECO:0000269|PubMed:19297428, ECO:0000269|PubMed:9727070}. |
O75475 | PSIP1 | S177 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75496 | GMNN | S64 | ochoa | Geminin | Inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex (pre-RC) (PubMed:14993212, PubMed:20129055, PubMed:24064211, PubMed:9635433). It is degraded during the mitotic phase of the cell cycle (PubMed:14993212, PubMed:24064211, PubMed:9635433). Its destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle (PubMed:14993212, PubMed:24064211, PubMed:9635433). Inhibits histone acetyltransferase activity of KAT7/HBO1 in a CDT1-dependent manner, inhibiting histone H4 acetylation and DNA replication licensing (PubMed:20129055). Inhibits the transcriptional activity of a subset of Hox proteins, enrolling them in cell proliferative control (PubMed:22615398). {ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22615398, ECO:0000269|PubMed:24064211, ECO:0000269|PubMed:9635433}. |
O75509 | TNFRSF21 | S541 | ochoa | Tumor necrosis factor receptor superfamily member 21 (Death receptor 6) (CD antigen CD358) | Promotes apoptosis, possibly via a pathway that involves the activation of NF-kappa-B. Can also promote apoptosis mediated by BAX and by the release of cytochrome c from the mitochondria into the cytoplasm. Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP). Negatively regulates oligodendrocyte survival, maturation and myelination. Plays a role in signaling cascades triggered by stimulation of T-cell receptors, in the adaptive immune response and in the regulation of T-cell differentiation and proliferation. Negatively regulates T-cell responses and the release of cytokines such as IL4, IL5, IL10, IL13 and IFNG by Th2 cells. Negatively regulates the production of IgG, IgM and IgM in response to antigens. May inhibit the activation of JNK in response to T-cell stimulation. Also acts as a regulator of pyroptosis: recruits CASP8 in response to reactive oxygen species (ROS) and subsequent oxidation, leading to activation of GSDMC (PubMed:34012073). {ECO:0000269|PubMed:21725297, ECO:0000269|PubMed:22761420, ECO:0000269|PubMed:34012073, ECO:0000269|PubMed:9714541}. |
O75521 | ECI2 | S119 | ochoa | Enoyl-CoA delta isomerase 2 (EC 5.3.3.8) (DRS-1) (Delta(3),delta(2)-enoyl-CoA isomerase) (D3,D2-enoyl-CoA isomerase) (Diazepam-binding inhibitor-related protein 1) (DBI-related protein 1) (Dodecenoyl-CoA isomerase) (Hepatocellular carcinoma-associated antigen 88) (Peroxisomal 3,2-trans-enoyl-CoA isomerase) (pECI) (Renal carcinoma antigen NY-REN-1) | Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. Has a preference for 3-trans substrates. {ECO:0000269|PubMed:10419495}. |
O75526 | RBMXL2 | S58 | ochoa | RNA-binding motif protein, X-linked-like-2 (Testis-specific heterogeneous nuclear ribonucleoprotein G-T) (hnRNP G-T) | None |
O75528 | TADA3 | S280 | ochoa | Transcriptional adapter 3 (ADA3 homolog) (hADA3) (STAF54) (Transcriptional adapter 3-like) (ADA3-like protein) | Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex. Also known as a coactivator for p53/TP53-dependent transcriptional activation. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:11707411, ECO:0000269|PubMed:19103755}. |
O75534 | CSDE1 | S116 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75534 | CSDE1 | S123 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75534 | CSDE1 | S482 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75582 | RPS6KA5 | S360 | ochoa|psp | Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}. |
O75604 | USP2 | S252 | ochoa | Ubiquitin carboxyl-terminal hydrolase 2 (EC 3.4.19.12) (41 kDa ubiquitin-specific protease) (Deubiquitinating enzyme 2) (Ubiquitin thioesterase 2) (Ubiquitin-specific-processing protease 2) | Hydrolase that deubiquitinates polyubiquitinated target proteins such as MDM2, MDM4 and CCND1 (PubMed:17290220, PubMed:19838211, PubMed:19917254). Isoform 1 and isoform 4 possess both ubiquitin-specific peptidase and isopeptidase activities (By similarity). Deubiquitinates MDM2 without reversing MDM2-mediated p53/TP53 ubiquitination and thus indirectly promotes p53/TP53 degradation and limits p53 activity (PubMed:17290220, PubMed:19838211). Has no deubiquitinase activity against p53/TP53 (PubMed:17290220). Prevents MDM2-mediated degradation of MDM4 (PubMed:17290220). Plays a role in the G1/S cell-cycle progression in normal and cancer cells (PubMed:19917254). Regulates the circadian clock by modulating its intrinsic circadian rhythm and its capacity to respond to external cues (By similarity). Associates with clock proteins and deubiquitinates core clock component PER1 but does not affect its overall stability (By similarity). Regulates the nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1 (By similarity). Plays a role in the regulation of myogenic differentiation of embryonic muscle cells (By similarity). {ECO:0000250|UniProtKB:O88623, ECO:0000250|UniProtKB:Q5U349, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19838211, ECO:0000269|PubMed:19917254}.; FUNCTION: [Isoform 4]: Circadian clock output effector that regulates Ca(2+) absorption in the small intestine. Probably functions by regulating protein levels of the membrane scaffold protein NHERF4 in a rhythmic manner, and is therefore likely to control Ca(2+) membrane permeability mediated by the Ca(2+) channel TRPV6 in the intestine. {ECO:0000250|UniProtKB:O88623}. |
O75616 | ERAL1 | S173 | ochoa|psp | GTPase Era, mitochondrial (H-ERA) (hERA) (Conserved ERA-like GTPase) (CEGA) (ERA-W) (ERA-like protein 1) | Probable GTPase that plays a role in the mitochondrial ribosomal small subunit assembly. Specifically binds the 12S mitochondrial rRNA (12S mt-rRNA) to a 33 nucleotide section delineating the 3' terminal stem-loop region. May act as a chaperone that protects the 12S mt-rRNA on the 28S mitoribosomal subunit during ribosomal small subunit assembly. {ECO:0000269|PubMed:20430825, ECO:0000269|PubMed:20604745, ECO:0000269|PubMed:28449065}. |
O75626 | PRDM1 | S272 | ochoa | PR domain zinc finger protein 1 (EC 2.1.1.-) (BLIMP-1) (Beta-interferon gene positive regulatory domain I-binding factor) (PR domain-containing protein 1) (Positive regulatory domain I-binding factor 1) (PRDI-BF1) (PRDI-binding factor 1) | Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection (By similarity). Binds specifically to the PRDI element in the promoter of the beta-interferon gene (PubMed:1851123). Drives the maturation of B-lymphocytes into Ig secreting cells (PubMed:12626569). Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions (By similarity). Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:Q60636, ECO:0000269|PubMed:12626569, ECO:0000269|PubMed:1851123}. |
O75643 | SNRNP200 | S932 | ochoa | U5 small nuclear ribonucleoprotein 200 kDa helicase (EC 3.6.4.13) (Activating signal cointegrator 1 complex subunit 3-like 1) (BRR2 homolog) (U5 snRNP-specific 200 kDa protein) (U5-200KD) | Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (PubMed:35241646). Plays a role in pre-mRNA splicing as a core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154, PubMed:30728453). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:23045696, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:35241646, ECO:0000269|PubMed:8670905, ECO:0000269|PubMed:9539711, ECO:0000305|PubMed:33509932}. |
O75665 | OFD1 | S663 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75665 | OFD1 | S789 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75665 | OFD1 | S844 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75674 | TOM1L1 | S321 | ochoa | TOM1-like protein 1 (Src-activating and signaling molecule protein) (Target of Myb-like protein 1) | Probable adapter protein involved in signaling pathways. Interacts with the SH2 and SH3 domains of various signaling proteins when it is phosphorylated. May promote FYN activation, possibly by disrupting intramolecular SH3-dependent interactions (By similarity). {ECO:0000250}. |
O75691 | UTP20 | S843 | ochoa | Small subunit processome component 20 homolog (Down-regulated in metastasis protein) (Novel nucleolar protein 73) (NNP73) (Protein Key-1A6) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in 18S pre-rRNA processing. Associates with U3 snoRNA. {ECO:0000269|PubMed:17498821, ECO:0000269|PubMed:34516797}. |
O75691 | UTP20 | S2637 | ochoa | Small subunit processome component 20 homolog (Down-regulated in metastasis protein) (Novel nucleolar protein 73) (NNP73) (Protein Key-1A6) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in 18S pre-rRNA processing. Associates with U3 snoRNA. {ECO:0000269|PubMed:17498821, ECO:0000269|PubMed:34516797}. |
O75694 | NUP155 | S486 | ochoa | Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) | Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}. |
O75694 | NUP155 | S1057 | ochoa | Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) | Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}. |
O75764 | TCEA3 | S81 | ochoa | Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
O75781 | PALM | S162 | ochoa | Paralemmin-1 (Paralemmin) | Involved in plasma membrane dynamics and cell process formation. Isoform 1 and isoform 2 are necessary for axonal and dendritic filopodia induction, for dendritic spine maturation and synapse formation in a palmitoylation-dependent manner. {ECO:0000269|PubMed:14978216}. |
O75787 | ATP6AP2 | S24 | ochoa | Renin receptor (ATPase H(+)-transporting lysosomal accessory protein 2) (ATPase H(+)-transporting lysosomal-interacting protein 2) (ER-localized type I transmembrane adapter) (Embryonic liver differentiation factor 10) (N14F) (Renin/prorenin receptor) (Vacuolar ATP synthase membrane sector-associated protein M8-9) (ATP6M8-9) (V-ATPase M8.9 subunit) [Cleaved into: Renin receptor N-terminal fragment; Renin receptor C-terminal fragment] | Multifunctional protein which functions as a renin, prorenin cellular receptor and is involved in the assembly of the lysosomal proton-transporting V-type ATPase (V-ATPase) and the acidification of the endo-lysosomal system (PubMed:12045255, PubMed:29127204, PubMed:30374053, PubMed:32276428). May mediate renin-dependent cellular responses by activating ERK1 and ERK2 (PubMed:12045255). By increasing the catalytic efficiency of renin in AGT/angiotensinogen conversion to angiotensin I, may also play a role in the renin-angiotensin system (RAS) (PubMed:12045255). Through its function in V-type ATPase (v-ATPase) assembly and acidification of the lysosome it regulates protein degradation and may control different signaling pathways important for proper brain development, synapse morphology and synaptic transmission (By similarity). {ECO:0000250|UniProtKB:Q9CYN9, ECO:0000269|PubMed:12045255, ECO:0000269|PubMed:29127204, ECO:0000269|PubMed:30374053, ECO:0000269|PubMed:32276428}. |
O75792 | RNASEH2A | S18 | ochoa | Ribonuclease H2 subunit A (RNase H2 subunit A) (EC 3.1.26.4) (Aicardi-Goutieres syndrome 4 protein) (AGS4) (RNase H(35)) (Ribonuclease HI large subunit) (RNase HI large subunit) (Ribonuclease HI subunit A) | Catalytic subunit of RNase HII, an endonuclease that specifically degrades the RNA of RNA:DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA:RNA duplexes. {ECO:0000269|PubMed:16845400, ECO:0000269|PubMed:21177858}. |
O75794 | CDC123 | S299 | ochoa | Translation initiation factor eIF2 assembly protein (Cell division cycle protein 123 homolog) (Protein D123) (HT-1080) (PZ32) | ATP-dependent protein-folding chaperone for the eIF2 complex (PubMed:35031321, PubMed:37507029). Binds to the gamma subunit of the eIF2 complex which allows the subunit to assemble with the alpha and beta subunits (By similarity). {ECO:0000250|UniProtKB:Q05791, ECO:0000269|PubMed:35031321, ECO:0000269|PubMed:37507029}. |
O75815 | BCAR3 | S32 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75815 | BCAR3 | S83 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75815 | BCAR3 | S93 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75815 | BCAR3 | S182 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75815 | BCAR3 | S269 | ochoa | Breast cancer anti-estrogen resistance protein 3 (Novel SH2-containing protein 2) (SH2 domain-containing protein 3B) | Acts as an adapter protein downstream of several growth factor receptors to promote cell proliferation, migration, and redistribution of actin fibers (PubMed:24216110). Specifically involved in INS/insulin signaling pathway by mediating MAPK1/ERK2-MAPK3/ERK1 activation and DNA synthesis (PubMed:24216110). Promotes insulin-mediated membrane ruffling (By similarity). In response to vasoconstrictor peptide EDN1, involved in the activation of RAP1 downstream of PTK2B via interaction with phosphorylated BCAR1 (PubMed:19086031). Inhibits cell migration and invasion via regulation of TGFB-mediated matrix digestion, actin filament rearrangement, and inhibition of invadopodia activity (By similarity). May inhibit TGFB-SMAD signaling, via facilitating BCAR1 and SMAD2 and/or SMAD3 interaction (By similarity). Regulates EGF-induced DNA synthesis (PubMed:18722344). Required for the maintenance of ocular lens morphology and structural integrity, potentially via regulation of focal adhesion complex signaling (By similarity). Acts upstream of PTPRA to regulate the localization of BCAR1 and PTPRA to focal adhesions, via regulation of SRC-mediated phosphorylation of PTPRA (By similarity). Positively regulates integrin-induced tyrosine phosphorylation of BCAR1 (By similarity). Acts as a guanine nucleotide exchange factor (GEF) for small GTPases RALA, RAP1A and RRAS (By similarity). However, in a contrasting study, lacks GEF activity towards RAP1 (PubMed:22081014). {ECO:0000250|UniProtKB:D3ZAZ5, ECO:0000250|UniProtKB:Q9QZK2, ECO:0000269|PubMed:18722344, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:22081014, ECO:0000269|PubMed:24216110}. |
O75828 | CBR3 | S56 | ochoa | Carbonyl reductase [NADPH] 3 (EC 1.1.1.184) (NADPH-dependent carbonyl reductase 3) (Quinone reductase CBR3) (EC 1.6.5.10) (Short chain dehydrogenase/reductase family 21C member 2) | Catalyzes the NADPH-dependent reduction of carbonyl compounds to their corresponding alcohols (PubMed:18493841). Has low NADPH-dependent oxidoreductase activity. Acts on several orthoquinones, acts as well on non-quinone compounds, such as isatin or on the anticancer drug oracin (PubMed:15537833, PubMed:18493841, PubMed:19841672). Best substrates for CBR3 is 1,2- naphthoquinone, hence could play a role in protection against cytotoxicity of exogenous quinones (PubMed:19841672). Exerts activity toward ortho-quinones but not paraquinones. No endogenous substrate for CBR3 except isatin has been identified (PubMed:19841672). {ECO:0000269|PubMed:15537833, ECO:0000269|PubMed:18493841, ECO:0000269|PubMed:19841672}. |
O75832 | PSMD10 | S75 | ochoa | 26S proteasome non-ATPase regulatory subunit 10 (26S proteasome regulatory subunit p28) (Gankyrin) (p28(GANK)) | Acts as a chaperone during the assembly of the 26S proteasome, specifically of the PA700/19S regulatory complex (RC). In the initial step of the base subcomplex assembly is part of an intermediate PSMD10:PSMC4:PSMC5:PAAF1 module which probably assembles with a PSMD5:PSMC2:PSMC1:PSMD2 module. Independently of the proteasome, regulates EGF-induced AKT activation through inhibition of the RHOA/ROCK/PTEN pathway, leading to prolonged AKT activation. Plays an important role in RAS-induced tumorigenesis.; FUNCTION: Acts as an proto-oncoprotein by being involved in negative regulation of tumor suppressors RB1 and p53/TP53. Overexpression is leading to phosphorylation of RB1 and proteasomal degradation of RB1. Regulates CDK4-mediated phosphorylation of RB1 by competing with CDKN2A for binding with CDK4. Facilitates binding of MDM2 to p53/TP53 and the mono- and polyubiquitination of p53/TP53 by MDM2 suggesting a function in targeting the TP53:MDM2 complex to the 26S proteasome. Involved in p53-independent apoptosis. Involved in regulation of NF-kappa-B by retaining it in the cytoplasm. Binds to the NF-kappa-B component RELA and accelerates its XPO1/CRM1-mediated nuclear export. |
O75925 | PIAS1 | S50 | ochoa | E3 SUMO-protein ligase PIAS1 (EC 2.3.2.-) (DEAD/H box-binding protein 1) (E3 SUMO-protein transferase PIAS1) (Gu-binding protein) (GBP) (Protein inhibitor of activated STAT protein 1) (RNA helicase II-binding protein) | Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Catalyzes sumoylation of various proteins, such as CEBPB, MRE11, MTA1, PTK2 and PML (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway (PubMed:11583632, PubMed:11867732). In vitro, binds A/T-rich DNA (PubMed:15133049). The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Mediates sumoylation of MRE11, stabilizing MRE11 on chromatin during end resection (PubMed:36050397). Sumoylates PML (at 'Lys-65' and 'Lys-160') and PML-RAR and promotes their ubiquitin-mediated degradation (By similarity). PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 which in turn promotes PML phosphorylation and degradation (By similarity). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Plays a dynamic role in adipogenesis by promoting the SUMOylation and degradation of CEBPB (By similarity). Mediates the nuclear mobility and localization of MSX1 to the nuclear periphery, whereby MSX1 is brought into the proximity of target myoblast differentiation factor genes (By similarity). Also required for the binding of MSX1 to the core enhancer region in target gene promoter regions, independent of its sumoylation activity (By similarity). Capable of binding to the core enhancer region TAAT box in the MYOD1 gene promoter (By similarity). {ECO:0000250|UniProtKB:O88907, ECO:0000269|PubMed:11583632, ECO:0000269|PubMed:11867732, ECO:0000269|PubMed:14500712, ECO:0000269|PubMed:15133049, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:36050397}.; FUNCTION: (Microbial infection) Restricts Epstein-Barr virus (EBV) lytic replication by acting as an inhibitor for transcription factors involved in lytic gene expression (PubMed:29262325). The virus can use apoptotic caspases to antagonize PIAS1-mediated restriction and express its lytic genes (PubMed:29262325). {ECO:0000269|PubMed:29262325}. |
O75928 | PIAS2 | S50 | ochoa | E3 SUMO-protein ligase PIAS2 (EC 2.3.2.-) (Androgen receptor-interacting protein 3) (ARIP3) (DAB2-interacting protein) (DIP) (E3 SUMO-protein transferase PIAS2) (Msx-interacting zinc finger protein) (Miz1) (PIAS-NY protein) (Protein inhibitor of activated STAT x) (Protein inhibitor of activated STAT2) | Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulator in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway. The effects of this transcriptional coregulation, transactivation or silencing may vary depending upon the biological context and the PIAS2 isoform studied. However, it seems to be mostly involved in gene silencing. Binds to sumoylated ELK1 and enhances its transcriptional activity by preventing recruitment of HDAC2 by ELK1, thus reversing SUMO-mediated repression of ELK1 transactivation activity. Isoform PIAS2-beta, but not isoform PIAS2-alpha, promotes MDM2 sumoylation. Isoform PIAS2-alpha promotes PARK7 sumoylation. Isoform PIAS2-beta promotes NCOA2 sumoylation more efficiently than isoform PIAS2-alpha. Isoform PIAS2-alpha sumoylates PML at'Lys-65' and 'Lys-160'. {ECO:0000269|PubMed:15920481, ECO:0000269|PubMed:15976810, ECO:0000269|PubMed:22406621}. |
O75928 | PIAS2 | S499 | ochoa | E3 SUMO-protein ligase PIAS2 (EC 2.3.2.-) (Androgen receptor-interacting protein 3) (ARIP3) (DAB2-interacting protein) (DIP) (E3 SUMO-protein transferase PIAS2) (Msx-interacting zinc finger protein) (Miz1) (PIAS-NY protein) (Protein inhibitor of activated STAT x) (Protein inhibitor of activated STAT2) | Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulator in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway. The effects of this transcriptional coregulation, transactivation or silencing may vary depending upon the biological context and the PIAS2 isoform studied. However, it seems to be mostly involved in gene silencing. Binds to sumoylated ELK1 and enhances its transcriptional activity by preventing recruitment of HDAC2 by ELK1, thus reversing SUMO-mediated repression of ELK1 transactivation activity. Isoform PIAS2-beta, but not isoform PIAS2-alpha, promotes MDM2 sumoylation. Isoform PIAS2-alpha promotes PARK7 sumoylation. Isoform PIAS2-beta promotes NCOA2 sumoylation more efficiently than isoform PIAS2-alpha. Isoform PIAS2-alpha sumoylates PML at'Lys-65' and 'Lys-160'. {ECO:0000269|PubMed:15920481, ECO:0000269|PubMed:15976810, ECO:0000269|PubMed:22406621}. |
O75955 | FLOT1 | S19 | ochoa | Flotillin-1 | May act as a scaffolding protein within caveolar membranes, functionally participating in formation of caveolae or caveolae-like vesicles. |
O75962 | TRIO | S2282 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O75969 | AKAP3 | S636 | ochoa | A-kinase anchor protein 3 (AKAP-3) (A-kinase anchor protein 110 kDa) (AKAP 110) (Cancer/testis antigen 82) (CT82) (Fibrous sheath protein of 95 kDa) (FSP95) (Fibrousheathin I) (Fibrousheathin-1) (Protein kinase A-anchoring protein 3) (PRKA3) (Sperm oocyte-binding protein) | Structural component of sperm fibrous sheath (By similarity). Required for the formation of the subcellular structure of the sperm flagellum, sperm motility and male fertility (PubMed:35228300). {ECO:0000250|UniProtKB:O88987, ECO:0000269|PubMed:35228300}. |
O75970 | MPDZ | S230 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O75970 | MPDZ | S483 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O75970 | MPDZ | S1194 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O76039 | CDKL5 | S306 | ochoa|psp | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O76039 | CDKL5 | S377 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O76039 | CDKL5 | S407 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O94762 | RECQL5 | S954 | ochoa | ATP-dependent DNA helicase Q5 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ5) (DNA helicase, RecQ-like type 5) (RecQ5) (RecQ protein-like 5) | DNA helicase that plays an important role in DNA replication, transcription and repair (PubMed:20643585, PubMed:22973052, PubMed:28100692). Probably unwinds DNA in a 3'-5' direction (Probable) (PubMed:28100692). Binds to the RNA polymerase II subunit POLR2A during transcription elongation and suppresses transcription-associated genomic instability (PubMed:20231364). Also associates with POLR1A and enforces the stability of ribosomal DNA arrays (PubMed:27502483). Plays an important role in mitotic chromosome separation after cross-over events and cell cycle progress (PubMed:22013166). Mechanistically, removes RAD51 filaments protecting stalled replication forks at common fragile sites and stimulates MUS81-EME1 endonuclease leading to mitotic DNA synthesis (PubMed:28575661). Required for efficient DNA repair, including repair of inter-strand cross-links (PubMed:23715498). Stimulates DNA decatenation mediated by TOP2A. Prevents sister chromatid exchange and homologous recombination. A core helicase fragment (residues 11-609) binds preferentially to splayed duplex, looped and ssDNA (PubMed:28100692). {ECO:0000269|PubMed:20231364, ECO:0000269|PubMed:20348101, ECO:0000269|PubMed:20643585, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22973052, ECO:0000269|PubMed:23715498, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:27502483, ECO:0000269|PubMed:28100692, ECO:0000269|PubMed:28575661, ECO:0000305|PubMed:28100692}. |
O94776 | MTA2 | S435 | ochoa | Metastasis-associated protein MTA2 (Metastasis-associated 1-like 1) (MTA1-L1 protein) (p53 target protein in deacetylase complex) | May function as a transcriptional coregulator (PubMed:16428440, PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
O94782 | USP1 | S67 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94782 | USP1 | S313 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94782 | USP1 | S398 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94788 | ALDH1A2 | S351 | ochoa | Retinal dehydrogenase 2 (RALDH 2) (RalDH2) (EC 1.2.1.36) (Aldehyde dehydrogenase family 1 member A2) (ALDH1A2) (Retinaldehyde-specific dehydrogenase type 2) (RALDH(II)) | Catalyzes the NAD-dependent oxidation of aldehyde substrates, such as all-trans-retinal and all-trans-13,14-dihydroretinal, to their corresponding carboxylic acids, all-trans-retinoate and all-trans-13,14-dihydroretinoate, respectively (PubMed:29240402, PubMed:33565183). Retinoate signaling is critical for the transcriptional control of many genes, for instance it is crucial for initiation of meiosis in both male and female (Probable) (PubMed:33565183). Recognizes retinal as substrate, both in its free form and when bound to cellular retinol-binding protein (By similarity). Can metabolize octanal and decanal, but has only very low activity with benzaldehyde, acetaldehyde and propanal (By similarity). Displays complete lack of activity with citral (By similarity). {ECO:0000250|UniProtKB:Q63639, ECO:0000269|PubMed:29240402, ECO:0000269|PubMed:33565183, ECO:0000305|PubMed:22075477}. |
O94804 | STK10 | S438 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94806 | PRKD3 | S391 | ochoa | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94806 | PRKD3 | S543 | ochoa | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94818 | NOL4 | S309 | ochoa | Nucleolar protein 4 (Nucleolar-localized protein) | None |
O94818 | NOL4 | S353 | ochoa | Nucleolar protein 4 (Nucleolar-localized protein) | None |
O94822 | LTN1 | S583 | ochoa | E3 ubiquitin-protein ligase listerin (EC 2.3.2.27) (RING finger protein 160) (RING-type E3 ubiquitin transferase listerin) (Zinc finger protein 294) | E3 ubiquitin-protein ligase component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:23685075, PubMed:25132172, PubMed:25578875, PubMed:28757607). Within the RQC complex, LTN1 is recruited to stalled 60S ribosomal subunits by NEMF and mediates ubiquitination of stalled nascent chains (PubMed:25578875). Ubiquitination leads to VCP/p97 recruitment for extraction and degradation of the incomplete translation product (By similarity). {ECO:0000250|UniProtKB:Q04781, ECO:0000269|PubMed:23685075, ECO:0000269|PubMed:25132172, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:28757607}. |
O94842 | TOX4 | S550 | ochoa | TOX high mobility group box family member 4 | Transcription factor that modulates cell fate reprogramming from the somatic state to the pluripotent and neuronal fate (By similarity). In liver, controls the expression of hormone-regulated gluconeogenic genes such as G6PC1 and PCK1 (By similarity). This regulation is independent of the insulin receptor activation (By similarity). Also acts as a regulatory component of protein phosphatase 1 (PP1) complexes (PubMed:39603239, PubMed:39603240). Component of the PNUTS-PP1 protein phosphatase complex, a PP1 complex that regulates RNA polymerase II transcription pause-release (PubMed:39603239, PubMed:39603240). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). {ECO:0000250|UniProtKB:Q8BU11, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240}. |
O94855 | SEC24D | S826 | ochoa | Protein transport protein Sec24D (SEC24-related protein D) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24C may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
O94864 | SUPT7L | S323 | ochoa | STAGA complex 65 subunit gamma (Adenocarcinoma antigen ART1) (SPTF-associated factor 65 gamma) (STAF65gamma) (Suppressor of Ty 7-like) | None |
O94876 | TMCC1 | S134 | ochoa | Transmembrane and coiled-coil domains protein 1 | Endoplasmic reticulum membrane protein that promotes endoplasmic reticulum-associated endosome fission (PubMed:30220460). Localizes to contact sites between the endoplasmic reticulum and endosomes and acts by promoting recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). {ECO:0000269|PubMed:30220460}. |
O94886 | TMEM63A | S768 | ochoa | Mechanosensitive cation channel TMEM63A (Transmembrane protein 63A) (hTMEM63A) | Mechanosensitive cation channel with low conductance and high activation threshold (PubMed:30382938, PubMed:31587869, PubMed:37543036). In contrast to TMEM63B, does not show phospholipid scramblase activity (PubMed:39716028). Acts as a regulator of lysosomal morphology by mediating lysosomal mechanosensitivity (By similarity). Important for the baby's first breath and respiration throughout life (PubMed:38127458). Upon lung inflation conducts cation currents in alveolar type 1 and 2 cells triggering lamellar body exocytosis and surfactant secretion into airspace (PubMed:38127458). Also acts as an osmosensitive cation channel preferentially activated by hypotonic stress (By similarity). {ECO:0000250|UniProtKB:Q91YT8, ECO:0000269|PubMed:30382938, ECO:0000269|PubMed:31587869, ECO:0000269|PubMed:37543036, ECO:0000269|PubMed:38127458, ECO:0000269|PubMed:39716028}. |
O94888 | UBXN7 | S270 | ochoa | UBX domain-containing protein 7 | Ubiquitin-binding adapter that links a subset of NEDD8-associated cullin ring ligases (CRLs) to the segregase VCP/p97, to regulate turnover of their ubiquitination substrates. {ECO:0000269|PubMed:22537386}. |
O94901 | SUN1 | S48 | psp | SUN domain-containing protein 1 (Protein unc-84 homolog A) (Sad1/unc-84 protein-like 1) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton (PubMed:18039933, PubMed:18396275). The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (By similarity). Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration (By similarity). Involved in telomere attachment to nuclear envelope in the prophase of meiosis implicating a SUN1/2:KASH5 LINC complex in which SUN1 and SUN2 seem to act at least partial redundantly (By similarity). Required for gametogenesis and involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis (By similarity). Helps to define the distribution of nuclear pore complexes (NPCs) (By similarity). Required for efficient localization of SYNE4 in the nuclear envelope (By similarity). May be involved in nuclear remodeling during sperm head formation in spermatogenesis (By similarity). May play a role in DNA repair by suppressing non-homologous end joining repair to facilitate the repair of DNA cross-links (PubMed:24375709). {ECO:0000250|UniProtKB:Q9D666, ECO:0000269|PubMed:18039933, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:24375709}. |
O94913 | PCF11 | S705 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94913 | PCF11 | S728 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94913 | PCF11 | S1493 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94913 | PCF11 | S1520 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94915 | FRYL | S212 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94915 | FRYL | S844 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94915 | FRYL | S1258 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94916 | NFAT5 | S145 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94916 | NFAT5 | S266 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94916 | NFAT5 | S561 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94919 | ENDOD1 | S303 | ochoa | Endonuclease domain-containing 1 protein (EC 3.1.30.-) | May act as a DNase and a RNase. Plays a role in the modulation of innate immune signaling through the cGAS-STING pathway by interacting with RNF26. {ECO:0000269|PubMed:32614325}. |
O94927 | HAUS5 | S71 | ochoa | HAUS augmin-like complex subunit 5 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
O94941 | UBOX5 | S388 | ochoa | RING finger protein 37 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase RNF37) (U-box domain-containing protein 5) (UbcM4-interacting protein 5) (hUIP5) (Ubiquitin-conjugating enzyme 7-interacting protein 5) | May have a ubiquitin-protein ligase activity acting as an E3 ubiquitin-protein ligase or as a ubiquitin-ubiquitin ligase promoting elongation of ubiquitin chains on substrates. {ECO:0000250|UniProtKB:Q925F4}. |
O94953 | KDM4B | S622 | psp | Lysine-specific demethylase 4B (EC 1.14.11.66) (JmjC domain-containing histone demethylation protein 3B) (Jumonji domain-containing protein 2B) ([histone H3]-trimethyl-L-lysine(9) demethylase 4B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate (PubMed:16603238, PubMed:28262558). Plays a critical role in the development of the central nervous system (CNS). {ECO:0000250|UniProtKB:Q91VY5, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
O94955 | RHOBTB3 | S32 | ochoa | Rho-related BTB domain-containing protein 3 (EC 3.6.1.-) | Rab9-regulated ATPase required for endosome to Golgi transport. Involved in transport vesicle docking at the Golgi complex, possibly by participating in release M6PRBP1/TIP47 from vesicles to permit their efficient docking and fusion at the Golgi. Specifically binds Rab9, but not other Rab proteins. Has low intrinsic ATPase activity due to autoinhibition, which is relieved by Rab9. {ECO:0000269|PubMed:19490898}. |
O94956 | SLCO2B1 | S34 | ochoa | Solute carrier organic anion transporter family member 2B1 (Organic anion transporter B) (OATP-B) (Organic anion transporter polypeptide-related protein 2) (OATP-RP2) (OATPRP2) (Organic anion transporting polypeptide 2B1) (OATP2B1) (Solute carrier family 21 member 9) | Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:11159893, ECO:0000269|PubMed:11932330, ECO:0000269|PubMed:12409283, ECO:0000269|PubMed:12724351, ECO:0000269|PubMed:14610227, ECO:0000269|PubMed:16908597, ECO:0000269|PubMed:18501590, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:20507927, ECO:0000269|PubMed:22201122, ECO:0000269|PubMed:23531488, ECO:0000269|PubMed:25132355, ECO:0000269|PubMed:26277985, ECO:0000269|PubMed:26383540, ECO:0000269|PubMed:27576593, ECO:0000269|PubMed:29871943, ECO:0000269|PubMed:34628357, ECO:0000269|PubMed:35714613, ECO:0000269|Ref.25, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 3]: Has estrone 3-sulfate (E1S) transport activity comparable with the full-length isoform 1. {ECO:0000269|PubMed:23531488}. |
O94956 | SLCO2B1 | S688 | ochoa | Solute carrier organic anion transporter family member 2B1 (Organic anion transporter B) (OATP-B) (Organic anion transporter polypeptide-related protein 2) (OATP-RP2) (OATPRP2) (Organic anion transporting polypeptide 2B1) (OATP2B1) (Solute carrier family 21 member 9) | Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:11159893, ECO:0000269|PubMed:11932330, ECO:0000269|PubMed:12409283, ECO:0000269|PubMed:12724351, ECO:0000269|PubMed:14610227, ECO:0000269|PubMed:16908597, ECO:0000269|PubMed:18501590, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:20507927, ECO:0000269|PubMed:22201122, ECO:0000269|PubMed:23531488, ECO:0000269|PubMed:25132355, ECO:0000269|PubMed:26277985, ECO:0000269|PubMed:26383540, ECO:0000269|PubMed:27576593, ECO:0000269|PubMed:29871943, ECO:0000269|PubMed:34628357, ECO:0000269|PubMed:35714613, ECO:0000269|Ref.25, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 3]: Has estrone 3-sulfate (E1S) transport activity comparable with the full-length isoform 1. {ECO:0000269|PubMed:23531488}. |
O94964 | MTCL2 | S1320 | ochoa | Microtubule cross-linking factor 2 (SOGA family member 1) (Suppressor of glucose by autophagy) (Suppressor of glucose, autophagy-associated protein 1) [Cleaved into: N-terminal form; C-terminal 80 kDa form (80-kDa SOGA fragment)] | Microtubule-associated factor that enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Preferentially acts on the perinuclear microtubules accumulated around the Golgi. Associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the C-terminal domain (By similarity). Required for faithful chromosome segregation during mitosis (PubMed:33587225). Regulates autophagy by playing a role in the reduction of glucose production in an adiponectin- and insulin-dependent manner (By similarity). {ECO:0000250|UniProtKB:E1U8D0, ECO:0000269|PubMed:33587225}. |
O94967 | WDR47 | S339 | ochoa | WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) | None |
O94972 | TRIM37 | S454 | ochoa | E3 ubiquitin-protein ligase TRIM37 (EC 2.3.2.27) (Mulibrey nanism protein) (RING-type E3 ubiquitin transferase TRIM37) (Tripartite motif-containing protein 37) | E3 ubiquitin-protein ligase required to prevent centriole reduplication (PubMed:15885686, PubMed:23769972). Probably acts by ubiquitinating positive regulators of centriole reduplication (PubMed:23769972). Mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression: associates with some Polycomb group (PcG) multiprotein PRC2-like complex and mediates repression of target genes (PubMed:25470042). Also acts as a positive regulator of peroxisome import by mediating monoubiquitination of PEX5 at 'Lys-472': monoubiquitination promotes PEX5 stabilitation by preventing its polyubiquitination and degradation by the proteasome (PubMed:28724525). Has anti-HIV activity (PubMed:24317724). {ECO:0000269|PubMed:15885686, ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24317724, ECO:0000269|PubMed:25470042, ECO:0000269|PubMed:28724525}. |
O94972 | TRIM37 | S461 | ochoa | E3 ubiquitin-protein ligase TRIM37 (EC 2.3.2.27) (Mulibrey nanism protein) (RING-type E3 ubiquitin transferase TRIM37) (Tripartite motif-containing protein 37) | E3 ubiquitin-protein ligase required to prevent centriole reduplication (PubMed:15885686, PubMed:23769972). Probably acts by ubiquitinating positive regulators of centriole reduplication (PubMed:23769972). Mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression: associates with some Polycomb group (PcG) multiprotein PRC2-like complex and mediates repression of target genes (PubMed:25470042). Also acts as a positive regulator of peroxisome import by mediating monoubiquitination of PEX5 at 'Lys-472': monoubiquitination promotes PEX5 stabilitation by preventing its polyubiquitination and degradation by the proteasome (PubMed:28724525). Has anti-HIV activity (PubMed:24317724). {ECO:0000269|PubMed:15885686, ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24317724, ECO:0000269|PubMed:25470042, ECO:0000269|PubMed:28724525}. |
O94979 | SEC31A | S188 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O94979 | SEC31A | S251 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O94979 | SEC31A | S1163 | ochoa | Protein transport protein Sec31A (ABP125) (ABP130) (SEC31-like protein 1) (SEC31-related protein A) (Web1-like protein) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER) (PubMed:10788476). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules (By similarity). {ECO:0000250|UniProtKB:Q9Z2Q1, ECO:0000269|PubMed:10788476}. |
O94986 | CEP152 | S133 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O94986 | CEP152 | S1612 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O94988 | FAM13A | S527 | ochoa | Protein FAM13A | None |
O95049 | TJP3 | S378 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95049 | TJP3 | S489 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95049 | TJP3 | S654 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95071 | UBR5 | S808 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95071 | UBR5 | S2424 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95125 | ZNF202 | S466 | ochoa | Zinc finger protein 202 (Zinc finger protein with KRAB and SCAN domains 10) | Transcriptional repressor that binds to elements found predominantly in genes that participate in lipid metabolism. Among its targets are structural components of lipoprotein particles (apolipoproteins AIV, CIII, and E), enzymes involved in lipid processing (lipoprotein lipase, lecithin cholesteryl ester transferase), transporters involved in lipid homeostasis (ABCA1, ABCG1), and several genes involved in processes related to energy metabolism and vascular disease. |
O95139 | NDUFB6 | S29 | ochoa|psp | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 (Complex I-B17) (CI-B17) (NADH-ubiquinone oxidoreductase B17 subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O95155 | UBE4B | S1265 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95171 | SCEL | S312 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95171 | SCEL | S475 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95171 | SCEL | S590 | ochoa | Sciellin | May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope. |
O95197 | RTN3 | S575 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95235 | KIF20A | S867 | ochoa|psp | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95239 | KIF4A | S1186 | ochoa|psp | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95259 | KCNH1 | S904 | ochoa | Voltage-gated delayed rectifier potassium channel KCNH1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (h-eag) (hEAG1) (Potassium voltage-gated channel subfamily H member 1) (Voltage-gated potassium channel subunit Kv10.1) | Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel that mediates outward-rectifying potassium currents which, on depolarization, reaches a steady-state level and do not inactivate (PubMed:10880439, PubMed:11943152, PubMed:22732247, PubMed:25420144, PubMed:25556795, PubMed:25915598, PubMed:27005320, PubMed:27325704, PubMed:27618660, PubMed:30149017, PubMed:9738473). The activation kinetics depend on the prepulse potential and external divalent cation concentration (PubMed:11943152). With negative prepulses, the current activation is delayed and slowed down several fold, whereas more positive prepulses speed up activation (PubMed:11943152). The time course of activation is biphasic with a fast and a slowly activating current component (PubMed:11943152). Activates at more positive membrane potentials and exhibit a steeper activation curve (PubMed:11943152). Channel properties are modulated by subunit assembly (PubMed:11943152). Mediates IK(NI) current in myoblasts (PubMed:9738473). Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs) (PubMed:23881642). {ECO:0000269|PubMed:10880439, ECO:0000269|PubMed:11943152, ECO:0000269|PubMed:22732247, ECO:0000269|PubMed:23881642, ECO:0000269|PubMed:25420144, ECO:0000269|PubMed:25556795, ECO:0000269|PubMed:25915598, ECO:0000269|PubMed:27005320, ECO:0000269|PubMed:27325704, ECO:0000269|PubMed:27618660, ECO:0000269|PubMed:30149017, ECO:0000269|PubMed:9738473}. |
O95271 | TNKS | S978 | psp | Poly [ADP-ribose] polymerase tankyrase-1 (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 5) (ARTD5) (Poly [ADP-ribose] polymerase 5A) (Protein poly-ADP-ribosyltransferase tankyrase-1) (EC 2.4.2.-) (TNKS-1) (TRF1-interacting ankyrin-related ADP-ribose polymerase) (Tankyrase I) (Tankyrase-1) (TANK1) | Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking (PubMed:10988299, PubMed:11739745, PubMed:16076287, PubMed:19759537, PubMed:21478859, PubMed:22864114, PubMed:23622245, PubMed:25043379, PubMed:28619731). Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation (PARsylation) of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex: poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation (PubMed:19759537, PubMed:21478859). Also mediates PARsylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination (PubMed:21478859). Mediates PARsylation of TERF1, thereby contributing to the regulation of telomere length (PubMed:11739745). Involved in centrosome maturation during prometaphase by mediating PARsylation of HEPACAM2/MIKI (PubMed:22864114). May also regulate vesicle trafficking and modulate the subcellular distribution of SLC2A4/GLUT4-vesicles (PubMed:10988299). May be involved in spindle pole assembly through PARsylation of NUMA1 (PubMed:16076287). Stimulates 26S proteasome activity (PubMed:23622245). {ECO:0000269|PubMed:10988299, ECO:0000269|PubMed:11739745, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:19759537, ECO:0000269|PubMed:21478859, ECO:0000269|PubMed:22864114, ECO:0000269|PubMed:23622245, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:28619731}. |
O95279 | KCNK5 | S270 | ochoa | Potassium channel subfamily K member 5 (Acid-sensitive potassium channel protein TASK-2) (TWIK-related acid-sensitive K(+) channel 2) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:26919430, PubMed:36063992, PubMed:9812978). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:36063992). {ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:36063992, ECO:0000269|PubMed:9812978}. |
O95292 | VAPB | S206 | ochoa | Vesicle-associated membrane protein-associated protein B/C (VAMP-B/VAMP-C) (VAMP-associated protein B/C) (VAP-B/VAP-C) | Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). Interacts with STARD3 in a FFAT motif phosphorylation dependent manner (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity (PubMed:16891305, PubMed:20940299). Involved in cellular calcium homeostasis regulation (PubMed:22131369). {ECO:0000269|PubMed:16891305, ECO:0000269|PubMed:20940299, ECO:0000269|PubMed:22131369, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}. |
O95340 | PAPSS2 | S92 | ochoa | Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPS synthase 2) (PAPSS 2) (Sulfurylase kinase 2) (SK 2) (SK2) [Includes: Sulfate adenylyltransferase (EC 2.7.7.4) (ATP-sulfurylase) (Sulfate adenylate transferase) (SAT); Adenylyl-sulfate kinase (EC 2.7.1.25) (3'-phosphoadenosine-5'-phosphosulfate synthase) (APS kinase) (Adenosine-5'-phosphosulfate 3'-phosphotransferase) (Adenylylsulfate 3'-phosphotransferase)] | Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate/PAPS, the activated sulfate donor used by sulfotransferases (PubMed:11773860, PubMed:19474428, PubMed:23824674, PubMed:25594860). In mammals, PAPS is the sole source of sulfate while APS appears to only be an intermediate in the sulfate-activation pathway (PubMed:11773860, PubMed:19474428, PubMed:23824674, PubMed:25594860). Plays indirectly an important role in skeletogenesis during postnatal growth (PubMed:9771708). {ECO:0000269|PubMed:11773860, ECO:0000269|PubMed:19474428, ECO:0000269|PubMed:23824674, ECO:0000269|PubMed:25594860, ECO:0000269|PubMed:9771708}. |
O95359 | TACC2 | S758 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S859 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S1025 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S2359 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95365 | ZBTB7A | S549 | ochoa | Zinc finger and BTB domain-containing protein 7A (Factor binding IST protein 1) (FBI-1) (Factor that binds to inducer of short transcripts protein 1) (HIV-1 1st-binding protein 1) (Leukemia/lymphoma-related factor) (POZ and Krueppel erythroid myeloid ontogenic factor) (POK erythroid myeloid ontogenic factor) (Pokemon) (Pokemon 1) (TTF-I-interacting peptide 21) (TIP21) (Zinc finger protein 857A) | Transcription factor that represses the transcription of a wide range of genes involved in cell proliferation and differentiation (PubMed:14701838, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26455326, PubMed:26816381). Directly and specifically binds to the consensus sequence 5'-[GA][CA]GACCCCCCCCC-3' and represses transcription both by regulating the organization of chromatin and through the direct recruitment of transcription factors to gene regulatory regions (PubMed:12004059, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26816381). Negatively regulates SMAD4 transcriptional activity in the TGF-beta signaling pathway through these two mechanisms (PubMed:25514493). That is, recruits the chromatin regulator HDAC1 to the SMAD4-DNA complex and in parallel prevents the recruitment of the transcriptional activators CREBBP and EP300 (PubMed:25514493). Collaborates with transcription factors like RELA to modify the accessibility of gene transcription regulatory regions to secondary transcription factors (By similarity). Also directly interacts with transcription factors like SP1 to prevent their binding to DNA (PubMed:12004059). Functions as an androgen receptor/AR transcriptional corepressor by recruiting NCOR1 and NCOR2 to the androgen response elements/ARE on target genes (PubMed:20812024). Thereby, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Involved in the switch between fetal and adult globin expression during erythroid cells maturation (PubMed:26816381). Through its interaction with the NuRD complex regulates chromatin at the fetal globin genes to repress their transcription (PubMed:26816381). Specifically represses the transcription of the tumor suppressor ARF isoform from the CDKN2A gene (By similarity). Efficiently abrogates E2F1-dependent CDKN2A transactivation (By similarity). Regulates chondrogenesis through the transcriptional repression of specific genes via a mechanism that also requires histone deacetylation (By similarity). Regulates cell proliferation through the transcriptional regulation of genes involved in glycolysis (PubMed:26455326). Involved in adipogenesis through the regulation of genes involved in adipocyte differentiation (PubMed:14701838). Plays a key role in the differentiation of lymphoid progenitors into B and T lineages (By similarity). Promotes differentiation towards the B lineage by inhibiting the T-cell instructive Notch signaling pathway through the specific transcriptional repression of Notch downstream target genes (By similarity). Also regulates osteoclast differentiation (By similarity). May also play a role, independently of its transcriptional activity, in double-strand break repair via classical non-homologous end joining/cNHEJ (By similarity). Recruited to double-strand break sites on damage DNA, interacts with the DNA-dependent protein kinase complex and directly regulates its stability and activity in DNA repair (By similarity). May also modulate the splicing activity of KHDRBS1 toward BCL2L1 in a mechanism which is histone deacetylase-dependent and thereby negatively regulates the pro-apoptotic effect of KHDRBS1 (PubMed:24514149). {ECO:0000250|UniProtKB:O88939, ECO:0000250|UniProtKB:Q9QZ48, ECO:0000269|PubMed:12004059, ECO:0000269|PubMed:14701838, ECO:0000269|PubMed:17595526, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:24514149, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:26455326, ECO:0000269|PubMed:26816381}. |
O95402 | MED26 | S470 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95405 | ZFYVE9 | S306 | ochoa | Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) | Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}. |
O95405 | ZFYVE9 | S562 | ochoa | Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) | Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}. |
O95425 | SVIL | S221 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95425 | SVIL | S1120 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95425 | SVIL | S1225 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95453 | PARN | S101 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
O95453 | PARN | S163 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
O95466 | FMNL1 | S950 | ochoa | Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) | May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O95487 | SEC24B | S556 | ochoa | Protein transport protein Sec24B (SEC24-related protein B) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24A may have a different specificity compared to SEC24C and SEC24D. May package preferentially cargos with cytoplasmic DxE or LxxLE motifs and may also recognize conformational epitopes (PubMed:17499046, PubMed:18843296). {ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
O95490 | ADGRL2 | S1112 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95568 | METTL18 | S77 | ochoa | Histidine protein methyltransferase 1 homolog (EC 2.1.1.85) (Arsenic-transactivated protein 2) (AsTP2) (Methyltransferase-like protein 18) | Protein-L-histidine N-tele-methyltransferase that specifically monomethylates RPL3, thereby regulating translation elongation (PubMed:23349634, PubMed:33693809, PubMed:35674491). Histidine methylation of RPL3 regulates translation elongation by slowing ribosome traversal on tyrosine codons: slower elongation provides enough time for proper folding of synthesized proteins and prevents cellular aggregation of tyrosine-rich proteins (PubMed:35674491). {ECO:0000269|PubMed:23349634, ECO:0000269|PubMed:33693809, ECO:0000269|PubMed:35674491}. |
O95573 | ACSL3 | S353 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
O95600 | KLF8 | S48 | psp | Krueppel-like factor 8 (Basic krueppel-like factor 3) (Zinc finger protein 741) | Transcriptional repressor and activator. Binds to CACCC-boxes promoter elements. Also binds the GT-box of cyclin D1 promoter and mediates cell cycle progression at G(1) phase as a downstream target of focal adhesion kinase (FAK). {ECO:0000269|PubMed:10756197, ECO:0000269|PubMed:12820964, ECO:0000269|PubMed:16617055}. |
O95602 | POLR1A | S1695 | ochoa | DNA-directed RNA polymerase I subunit RPA1 (RNA polymerase I subunit A1) (EC 2.7.7.6) (A190) (DNA-directed RNA polymerase I largest subunit) (DNA-directed RNA polymerase I subunit A) (RNA polymerase I 194 kDa subunit) (RPA194) | Catalytic core component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Transcribes 47S pre-rRNAs from multicopy rRNA gene clusters, giving rise to 5.8S, 18S and 28S ribosomal RNAs (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Pol I-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol I pre-initiation complex (PIC) is recruited by the selectivity factor 1 (SL1/TIF-IB) complex bound to the core promoter that precedes an rDNA repeat unit. The PIC assembly bends the promoter favoring the formation of the transcription bubble and promoter escape. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Highly processive, assembles in structures referred to as 'Miller trees' where many elongating Pol I complexes queue and transcribe the same rDNA coding regions. At terminator sequences downstream of the rDNA gene, PTRF interacts with Pol I and halts Pol I transcription leading to the release of the RNA transcript and polymerase from the DNA (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Forms Pol I active center together with the second largest subunit POLR1B/RPA2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR1A/RPA1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR1B/RPA2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and the template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. Has proofreading activity: Pauses and backtracks to allow the cleavage of a missincorporated nucleotide via POLR1H/RPA12. High Pol I processivity is associated with decreased transcription fidelity (By similarity) (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). {ECO:0000250|UniProtKB:P10964, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}. |
O95613 | PCNT | S610 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95613 | PCNT | S2900 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95644 | NFATC1 | S117 | psp | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95644 | NFATC1 | S670 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95671 | ASMTL | S21 | ochoa | Probable bifunctional dTTP/UTP pyrophosphatase/methyltransferase protein [Includes: dTTP/UTP pyrophosphatase (dTTPase/UTPase) (EC 3.6.1.9) (Nucleoside triphosphate pyrophosphatase) (Nucleotide pyrophosphatase) (Nucleotide PPase); N-acetylserotonin O-methyltransferase-like protein (ASMTL) (EC 2.1.1.-)] | Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. Can also hydrolyze CTP and the modified nucleotides pseudo-UTP, 5-methyl-UTP (m(5)UTP) and 5-methyl-CTP (m(5)CTP). Has weak activity with dCTP, 8-oxo-GTP and N(4)-methyl-dCTP (PubMed:24210219). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids (PubMed:24210219). In addition, the presence of the putative catalytic domain of S-adenosyl-L-methionine binding in the C-terminal region argues for a methyltransferase activity (Probable). {ECO:0000269|PubMed:24210219, ECO:0000305}. |
O95714 | HERC2 | S1601 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95714 | HERC2 | S2454 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95714 | HERC2 | S3462 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95757 | HSPA4L | S384 | ochoa | Heat shock 70 kDa protein 4L (Heat shock 70-related protein APG-1) (Heat shock protein family H member 3) (Heat-shock protein family A member 4-like protein) (HSPA4-like protein) (Osmotic stress protein 94) | Possesses chaperone activity in vitro where it inhibits aggregation of citrate synthase. {ECO:0000250}. |
O95759 | TBC1D8 | S938 | ochoa | TBC1 domain family member 8 (AD 3) (Vascular Rab-GAP/TBC-containing protein) | May act as a GTPase-activating protein for Rab family protein(s). |
O95782 | AP2A1 | S518 | ochoa | AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
O95782 | AP2A1 | S792 | ochoa | AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
O95785 | WIZ | S1079 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95789 | ZMYM6 | S730 | ochoa | Zinc finger MYM-type protein 6 (Transposon-derived Buster2 transposase-like protein) (Zinc finger protein 258) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
O95793 | STAU1 | S465 | ochoa | Double-stranded RNA-binding protein Staufen homolog 1 | Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}. |
O95825 | CRYZL1 | S143 | ochoa | Quinone oxidoreductase-like protein 1 (EC 1.-.-.-) (Ferry endosomal RAB5 effector complex subunit 4) (Fy-4) (Protein 4P11) (Quinone oxidoreductase homolog 1) (QOH-1) (Zeta-crystallin homolog) | Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905, PubMed:37267906). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). {ECO:0000269|PubMed:37267905, ECO:0000269|PubMed:37267906}. |
O95833 | CLIC3 | S49 | ochoa | Chloride intracellular channel protein 3 (Glutaredoxin-like oxidoreductase CLIC3) (EC 1.8.-.-) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (PubMed:28198360, PubMed:37759794). Reduced in a glutathione-dependent way and secreted into the extracellular matrix where it activates TGM2 and promotes blood vessel growth during tissue remodeling as occurs in tumorigenesis. Can reduce specific cysteines in TGM2 and regulate cofactor binding (PubMed:28198360). Can insert into membranes and form outwardly rectifying chloride ion channels. May participate in cellular growth control. {ECO:0000269|PubMed:28198360, ECO:0000269|PubMed:32066374, ECO:0000269|PubMed:37759794, ECO:0000269|PubMed:9880541}. |
O95861 | BPNT1 | S240 | ochoa | 3'(2'),5'-bisphosphate nucleotidase 1 (EC 3.1.3.7) (3'-phosphoadenosine 5'-phosphate phosphatase) (PAP phosphatase) (Bisphosphate 3'-nucleotidase 1) (BPntase 1) (HsPIP) (Inositol-polyphosphate 1-phosphatase) (EC 3.1.3.57) | Phosphatase that converts 3'(2')-phosphoadenosine 5'-phosphate (PAP) to AMP and inositol 1,4-bisphosphate (Ins(1,4)P2) to inositol 4-phosphate (PubMed:10675562). Is also able to hydrolyze adenosine 3'-phosphate 5'-phosphosulfate (PAPS) to adenosine 5'-phosphosulfate (APS) (By similarity). Probably prevents the toxic accumulation of PAP, a compound which inhibits a variety of proteins, including PAPS-utilizing enzymes such as sulfotransferases, and RNA processing enzymes. Could also play a role in inositol recycling and phosphoinositide metabolism. Is not active on 3'-AMP, inositol-1-phosphate and inositol-1,4,5-triphosphate (PubMed:10675562). {ECO:0000250|UniProtKB:Q9Z1N4, ECO:0000269|PubMed:10675562}. |
O95863 | SNAI1 | S82 | psp | Zinc finger protein SNAI1 (Protein snail homolog 1) (Protein sna) | Involved in induction of the epithelial to mesenchymal transition (EMT), formation and maintenance of embryonic mesoderm, growth arrest, survival and cell migration (PubMed:10655587, PubMed:15647282, PubMed:20389281, PubMed:20562920, PubMed:21952048, PubMed:25827072). Binds to 3 E-boxes of the E-cadherin/CDH1 gene promoter and to the promoters of CLDN7 and KRT8 and, in association with histone demethylase KDM1A which it recruits to the promoters, causes a decrease in dimethylated H3K4 levels and represses transcription (PubMed:10655587, PubMed:20389281, PubMed:20562920). The N-terminal SNAG domain competes with histone H3 for the same binding site on the histone demethylase complex formed by KDM1A and RCOR1, and thereby inhibits demethylation of histone H3 at 'Lys-4' (in vitro) (PubMed:20389281, PubMed:21300290, PubMed:23721412). During EMT, involved with LOXL2 in negatively regulating pericentromeric heterochromatin transcription (PubMed:16096638). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (By similarity). Associates with EGR1 and SP1 to mediate tetradecanoyl phorbol acetate (TPA)-induced up-regulation of CDKN2B, possibly by binding to the CDKN2B promoter region 5'-TCACA-3 (PubMed:20121949). In addition, may also activate the CDKN2B promoter by itself (PubMed:20121949). {ECO:0000250|UniProtKB:Q02085, ECO:0000269|PubMed:10655587, ECO:0000269|PubMed:15647282, ECO:0000269|PubMed:16096638, ECO:0000269|PubMed:20121949, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:25827072}. |
O95900 | TRUB2 | S299 | ochoa | Pseudouridylate synthase TRUB2, mitochondrial (EC 5.4.99.-) (TruB pseudouridine synthase homolog 2) (tRNA pseudouridine 55 synthase TRUB2) (Psi55 synthase TRUB2) (EC 5.4.99.25) | Minor enzyme contributing to the isomerization of uridine to pseudouridine (pseudouridylation) of specific mitochondrial mRNAs (mt-mRNAs) such as COXI and COXIII mt-mRNAs (PubMed:27974379, PubMed:31477916). As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation (PubMed:27667664). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:33023933). {ECO:0000269|PubMed:27667664, ECO:0000269|PubMed:27974379, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:33023933}. |
O95983 | MBD3 | S37 | ochoa | Methyl-CpG-binding domain protein 3 (Methyl-CpG-binding protein MBD3) | Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12124384, PubMed:16428440, PubMed:28977666). Acts as transcriptional repressor and plays a role in gene silencing (PubMed:10947852, PubMed:18644863). Does not bind to methylated DNA by itself (PubMed:12124384, PubMed:16428440). Binds to a lesser degree DNA containing unmethylated CpG dinucleotides (PubMed:24307175). Recruits histone deacetylases and DNA methyltransferases. {ECO:0000269|PubMed:10947852, ECO:0000269|PubMed:12124384, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:18644863, ECO:0000269|PubMed:23361464, ECO:0000269|PubMed:24307175, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:9774669}. |
O95985 | TOP3B | S788 | ochoa | DNA topoisomerase 3-beta-1 (EC 5.6.2.1) (DNA topoisomerase III beta-1) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand than undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 3'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Possesses negatively supercoiled DNA relaxing activity. {ECO:0000250}. |
O95994 | AGR2 | S119 | ochoa | Anterior gradient protein 2 homolog (AG-2) (hAG-2) (HPC8) (Secreted cement gland protein XAG-2 homolog) | Required for MUC2 post-transcriptional synthesis and secretion. May play a role in the production of mucus by intestinal cells (By similarity). Proto-oncogene that may play a role in cell migration, cell differentiation and cell growth. Promotes cell adhesion (PubMed:23274113). {ECO:0000250, ECO:0000269|PubMed:18199544, ECO:0000269|PubMed:23274113}. |
O96008 | TOMM40 | S142 | ochoa | Mitochondrial import receptor subunit TOM40 homolog (Protein Haymaker) (Translocase of outer membrane 40 kDa subunit homolog) (p38.5) | Channel-forming protein essential for import of protein precursors into mitochondria (PubMed:15644312, PubMed:31206022). Plays a role in the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) by forming a complex with BCAP31 and mediating the translocation of Complex I components from the cytosol to the mitochondria (PubMed:31206022). {ECO:0000269|PubMed:15644312, ECO:0000269|PubMed:31206022}. |
O96019 | ACTL6A | S86 | ochoa|psp | Actin-like protein 6A (53 kDa BRG1-associated factor A) (Actin-related protein Baf53a) (ArpNbeta) (BRG1-associated factor 53A) (BAF53A) (INO80 complex subunit K) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000250|UniProtKB:Q9Z2N8, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:15196461, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O96019 | ACTL6A | S195 | psp | Actin-like protein 6A (53 kDa BRG1-associated factor A) (Actin-related protein Baf53a) (ArpNbeta) (BRG1-associated factor 53A) (BAF53A) (INO80 complex subunit K) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000250|UniProtKB:Q9Z2N8, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:15196461, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O96020 | CCNE2 | S67 | ochoa | G1/S-specific cyclin-E2 | Essential for the control of the cell cycle at the late G1 and early S phase. {ECO:0000269|PubMed:9840927, ECO:0000269|PubMed:9840943, ECO:0000269|PubMed:9858585}. |
O96028 | NSD2 | S437 | ochoa | Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) | Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}. |
P00325 | ADH1B | S165 | ochoa | All-trans-retinol dehydrogenase [NAD(+)] ADH1B (EC 1.1.1.105) (Alcohol dehydrogenase 1B) (Alcohol dehydrogenase subunit beta) | Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate in retinoid metabolism (PubMed:15369820, PubMed:16787387). In vitro can also catalyze the NADH-dependent reduction of all-trans-retinal and its derivatives such as all-trans-4-oxoretinal (PubMed:15369820, PubMed:16787387). Catalyzes in the oxidative direction with higher efficiency (PubMed:16787387). Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal (PubMed:15369820). {ECO:0000269|PubMed:15369820, ECO:0000269|PubMed:16787387}. |
P00326 | ADH1C | S165 | ochoa | Alcohol dehydrogenase 1C (EC 1.1.1.1) (Alcohol dehydrogenase subunit gamma) | Alcohol dehydrogenase. Exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. {ECO:0000269|PubMed:6391957}. |
P00352 | ALDH1A1 | S75 | ochoa | Aldehyde dehydrogenase 1A1 (EC 1.2.1.19) (EC 1.2.1.28) (EC 1.2.1.3) (EC 1.2.1.36) (3-deoxyglucosone dehydrogenase) (ALDH-E1) (ALHDII) (Aldehyde dehydrogenase family 1 member A1) (Aldehyde dehydrogenase, cytosolic) (Retinal dehydrogenase 1) (RALDH 1) (RalDH1) | Cytosolic dehydrogenase that catalyzes the irreversible oxidation of a wide range of aldehydes to their corresponding carboxylic acid (PubMed:12941160, PubMed:15623782, PubMed:17175089, PubMed:19296407, PubMed:25450233, PubMed:26373694). Functions downstream of retinol dehydrogenases and catalyzes the oxidation of retinaldehyde into retinoic acid, the second step in the oxidation of retinol/vitamin A into retinoic acid (By similarity). This pathway is crucial to control the levels of retinol and retinoic acid, two important molecules which excess can be teratogenic and cytotoxic (By similarity). Also oxidizes aldehydes resulting from lipid peroxidation like (E)-4-hydroxynon-2-enal/HNE, malonaldehyde and hexanal that form protein adducts and are highly cytotoxic. By participating for instance to the clearance of (E)-4-hydroxynon-2-enal/HNE in the lens epithelium prevents the formation of HNE-protein adducts and lens opacification (PubMed:12941160, PubMed:15623782, PubMed:19296407). Also functions downstream of fructosamine-3-kinase in the fructosamine degradation pathway by catalyzing the oxidation of 3-deoxyglucosone, the carbohydrate product of fructosamine 3-phosphate decomposition, which is itself a potent glycating agent that may react with lysine and arginine side-chains of proteins (PubMed:17175089). Also has an aminobutyraldehyde dehydrogenase activity and is probably part of an alternative pathway for the biosynthesis of GABA/4-aminobutanoate in midbrain, thereby playing a role in GABAergic synaptic transmission (By similarity). {ECO:0000250|UniProtKB:P24549, ECO:0000269|PubMed:12941160, ECO:0000269|PubMed:15623782, ECO:0000269|PubMed:17175089, ECO:0000269|PubMed:19296407, ECO:0000269|PubMed:25450233, ECO:0000269|PubMed:26373694}. |
P00387 | CYB5R3 | S38 | ochoa | NADH-cytochrome b5 reductase 3 (B5R) (Cytochrome b5 reductase) (EC 1.6.2.2) (Diaphorase-1) | Catalyzes the reduction of two molecules of cytochrome b5 using NADH as the electron donor. {ECO:0000269|PubMed:10807796, ECO:0000269|PubMed:1400360, ECO:0000269|PubMed:15953014, ECO:0000269|PubMed:1898726, ECO:0000269|PubMed:2019583, ECO:0000269|PubMed:8119939, ECO:0000269|PubMed:9639531}. |
P00519 | ABL1 | S683 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P00533 | EGFR | S991 | ochoa|psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00533 | EGFR | S1026 | ochoa|psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00533 | EGFR | S1153 | ochoa | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00918 | CA2 | S29 | ochoa | Carbonic anhydrase 2 (EC 4.2.1.1) (Carbonate dehydratase II) (Carbonic anhydrase C) (CAC) (Carbonic anhydrase II) (CA-II) (Cyanamide hydratase CA2) (EC 4.2.1.69) | Catalyzes the reversible hydration of carbon dioxide (PubMed:11327835, PubMed:11802772, PubMed:11831900, PubMed:12056894, PubMed:12171926, PubMed:1336460, PubMed:14736236, PubMed:15300855, PubMed:15453828, PubMed:15667203, PubMed:15865431, PubMed:16106378, PubMed:16214338, PubMed:16290146, PubMed:16686544, PubMed:16759856, PubMed:16807956, PubMed:17127057, PubMed:17251017, PubMed:17314045, PubMed:17330962, PubMed:17346964, PubMed:17540563, PubMed:17588751, PubMed:17705204, PubMed:18024029, PubMed:18162396, PubMed:18266323, PubMed:18374572, PubMed:18481843, PubMed:18618712, PubMed:18640037, PubMed:18942852, PubMed:1909891, PubMed:1910042, PubMed:19170619, PubMed:19186056, PubMed:19206230, PubMed:19520834, PubMed:19778001, PubMed:7761440, PubMed:7901850, PubMed:8218160, PubMed:8262987, PubMed:8399159, PubMed:8451242, PubMed:8485129, PubMed:8639494, PubMed:9265618, PubMed:9398308). Can also hydrate cyanamide to urea (PubMed:10550681, PubMed:11015219). Stimulates the chloride-bicarbonate exchange activity of SLC26A6 (PubMed:15990874). Essential for bone resorption and osteoclast differentiation (PubMed:15300855). Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. {ECO:0000269|PubMed:10550681, ECO:0000269|PubMed:11015219, ECO:0000269|PubMed:11327835, ECO:0000269|PubMed:11802772, ECO:0000269|PubMed:11831900, ECO:0000269|PubMed:12056894, ECO:0000269|PubMed:12171926, ECO:0000269|PubMed:1336460, ECO:0000269|PubMed:14736236, ECO:0000269|PubMed:15300855, ECO:0000269|PubMed:15453828, ECO:0000269|PubMed:15667203, ECO:0000269|PubMed:15865431, ECO:0000269|PubMed:15990874, ECO:0000269|PubMed:16106378, ECO:0000269|PubMed:16214338, ECO:0000269|PubMed:16290146, ECO:0000269|PubMed:16686544, ECO:0000269|PubMed:16759856, ECO:0000269|PubMed:16807956, ECO:0000269|PubMed:17127057, ECO:0000269|PubMed:17251017, ECO:0000269|PubMed:17314045, ECO:0000269|PubMed:17330962, ECO:0000269|PubMed:17346964, ECO:0000269|PubMed:17540563, ECO:0000269|PubMed:17588751, ECO:0000269|PubMed:17705204, ECO:0000269|PubMed:18024029, ECO:0000269|PubMed:18162396, ECO:0000269|PubMed:18266323, ECO:0000269|PubMed:18374572, ECO:0000269|PubMed:18481843, ECO:0000269|PubMed:18618712, ECO:0000269|PubMed:18640037, ECO:0000269|PubMed:18942852, ECO:0000269|PubMed:1909891, ECO:0000269|PubMed:1910042, ECO:0000269|PubMed:19170619, ECO:0000269|PubMed:19186056, ECO:0000269|PubMed:19206230, ECO:0000269|PubMed:19520834, ECO:0000269|PubMed:19778001, ECO:0000269|PubMed:7761440, ECO:0000269|PubMed:7901850, ECO:0000269|PubMed:8218160, ECO:0000269|PubMed:8262987, ECO:0000269|PubMed:8399159, ECO:0000269|PubMed:8451242, ECO:0000269|PubMed:8485129, ECO:0000269|PubMed:8639494, ECO:0000269|PubMed:9265618, ECO:0000269|PubMed:9398308}. |
P02511 | CRYAB | S19 | ochoa|psp | Alpha-crystallin B chain (Alpha(B)-crystallin) (Heat shock protein beta-5) (HspB5) (Heat shock protein family B member 5) (Renal carcinoma antigen NY-REN-27) (Rosenthal fiber component) | May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity). {ECO:0000250|UniProtKB:P23927}. |
P02511 | CRYAB | S45 | psp | Alpha-crystallin B chain (Alpha(B)-crystallin) (Heat shock protein beta-5) (HspB5) (Heat shock protein family B member 5) (Renal carcinoma antigen NY-REN-27) (Rosenthal fiber component) | May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity). {ECO:0000250|UniProtKB:P23927}. |
P02545 | LMNA | S507 | ochoa | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P02724 | GYPA | S130 | ochoa | Glycophorin-A (MN sialoglycoprotein) (PAS-2) (Sialoglycoprotein alpha) (CD antigen CD235a) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Glycophorin A is the major intrinsic membrane protein of the erythrocyte. The N-terminal glycosylated segment, which lies outside the erythrocyte membrane, has MN blood group receptors. Appears to be important for the function of SLC4A1 and is required for high activity of SLC4A1. May be involved in translocation of SLC4A1 to the plasma membrane. {ECO:0000269|PubMed:10926825, ECO:0000269|PubMed:12813056, ECO:0000269|PubMed:14604989, ECO:0000269|PubMed:19438409, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Appears to be a receptor for Hepatitis A virus (HAV). {ECO:0000269|PubMed:15331714}.; FUNCTION: (Microbial infection) Receptor for P.falciparum erythrocyte-binding antigen 175 (EBA-175); binding of EBA-175 is dependent on sialic acid residues of the O-linked glycans. {ECO:0000269|PubMed:8009226}. |
P02765 | AHSG | S328 | ochoa|psp | Alpha-2-HS-glycoprotein (Alpha-2-Z-globulin) (Ba-alpha-2-glycoprotein) (Fetuin-A) [Cleaved into: Alpha-2-HS-glycoprotein chain A; Alpha-2-HS-glycoprotein chain B] | Promotes endocytosis, possesses opsonic properties and influences the mineral phase of bone. Shows affinity for calcium and barium ions. |
P03372 | ESR1 | S294 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P04035 | HMGCR | S356 | ochoa | 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (EC 1.1.1.34) | Catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, the rate-limiting step in the synthesis of cholesterol and other isoprenoids, thus plays a critical role in cellular cholesterol homeostasis (PubMed:21357570, PubMed:2991281, PubMed:36745799, PubMed:6995544). HMGCR is the main target of statins, a class of cholesterol-lowering drugs (PubMed:11349148, PubMed:18540668, PubMed:36745799). {ECO:0000269|PubMed:11349148, ECO:0000269|PubMed:18540668, ECO:0000269|PubMed:21357570, ECO:0000269|PubMed:2991281, ECO:0000269|PubMed:36745799, ECO:0000269|PubMed:6995544}. |
P04049 | RAF1 | S29 | ochoa|psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04049 | RAF1 | S244 | ochoa | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04150 | NR3C1 | S45 | ochoa | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04150 | NR3C1 | S203 | ochoa|psp | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04150 | NR3C1 | S211 | psp | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04150 | NR3C1 | S226 | psp | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04150 | NR3C1 | S267 | ochoa|psp | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
P04350 | TUBB4A | S172 | ochoa | Tubulin beta-4A chain (Tubulin 5 beta) (Tubulin beta-4 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P04424 | ASL | S417 | psp | Argininosuccinate lyase (ASAL) (EC 4.3.2.1) (Arginosuccinase) | Catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine, an intermediate step reaction in the urea cycle mostly providing for hepatic nitrogen detoxification into excretable urea as well as de novo L-arginine synthesis in nonhepatic tissues (PubMed:11747432, PubMed:11747433, PubMed:22081021, PubMed:2263616, PubMed:9045711). Essential regulator of intracellular and extracellular L-arginine pools. As part of citrulline-nitric oxide cycle, forms tissue-specific multiprotein complexes with argininosuccinate synthase ASS1, transport protein SLC7A1 and nitric oxide synthase NOS1, NOS2 or NOS3, allowing for cell-autonomous L-arginine synthesis while channeling extracellular L-arginine to nitric oxide synthesis pathway (PubMed:22081021). {ECO:0000269|PubMed:11747432, ECO:0000269|PubMed:11747433, ECO:0000269|PubMed:22081021, ECO:0000269|PubMed:9045711}. |
P04637 | TP53 | S33 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P04637 | TP53 | S46 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05023 | ATP1A1 | S228 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P05023 | ATP1A1 | S694 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P05023 | ATP1A1 | S722 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P05089 | ARG1 | S62 | ochoa | Arginase-1 (EC 3.5.3.1) (Liver-type arginase) (Type I arginase) | Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. {ECO:0000305}.; FUNCTION: Functions in L-arginine homeostasis in nonhepatic tissues characterized by the competition between nitric oxide synthase (NOS) and arginase for the available intracellular substrate arginine. Arginine metabolism is a critical regulator of innate and adaptive immune responses. Involved in an antimicrobial effector pathway in polymorphonuclear granulocytes (PMN). Upon PMN cell death is liberated from the phagolysosome and depletes arginine in the microenvironment leading to suppressed T cell and natural killer (NK) cell proliferation and cytokine secretion (PubMed:15546957, PubMed:16709924, PubMed:19380772). In group 2 innate lymphoid cells (ILC2s) promotes acute type 2 inflammation in the lung and is involved in optimal ILC2 proliferation but not survival (By similarity). In humans, the immunological role in the monocytic/macrophage/dendritic cell (DC) lineage is unsure. {ECO:0000250|UniProtKB:Q61176, ECO:0000269|PubMed:15546957, ECO:0000269|PubMed:16709924, ECO:0000269|PubMed:19380772}. |
P05162 | LGALS2 | S77 | ochoa | Galectin-2 (Gal-2) (Beta-galactoside-binding lectin L-14-II) (HL14) (Lactose-binding lectin 2) (S-Lac lectin 2) | This protein binds beta-galactoside. Its physiological function is not yet known. |
P05187 | ALPP | S177 | ochoa | Alkaline phosphatase, placental type (EC 3.1.3.1) (Alkaline phosphatase Regan isozyme) (Placental alkaline phosphatase 1) (PLAP-1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000269|PubMed:1939159, ECO:0000269|PubMed:25775211}. |
P05412 | JUN | S63 | ochoa|psp | Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) | Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}. |
P05496 | ATP5MC1 | S32 | ochoa | ATP synthase F(0) complex subunit C1, mitochondrial (ATP synthase lipid-binding protein) (ATP synthase membrane subunit c locus 1) (ATP synthase proteolipid P1) (ATP synthase proton-transporting mitochondrial F(0) complex subunit C1) (ATPase protein 9) (ATPase subunit c) (Proton-conducting channel, ATP synthase F(0) complex subunit c) | Subunit c, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). With the subunit a (MT-ATP6), forms the proton-conducting channel in the F(0) domain, that contains two crucial half-channels (inlet and outlet) that facilitate proton movement from the mitochondrial intermembrane space (IMS) into the matrix (PubMed:37244256). Protons are taken up via the inlet half-channel and released through the outlet half-channel, following a Grotthuss mechanism (PubMed:37244256). {ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P05787 | KRT8 | S74 | psp | Keratin, type II cytoskeletal 8 (Cytokeratin-8) (CK-8) (Keratin-8) (K8) (Type-II keratin Kb8) | Together with KRT19, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}. |
P06239 | LCK | S194 | ochoa|psp | Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) | Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}. |
P06400 | RB1 | S230 | psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P06400 | RB1 | S249 | ochoa|psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P06400 | RB1 | S567 | psp | Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) | Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}. |
P06401 | PGR | S102 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P06733 | ENO1 | S272 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P06748 | NPM1 | S70 | ochoa|psp | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07101 | TH | S502 | ochoa | Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) | Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}. |
P07203 | GPX1 | S153 | ochoa | Glutathione peroxidase 1 (GPx-1) (GSHPx-1) (EC 1.11.1.9) (Cellular glutathione peroxidase) (Phospholipid-hydroperoxide glutathione peroxidase GPX1) (EC 1.11.1.12) | Catalyzes the reduction of hydroperoxides in a glutathione-dependent manner thus regulating cellular redox homeostasis (PubMed:11115402, PubMed:36608588). Can reduce small soluble hydroperoxides such as H2O2, cumene hydroperoxide and tert-butyl hydroperoxide, as well as several fatty acid-derived hydroperoxides (PubMed:11115402, PubMed:36608588). In platelets catalyzes the reduction of 12-hydroperoxyeicosatetraenoic acid, the primary product of the arachidonate 12-lipoxygenase pathway (PubMed:11115402). {ECO:0000269|PubMed:11115402, ECO:0000269|PubMed:36608588}. |
P07311 | ACYP1 | S71 | ochoa | Acylphosphatase-1 (EC 3.6.1.7) (Acylphosphatase, erythrocyte isozyme) (Acylphosphatase, organ-common type isozyme) (Acylphosphate phosphohydrolase 1) | None |
P07327 | ADH1A | S165 | ochoa | Alcohol dehydrogenase 1A (EC 1.1.1.1) (Alcohol dehydrogenase subunit alpha) | Alcohol dehydrogenase (PubMed:2738060). Oxidizes primary as well as secondary alcohols. Ethanol is a very poor substrate (PubMed:2738060). {ECO:0000269|PubMed:2738060}. |
P07332 | FES | S64 | ochoa | Tyrosine-protein kinase Fes/Fps (EC 2.7.10.2) (Feline sarcoma/Fujinami avian sarcoma oncogene homolog) (Proto-oncogene c-Fes) (Proto-oncogene c-Fps) (p93c-fes) | Tyrosine-protein kinase that acts downstream of cell surface receptors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, cell attachment and cell spreading. Plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Acts down-stream of the activated FCER1 receptor and the mast/stem cell growth factor receptor KIT. Plays a role in the regulation of mast cell degranulation. Plays a role in the regulation of cell differentiation and promotes neurite outgrowth in response to NGF signaling. Plays a role in cell scattering and cell migration in response to HGF-induced activation of EZR. Phosphorylates BCR and down-regulates BCR kinase activity. Phosphorylates HCLS1/HS1, PECAM1, STAT3 and TRIM28. {ECO:0000269|PubMed:11509660, ECO:0000269|PubMed:15302586, ECO:0000269|PubMed:15485904, ECO:0000269|PubMed:16455651, ECO:0000269|PubMed:17595334, ECO:0000269|PubMed:18046454, ECO:0000269|PubMed:19001085, ECO:0000269|PubMed:19051325, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:2656706, ECO:0000269|PubMed:8955135}. |
P07437 | TUBB | S172 | ochoa | Tubulin beta chain (Tubulin beta-5 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P07900 | HSP90AA1 | S595 | ochoa|psp | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P07948 | LYN | S228 | ochoa | Tyrosine-protein kinase Lyn (EC 2.7.10.2) (Lck/Yes-related novel protein tyrosine kinase) (V-yes-1 Yamaguchi sarcoma viral related oncogene homolog) (p53Lyn) (p56Lyn) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down-regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Involved in the regulation of endothelial activation, neutrophil adhesion and transendothelial migration (PubMed:36932076). Down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. Phosphorylates LIME1 in response to CD22 activation. Phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B, MS4A2/FCER1B, SYK and TEC. Promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. Mediates phosphorylation of the BCR-ABL fusion protein. Required for rapid phosphorylation of FER in response to FCER1 activation. Mediates KIT phosphorylation. Acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, activates or inhibits several signaling cascades. Regulates phosphatidylinositol 3-kinase activity and AKT1 activation. Regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. Mediates activation of STAT5A and/or STAT5B. Phosphorylates LPXN on 'Tyr-72'. Kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Phosphorylates SCIMP on 'Tyr-107'; this enhances binding of SCIMP to TLR4, promoting the phosphorylation of TLR4, and a selective cytokine response to lipopolysaccharide in macrophages (By similarity). Phosphorylates CLNK (By similarity). Phosphorylates BCAR1/CAS and NEDD9/HEF1 (PubMed:9020138). {ECO:0000250|UniProtKB:P25911, ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:10748115, ECO:0000269|PubMed:10891478, ECO:0000269|PubMed:11435302, ECO:0000269|PubMed:11517336, ECO:0000269|PubMed:11825908, ECO:0000269|PubMed:14726379, ECO:0000269|PubMed:15795233, ECO:0000269|PubMed:16467205, ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:17977829, ECO:0000269|PubMed:18056483, ECO:0000269|PubMed:18070987, ECO:0000269|PubMed:18235045, ECO:0000269|PubMed:18577747, ECO:0000269|PubMed:18802065, ECO:0000269|PubMed:19290919, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:36122175, ECO:0000269|PubMed:36932076, ECO:0000269|PubMed:7687428, ECO:0000269|PubMed:9020138}. |
P08034 | GJB1 | S266 | ochoa | Gap junction beta-1 protein (Connexin-32) (Cx32) (GAP junction 28 kDa liver protein) | One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. |
P08174 | CD55 | S310 | ochoa | Complement decay-accelerating factor (CD antigen CD55) | This protein recognizes C4b and C3b fragments that condense with cell-surface hydroxyl or amino groups when nascent C4b and C3b are locally generated during C4 and c3 activation. Interaction of daf with cell-associated C4b and C3b polypeptides interferes with their ability to catalyze the conversion of C2 and factor B to enzymatically active C2a and Bb and thereby prevents the formation of C4b2a and C3bBb, the amplification convertases of the complement cascade (PubMed:7525274). Inhibits complement activation by destabilizing and preventing the formation of C3 and C5 convertases, which prevents complement damage (PubMed:28657829). {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:28657829}.; FUNCTION: (Microbial infection) Acts as a receptor for Coxsackievirus A21, coxsackieviruses B1, B3 and B5. {ECO:0000269|PubMed:9151867}.; FUNCTION: (Microbial infection) Acts as a receptor for Human enterovirus 70 and D68 (Probable). {ECO:0000269|PubMed:8764022}.; FUNCTION: (Microbial infection) Acts as a receptor for Human echoviruses 6, 7, 11, 12, 20 and 21. {ECO:0000269|PubMed:7525274, ECO:0000305|PubMed:12409401}. |
P08238 | HSP90AB1 | S587 | ochoa | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P08246 | ELANE | S204 | ochoa | Neutrophil elastase (EC 3.4.21.37) (Bone marrow serine protease) (Elastase-2) (Human leukocyte elastase) (HLE) (Medullasin) (PMN elastase) | Serine protease that modifies the functions of natural killer cells, monocytes and granulocytes. Inhibits C5a-dependent neutrophil enzyme release and chemotaxis (PubMed:15140022). Promotes cleavage of GSDMB, thereby inhibiting pyroptosis (PubMed:36899106). Promotes blood coagulation (PubMed:20676107). Through the activation of the platelet fibrinogen receptor integrin alpha-IIb/beta-3, potentiates platelet aggregation induced by a threshold concentration of cathepsin G (CTSG) (PubMed:25211214, PubMed:9111081). Cleaves and thus inactivates tissue factor pathway inhibitor (TFPI) (PubMed:20676107, PubMed:25211214). Capable of killing E.coli but not S.aureus in vitro; digests outer membrane protein A (ompA) in E.coli and K.pneumoniae (PubMed:10947984). {ECO:0000269|PubMed:10947984, ECO:0000269|PubMed:15140022, ECO:0000269|PubMed:20676107, ECO:0000269|PubMed:25211214, ECO:0000269|PubMed:36899106, ECO:0000269|PubMed:9111081}. |
P08603 | CFH | S219 | ochoa | Complement factor H (H factor 1) | Glycoprotein that plays an essential role in maintaining a well-balanced immune response by modulating complement activation. Acts as a soluble inhibitor of complement, where its binding to self markers such as glycan structures prevents complement activation and amplification on cell surfaces (PubMed:21285368, PubMed:21317894, PubMed:25402769). Accelerates the decay of the complement alternative pathway (AP) C3 convertase C3bBb, thus preventing local formation of more C3b, the central player of the complement amplification loop (PubMed:19503104, PubMed:21317894, PubMed:26700768). As a cofactor of the serine protease factor I, CFH also regulates proteolytic degradation of already-deposited C3b (PubMed:18252712, PubMed:23332154, PubMed:28671664). In addition, mediates several cellular responses through interaction with specific receptors. For example, interacts with CR3/ITGAM receptor and thereby mediates the adhesion of human neutrophils to different pathogens. In turn, these pathogens are phagocytosed and destroyed (PubMed:20008295, PubMed:9558116). {ECO:0000269|PubMed:18252712, ECO:0000269|PubMed:19503104, ECO:0000269|PubMed:20008295, ECO:0000269|PubMed:21285368, ECO:0000269|PubMed:21317894, ECO:0000269|PubMed:23332154, ECO:0000269|PubMed:25402769, ECO:0000269|PubMed:26700768, ECO:0000269|PubMed:28671664, ECO:0000269|PubMed:9558116}.; FUNCTION: (Microbial infection) In the mosquito midgut, binds to the surface of parasite P.falciparum gametocytes and protects the parasite from alternative complement pathway-mediated elimination. {ECO:0000269|PubMed:23332154}. |
P08651 | NFIC | S194 | ochoa | Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
P09086 | POU2F2 | S26 | ochoa | POU domain, class 2, transcription factor 2 (Lymphoid-restricted immunoglobulin octamer-binding protein NF-A2) (Octamer-binding protein 2) (Oct-2) (Octamer-binding transcription factor 2) (OTF-2) | Transcription factor that specifically binds to the octamer motif (5'-ATTTGCAT-3') (PubMed:2904654, PubMed:7859290). Regulates IL6 expression in B cells with POU2AF1 (By similarity). Regulates transcription in a number of tissues in addition to activating immunoglobulin gene expression (PubMed:2901913, PubMed:2904654). Modulates transcription transactivation by NR3C1, AR and PGR (PubMed:10480874). {ECO:0000250|UniProtKB:Q00196, ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:2328728, ECO:0000269|PubMed:2901913, ECO:0000269|PubMed:2904654, ECO:0000269|PubMed:7859290}.; FUNCTION: [Isoform 5]: Activates the U2 small nuclear RNA (snRNA) promoter. {ECO:0000269|PubMed:1739980}. |
P09086 | POU2F2 | S279 | ochoa | POU domain, class 2, transcription factor 2 (Lymphoid-restricted immunoglobulin octamer-binding protein NF-A2) (Octamer-binding protein 2) (Oct-2) (Octamer-binding transcription factor 2) (OTF-2) | Transcription factor that specifically binds to the octamer motif (5'-ATTTGCAT-3') (PubMed:2904654, PubMed:7859290). Regulates IL6 expression in B cells with POU2AF1 (By similarity). Regulates transcription in a number of tissues in addition to activating immunoglobulin gene expression (PubMed:2901913, PubMed:2904654). Modulates transcription transactivation by NR3C1, AR and PGR (PubMed:10480874). {ECO:0000250|UniProtKB:Q00196, ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:2328728, ECO:0000269|PubMed:2901913, ECO:0000269|PubMed:2904654, ECO:0000269|PubMed:7859290}.; FUNCTION: [Isoform 5]: Activates the U2 small nuclear RNA (snRNA) promoter. {ECO:0000269|PubMed:1739980}. |
P09104 | ENO2 | S263 | ochoa | Gamma-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (Enolase 2) (Neural enolase) (Neuron-specific enolase) (NSE) | Has neurotrophic and neuroprotective properties on a broad spectrum of central nervous system (CNS) neurons. Binds, in a calcium-dependent manner, to cultured neocortical neurons and promotes cell survival (By similarity). {ECO:0000250}. |
P09234 | SNRPC | S17 | ochoa | U1 small nuclear ribonucleoprotein C (U1 snRNP C) (U1-C) (U1C) | Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5' splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5' splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5' end of the U1 snRNA and the 5' splice-site region. {ECO:0000255|HAMAP-Rule:MF_03153, ECO:0000269|PubMed:1826349, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:2136774, ECO:0000269|PubMed:8798632}. |
P09327 | VIL1 | S219 | ochoa | Villin-1 | Epithelial cell-specific Ca(2+)-regulated actin-modifying protein that modulates the reorganization of microvillar actin filaments. Plays a role in the actin nucleation, actin filament bundle assembly, actin filament capping and severing. Binds phosphatidylinositol 4,5-bisphosphate (PIP2) and lysophosphatidic acid (LPA); binds LPA with higher affinity than PIP2. Binding to LPA increases its phosphorylation by SRC and inhibits all actin-modifying activities. Binding to PIP2 inhibits actin-capping and -severing activities but enhances actin-bundling activity. Regulates the intestinal epithelial cell morphology, cell invasion, cell migration and apoptosis. Protects against apoptosis induced by dextran sodium sulfate (DSS) in the gastrointestinal epithelium. Appears to regulate cell death by maintaining mitochondrial integrity. Enhances hepatocyte growth factor (HGF)-induced epithelial cell motility, chemotaxis and wound repair. Upon S.flexneri cell infection, its actin-severing activity enhances actin-based motility of the bacteria and plays a role during the dissemination. {ECO:0000269|PubMed:11500485, ECO:0000269|PubMed:14594952, ECO:0000269|PubMed:15084600, ECO:0000269|PubMed:15272027, ECO:0000269|PubMed:15342783, ECO:0000269|PubMed:16921170, ECO:0000269|PubMed:17182858, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:17606613, ECO:0000269|PubMed:18054784, ECO:0000269|PubMed:18198174, ECO:0000269|PubMed:19808673, ECO:0000269|PubMed:3087992}. |
P09327 | VIL1 | S747 | ochoa | Villin-1 | Epithelial cell-specific Ca(2+)-regulated actin-modifying protein that modulates the reorganization of microvillar actin filaments. Plays a role in the actin nucleation, actin filament bundle assembly, actin filament capping and severing. Binds phosphatidylinositol 4,5-bisphosphate (PIP2) and lysophosphatidic acid (LPA); binds LPA with higher affinity than PIP2. Binding to LPA increases its phosphorylation by SRC and inhibits all actin-modifying activities. Binding to PIP2 inhibits actin-capping and -severing activities but enhances actin-bundling activity. Regulates the intestinal epithelial cell morphology, cell invasion, cell migration and apoptosis. Protects against apoptosis induced by dextran sodium sulfate (DSS) in the gastrointestinal epithelium. Appears to regulate cell death by maintaining mitochondrial integrity. Enhances hepatocyte growth factor (HGF)-induced epithelial cell motility, chemotaxis and wound repair. Upon S.flexneri cell infection, its actin-severing activity enhances actin-based motility of the bacteria and plays a role during the dissemination. {ECO:0000269|PubMed:11500485, ECO:0000269|PubMed:14594952, ECO:0000269|PubMed:15084600, ECO:0000269|PubMed:15272027, ECO:0000269|PubMed:15342783, ECO:0000269|PubMed:16921170, ECO:0000269|PubMed:17182858, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:17606613, ECO:0000269|PubMed:18054784, ECO:0000269|PubMed:18198174, ECO:0000269|PubMed:19808673, ECO:0000269|PubMed:3087992}. |
P09543 | CNP | S318 | ochoa | 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) (CNPase) (EC 3.1.4.37) | Catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates (By similarity). May participate in RNA metabolism in the myelinating cell, CNP is the third most abundant protein in central nervous system myelin (By similarity). {ECO:0000250|UniProtKB:P06623, ECO:0000250|UniProtKB:P16330}. |
P09601 | HMOX1 | S229 | ochoa | Heme oxygenase 1 (HO-1) (EC 1.14.14.18) [Cleaved into: Heme oxygenase 1 soluble form] | [Heme oxygenase 1]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron (PubMed:11121422, PubMed:19556236, PubMed:7703255). Affords protection against programmed cell death and this cytoprotective effect relies on its ability to catabolize free heme and prevent it from sensitizing cells to undergo apoptosis (PubMed:20055707). {ECO:0000269|PubMed:11121422, ECO:0000269|PubMed:19556236, ECO:0000269|PubMed:7703255, ECO:0000303|PubMed:20055707}.; FUNCTION: [Heme oxygenase 1]: (Microbial infection) During SARS-COV-2 infection, promotes SARS-CoV-2 ORF3A-mediated autophagy but is unlikely to be required for ORF3A-mediated induction of reticulophagy. {ECO:0000269|PubMed:35239449}.; FUNCTION: [Heme oxygenase 1 soluble form]: Catalyzes the oxidative cleavage of heme at the alpha-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin IXalpha, while releasing the central heme iron chelate as ferrous iron. {ECO:0000269|PubMed:7703255}. |
P09603 | CSF1 | S533 | ochoa | Macrophage colony-stimulating factor 1 (CSF-1) (M-CSF) (MCSF) (Lanimostim) (Proteoglycan macrophage colony-stimulating factor) (PG-M-CSF) [Cleaved into: Processed macrophage colony-stimulating factor 1; Macrophage colony-stimulating factor 1 43 kDa subunit] | Cytokine that plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone development. Required for normal male and female fertility. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration. Plays a role in lipoprotein clearance. {ECO:0000269|PubMed:16337366, ECO:0000269|PubMed:19934330, ECO:0000269|PubMed:20504948, ECO:0000269|PubMed:20829061, ECO:0000269|PubMed:8051056}. |
P09661 | SNRPA1 | S197 | ochoa | U2 small nuclear ribonucleoprotein A' (U2 snRNP A') | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:27035939, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Associated with sn-RNP U2, where it contributes to the binding of stem loop IV of U2 snRNA (PubMed:27035939, PubMed:32494006, PubMed:9716128). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:27035939, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:9716128}. |
P09874 | PARP1 | S41 | ochoa | Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}. |
P09884 | POLA1 | S503 | ochoa | DNA polymerase alpha catalytic subunit (EC 2.7.7.7) (DNA polymerase alpha catalytic subunit p180) | Catalytic subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis. During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, a regulatory subunit POLA2 and two primase subunits PRIM1 and PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1. The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands. These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively. The reason this transfer occurs is because the polymerase alpha has limited processivity and lacks intrinsic 3' exonuclease activity for proofreading error, and therefore is not well suited for replicating long complexes. In the cytosol, responsible for a substantial proportion of the physiological concentration of cytosolic RNA:DNA hybrids, which are necessary to prevent spontaneous activation of type I interferon responses (PubMed:27019227). {ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:27019227, ECO:0000269|PubMed:31006512, ECO:0000269|PubMed:9518481}. |
P09923 | ALPI | S174 | ochoa | Intestinal-type alkaline phosphatase (IAP) (Intestinal alkaline phosphatase) (EC 3.1.3.1) | Alkaline phosphatase that can hydrolyze various phosphate compounds. {ECO:0000250|UniProtKB:P15693}. |
P0C7T5 | ATXN1L | S289 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P0C7T5 | ATXN1L | S361 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P0C7V9 | METTL15P1 | S85 | ochoa | Putative methyltransferase-like protein 15P1 (EC 2.1.1.-) (Methyltransferase 5 domain-containing protein 2) (Methyltransferase-like protein 15 pseudogene 1) | Probable S-adenosyl-L-methionine-dependent methyltransferase. {ECO:0000250}. |
P0CAP2 | POLR2M | S270 | ochoa|psp | DNA-directed RNA polymerase II subunit GRINL1A (DNA-directed RNA polymerase II subunit M) (Glutamate receptor-like protein 1A) | [Isoform 1]: Appears to be a stable component of the Pol II(G) complex form of RNA polymerase II (Pol II). Pol II synthesizes mRNA precursors and many functional non-coding RNAs and is the central component of the basal RNA polymerase II transcription machinery. May play a role in the Mediator complex-dependent regulation of transcription activation. Acts as a negative regulator of transcriptional activation; this repression is relieved by the Mediator complex, which restores Pol II(G) activator-dependent transcription to a level equivalent to that of Pol II. {ECO:0000269|PubMed:16769904, ECO:0000269|PubMed:30190596}. |
P0DJD0 | RGPD1 | S779 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD0 | RGPD1 | S1260 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S787 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DJD1 | RGPD2 | S1268 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DMB2 | C8orf88 | S70 | ochoa | Uncharacterized protein C8orf88 | None |
P0DMM9 | SULT1A3 | S253 | ochoa | Sulfotransferase 1A3 (ST1A3) (EC 2.8.2.1) (Aryl sulfotransferase 1A3/1A4) (Catecholamine-sulfating phenol sulfotransferase) (HAST3) (M-PST) (Monoamine-sulfating phenol sulfotransferase) (Placental estrogen sulfotransferase) (Sulfotransferase 1A3/1A4) (Sulfotransferase, monoamine-preferring) (Thermolabile phenol sulfotransferase) (TL-PST) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, (R)-adrenaline/epinephrine, (R)-noradrenaline/norepinephrine and serotonin) and phenolic and catechol drugs (PubMed:8093002, PubMed:29524394, PubMed:14622112, PubMed:15358107). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:14622112, ECO:0000269|PubMed:15358107, ECO:0000269|PubMed:29524394, ECO:0000269|PubMed:8093002}. |
P0DMN0 | SULT1A4 | S253 | ochoa | Sulfotransferase 1A4 (ST1A4) (EC 2.8.2.1) (Aryl sulfotransferase 1A3/1A4) (Sulfotransferase 1A3/1A4) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, (R)-adrenaline/epinephrine, (R)-noradrenaline/norepinephrine and serotonin) and phenolic and catechol drugs (PubMed:15358107, PubMed:29524394). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:15358107, ECO:0000269|PubMed:29524394}. |
P0DMU7 | CT45A6 | S24 | ochoa | Cancer/testis antigen family 45 member A6 (Cancer/testis antigen 45-6) (Cancer/testis antigen 45A6) | None |
P0DMU7 | CT45A6 | S115 | ochoa | Cancer/testis antigen family 45 member A6 (Cancer/testis antigen 45-6) (Cancer/testis antigen 45A6) | None |
P0DMU8 | CT45A5 | S24 | ochoa | Cancer/testis antigen family 45 member A5 (Cancer/testis antigen 45-5) (Cancer/testis antigen 45A5) | None |
P0DMU8 | CT45A5 | S115 | ochoa | Cancer/testis antigen family 45 member A5 (Cancer/testis antigen 45-5) (Cancer/testis antigen 45A5) | None |
P0DMU9 | CT45A10 | S24 | ochoa | Cancer/testis antigen family 45 member A10 (Cancer/testis antigen 45A10) | None |
P0DMV0 | CT45A7 | S24 | ochoa | Cancer/testis antigen family 45 member A7 (Cancer/testis antigen 45A7) | None |
P0DMV0 | CT45A7 | S115 | ochoa | Cancer/testis antigen family 45 member A7 (Cancer/testis antigen 45A7) | None |
P0DMV1 | CT45A8 | S24 | ochoa | Cancer/testis antigen family 45 member A8 (Cancer/testis antigen 45A8) | None |
P0DMV2 | CT45A9 | S24 | ochoa | Cancer/testis antigen family 45 member A9 (Cancer/testis antigen 45A9) | None |
P10070 | GLI2 | S136 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10070 | GLI2 | S149 | psp | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10242 | MYB | S463 | ochoa | Transcriptional activator Myb (Proto-oncogene c-Myb) | Transcriptional activator; DNA-binding protein that specifically recognize the sequence 5'-YAAC[GT]G-3'. Plays an important role in the control of proliferation and differentiation of hematopoietic progenitor cells. |
P10242 | MYB | S532 | ochoa|psp | Transcriptional activator Myb (Proto-oncogene c-Myb) | Transcriptional activator; DNA-binding protein that specifically recognize the sequence 5'-YAAC[GT]G-3'. Plays an important role in the control of proliferation and differentiation of hematopoietic progenitor cells. |
P10243 | MYBL1 | S434 | ochoa | Myb-related protein A (A-Myb) (Myb-like protein 1) | Transcription factor that specifically recognizes the sequence 5'-YAAC[GT]G-3' (PubMed:7987850, PubMed:8058310). Acts as a master regulator of male meiosis by promoting expression of piRNAs: activates expression of both piRNA precursor RNAs and expression of protein-coding genes involved in piRNA metabolism (By similarity). The piRNA metabolic process mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons, which is essential for the germline integrity (By similarity). Transcriptional activator of SOX30 (By similarity). {ECO:0000250|UniProtKB:P51960, ECO:0000269|PubMed:7987850, ECO:0000269|PubMed:8058310}. |
P10243 | MYBL1 | S458 | ochoa | Myb-related protein A (A-Myb) (Myb-like protein 1) | Transcription factor that specifically recognizes the sequence 5'-YAAC[GT]G-3' (PubMed:7987850, PubMed:8058310). Acts as a master regulator of male meiosis by promoting expression of piRNAs: activates expression of both piRNA precursor RNAs and expression of protein-coding genes involved in piRNA metabolism (By similarity). The piRNA metabolic process mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons, which is essential for the germline integrity (By similarity). Transcriptional activator of SOX30 (By similarity). {ECO:0000250|UniProtKB:P51960, ECO:0000269|PubMed:7987850, ECO:0000269|PubMed:8058310}. |
P10244 | MYBL2 | S421 | ochoa|psp | Myb-related protein B (B-Myb) (Myb-like protein 2) | Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}. |
P10244 | MYBL2 | S577 | psp | Myb-related protein B (B-Myb) (Myb-like protein 2) | Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}. |
P10275 | AR | S83 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P10275 | AR | S96 | ochoa|psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P10275 | AR | S258 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P10275 | AR | S310 | ochoa|psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P10515 | DLAT | S100 | ochoa | Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial (EC 2.3.1.12) (70 kDa mitochondrial autoantigen of primary biliary cirrhosis) (PBC) (Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex) (M2 antigen complex 70 kDa subunit) (Pyruvate dehydrogenase complex component E2) (PDC-E2) (PDCE2) | As part of the pyruvate dehydrogenase complex, catalyzes the transfers of an acetyl group to a lipoic acid moiety (Probable). The pyruvate dehydrogenase complex, catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2), and thereby links cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle (Probable). {ECO:0000305|PubMed:20160912}. |
P10586 | PTPRF | S1291 | ochoa | Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) | Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. |
P10636 | MAPT | S46 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10636 | MAPT | S713 | ochoa|psp | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P10721 | KIT | S943 | ochoa | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P10827 | THRA | S199 | ochoa | Thyroid hormone receptor alpha (Nuclear receptor subfamily 1 group A member 1) (V-erbA-related protein 7) (EAR-7) (c-erbA-1) (c-erbA-alpha) | [Isoform Alpha-1]: Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine. {ECO:0000269|PubMed:12699376, ECO:0000269|PubMed:14673100, ECO:0000269|PubMed:18237438, ECO:0000269|PubMed:19926848}.; FUNCTION: [Isoform Alpha-2]: Does not bind thyroid hormone and functions as a weak dominant negative inhibitor of thyroid hormone action. {ECO:0000269|PubMed:8910441}. |
P10914 | IRF1 | S184 | psp | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P10914 | IRF1 | S215 | psp | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P11137 | MAP2 | S610 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S629 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S725 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S881 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11172 | UMPS | S214 | ochoa|psp | Uridine 5'-monophosphate synthase (UMP synthase) [Includes: Orotate phosphoribosyltransferase (OPRT) (OPRTase) (EC 2.4.2.10); Orotidine 5'-phosphate decarboxylase (ODC) (OMPD) (EC 4.1.1.23) (OMPdecase)] | Bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT), which converts orotate to orotidine-5'-monophosphate (OMP), and orotidine-5'-monophosphate decarboxylase (ODC), the terminal enzymatic reaction that decarboxylates OMP to uridine monophosphate (UMP). {ECO:0000269|PubMed:18184586, ECO:0000269|PubMed:9042911}. |
P11274 | BCR | S382 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P11308 | ERG | S215 | psp | Transcriptional regulator ERG (Transforming protein ERG) | Transcriptional regulator. May participate in transcriptional regulation through the recruitment of SETDB1 histone methyltransferase and subsequent modification of local chromatin structure. |
P11362 | FGFR1 | S777 | psp | Fibroblast growth factor receptor 1 (FGFR-1) (EC 2.7.10.1) (Basic fibroblast growth factor receptor 1) (BFGFR) (bFGF-R-1) (Fms-like tyrosine kinase 2) (FLT-2) (N-sam) (Proto-oncogene c-Fgr) (CD antigen CD331) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation. {ECO:0000250|UniProtKB:P16092, ECO:0000269|PubMed:10830168, ECO:0000269|PubMed:11353842, ECO:0000269|PubMed:12181353, ECO:0000269|PubMed:1379697, ECO:0000269|PubMed:1379698, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17623664, ECO:0000269|PubMed:18480409, ECO:0000269|PubMed:19224897, ECO:0000269|PubMed:19261810, ECO:0000269|PubMed:19665973, ECO:0000269|PubMed:20133753, ECO:0000269|PubMed:20139426, ECO:0000269|PubMed:21765395, ECO:0000269|PubMed:8622701, ECO:0000269|PubMed:8663044}. |
P11387 | TOP1 | S394 | ochoa|psp | DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}. |
P11388 | TOP2A | S1354 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P11441 | UBL4A | S90 | ochoa | Ubiquitin-like protein 4A (Ubiquitin-like protein GDX) | As part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, maintains misfolded and hydrophobic patches-containing proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20676083, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated and sorted to the proteasome (PubMed:28104892). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). {ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:25535373, ECO:0000269|PubMed:28104892}. |
P11532 | DMD | S2437 | ochoa | Dystrophin | Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}. |
P11831 | SRF | S221 | ochoa | Serum response factor (SRF) | SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5' of the site of transcription initiation of some genes (such as FOS). Together with MRTFA transcription coactivator, controls expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration. The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. Required for cardiac differentiation and maturation. {ECO:0000250|UniProtKB:Q9JM73}. |
P11940 | PABPC1 | S315 | ochoa | Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) | Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
P12109 | COL6A1 | S746 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P12268 | IMPDH2 | S122 | ochoa|psp | Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2) (IMPD 2) (IMPDH 2) (EC 1.1.1.205) (Inosine-5'-monophosphate dehydrogenase type II) (IMP dehydrogenase II) (IMPDH-II) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (PubMed:7763314, PubMed:7903306). Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism (PubMed:14766016). It may also have a role in the development of malignancy and the growth progression of some tumors. {ECO:0000269|PubMed:14766016, ECO:0000269|PubMed:7763314, ECO:0000269|PubMed:7903306}. |
P12429 | ANXA3 | S19 | ochoa | Annexin A3 (35-alpha calcimedin) (Annexin III) (Annexin-3) (Inositol 1,2-cyclic phosphate 2-phosphohydrolase) (Lipocortin III) (Placental anticoagulant protein III) (PAP-III) | Inhibitor of phospholipase A2, also possesses anti-coagulant properties. Also cleaves the cyclic bond of inositol 1,2-cyclic phosphate to form inositol 1-phosphate. |
P12755 | SKI | S501 | ochoa | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P12757 | SKIL | S26 | ochoa | Ski-like protein (Ski-related oncogene) (Ski-related protein) | May have regulatory role in cell division or differentiation in response to extracellular signals. |
P12883 | MYH7 | S210 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13056 | NR2C1 | S101 | ochoa | Nuclear receptor subfamily 2 group C member 1 (Orphan nuclear receptor TR2) (Testicular receptor 2) | Orphan nuclear receptor. Binds the IR7 element in the promoter of its own gene in an autoregulatory negative feedback mechanism. Primarily repressor of a broad range of genes. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Together with NR2C2, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription. Also activator of OCT4 gene expression. May be involved in stem cell proliferation and differentiation. Mediator of retinoic acid-regulated preadipocyte proliferation. {ECO:0000269|PubMed:12093804, ECO:0000269|PubMed:17010934}. |
P13196 | ALAS1 | S85 | ochoa | 5-aminolevulinate synthase, non-specific, mitochondrial (ALAS-H) (EC 2.3.1.37) (5-aminolevulinic acid synthase 1) (Delta-ALA synthase 1) (Delta-aminolevulinate synthase 1) | Catalyzes the pyridoxal 5'-phosphate (PLP)-dependent condensation of succinyl-CoA and glycine to form aminolevulinic acid (ALA), with CoA and CO2 as by-products. {ECO:0000269|PubMed:16234850, ECO:0000269|PubMed:17975826}. |
P13637 | ATP1A3 | S712 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-3 (Na(+)/K(+) ATPase alpha-3 subunit) (EC 7.2.2.13) (Na(+)/K(+) ATPase alpha(III) subunit) (Sodium pump subunit alpha-3) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P13639 | EEF2 | S502 | ochoa | Elongation factor 2 (EF-2) (EC 3.6.5.-) | Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}. |
P13639 | EEF2 | S595 | ochoa|psp | Elongation factor 2 (EF-2) (EC 3.6.5.-) | Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}. |
P13804 | ETFA | S140 | ochoa | Electron transfer flavoprotein subunit alpha, mitochondrial (Alpha-ETF) | Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase (PubMed:10356313, PubMed:15159392, PubMed:15975918, PubMed:27499296, PubMed:9334218). It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase) (PubMed:9334218). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (PubMed:12815589, PubMed:1430199, PubMed:1882842). {ECO:0000269|PubMed:10356313, ECO:0000269|PubMed:12815589, ECO:0000269|PubMed:1430199, ECO:0000269|PubMed:15159392, ECO:0000269|PubMed:15975918, ECO:0000269|PubMed:27499296, ECO:0000269|PubMed:9334218, ECO:0000303|PubMed:17941859, ECO:0000305|PubMed:1882842}. |
P13994 | YJU2B | S286 | ochoa | Probable splicing factor YJU2B (Coiled-coil domain-containing protein 130) | May be involved in mRNA splicing. {ECO:0000250|UniProtKB:Q9BW85}. |
P14174 | MIF | S91 | psp | Macrophage migration inhibitory factor (MIF) (EC 5.3.2.1) (Glycosylation-inhibiting factor) (GIF) (L-dopachrome isomerase) (L-dopachrome tautomerase) (EC 5.3.3.12) (Phenylpyruvate tautomerase) | Pro-inflammatory cytokine involved in the innate immune response to bacterial pathogens (PubMed:15908412, PubMed:17443469, PubMed:23776208). The expression of MIF at sites of inflammation suggests a role as mediator in regulating the function of macrophages in host defense (PubMed:15908412, PubMed:17443469, PubMed:23776208). Counteracts the anti-inflammatory activity of glucocorticoids (PubMed:15908412, PubMed:17443469, PubMed:23776208). Has phenylpyruvate tautomerase and dopachrome tautomerase activity (in vitro), but the physiological substrate is not known (PubMed:11439086, PubMed:17526494). It is not clear whether the tautomerase activity has any physiological relevance, and whether it is important for cytokine activity (PubMed:11439086, PubMed:17526494). {ECO:0000269|PubMed:11439086, ECO:0000269|PubMed:15908412, ECO:0000269|PubMed:17443469, ECO:0000269|PubMed:17526494, ECO:0000269|PubMed:23776208}. |
P14550 | AKR1A1 | S211 | ochoa | Aldo-keto reductase family 1 member A1 (EC 1.1.1.2) (EC 1.1.1.372) (EC 1.1.1.54) (Alcohol dehydrogenase [NADP(+)]) (Aldehyde reductase) (Glucuronate reductase) (EC 1.1.1.19) (Glucuronolactone reductase) (EC 1.1.1.20) (S-nitroso-CoA reductase) (ScorR) (EC 1.6.-.-) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:10510318, PubMed:30538128). Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde (PubMed:10510318, PubMed:30538128). Functions as a detoxifiying enzyme by reducing a range of toxic aldehydes (By similarity). Reduces methylglyoxal and 3-deoxyglucosone, which are present at elevated levels under hyperglycemic conditions and are cytotoxic (By similarity). Involved also in the detoxification of lipid-derived aldehydes like acrolein (By similarity). Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN) (PubMed:11306097, PubMed:18276838). Also acts as an inhibitor of protein S-nitrosylation by mediating degradation of S-nitroso-coenzyme A (S-nitroso-CoA), a cofactor required to S-nitrosylate proteins (PubMed:30538128). S-nitroso-CoA reductase activity is involved in reprogramming intermediary metabolism in renal proximal tubules, notably by inhibiting protein S-nitrosylation of isoform 2 of PKM (PKM2) (By similarity). Also acts as a S-nitroso-glutathione reductase by catalyzing the NADPH-dependent reduction of S-nitrosoglutathione (PubMed:31649033). Displays no reductase activity towards retinoids (By similarity). {ECO:0000250|UniProtKB:P50578, ECO:0000250|UniProtKB:P51635, ECO:0000269|PubMed:10510318, ECO:0000269|PubMed:11306097, ECO:0000269|PubMed:18276838, ECO:0000269|PubMed:30538128, ECO:0000269|PubMed:31649033}. |
P14618 | PKM | S37 | ochoa|psp | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P14868 | DARS1 | S249 | ochoa | Aspartate--tRNA ligase, cytoplasmic (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) (Cell proliferation-inducing gene 40 protein) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. {ECO:0000250|UniProtKB:P15178}. |
P14921 | ETS1 | S26 | ochoa | Protein C-ets-1 (p54) | Transcription factor (PubMed:10698492, PubMed:11909962). Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts (PubMed:20378371). May control the differentiation, survival and proliferation of lymphoid cells (PubMed:20378371). May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (PubMed:15247905, PubMed:15592518). {ECO:0000269|PubMed:10698492, ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000303|PubMed:20378371}.; FUNCTION: [Isoform Ets-1 p27]: Acts as a dominant-negative for isoform c-ETS-1A. {ECO:0000269|PubMed:19377509}. |
P14923 | JUP | S182 | ochoa | Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) | Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}. |
P15056 | BRAF | S675 | psp | Serine/threonine-protein kinase B-raf (EC 2.7.11.1) (Proto-oncogene B-Raf) (p94) (v-Raf murine sarcoma viral oncogene homolog B1) | Protein kinase involved in the transduction of mitogenic signals from the cell membrane to the nucleus (Probable). Phosphorylates MAP2K1, and thereby activates the MAP kinase signal transduction pathway (PubMed:21441910, PubMed:29433126). Phosphorylates PFKFB2 (PubMed:36402789). May play a role in the postsynaptic responses of hippocampal neurons (PubMed:1508179). {ECO:0000269|PubMed:1508179, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126, ECO:0000269|PubMed:36402789, ECO:0000305}. |
P15121 | AKR1B1 | S23 | ochoa | Aldo-keto reductase family 1 member B1 (EC 1.1.1.21) (EC 1.1.1.300) (EC 1.1.1.372) (EC 1.1.1.54) (Aldehyde reductase) (Aldose reductase) (AR) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosacharides, bile acids and xenobiotics substrates. Key enzyme in the polyol pathway, catalyzes reduction of glucose to sorbitol during hyperglycemia (PubMed:1936586). Reduces steroids and their derivatives and prostaglandins. Displays low enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:19010934, PubMed:8343525). Catalyzes the reduction of diverse phospholipid aldehydes such as 1-palmitoyl-2-(5-oxovaleroyl)-sn -glycero-3-phosphoethanolamin (POVPC) and related phospholipid aldehydes that are generated from the oxydation of phosphotidylcholine and phosphatdyleethanolamides (PubMed:17381426). Plays a role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:21329684). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:17381426, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:1936586, ECO:0000269|PubMed:21329684, ECO:0000269|PubMed:8343525}. |
P15121 | AKR1B1 | S215 | ochoa | Aldo-keto reductase family 1 member B1 (EC 1.1.1.21) (EC 1.1.1.300) (EC 1.1.1.372) (EC 1.1.1.54) (Aldehyde reductase) (Aldose reductase) (AR) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosacharides, bile acids and xenobiotics substrates. Key enzyme in the polyol pathway, catalyzes reduction of glucose to sorbitol during hyperglycemia (PubMed:1936586). Reduces steroids and their derivatives and prostaglandins. Displays low enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:19010934, PubMed:8343525). Catalyzes the reduction of diverse phospholipid aldehydes such as 1-palmitoyl-2-(5-oxovaleroyl)-sn -glycero-3-phosphoethanolamin (POVPC) and related phospholipid aldehydes that are generated from the oxydation of phosphotidylcholine and phosphatdyleethanolamides (PubMed:17381426). Plays a role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:21329684). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:17381426, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:1936586, ECO:0000269|PubMed:21329684, ECO:0000269|PubMed:8343525}. |
P15336 | ATF2 | S136 | ochoa | Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) | Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}. |
P15622 | ZNF250 | S134 | ochoa | Zinc finger protein 250 (Zinc finger protein 647) | May be involved in transcriptional regulation. |
P15622 | ZNF250 | S168 | ochoa | Zinc finger protein 250 (Zinc finger protein 647) | May be involved in transcriptional regulation. |
P15822 | HIVEP1 | S130 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S571 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S1051 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S1213 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S1884 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S2297 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15923 | TCF3 | S379 | ochoa|psp | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P16144 | ITGB4 | S1474 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P16152 | CBR1 | S56 | ochoa | Carbonyl reductase [NADPH] 1 (EC 1.1.1.184) (15-hydroxyprostaglandin dehydrogenase [NADP(+)]) (EC 1.1.1.196, EC 1.1.1.197) (20-beta-hydroxysteroid dehydrogenase) (Alcohol dehydrogenase [NAD(P)+] CBR1) (EC 1.1.1.71) (NADPH-dependent carbonyl reductase 1) (Prostaglandin 9-ketoreductase) (PG-9-KR) (Prostaglandin-E(2) 9-reductase) (EC 1.1.1.189) (Short chain dehydrogenase/reductase family 21C member 1) | NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol (PubMed:15799708, PubMed:17344335, PubMed:17912391, PubMed:18449627, PubMed:18826943, PubMed:1921984, PubMed:7005231). Can convert prostaglandin E to prostaglandin F2-alpha (By similarity). Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione (PubMed:17344335, PubMed:18826943). In addition, participates in the glucocorticoid metabolism by catalyzing the NADPH-dependent cortisol/corticosterone into 20beta-dihydrocortisol (20b-DHF) or 20beta-corticosterone (20b-DHB), which are weak agonists of NR3C1 and NR3C2 in adipose tissue (PubMed:28878267). {ECO:0000250|UniProtKB:Q28960, ECO:0000269|PubMed:15799708, ECO:0000269|PubMed:17344335, ECO:0000269|PubMed:17912391, ECO:0000269|PubMed:18449627, ECO:0000269|PubMed:18826943, ECO:0000269|PubMed:1921984, ECO:0000269|PubMed:28878267, ECO:0000269|PubMed:7005231}. |
P16157 | ANK1 | S594 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | S759 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | S856 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16157 | ANK1 | S1686 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16298 | PPP3CB | S116 | ochoa | Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calmodulin-dependent calcineurin A subunit beta isoform) (CNA beta) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals (PubMed:19154138, PubMed:25720963, PubMed:26794871, PubMed:32753672). Dephosphorylates TFEB in response to lysosomal Ca(2+) release, resulting in TFEB nuclear translocation and stimulation of lysosomal biogenesis (PubMed:25720963, PubMed:32753672). Dephosphorylates and activates transcription factor NFATC1 (PubMed:19154138). Dephosphorylates and inactivates transcription factor ELK1 (PubMed:19154138). Dephosphorylates DARPP32 (PubMed:19154138). Negatively regulates MAP3K14/NIK signaling via inhibition of nuclear translocation of the transcription factors RELA and RELB (By similarity). May play a role in skeletal muscle fiber type specification (By similarity). {ECO:0000250|UniProtKB:P48453, ECO:0000269|PubMed:19154138, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:26794871, ECO:0000269|PubMed:32753672}. |
P16333 | NCK1 | S166 | ochoa | SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}. |
P16333 | NCK1 | S262 | ochoa | SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}. |
P16333 | NCK1 | S313 | ochoa | SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}. |
P16871 | IL7R | S346 | ochoa | Interleukin-7 receptor subunit alpha (IL-7 receptor subunit alpha) (IL-7R subunit alpha) (IL-7R-alpha) (IL-7RA) (CDw127) (CD antigen CD127) | Receptor for interleukin-7. Also acts as a receptor for thymic stromal lymphopoietin (TSLP). |
P17028 | ZNF24 | S63 | ochoa | Zinc finger protein 24 (Retinoic acid suppression protein A) (RSG-A) (Zinc finger and SCAN domain-containing protein 3) (Zinc finger protein 191) (Zinc finger protein KOX17) | Transcription factor required for myelination of differentiated oligodendrocytes. Required for the conversion of oligodendrocytes from the premyelinating to the myelinating state. In the developing central nervous system (CNS), involved in the maintenance in the progenitor stage by promoting the cell cycle. Specifically binds to the 5'-TCAT-3' DNA sequence (By similarity). Has transcription repressor activity in vitro. {ECO:0000250, ECO:0000269|PubMed:10585455}. |
P17041 | ZNF32 | S69 | ochoa | Zinc finger protein 32 (C2H2-546) (Zinc finger protein KOX30) | May be involved in transcriptional regulation. |
P17097 | ZNF7 | S112 | ochoa | Zinc finger protein 7 (Zinc finger protein HF.16) (Zinc finger protein KOX4) | May be involved in transcriptional regulation. |
P17097 | ZNF7 | S138 | ochoa | Zinc finger protein 7 (Zinc finger protein HF.16) (Zinc finger protein KOX4) | May be involved in transcriptional regulation. |
P17097 | ZNF7 | S397 | ochoa | Zinc finger protein 7 (Zinc finger protein HF.16) (Zinc finger protein KOX4) | May be involved in transcriptional regulation. |
P17098 | ZNF8 | S187 | ochoa | Zinc finger protein 8 (Zinc finger protein HF.18) | Transcriptional repressor. May modulate BMP and TGF-beta signal transduction, through its interaction with SMAD proteins. {ECO:0000250|UniProtKB:Q8BGV5}. |
P17174 | GOT1 | S138 | ochoa | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P17252 | PRKCA | S319 | ochoa | Protein kinase C alpha type (PKC-A) (PKC-alpha) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P20444, ECO:0000269|PubMed:10848585, ECO:0000269|PubMed:11909826, ECO:0000269|PubMed:12724315, ECO:0000269|PubMed:12832403, ECO:0000269|PubMed:15016832, ECO:0000269|PubMed:15504744, ECO:0000269|PubMed:15526160, ECO:0000269|PubMed:18056764, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:21576361, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:28028151, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9738012, ECO:0000269|PubMed:9830023, ECO:0000269|PubMed:9873035, ECO:0000269|PubMed:9927633}. |
P17302 | GJA1 | S255 | ochoa|psp | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P17480 | UBTF | S389 | ochoa|psp | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P17480 | UBTF | S638 | ochoa | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P17706 | PTPN2 | S298 | ochoa | Tyrosine-protein phosphatase non-receptor type 2 (EC 3.1.3.48) (T-cell protein-tyrosine phosphatase) (TCPTP) | Non-receptor type tyrosine-specific phosphatase that dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, PDGFR. Also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3 and STAT6 either in the nucleus or the cytoplasm. Negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. Plays a multifaceted and important role in the development of the immune system. Functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. Dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. Negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. Also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. In addition to the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it dephosphorylates EGFR and negatively regulates EGF signaling. Dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. Negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. Also plays an important role in glucose homeostasis. For instance, negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. May also bind DNA. {ECO:0000269|PubMed:10734133, ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12138178, ECO:0000269|PubMed:12612081, ECO:0000269|PubMed:14966296, ECO:0000269|PubMed:15592458, ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:9488479}. |
P17707 | AMD1 | S298 | ochoa|psp | S-adenosylmethionine decarboxylase proenzyme (AdoMetDC) (SAMDC) (EC 4.1.1.50) [Cleaved into: S-adenosylmethionine decarboxylase alpha chain; S-adenosylmethionine decarboxylase beta chain] | Essential for biosynthesis of the polyamines spermidine and spermine. Promotes maintenance and self-renewal of embryonic stem cells, by maintaining spermine levels. {ECO:0000250|UniProtKB:P0DMN7}. |
P17812 | CTPS1 | S210 | ochoa | CTP synthase 1 (EC 6.3.4.2) (CTP synthetase 1) (UTP--ammonia ligase 1) | This enzyme is involved in the de novo synthesis of CTP, a precursor of DNA, RNA and phospholipids. Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as a source of nitrogen. This enzyme and its product, CTP, play a crucial role in the proliferation of activated lymphocytes and therefore in immunity. {ECO:0000269|PubMed:16179339, ECO:0000269|PubMed:24870241}. |
P17861 | XBP1 | S181 | psp | X-box-binding protein 1 (XBP-1) (Tax-responsive element-binding protein 5) (TREB-5) [Cleaved into: X-box-binding protein 1, cytoplasmic form; X-box-binding protein 1, luminal form] | Functions as a transcription factor during endoplasmic reticulum (ER) stress by regulating the unfolded protein response (UPR). Required for cardiac myogenesis and hepatogenesis during embryonic development, and the development of secretory tissues such as exocrine pancreas and salivary gland (By similarity). Involved in terminal differentiation of B lymphocytes to plasma cells and production of immunoglobulins (PubMed:11460154). Modulates the cellular response to ER stress in a PIK3R-dependent manner (PubMed:20348923). Binds to the cis-acting X box present in the promoter regions of major histocompatibility complex class II genes (PubMed:8349596). Involved in VEGF-induced endothelial cell (EC) proliferation and retinal blood vessel formation during embryonic development but also for angiogenesis in adult tissues under ischemic conditions. Also functions as a major regulator of the UPR in obesity-induced insulin resistance and type 2 diabetes for the management of obesity and diabetes prevention (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11460154, ECO:0000269|PubMed:20348923, ECO:0000269|PubMed:8349596}.; FUNCTION: [Isoform 1]: Plays a role in the unconventional cytoplasmic splicing processing of its own mRNA triggered by the endoplasmic reticulum (ER) transmembrane endoribonuclease ERN1: upon ER stress, the emerging XBP1 polypeptide chain, as part of a mRNA-ribosome-nascent chain (R-RNC) complex, cotranslationally recruits its own unprocessed mRNA through transient docking to the ER membrane and translational pausing, therefore facilitating efficient IRE1-mediated XBP1 mRNA isoform 2 production (PubMed:19394296, PubMed:21233347). In endothelial cells (EC), associated with KDR, promotes IRE1-mediated XBP1 mRNA isoform 2 productions in a vascular endothelial growth factor (VEGF)-dependent manner, leading to EC proliferation and angiogenesis (PubMed:23529610). Functions as a negative feed-back regulator of the potent transcription factor XBP1 isoform 2 protein levels through proteasome-mediated degradation, thus preventing the constitutive activation of the ER stress response signaling pathway (PubMed:16461360, PubMed:25239945). Inhibits the transactivation activity of XBP1 isoform 2 in myeloma cells (By similarity). Acts as a weak transcriptional factor (PubMed:8657566). Together with HDAC3, contributes to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to EC survival under disturbed flow/oxidative stress (PubMed:25190803). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the consensus 5'-GATGACGTG[TG]N(3)[AT]T-3' sequence related to cAMP responsive element (CRE)-like sequences (PubMed:8657566). Binds the Tax-responsive element (TRE) present in the long terminal repeat (LTR) of T-cell leukemia virus type 1 (HTLV-I) and to the TPA response elements (TRE) (PubMed:1903538, PubMed:2196176, PubMed:2321018, PubMed:8657566). Associates preferentially to the HDAC3 gene promoter region in a static flow-dependent manner (PubMed:25190803). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:16461360, ECO:0000269|PubMed:1903538, ECO:0000269|PubMed:19394296, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:21233347, ECO:0000269|PubMed:2196176, ECO:0000269|PubMed:2321018, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:8657566}.; FUNCTION: [Isoform 2]: Functions as a stress-inducible potent transcriptional activator during endoplasmic reticulum (ER) stress by inducing unfolded protein response (UPR) target genes via binding to the UPR element (UPRE). Up-regulates target genes encoding ER chaperones and ER-associated degradation (ERAD) components to enhance the capacity of productive folding and degradation mechanism, respectively, in order to maintain the homeostasis of the ER under ER stress (PubMed:11779464, PubMed:25239945). Plays a role in the production of immunoglobulins and interleukin-6 in the presence of stimuli required for plasma cell differentiation (By similarity). Induces phospholipid biosynthesis and ER expansion (PubMed:15466483). Contributes to the VEGF-induced endothelial cell (EC) growth and proliferation in a Akt/GSK-dependent and/or -independent signaling pathway, respectively, leading to beta-catenin nuclear translocation and E2F2 gene expression (PubMed:23529610). Promotes umbilical vein EC apoptosis and atherosclerotisis development in a caspase-dependent signaling pathway, and contributes to VEGF-induced EC proliferation and angiogenesis in adult tissues under ischemic conditions (PubMed:19416856, PubMed:23529610). Involved in the regulation of endostatin-induced autophagy in EC through BECN1 transcriptional activation (PubMed:23184933). Plays a role as an oncogene by promoting tumor progression: stimulates zinc finger protein SNAI1 transcription to induce epithelial-to-mesenchymal (EMT) transition, cell migration and invasion of breast cancer cells (PubMed:25280941). Involved in adipocyte differentiation by regulating lipogenic gene expression during lactation. Plays a role in the survival of both dopaminergic neurons of the substantia nigra pars compacta (SNpc), by maintaining protein homeostasis and of myeloma cells. Increases insulin sensitivity in the liver as a response to a high carbohydrate diet, resulting in improved glucose tolerance. Also improves glucose homeostasis in an ER stress- and/or insulin-independent manner through both binding and proteasome-induced degradation of the transcription factor FOXO1, hence resulting in suppression of gluconeogenic genes expression and in a reduction of blood glucose levels. Controls the induction of de novo fatty acid synthesis in hepatocytes by regulating the expression of a subset of lipogenic genes in an ER stress- and UPR-independent manner (By similarity). Associates preferentially to the HDAC3 gene promoter region in a disturbed flow-dependent manner (PubMed:25190803). Binds to the BECN1 gene promoter region (PubMed:23184933). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the 5'-CCACG-3' motif in the PPARG promoter (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:15466483, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:25280941}. |
P17980 | PSMC3 | S376 | ochoa | 26S proteasome regulatory subunit 6A (26S proteasome AAA-ATPase subunit RPT5) (Proteasome 26S subunit ATPase 3) (Proteasome subunit P50) (Tat-binding protein 1) (TBP-1) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC3 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}. |
P18031 | PTPN1 | S50 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) | Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}. |
P18206 | VCL | S290 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S346 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S566 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S795 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18615 | NELFE | S281 | ochoa | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
P18615 | NELFE | S353 | ochoa | Negative elongation factor E (NELF-E) (RNA-binding protein RD) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}. |
P18669 | PGAM1 | S31 | ochoa | Phosphoglycerate mutase 1 (EC 5.4.2.11) (EC 5.4.2.4) (BPG-dependent PGAM 1) (Phosphoglycerate mutase isozyme B) (PGAM-B) | Catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglyceratea crucial step in glycolysis, by using 2,3-bisphosphoglycerate (PubMed:23653202). Also catalyzes the interconversion of (2R)-2,3-bisphosphoglycerate and (2R)-3-phospho-glyceroyl phosphate (PubMed:23653202). {ECO:0000269|PubMed:23653202}. |
P18754 | RCC1 | S387 | psp | Regulator of chromosome condensation (Cell cycle regulatory protein) (Chromosome condensation protein 1) | Guanine-nucleotide releasing factor that promotes the exchange of Ran-bound GDP by GTP, and thereby plays an important role in RAN-mediated functions in nuclear import and mitosis (PubMed:11336674, PubMed:17435751, PubMed:1944575, PubMed:20668449, PubMed:22215983, PubMed:29042532). Contributes to the generation of high levels of chromosome-associated, GTP-bound RAN, which is important for mitotic spindle assembly and normal progress through mitosis (PubMed:12194828, PubMed:17435751, PubMed:22215983). Via its role in maintaining high levels of GTP-bound RAN in the nucleus, contributes to the release of cargo proteins from importins after nuclear import (PubMed:22215983). Involved in the regulation of onset of chromosome condensation in the S phase (PubMed:3678831). Binds both to the nucleosomes and double-stranded DNA (PubMed:17435751, PubMed:18762580). {ECO:0000269|PubMed:11336674, ECO:0000269|PubMed:12194828, ECO:0000269|PubMed:17435751, ECO:0000269|PubMed:18762580, ECO:0000269|PubMed:1944575, ECO:0000269|PubMed:20668449, ECO:0000269|PubMed:22215983, ECO:0000269|PubMed:29042532, ECO:0000269|PubMed:3678831}. |
P18848 | ATF4 | S69 | ochoa | Cyclic AMP-dependent transcription factor ATF-4 (cAMP-dependent transcription factor ATF-4) (Activating transcription factor 4) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (Tax-responsive enhancer element-binding protein 67) (TaxREB67) | Transcription factor that binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3') and displays two biological functions, as regulator of metabolic and redox processes under normal cellular conditions, and as master transcription factor during integrated stress response (ISR) (PubMed:16682973, PubMed:17684156, PubMed:31023583, PubMed:31444471, PubMed:32132707). Binds to asymmetric CRE's as a heterodimer and to palindromic CRE's as a homodimer (By similarity). Core effector of the ISR, which is required for adaptation to various stress such as endoplasmic reticulum (ER) stress, amino acid starvation, mitochondrial stress or oxidative stress (PubMed:31023583, PubMed:32132707). During ISR, ATF4 translation is induced via an alternative ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced ATF4 acts as a master transcription factor of stress-responsive genes in order to promote cell recovery (PubMed:31023583, PubMed:32132706, PubMed:32132707). Promotes the transcription of genes linked to amino acid sufficiency and resistance to oxidative stress to protect cells against metabolic consequences of ER oxidation (By similarity). Activates the transcription of NLRP1, possibly in concert with other factors in response to ER stress (PubMed:26086088). Activates the transcription of asparagine synthetase (ASNS) in response to amino acid deprivation or ER stress (PubMed:11960987). However, when associated with DDIT3/CHOP, the transcriptional activation of the ASNS gene is inhibited in response to amino acid deprivation (PubMed:18940792). Together with DDIT3/CHOP, mediates programmed cell death by promoting the expression of genes involved in cellular amino acid metabolic processes, mRNA translation and the terminal unfolded protein response (terminal UPR), a cellular response that elicits programmed cell death when ER stress is prolonged and unresolved (By similarity). Activates the expression of COX7A2L/SCAF1 downstream of the EIF2AK3/PERK-mediated unfolded protein response, thereby promoting formation of respiratory chain supercomplexes and increasing mitochondrial oxidative phosphorylation (PubMed:31023583). Together with DDIT3/CHOP, activates the transcription of the IRS-regulator TRIB3 and promotes ER stress-induced neuronal cell death by regulating the expression of BBC3/PUMA in response to ER stress (PubMed:15775988). May cooperate with the UPR transcriptional regulator QRICH1 to regulate ER protein homeostasis which is critical for cell viability in response to ER stress (PubMed:33384352). In the absence of stress, ATF4 translation is at low levels and it is required for normal metabolic processes such as embryonic lens formation, fetal liver hematopoiesis, bone development and synaptic plasticity (By similarity). Acts as a regulator of osteoblast differentiation in response to phosphorylation by RPS6KA3/RSK2: phosphorylation in osteoblasts enhances transactivation activity and promotes expression of osteoblast-specific genes and post-transcriptionally regulates the synthesis of Type I collagen, the main constituent of the bone matrix (PubMed:15109498). Cooperates with FOXO1 in osteoblasts to regulate glucose homeostasis through suppression of beta-cell production and decrease in insulin production (By similarity). Activates transcription of SIRT4 (By similarity). Regulates the circadian expression of the core clock component PER2 and the serotonin transporter SLC6A4 (By similarity). Binds in a circadian time-dependent manner to the cAMP response elements (CRE) in the SLC6A4 and PER2 promoters and periodically activates the transcription of these genes (By similarity). Mainly acts as a transcriptional activator in cellular stress adaptation, but it can also act as a transcriptional repressor: acts as a regulator of synaptic plasticity by repressing transcription, thereby inhibiting induction and maintenance of long-term memory (By similarity). Regulates synaptic functions via interaction with DISC1 in neurons, which inhibits ATF4 transcription factor activity by disrupting ATF4 dimerization and DNA-binding (PubMed:31444471). {ECO:0000250|UniProtKB:Q06507, ECO:0000269|PubMed:11960987, ECO:0000269|PubMed:15109498, ECO:0000269|PubMed:15775988, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17684156, ECO:0000269|PubMed:18940792, ECO:0000269|PubMed:26086088, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:31444471, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:33384352}.; FUNCTION: (Microbial infection) Binds to a Tax-responsive enhancer element in the long terminal repeat of HTLV-I. {ECO:0000269|PubMed:1847461}. |
P18887 | XRCC1 | S140 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19174 | PLCG1 | S866 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (EC 3.1.4.11) (PLC-148) (Phosphoinositide phospholipase C-gamma-1) (Phospholipase C-II) (PLC-II) (Phospholipase C-gamma-1) (PLC-gamma-1) | Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, EGFR, FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Plays a role in actin reorganization and cell migration (PubMed:17229814). Guanine nucleotide exchange factor that binds the GTPase DNM1 and catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place, therefore enhancing DNM1-dependent endocytosis (By similarity). {ECO:0000250|UniProtKB:P10686, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:37422272}. |
P19174 | PLCG1 | S1221 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (EC 3.1.4.11) (PLC-148) (Phosphoinositide phospholipase C-gamma-1) (Phospholipase C-II) (PLC-II) (Phospholipase C-gamma-1) (PLC-gamma-1) | Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, EGFR, FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Plays a role in actin reorganization and cell migration (PubMed:17229814). Guanine nucleotide exchange factor that binds the GTPase DNM1 and catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place, therefore enhancing DNM1-dependent endocytosis (By similarity). {ECO:0000250|UniProtKB:P10686, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:37422272}. |
P19338 | NCL | S563 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P19387 | POLR2C | S124 | ochoa | DNA-directed RNA polymerase II subunit RPB3 (RNA polymerase II subunit 3) (RNA polymerase II subunit B3) (DNA-directed RNA polymerase II 33 kDa polypeptide) (RPB33) (DNA-directed RNA polymerase II subunit C) (RPB31) | Core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates. {ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:9852112}. |
P19484 | TFEB | S332 | ochoa | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P19525 | EIF2AK2 | S83 | ochoa|psp | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P19634 | SLC9A1 | S693 | ochoa|psp | Sodium/hydrogen exchanger 1 (APNH) (Na(+)/H(+) antiporter, amiloride-sensitive) (Na(+)/H(+) exchanger 1) (NHE-1) (Solute carrier family 9 member 1) | Electroneutral Na(+) /H(+) antiporter that extrudes Na(+) in exchange for external protons driven by the inward sodium ion chemical gradient, protecting cells from acidification that occurs from metabolism (PubMed:11350981, PubMed:11532004, PubMed:14680478, PubMed:15035633, PubMed:15677483, PubMed:17073455, PubMed:17493937, PubMed:22020933, PubMed:27650500, PubMed:32130622, PubMed:7110335, PubMed:7603840). Exchanges intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry (By similarity). Plays a key role in maintening intracellular pH neutral and cell volume, and thus is important for cell growth, proliferation, migration and survival (PubMed:12947095, PubMed:15096511, PubMed:22020933, PubMed:8901634). In addition, can transport lithium Li(+) and also functions as a Na(+)/Li(+) antiporter (PubMed:7603840). SLC9A1 also functions in membrane anchoring and organization of scaffolding complexes that coordinate signaling inputs (PubMed:15096511). {ECO:0000250|UniProtKB:P26431, ECO:0000269|PubMed:11350981, ECO:0000269|PubMed:11532004, ECO:0000269|PubMed:12947095, ECO:0000269|PubMed:14680478, ECO:0000269|PubMed:15035633, ECO:0000269|PubMed:15096511, ECO:0000269|PubMed:15677483, ECO:0000269|PubMed:17073455, ECO:0000269|PubMed:17493937, ECO:0000269|PubMed:22020933, ECO:0000269|PubMed:27650500, ECO:0000269|PubMed:32130622, ECO:0000269|PubMed:7110335, ECO:0000269|PubMed:7603840, ECO:0000269|PubMed:8901634}. |
P19838 | NFKB1 | S851 | ochoa | Nuclear factor NF-kappa-B p105 subunit (DNA-binding factor KBF1) (EBP-1) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) [Cleaved into: Nuclear factor NF-kappa-B p50 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. {ECO:0000269|PubMed:15485931, ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:2203531, ECO:0000269|PubMed:2234062, ECO:0000269|PubMed:7830764}.; FUNCTION: [Nuclear factor NF-kappa-B p105 subunit]: P105 is the precursor of the active p50 subunit (Nuclear factor NF-kappa-B p50 subunit) of the nuclear factor NF-kappa-B (PubMed:1423592). Acts as a cytoplasmic retention of attached NF-kappa-B proteins by p105 (PubMed:1423592). {ECO:0000269|PubMed:1423592}.; FUNCTION: [Nuclear factor NF-kappa-B p50 subunit]: Constitutes the active form, which associates with RELA/p65 to form the NF-kappa-B p65-p50 complex to form a transcription factor (PubMed:1740106, PubMed:7830764). Together with RELA/p65, binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions (PubMed:1740106, PubMed:7830764). {ECO:0000269|PubMed:1740106, ECO:0000269|PubMed:7830764}. |
P19971 | TYMP | S364 | ochoa | Thymidine phosphorylase (TP) (EC 2.4.2.4) (Gliostatin) (Platelet-derived endothelial cell growth factor) (PD-ECGF) (TdRPase) | May have a role in maintaining the integrity of the blood vessels. Has growth promoting activity on endothelial cells, angiogenic activity in vivo and chemotactic activity on endothelial cells in vitro. {ECO:0000269|PubMed:1590793}.; FUNCTION: Catalyzes the reversible phosphorolysis of thymidine. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. {ECO:0000269|PubMed:1590793}. |
P20042 | EIF2S2 | S286 | ochoa | Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) | Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
P20138 | CD33 | S307 | ochoa | Myeloid cell surface antigen CD33 (Sialic acid-binding Ig-like lectin 3) (Siglec-3) (gp67) (CD antigen CD33) | Sialic-acid-binding immunoglobulin-like lectin (Siglec) that plays a role in mediating cell-cell interactions and in maintaining immune cells in a resting state (PubMed:10611343, PubMed:11320212, PubMed:15597323). Preferentially recognizes and binds alpha-2,3- and more avidly alpha-2,6-linked sialic acid-bearing glycans (PubMed:7718872). Upon engagement of ligands such as C1q or syalylated glycoproteins, two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) located in CD33 cytoplasmic tail are phosphorylated by Src-like kinases such as LCK (PubMed:10887109, PubMed:28325905). These phosphorylations provide docking sites for the recruitment and activation of protein-tyrosine phosphatases PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10206955, PubMed:10556798, PubMed:10887109). In turn, these phosphatases regulate downstream pathways through dephosphorylation of signaling molecules (PubMed:10206955, PubMed:10887109). One of the repressive effect of CD33 on monocyte activation requires phosphoinositide 3-kinase/PI3K (PubMed:15597323). {ECO:0000269|PubMed:10206955, ECO:0000269|PubMed:10556798, ECO:0000269|PubMed:10611343, ECO:0000269|PubMed:10887109, ECO:0000269|PubMed:11320212, ECO:0000269|PubMed:15597323, ECO:0000269|PubMed:28325905, ECO:0000269|PubMed:7718872}. |
P20248 | CCNA2 | S154 | psp | Cyclin-A2 (Cyclin-A) (Cyclin A) | Cyclin which controls both the G1/S and the G2/M transition phases of the cell cycle. Functions through the formation of specific serine/threonine protein kinase holoenzyme complexes with the cyclin-dependent protein kinases CDK1 or CDK2. The cyclin subunit confers the substrate specificity of these complexes and differentially interacts with and activates CDK1 and CDK2 throughout the cell cycle. {ECO:0000269|PubMed:1312467}. |
P20264 | POU3F3 | S393 | ochoa | POU domain, class 3, transcription factor 3 (Brain-specific homeobox/POU domain protein 1) (Brain-1) (Brn-1) (Octamer-binding protein 8) (Oct-8) (Octamer-binding transcription factor 8) (OTF-8) | Transcription factor that acts synergistically with SOX11 and SOX4. Plays a role in neuronal development (PubMed:31303265). Is implicated in an enhancer activity at the embryonic met-mesencephalic junction; the enhancer element contains the octamer motif (5'-ATTTGCAT-3') (By similarity). {ECO:0000250|UniProtKB:P31361, ECO:0000250|UniProtKB:Q63262, ECO:0000269|PubMed:31303265}. |
P20618 | PSMB1 | S68 | ochoa | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P20807 | CAPN3 | S636 | psp | Calpain-3 (EC 3.4.22.54) (Calcium-activated neutral proteinase 3) (CANP 3) (Calpain L3) (Calpain p94) (Muscle-specific calcium-activated neutral protease 3) (New calpain 1) (nCL-1) | Calcium-regulated non-lysosomal thiol-protease. Proteolytically cleaves CTBP1 at 'His-409'. Mediates, with UTP25, the proteasome-independent degradation of p53/TP53 (PubMed:23357851, PubMed:27657329). {ECO:0000269|PubMed:23357851, ECO:0000269|PubMed:23707407, ECO:0000269|PubMed:27657329}. |
P20823 | HNF1A | S247 | ochoa|psp | Hepatocyte nuclear factor 1-alpha (HNF-1-alpha) (HNF-1A) (Liver-specific transcription factor LF-B1) (LFB1) (Transcription factor 1) (TCF-1) | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:10966642, PubMed:12453420). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). {ECO:0000250|UniProtKB:P22361, ECO:0000269|PubMed:10966642, ECO:0000269|PubMed:12453420}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with NR5A2 to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:38018242}. |
P20827 | EFNA1 | S154 | ochoa | Ephrin-A1 (EPH-related receptor tyrosine kinase ligand 1) (LERK-1) (Immediate early response protein B61) (Tumor necrosis factor alpha-induced protein 4) (TNF alpha-induced protein 4) [Cleaved into: Ephrin-A1, secreted form] | Cell surface GPI-bound ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. Plays an important role in angiogenesis and tumor neovascularization. The recruitment of VAV2, VAV3 and PI3-kinase p85 subunit by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly. Exerts anti-oncogenic effects in tumor cells through activation and down-regulation of EPHA2. Activates EPHA2 by inducing tyrosine phosphorylation which leads to its internalization and degradation. Acts as a negative regulator in the tumorigenesis of gliomas by down-regulating EPHA2 and FAK. Can evoke collapse of embryonic neuronal growth cone and regulates dendritic spine morphogenesis. {ECO:0000269|PubMed:17332925, ECO:0000269|PubMed:18794797}. |
P20839 | IMPDH1 | S122 | ochoa | Inosine-5'-monophosphate dehydrogenase 1 (IMP dehydrogenase 1) (IMPD 1) (IMPDH 1) (EC 1.1.1.205) (IMPDH-I) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors. |
P20916 | MAG | S545 | ochoa | Myelin-associated glycoprotein (Siglec-4a) | Adhesion molecule that mediates interactions between myelinating cells and neurons by binding to neuronal sialic acid-containing gangliosides and to the glycoproteins RTN4R and RTN4RL2 (By similarity). Not required for initial myelination, but seems to play a role in the maintenance of normal axon myelination. Protects motoneurons against apoptosis, also after injury; protection against apoptosis is probably mediated via interaction with neuronal RTN4R and RTN4RL2. Required to prevent degeneration of myelinated axons in adults; this probably depends on binding to gangliosides on the axon cell membrane (By similarity). Negative regulator of neurite outgrowth; in dorsal root ganglion neurons the inhibition is mediated primarily via binding to neuronal RTN4R or RTN4RL2 and to a lesser degree via binding to neuronal gangliosides. In cerebellar granule cells the inhibition is mediated primarily via binding to neuronal gangliosides. In sensory neurons, inhibition of neurite extension depends only partially on RTN4R, RTN4RL2 and gangliosides. Inhibits axon longitudinal growth (By similarity). Inhibits axon outgrowth by binding to RTN4R (By similarity). Preferentially binds to alpha-2,3-linked sialic acid. Binds ganglioside Gt1b (By similarity). {ECO:0000250|UniProtKB:P07722, ECO:0000250|UniProtKB:P20917}. |
P20929 | NEB | S1275 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20936 | RASA1 | S831 | ochoa | Ras GTPase-activating protein 1 (GAP) (GTPase-activating protein) (RasGAP) (Ras p21 protein activator) (p120GAP) | Inhibitory regulator of the Ras-cyclic AMP pathway. Stimulates the GTPase of normal but not oncogenic Ras p21; this stimulation may be further increased in the presence of NCK1. {ECO:0000269|PubMed:11389730, ECO:0000269|PubMed:8360177}. |
P21127 | CDK11B | S589 | ochoa | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
P21333 | FLNA | S368 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S657 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1459 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2033 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2327 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2370 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2510 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21359 | NF1 | S864 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21359 | NF1 | S2188 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21359 | NF1 | S2802 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21580 | TNFAIP3 | S645 | ochoa | Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] | Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}. |
P21817 | RYR1 | S3566 | ochoa | Ryanodine receptor 1 (RYR-1) (RyR1) (Skeletal muscle calcium release channel) (Skeletal muscle ryanodine receptor) (Skeletal muscle-type ryanodine receptor) (Type 1 ryanodine receptor) | Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667, PubMed:18268335, PubMed:18650434, PubMed:26115329). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity). {ECO:0000250|UniProtKB:E9PZQ0, ECO:0000269|PubMed:18268335, ECO:0000269|PubMed:18650434, ECO:0000269|PubMed:26115329, ECO:0000305|PubMed:11741831, ECO:0000305|PubMed:16163667}. |
P21860 | ERBB3 | S844 | ochoa | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P21980 | TGM2 | S216 | ochoa|psp | Protein-glutamine gamma-glutamyltransferase 2 (EC 2.3.2.13) (Erythrocyte transglutaminase) (Heart G alpha(h)) (hhG alpha(h)) (Isopeptidase TGM2) (EC 3.4.-.-) (Protein G alpha(h)) (G(h)) (Protein-glutamine deamidase TGM2) (EC 3.5.1.44) (Protein-glutamine dopaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine histaminyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine noradrenalinyltransferase TGM2) (EC 2.3.1.-) (Protein-glutamine serotonyltransferase TGM2) (EC 2.3.1.-) (Tissue transglutaminase) (tTG) (tTgase) (Transglutaminase C) (TG(C)) (TGC) (TGase C) (Transglutaminase H) (TGase H) (Transglutaminase II) (TGase II) (Transglutaminase-2) (TG2) (TGase-2) (hTG2) | Calcium-dependent acyltransferase that catalyzes the formation of covalent bonds between peptide-bound glutamine and various primary amines, such as gamma-amino group of peptide-bound lysine, or mono- and polyamines, thereby producing cross-linked or aminated proteins, respectively (PubMed:23941696, PubMed:31991788, PubMed:9252372). Involved in many biological processes, such as bone development, angiogenesis, wound healing, cellular differentiation, chromatin modification and apoptosis (PubMed:1683874, PubMed:27270573, PubMed:28198360, PubMed:7935379, PubMed:9252372). Acts as a protein-glutamine gamma-glutamyltransferase by mediating the cross-linking of proteins, such as ACO2, HSPB6, FN1, HMGB1, RAP1GDS1, SLC25A4/ANT1, SPP1 and WDR54 (PubMed:23941696, PubMed:24349085, PubMed:29618516, PubMed:30458214). Under physiological conditions, the protein cross-linking activity is inhibited by GTP; inhibition is relieved by Ca(2+) in response to various stresses (PubMed:18092889, PubMed:7592956, PubMed:7649299). When secreted, catalyzes cross-linking of proteins of the extracellular matrix, such as FN1 and SPP1 resulting in the formation of scaffolds (PubMed:12506096). Plays a key role during apoptosis, both by (1) promoting the cross-linking of cytoskeletal proteins resulting in condensation of the cytoplasm, and by (2) mediating cross-linking proteins of the extracellular matrix, resulting in the irreversible formation of scaffolds that stabilize the integrity of the dying cells before their clearance by phagocytosis, thereby preventing the leakage of harmful intracellular components (PubMed:7935379, PubMed:9252372). In addition to protein cross-linking, can use different monoamine substrates to catalyze a vast array of protein post-translational modifications: mediates aminylation of serotonin, dopamine, noradrenaline or histamine into glutamine residues of target proteins to generate protein serotonylation, dopaminylation, noradrenalinylation or histaminylation, respectively (PubMed:23797785, PubMed:30867594). Mediates protein serotonylation of small GTPases during activation and aggregation of platelets, leading to constitutive activation of these GTPases (By similarity). Plays a key role in chromatin organization by mediating serotonylation and dopaminylation of histone H3 (PubMed:30867594, PubMed:32273471). Catalyzes serotonylation of 'Gln-5' of histone H3 (H3Q5ser) during serotonergic neuron differentiation, thereby facilitating transcription (PubMed:30867594). Acts as a mediator of neurotransmission-independent role of nuclear dopamine in ventral tegmental area (VTA) neurons: catalyzes dopaminylation of 'Gln-5' of histone H3 (H3Q5dop), thereby regulating relapse-related transcriptional plasticity in the reward system (PubMed:32273471). Regulates vein remodeling by mediating serotonylation and subsequent inactivation of ATP2A2/SERCA2 (By similarity). Also acts as a protein deamidase by mediating the side chain deamidation of specific glutamine residues of proteins to glutamate (PubMed:20547769, PubMed:9623982). Catalyzes specific deamidation of protein gliadin, a component of wheat gluten in the diet (PubMed:9623982). May also act as an isopeptidase cleaving the previously formed cross-links (PubMed:26250429, PubMed:27131890). Also able to participate in signaling pathways independently of its acyltransferase activity: acts as a signal transducer in alpha-1 adrenergic receptor-mediated stimulation of phospholipase C-delta (PLCD) activity and is required for coupling alpha-1 adrenergic agonists to the stimulation of phosphoinositide lipid metabolism (PubMed:8943303). {ECO:0000250|UniProtKB:P08587, ECO:0000250|UniProtKB:P21981, ECO:0000269|PubMed:12506096, ECO:0000269|PubMed:1683874, ECO:0000269|PubMed:18092889, ECO:0000269|PubMed:20547769, ECO:0000269|PubMed:23797785, ECO:0000269|PubMed:23941696, ECO:0000269|PubMed:24349085, ECO:0000269|PubMed:26250429, ECO:0000269|PubMed:27131890, ECO:0000269|PubMed:28198360, ECO:0000269|PubMed:29618516, ECO:0000269|PubMed:30458214, ECO:0000269|PubMed:30867594, ECO:0000269|PubMed:31991788, ECO:0000269|PubMed:32273471, ECO:0000269|PubMed:7592956, ECO:0000269|PubMed:7649299, ECO:0000269|PubMed:7935379, ECO:0000269|PubMed:8943303, ECO:0000269|PubMed:9252372, ECO:0000269|PubMed:9623982, ECO:0000303|PubMed:27270573}.; FUNCTION: [Isoform 2]: Has cytotoxic activity: is able to induce apoptosis independently of its acyltransferase activity. {ECO:0000269|PubMed:17116873}. |
P22234 | PAICS | S27 | ochoa|psp | Bifunctional phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) [Includes: Phosphoribosylaminoimidazole carboxylase (EC 4.1.1.21) (AIR carboxylase) (AIRC); Phosphoribosylaminoimidazole succinocarboxamide synthetase (EC 6.3.2.6) (SAICAR synthetase)] | Bifunctional phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazole succinocarboxamide synthetase catalyzing two reactions of the de novo purine biosynthetic pathway. {ECO:0000269|PubMed:17224163, ECO:0000269|PubMed:2183217, ECO:0000269|PubMed:31600779}. |
P22314 | UBA1 | S835 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P22607 | FGFR3 | S408 | ochoa | Fibroblast growth factor receptor 3 (FGFR-3) (EC 2.7.10.1) (CD antigen CD333) | Tyrosine-protein kinase that acts as a cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of cell proliferation, differentiation and apoptosis. Plays an essential role in the regulation of chondrocyte differentiation, proliferation and apoptosis, and is required for normal skeleton development. Regulates both osteogenesis and postnatal bone mineralization by osteoblasts. Promotes apoptosis in chondrocytes, but can also promote cancer cell proliferation. Required for normal development of the inner ear. Phosphorylates PLCG1, CBL and FRS2. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Plays a role in the regulation of vitamin D metabolism. Mutations that lead to constitutive kinase activation or impair normal FGFR3 maturation, internalization and degradation lead to aberrant signaling. Over-expressed or constitutively activated FGFR3 promotes activation of PTPN11/SHP2, STAT1, STAT5A and STAT5B. Secreted isoform 3 retains its capacity to bind FGF1 and FGF2 and hence may interfere with FGF signaling. {ECO:0000269|PubMed:10611230, ECO:0000269|PubMed:11294897, ECO:0000269|PubMed:11703096, ECO:0000269|PubMed:14534538, ECO:0000269|PubMed:16410555, ECO:0000269|PubMed:16597617, ECO:0000269|PubMed:17145761, ECO:0000269|PubMed:17311277, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17561467, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:19286672, ECO:0000269|PubMed:8663044}. |
P22670 | RFX1 | S159 | ochoa | MHC class II regulatory factor RFX1 (Enhancer factor C) (EF-C) (Regulatory factor X 1) (RFX) (Transcription factor RFX1) | Regulatory factor essential for MHC class II genes expression. Binds to the X boxes of MHC class II genes. Also binds to an inverted repeat (ENH1) required for hepatitis B virus genes expression and to the most upstream element (alpha) of the RPL30 promoter. |
P22681 | CBL | S452 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P22736 | NR4A1 | S431 | psp | Nuclear receptor subfamily 4immunitygroup A member 1 (Early response protein NAK1) (Nuclear hormone receptor NUR/77) (Nur77) (Orphan nuclear receptor HMR) (Orphan nuclear receptor TR3) (ST-59) (Testicular receptor 3) | Orphan nuclear receptor. Binds the NGFI-B response element (NBRE) 5'-AAAGGTCA-3' (PubMed:18690216, PubMed:8121493, PubMed:9315652). Binds 9-cis-retinoic acid outside of its ligand-binding (NR LBD) domain (PubMed:18690216). Participates in energy homeostasis by sequestrating the kinase STK11 in the nucleus, thereby attenuating cytoplasmic AMPK activation (PubMed:22983157). Regulates the inflammatory response in macrophages by regulating metabolic adaptations during inflammation, including repressing the transcription of genes involved in the citric acid cycle (TCA) (By similarity). Inhibits NF-kappa-B signaling by binding to low-affinity NF-kappa-B binding sites, such as at the IL2 promoter (PubMed:15466594). May act concomitantly with NR4A2 in regulating the expression of delayed-early genes during liver regeneration (By similarity). Plays a role in the vascular response to injury (By similarity). {ECO:0000250|UniProtKB:P12813, ECO:0000250|UniProtKB:P22829, ECO:0000269|PubMed:15466594, ECO:0000269|PubMed:18690216, ECO:0000269|PubMed:22983157, ECO:0000269|PubMed:8121493, ECO:0000269|PubMed:9315652}.; FUNCTION: In the cytosol, upon its detection of both bacterial lipopolysaccharide (LPS) and NBRE-containing mitochondrial DNA released by GSDMD pores during pyroptosis, it promotes non-canonical NLRP3 inflammasome activation by stimulating association of NLRP3 and NEK7. {ECO:0000250|UniProtKB:P12813}. |
P23246 | SFPQ | S379 | ochoa | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
P23258 | TUBG1 | S80 | ochoa|psp | Tubulin gamma-1 chain (Gamma-1-tubulin) (Gamma-tubulin complex component 1) (GCP-1) | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:38609661, PubMed:39321809). Gamma-tubulin is a key component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P23443 | RPS6KB1 | S394 | ochoa|psp | Ribosomal protein S6 kinase beta-1 (S6K-beta-1) (S6K1) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 1) (P70S6K1) (p70-S6K 1) (Ribosomal protein S6 kinase I) (Serine/threonine-protein kinase 14A) (p70 ribosomal S6 kinase alpha) (p70 S6 kinase alpha) (p70 S6K-alpha) (p70 S6KA) | Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex (PubMed:16286006). Upon mitogenic stimulation, phosphorylation by the mechanistic target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation (PubMed:16286006). The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B (PubMed:16286006). Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis (PubMed:17053147). Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR (PubMed:15341740). In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2 (PubMed:11500364). Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating MAPKAP1/SIN1, MTOR and RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling (PubMed:15899889, PubMed:19720745, PubMed:19935711, PubMed:19995915). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function (By similarity). Phosphorylates mitochondrial URI1 leading to dissociation of a URI1-PPP1CC complex (PubMed:17936702). The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function (PubMed:17936702). Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1 (PubMed:18952604). In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B (PubMed:17052453). May be involved in cytoskeletal rearrangement through binding to neurabin (By similarity). Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR (PubMed:23429703). Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition (PubMed:28178239). {ECO:0000250|UniProtKB:P67999, ECO:0000250|UniProtKB:Q8BSK8, ECO:0000269|PubMed:11500364, ECO:0000269|PubMed:12801526, ECO:0000269|PubMed:14673156, ECO:0000269|PubMed:15071500, ECO:0000269|PubMed:15341740, ECO:0000269|PubMed:15899889, ECO:0000269|PubMed:16286006, ECO:0000269|PubMed:17052453, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:18952604, ECO:0000269|PubMed:19085255, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:28178239}. |
P23497 | SP100 | S18 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P23508 | MCC | S485 | ochoa | Colorectal mutant cancer protein (Protein MCC) | Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}. |
P23921 | RRM1 | S559 | psp | Ribonucleoside-diphosphate reductase large subunit (EC 1.17.4.1) (Ribonucleoside-diphosphate reductase subunit M1) (Ribonucleotide reductase large subunit) | Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. |
P24278 | ZBTB25 | S220 | ochoa | Zinc finger and BTB domain-containing protein 25 (Zinc finger protein 46) (Zinc finger protein KUP) | May be involved in transcriptional regulation. |
P24385 | CCND1 | S219 | ochoa | G1/S-specific cyclin-D1 (B-cell lymphoma 1 protein) (BCL-1) (BCL-1 oncogene) (PRAD1 oncogene) | Regulatory component of the cyclin D1-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:33854235, PubMed:8114739, PubMed:8302605). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8114739, PubMed:8302605). Hypophosphorylates RB1 in early G(1) phase (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8114739, PubMed:8302605). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8302605). Also a substrate for SMAD3, phosphorylating SMAD3 in a cell-cycle-dependent manner and repressing its transcriptional activity (PubMed:15241418). Component of the ternary complex, cyclin D1/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:9106657). Exhibits transcriptional corepressor activity with INSM1 on the NEUROD1 and INS promoters in a cell cycle-independent manner (PubMed:16569215, PubMed:18417529). {ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:16569215, ECO:0000269|PubMed:1827756, ECO:0000269|PubMed:1833066, ECO:0000269|PubMed:18417529, ECO:0000269|PubMed:19412162, ECO:0000269|PubMed:33854235, ECO:0000269|PubMed:8114739, ECO:0000269|PubMed:8302605, ECO:0000269|PubMed:9106657}. |
P24723 | PRKCH | S317 | ochoa | Protein kinase C eta type (EC 2.7.11.13) (PKC-L) (nPKC-eta) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in the regulation of cell differentiation in keratinocytes and pre-B cell receptor, mediates regulation of epithelial tight junction integrity and foam cell formation, and is required for glioblastoma proliferation and apoptosis prevention in MCF-7 cells. In keratinocytes, binds and activates the tyrosine kinase FYN, which in turn blocks epidermal growth factor receptor (EGFR) signaling and leads to keratinocyte growth arrest and differentiation. Associates with the cyclin CCNE1-CDK2-CDKN1B complex and inhibits CDK2 kinase activity, leading to RB1 dephosphorylation and thereby G1 arrest in keratinocytes. In association with RALA activates actin depolymerization, which is necessary for keratinocyte differentiation. In the pre-B cell receptor signaling, functions downstream of BLNK by up-regulating IRF4, which in turn activates L chain gene rearrangement. Regulates epithelial tight junctions (TJs) by phosphorylating occludin (OCLN) on threonine residues, which is necessary for the assembly and maintenance of TJs. In association with PLD2 and via TLR4 signaling, is involved in lipopolysaccharide (LPS)-induced RGS2 down-regulation and foam cell formation. Upon PMA stimulation, mediates glioblastoma cell proliferation by activating the mTOR pathway, the PI3K/AKT pathway and the ERK1-dependent phosphorylation of ELK1. Involved in the protection of glioblastoma cells from irradiation-induced apoptosis by preventing caspase-9 activation. In camptothecin-treated MCF-7 cells, regulates NF-kappa-B upstream signaling by activating IKBKB, and confers protection against DNA damage-induced apoptosis. Promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Phosphorylates ATF2 which promotes its nuclear retention and transcriptional activity and negatively regulates its mitochondrial localization. {ECO:0000269|PubMed:10806212, ECO:0000269|PubMed:11112424, ECO:0000269|PubMed:11772428, ECO:0000269|PubMed:15489897, ECO:0000269|PubMed:17146445, ECO:0000269|PubMed:18780722, ECO:0000269|PubMed:19114660, ECO:0000269|PubMed:20558593, ECO:0000269|PubMed:21820409, ECO:0000269|PubMed:22304920}. |
P24864 | CCNE1 | S103 | ochoa|psp | G1/S-specific cyclin-E1 | Essential for the control of the cell cycle at the G1/S (start) transition. {ECO:0000269|PubMed:7739542}. |
P25054 | APC | S744 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S780 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S1100 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S1842 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2093 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2283 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2449 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2674 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25098 | GRK2 | S389 | ochoa | Beta-adrenergic receptor kinase 1 (Beta-ARK-1) (EC 2.7.11.15) (G-protein coupled receptor kinase 2) | Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them (PubMed:19715378). Key regulator of LPAR1 signaling (PubMed:19306925). Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor (PubMed:19306925). Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (PubMed:19306925). Positively regulates ciliary smoothened (SMO)-dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity (By similarity). Inhibits relaxation of airway smooth muscle in response to blue light (PubMed:30284927). {ECO:0000250|UniProtKB:P21146, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:19715378, ECO:0000269|PubMed:30284927}. |
P25205 | MCM3 | S112 | psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P25391 | LAMA1 | S3048 | ochoa | Laminin subunit alpha-1 (Laminin A chain) (Laminin-1 subunit alpha) (Laminin-3 subunit alpha) (S-laminin subunit alpha) (S-LAM alpha) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. |
P25445 | FAS | S212 | ochoa | Tumor necrosis factor receptor superfamily member 6 (Apo-1 antigen) (Apoptosis-mediating surface antigen FAS) (FASLG receptor) (CD antigen CD95) | Receptor for TNFSF6/FASLG. The adapter molecule FADD recruits caspase CASP8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs CASP8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. FAS-mediated apoptosis may have a role in the induction of peripheral tolerance, in the antigen-stimulated suicide of mature T-cells, or both. The secreted isoforms 2 to 6 block apoptosis (in vitro). {ECO:0000269|PubMed:19118384, ECO:0000269|PubMed:7533181, ECO:0000269|PubMed:9184224}. |
P26045 | PTPN3 | S434 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P26232 | CTNNA2 | S262 | ochoa | Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) | May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}. |
P26232 | CTNNA2 | S901 | ochoa | Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) | May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}. |
P26358 | DNMT1 | S954 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P26639 | TARS1 | S339 | ochoa | Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) | Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}. |
P27105 | STOM | S22 | ochoa | Stomatin (Erythrocyte band 7 integral membrane protein) (Erythrocyte membrane protein band 7.2) (Protein 7.2b) | Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity. |
P27105 | STOM | S244 | ochoa | Stomatin (Erythrocyte band 7 integral membrane protein) (Erythrocyte membrane protein band 7.2) (Protein 7.2b) | Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity. |
P27361 | MAPK3 | S263 | ochoa | Mitogen-activated protein kinase 3 (MAP kinase 3) (MAPK 3) (EC 2.7.11.24) (ERT2) (Extracellular signal-regulated kinase 1) (ERK-1) (Insulin-stimulated MAP2 kinase) (MAP kinase isoform p44) (p44-MAPK) (Microtubule-associated protein 2 kinase) (p44-ERK1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:34497368). MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DEPTOR, FRS2 or GRB10) (PubMed:35216969). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. {ECO:0000269|PubMed:10393181, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:34497368, ECO:0000269|PubMed:35216969, ECO:0000269|PubMed:8325880, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9480836}. |
P27540 | ARNT | S348 | psp | Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Class E basic helix-loop-helix protein 2) (bHLHe2) (Dioxin receptor, nuclear translocator) (Hypoxia-inducible factor 1-beta) (HIF-1-beta) (HIF1-beta) | Required for activity of the AHR. Upon ligand binding, AHR translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE). Not required for the ligand-binding subunit to translocate from the cytosol to the nucleus after ligand binding (PubMed:34521881). The complex initiates transcription of genes involved in the regulation of a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (Probable). The heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters and functions as a transcriptional regulator of the adaptive response to hypoxia (By similarity). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28396409). {ECO:0000250|UniProtKB:P53762, ECO:0000269|PubMed:28396409, ECO:0000269|PubMed:34521881, ECO:0000305|PubMed:34521881}. |
P27694 | RPA1 | S38 | ochoa | Replication protein A 70 kDa DNA-binding subunit (RP-A p70) (Replication factor A protein 1) (RF-A protein 1) (Single-stranded DNA-binding protein) [Cleaved into: Replication protein A 70 kDa DNA-binding subunit, N-terminally processed] | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed:9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed:9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed:17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2-containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed:19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:19996105, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:34767620, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P27695 | APEX1 | S54 | ochoa | DNA repair nuclease/redox regulator APEX1 (EC 3.1.11.2) (EC 3.1.21.-) (APEX nuclease) (APEN) (Apurinic-apyrimidinic endonuclease 1) (AP endonuclease 1) (APE-1) (DNA-(apurinic or apyrimidinic site) endonuclease) (Redox factor-1) (REF-1) [Cleaved into: DNA repair nuclease/redox regulator APEX1, mitochondrial] | Multifunctional protein that plays a central role in the cellular response to oxidative stress. The two major activities of APEX1 are DNA repair and redox regulation of transcriptional factors (PubMed:11118054, PubMed:11452037, PubMed:15831793, PubMed:18439621, PubMed:18579163, PubMed:21762700, PubMed:24079850, PubMed:8355688, PubMed:9108029, PubMed:9560228). Functions as an apurinic/apyrimidinic (AP) endodeoxyribonuclease in the base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also incises at AP sites in the DNA strand of DNA/RNA hybrids, single-stranded DNA regions of R-loop structures, and single-stranded RNA molecules (PubMed:15380100, PubMed:16617147, PubMed:18439621, PubMed:19123919, PubMed:19188445, PubMed:19934257, PubMed:20699270, PubMed:21762700, PubMed:24079850, PubMed:8932375, PubMed:8995436, PubMed:9804799). Operates at switch sites of immunoglobulin (Ig) constant regions where it mediates Ig isotype class switch recombination. Processes AP sites induced by successive action of AICDA and UNG. Generates staggered nicks in opposite DNA strands resulting in the formation of double-strand DNA breaks that are finally resolved via non-homologous end joining repair pathway (By similarity). Has 3'-5' exodeoxyribonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules during short-patch BER (PubMed:11832948, PubMed:1719477). Possesses DNA 3' phosphodiesterase activity capable of removing lesions (such as phosphoglycolate and 8-oxoguanine) blocking the 3' side of DNA strand breaks (PubMed:15831793, PubMed:7516064). Also acts as an endoribonuclease involved in the control of single-stranded RNA metabolism. Plays a role in regulating MYC mRNA turnover by preferentially cleaving in between UA and CA dinucleotides of the MYC coding region determinant (CRD). In association with NMD1, plays a role in the rRNA quality control process during cell cycle progression (PubMed:19188445, PubMed:19401441, PubMed:21762700). Acts as a loading factor for POLB onto non-incised AP sites in DNA and stimulates the 5'-terminal deoxyribose 5'-phosphate (dRp) excision activity of POLB (PubMed:9207062). Exerts reversible nuclear redox activity to regulate DNA binding affinity and transcriptional activity of transcriptional factors by controlling the redox status of their DNA-binding domain, such as the FOS/JUN AP-1 complex after exposure to IR (PubMed:10023679, PubMed:11118054, PubMed:11452037, PubMed:18579163, PubMed:8355688, PubMed:9108029). Involved in calcium-dependent down-regulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs). Together with HNRNPL or the dimer XRCC5/XRCC6, associates with nCaRE, acting as an activator of transcriptional repression (PubMed:11809897, PubMed:14633989, PubMed:8621488). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). Stimulates the YBX1-mediated MDR1 promoter activity, when acetylated at Lys-6 and Lys-7, leading to drug resistance (PubMed:18809583). Plays a role in protection from granzyme-mediated cellular repair leading to cell death (PubMed:18179823). Binds DNA and RNA. Associates, together with YBX1, on the MDR1 promoter. Together with NPM1, associates with rRNA (PubMed:19188445, PubMed:19401441, PubMed:20699270). {ECO:0000250|UniProtKB:P28352, ECO:0000269|PubMed:10023679, ECO:0000269|PubMed:11118054, ECO:0000269|PubMed:11452037, ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:11832948, ECO:0000269|PubMed:12524539, ECO:0000269|PubMed:14633989, ECO:0000269|PubMed:15380100, ECO:0000269|PubMed:15831793, ECO:0000269|PubMed:16617147, ECO:0000269|PubMed:1719477, ECO:0000269|PubMed:18179823, ECO:0000269|PubMed:18439621, ECO:0000269|PubMed:18579163, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19123919, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:19401441, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20699270, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21762700, ECO:0000269|PubMed:24079850, ECO:0000269|PubMed:7516064, ECO:0000269|PubMed:8355688, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:8932375, ECO:0000269|PubMed:8995436, ECO:0000269|PubMed:9108029, ECO:0000269|PubMed:9207062, ECO:0000269|PubMed:9560228, ECO:0000269|PubMed:9804799}. |
P27815 | PDE4A | S157 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P27815 | PDE4A | S302 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P27815 | PDE4A | S628 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P27816 | MAP4 | S99 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S179 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27816 | MAP4 | S280 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28066 | PSMA5 | S56 | ochoa | Proteasome subunit alpha type-5 (Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) (Proteasome subunit alpha-5) (alpha-5) (Proteasome zeta chain) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P28290 | ITPRID2 | S767 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28290 | ITPRID2 | S1040 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28324 | ELK4 | S180 | ochoa | ETS domain-containing protein Elk-4 (Serum response factor accessory protein 1) (SAP-1) (SRF accessory protein 1) | Involved in both transcriptional activation and repression. Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 at promoters, followed by deacetylation of histone H3 at 'Lys-18' (H3K18Ac) and subsequent transcription repression. Forms a ternary complex with the serum response factor (SRF). Requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5'side of SRF, but does not bind DNA autonomously. {ECO:0000269|PubMed:22722849}. |
P28340 | POLD1 | S788 | ochoa | DNA polymerase delta catalytic subunit (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase subunit delta p125) | As the catalytic component of the trimeric (Pol-delta3 complex) and tetrameric DNA polymerase delta complexes (Pol-delta4 complex), plays a crucial role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200, PubMed:31449058). Exhibits both DNA polymerase and 3'- to 5'-exonuclease activities (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200). Requires the presence of accessory proteins POLD2, POLD3 and POLD4 for full activity. Depending upon the absence (Pol-delta3) or the presence of POLD4 (Pol-delta4), displays differences in catalytic activity. Most notably, expresses higher proofreading activity in the context of Pol-delta3 compared with that of Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, in the presence of POLD3 and POLD4, may catalyze the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine, 8oxoG or abasic sites (PubMed:19074196, PubMed:24191025). {ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24022480, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:31449058}. |
P28347 | TEAD1 | S36 | ochoa | Transcriptional enhancer factor TEF-1 (NTEF-1) (Protein GT-IIC) (TEA domain family member 1) (TEAD-1) (Transcription factor 13) (TCF-13) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and cooperatively to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription in vivo in a cell-specific manner. The activation function appears to be mediated by a limiting cell-specific transcriptional intermediary factor (TIF). Involved in cardiac development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
P28370 | SMARCA1 | S116 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 1 (SMARCA1) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A1) (EC 3.6.4.-) (Global transcription activator SNF2L1) (Nucleosome-remodeling factor subunit SNF2L) (SNF2L) (SNF2 related chromatin remodeling ATPase 1) | [Isoform 1]: ATPase that possesses intrinsic ATP-dependent chromatin-remodeling activity (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). ATPase activity is substrate-dependent, and is increased when nucleosomes are the substrate, but is also catalytically active when DNA alone is the substrate (PubMed:14609955, PubMed:15310751, PubMed:15640247). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A-, BAZ1B-, BAZ2A- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Within the NURF-1 and CERF-1 ISWI chromatin remodeling complexes, nucleosomes are the preferred substrate for its ATPase activity (PubMed:14609955, PubMed:15640247). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). May promote neurite outgrowth (PubMed:14609955). May be involved in the development of luteal cells (PubMed:16740656). Facilitates nucleosome assembly during DNA replication, ensuring replication fork progression and genomic stability by preventing replication stress and nascent DNA gaps (PubMed:39413208). {ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:16740656, ECO:0000269|PubMed:28801535, ECO:0000269|PubMed:39413208}.; FUNCTION: [Isoform 2]: Catalytically inactive when either DNA or nucleosomes are the substrate and does not possess chromatin-remodeling activity (PubMed:15310751, PubMed:28801535). Acts as a negative regulator of chromatin remodelers by generating inactive complexes (PubMed:15310751). {ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:28801535}. |
P28482 | MAPK1 | S246 | ochoa|psp | Mitogen-activated protein kinase 1 (MAP kinase 1) (MAPK 1) (EC 2.7.11.24) (ERT1) (Extracellular signal-regulated kinase 2) (ERK-2) (MAP kinase isoform p42) (p42-MAPK) (Mitogen-activated protein kinase 2) (MAP kinase 2) (MAPK 2) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity). Phosphorylates phosphoglycerate kinase PGK1 under hypoxic conditions to promote its targeting to the mitochondrion and suppress the formation of acetyl-coenzyme A from pyruvate (PubMed:26942675). {ECO:0000250|UniProtKB:P63086, ECO:0000269|PubMed:10617468, ECO:0000269|PubMed:10637505, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:12110590, ECO:0000269|PubMed:12356731, ECO:0000269|PubMed:12792650, ECO:0000269|PubMed:12794087, ECO:0000269|PubMed:12974390, ECO:0000269|PubMed:15184391, ECO:0000269|PubMed:15241487, ECO:0000269|PubMed:15616583, ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:15788397, ECO:0000269|PubMed:15952796, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:19879846, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:32721402, ECO:0000269|PubMed:7588608, ECO:0000269|PubMed:8622688, ECO:0000269|PubMed:9480836, ECO:0000269|PubMed:9596579, ECO:0000269|PubMed:9649500, ECO:0000269|PubMed:9687510, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:16393692, ECO:0000303|PubMed:19565474, ECO:0000303|PubMed:21779493}.; FUNCTION: Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity. {ECO:0000269|PubMed:19879846}. |
P28562 | DUSP1 | S296 | psp | Dual specificity protein phosphatase 1 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase hVH1) (Mitogen-activated protein kinase phosphatase 1) (MAP kinase phosphatase 1) (MKP-1) (Protein-tyrosine phosphatase CL100) | Dual specificity phosphatase that dephosphorylates MAP kinase MAPK1/ERK2 on both 'Thr-183' and 'Tyr-185', regulating its activity during the meiotic cell cycle. {ECO:0000250|UniProtKB:P28563}. |
P28562 | DUSP1 | S323 | psp | Dual specificity protein phosphatase 1 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase hVH1) (Mitogen-activated protein kinase phosphatase 1) (MAP kinase phosphatase 1) (MKP-1) (Protein-tyrosine phosphatase CL100) | Dual specificity phosphatase that dephosphorylates MAP kinase MAPK1/ERK2 on both 'Thr-183' and 'Tyr-185', regulating its activity during the meiotic cell cycle. {ECO:0000250|UniProtKB:P28563}. |
P28702 | RXRB | S331 | ochoa | Retinoic acid receptor RXR-beta (Nuclear receptor subfamily 2 group B member 2) (Retinoid X receptor beta) | Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE). {ECO:0000269|PubMed:1310259}. |
P28749 | RBL1 | S762 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28749 | RBL1 | S988 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28749 | RBL1 | S1009 | psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28749 | RBL1 | S1041 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28827 | PTPRM | S821 | ochoa | Receptor-type tyrosine-protein phosphatase mu (Protein-tyrosine phosphatase mu) (R-PTP-mu) (EC 3.1.3.48) | Receptor protein-tyrosine phosphatase that mediates homotypic cell-cell interactions and plays a role in adipogenic differentiation via modulation of p120 catenin/CTNND1 phosphorylation (PubMed:10753936, PubMed:17761881). Promotes CTNND1 dephosphorylation and prevents its cytoplasmic localization where it inhibits SLC2A4 membrane trafficking. In turn, SLC2A4 is directed to the plasma membrane and performs its glucose transporter function (PubMed:21998202). {ECO:0000269|PubMed:10753936, ECO:0000269|PubMed:16456543, ECO:0000269|PubMed:17761881, ECO:0000269|PubMed:21998202}. |
P29317 | EPHA2 | S277 | psp | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29374 | ARID4A | S1145 | ochoa|psp | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29375 | KDM5A | S1075 | ochoa | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P29375 | KDM5A | S1438 | ochoa | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P29474 | NOS3 | S600 | psp | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P29475 | NOS1 | S292 | ochoa | Nitric oxide synthase 1 (EC 1.14.13.39) (Constitutive NOS) (NC-NOS) (NOS type I) (Neuronal NOS) (N-NOS) (nNOS) (Nitric oxide synthase, brain) (bNOS) (Peptidyl-cysteine S-nitrosylase NOS1) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. {ECO:0000269|PubMed:35772285}. |
P29558 | RBMS1 | S112 | ochoa | RNA-binding motif, single-stranded-interacting protein 1 (Single-stranded DNA-binding protein MSSP-1) (Suppressor of CDC2 with RNA-binding motif 2) | Single-stranded DNA binding protein that interacts with the region upstream of the MYC gene. Binds specifically to the DNA sequence motif 5'-[AT]CT[AT][AT]T-3'. Probably has a role in DNA replication. |
P29692 | EEF1D | S119 | ochoa | Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) | [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE). |
P30038 | ALDH4A1 | S410 | ochoa | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial (P5C dehydrogenase) (EC 1.2.1.88) (Aldehyde dehydrogenase family 4 member A1) (L-glutamate gamma-semialdehyde dehydrogenase) | Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes. {ECO:0000269|PubMed:22516612}. |
P30043 | BLVRB | S82 | ochoa | Flavin reductase (NADPH) (FR) (EC 1.5.1.30) (Biliverdin reductase B) (BVR-B) (EC 1.3.1.-) (Biliverdin-IX beta-reductase) (Green heme-binding protein) (GHBP) (NADPH-dependent diaphorase) (NADPH-flavin reductase) (FLR) (S-nitroso-CoA-assisted nitrosyltransferase) (SNO-CoA-assisted nitrosyltransferase) (EC 2.6.99.-) | Enzyme that can both act as a NAD(P)H-dependent reductase and a S-nitroso-CoA-dependent nitrosyltransferase (PubMed:10620517, PubMed:18241201, PubMed:27207795, PubMed:38056462, PubMed:7929092). Promotes fetal heme degradation during development (PubMed:10858451, PubMed:18241201, PubMed:7929092). Also expressed in adult tissues, where it acts as a regulator of hematopoiesis, intermediary metabolism (glutaminolysis, glycolysis, TCA cycle and pentose phosphate pathway) and insulin signaling (PubMed:27207795, PubMed:29500232, PubMed:38056462). Has a broad specificity oxidoreductase activity by catalyzing the NAD(P)H-dependent reduction of a variety of flavins, such as riboflavin, FAD or FMN, biliverdins, methemoglobin and PQQ (pyrroloquinoline quinone) (PubMed:10620517, PubMed:18241201, PubMed:7929092). Contributes to fetal heme catabolism by catalyzing reduction of biliverdin IXbeta into bilirubin IXbeta in the liver (PubMed:10858451, PubMed:18241201, PubMed:7929092). Biliverdin IXbeta, which constitutes the major heme catabolite in the fetus is not present in adult (PubMed:10858451, PubMed:18241201, PubMed:7929092). Does not reduce bilirubin IXalpha (PubMed:10858451, PubMed:18241201, PubMed:7929092). Can also reduce the complexed Fe(3+) iron to Fe(2+) in the presence of FMN and NADPH (PubMed:10620517). Acts as a protein nitrosyltransferase by catalyzing nitrosylation of cysteine residues of target proteins, such as HMOX2, INSR and IRS1 (PubMed:38056462). S-nitroso-CoA-dependent nitrosyltransferase activity is mediated via a 'ping-pong' mechanism: BLVRB first associates with both S-nitroso-CoA and protein substrate, nitric oxide group is then transferred from S-nitroso-CoA to Cys-109 and Cys-188 residues of BLVRB and from S-nitroso-BLVRB to the protein substrate (PubMed:38056462). Inhibits insulin signaling by mediating nitrosylation of INSR and IRS1, leading to their inhibition (PubMed:38056462). {ECO:0000269|PubMed:10620517, ECO:0000269|PubMed:10858451, ECO:0000269|PubMed:18241201, ECO:0000269|PubMed:27207795, ECO:0000269|PubMed:29500232, ECO:0000269|PubMed:38056462, ECO:0000269|PubMed:7929092}. |
P30050 | RPL12 | S38 | ochoa|psp | Large ribosomal subunit protein uL11 (60S ribosomal protein L12) | Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}. |
P30101 | PDIA3 | S456 | ochoa | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P30153 | PPP2R1A | S120 | ochoa | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PP2Aa) (Medium tumor antigen-associated 61 kDa protein) (PP2A subunit A isoform PR65-alpha) (PP2A subunit A isoform R1-alpha) | The PR65 subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit (PubMed:15525651, PubMed:16580887, PubMed:33243860, PubMed:33633399, PubMed:34004147, PubMed:8694763). Upon interaction with GNA12 promotes dephosphorylation of microtubule associated protein TAU/MAPT (PubMed:15525651). Required for proper chromosome segregation and for centromeric localization of SGO1 in mitosis (PubMed:16580887). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:18782753, PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753, PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, acts as a scaffolding subunit for PPP2CA, which catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147). Regulates the recruitment of the SKA complex to kinetochores (PubMed:28982702). {ECO:0000250|UniProtKB:Q76MZ3, ECO:0000269|PubMed:15525651, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:28982702, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:8694763}. |
P30304 | CDC25A | S40 | psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30304 | CDC25A | S116 | ochoa|psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30304 | CDC25A | S321 | ochoa|psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30305 | CDC25B | S160 | ochoa | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30307 | CDC25C | S122 | ochoa|psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P30307 | CDC25C | S168 | ochoa|psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P30414 | NKTR | S1146 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P30566 | ADSL | S434 | ochoa | Adenylosuccinate lyase (ADSL) (ASL) (EC 4.3.2.2) (Adenylosuccinase) (ASase) | Catalyzes two non-sequential steps in de novo AMP synthesis: converts (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate. {ECO:0000269|PubMed:10888601}. |
P30626 | SRI | S137 | ochoa | Sorcin (22 kDa protein) (CP-22) (CP22) (V19) | Calcium-binding protein that modulates excitation-contraction coupling in the heart. Contributes to calcium homeostasis in the heart sarcoplasmic reticulum. Modulates the activity of RYR2 calcium channels. {ECO:0000269|PubMed:17699613}. |
P30876 | POLR2B | S106 | ochoa | DNA-directed RNA polymerase II subunit RPB2 (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II 140 kDa polypeptide) (DNA-directed RNA polymerase II subunit B) (RNA polymerase II subunit 2) (RNA polymerase II subunit B2) (RNA-directed RNA polymerase II subunit RPB2) (EC 2.7.7.48) | Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:27193682, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the largest subunit POLR2A/RPB1. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). {ECO:0000250|UniProtKB:A5PJW8, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}. |
P31150 | GDI1 | S222 | ochoa | Rab GDP dissociation inhibitor alpha (Rab GDI alpha) (Guanosine diphosphate dissociation inhibitor 1) (GDI-1) (Oligophrenin-2) (Protein XAP-4) | Regulates the GDP/GTP exchange reaction of most Rab proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Promotes the dissociation of GDP-bound Rab proteins from the membrane and inhibits their activation. Promotes the dissociation of RAB1A, RAB3A, RAB5A and RAB10 from membranes. {ECO:0000269|PubMed:23815289}. |
P31152 | MAPK4 | S434 | ochoa | Mitogen-activated protein kinase 4 (MAP kinase 4) (MAPK 4) (EC 2.7.11.24) (Extracellular signal-regulated kinase 4) (ERK-4) (MAP kinase isoform p63) (p63-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK4/MAPK4 is phosphorylated at Ser-186 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK4/MAPK4. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
P31153 | MAT2A | S114 | ochoa | S-adenosylmethionine synthase isoform type-2 (AdoMet synthase 2) (EC 2.5.1.6) (Methionine adenosyltransferase 2) (MAT 2) (Methionine adenosyltransferase II) (MAT-II) | Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. {ECO:0000269|PubMed:10644686, ECO:0000269|PubMed:23189196, ECO:0000269|PubMed:25075345}. |
P31269 | HOXA9 | S161 | ochoa | Homeobox protein Hox-A9 (Homeobox protein Hox-1G) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Required for induction of SELE/E-selectin and VCAM1 on the endothelial cells surface at sites of inflammation (PubMed:22269951). Positively regulates EIF4E-mediated mRNA nuclear export and also increases the translation efficiency of ODC mRNA in the cytoplasm by competing with factors which repress EIF4E activity such as PRH (By similarity). {ECO:0000250|UniProtKB:P09631, ECO:0000269|PubMed:22269951}. |
P31327 | CPS1 | S1079 | ochoa | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
P31629 | HIVEP2 | S389 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31689 | DNAJA1 | S188 | ochoa | DnaJ homolog subfamily A member 1 (DnaJ protein homolog 2) (HSDJ) (Heat shock 40 kDa protein 4) (Heat shock protein J2) (HSJ-2) (Human DnaJ protein 2) (hDj-2) | Co-chaperone for HSPA8/Hsc70 (PubMed:10816573). Stimulates ATP hydrolysis, but not the folding of unfolded proteins mediated by HSPA1A (in vitro) (PubMed:24318877). Plays a role in protein transport into mitochondria via its role as co-chaperone. Functions as a co-chaperone for HSPA1B and negatively regulates the translocation of BAX from the cytosol to mitochondria in response to cellular stress, thereby protecting cells against apoptosis (PubMed:14752510). Promotes apoptosis in response to cellular stress mediated by exposure to anisomycin or UV (PubMed:24512202). {ECO:0000269|PubMed:10816573, ECO:0000269|PubMed:14752510, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24512202, ECO:0000269|PubMed:9192730}. |
P31937 | HIBADH | S88 | ochoa | 3-hydroxyisobutyrate dehydrogenase, mitochondrial (HIBADH) (EC 1.1.1.31) | None |
P31939 | ATIC | S112 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P31939 | ATIC | S269 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P32242 | OTX1 | S337 | ochoa | Homeobox protein OTX1 (Orthodenticle homolog 1) | Probably plays a role in the development of the brain and the sense organs. Can bind to the BCD target sequence (BTS): 5'-TCTAATCCC-3'. |
P32322 | PYCR1 | S233 | ochoa | Pyrroline-5-carboxylate reductase 1, mitochondrial (P5C reductase 1) (P5CR 1) (EC 1.5.1.2) | Oxidoreductase that catalyzes the last step in proline biosynthesis, which corresponds to the reduction of pyrroline-5-carboxylate to L-proline using NAD(P)H (PubMed:16730026, PubMed:19648921, PubMed:23024808, PubMed:28258219). At physiologic concentrations, has higher specific activity in the presence of NADH (PubMed:16730026, PubMed:23024808). Involved in the cellular response to oxidative stress (PubMed:16730026, PubMed:19648921). {ECO:0000269|PubMed:16730026, ECO:0000269|PubMed:19648921, ECO:0000269|PubMed:23024808, ECO:0000269|PubMed:28258219}. |
P32322 | PYCR1 | S294 | ochoa | Pyrroline-5-carboxylate reductase 1, mitochondrial (P5C reductase 1) (P5CR 1) (EC 1.5.1.2) | Oxidoreductase that catalyzes the last step in proline biosynthesis, which corresponds to the reduction of pyrroline-5-carboxylate to L-proline using NAD(P)H (PubMed:16730026, PubMed:19648921, PubMed:23024808, PubMed:28258219). At physiologic concentrations, has higher specific activity in the presence of NADH (PubMed:16730026, PubMed:23024808). Involved in the cellular response to oxidative stress (PubMed:16730026, PubMed:19648921). {ECO:0000269|PubMed:16730026, ECO:0000269|PubMed:19648921, ECO:0000269|PubMed:23024808, ECO:0000269|PubMed:28258219}. |
P32322 | PYCR1 | S301 | ochoa | Pyrroline-5-carboxylate reductase 1, mitochondrial (P5C reductase 1) (P5CR 1) (EC 1.5.1.2) | Oxidoreductase that catalyzes the last step in proline biosynthesis, which corresponds to the reduction of pyrroline-5-carboxylate to L-proline using NAD(P)H (PubMed:16730026, PubMed:19648921, PubMed:23024808, PubMed:28258219). At physiologic concentrations, has higher specific activity in the presence of NADH (PubMed:16730026, PubMed:23024808). Involved in the cellular response to oxidative stress (PubMed:16730026, PubMed:19648921). {ECO:0000269|PubMed:16730026, ECO:0000269|PubMed:19648921, ECO:0000269|PubMed:23024808, ECO:0000269|PubMed:28258219}. |
P32456 | GBP2 | S157 | ochoa | Guanylate-binding protein 2 (EC 3.6.5.-) (GTP-binding protein 2) (GBP-2) (HuGBP-2) (Guanine nucleotide-binding protein 2) (Interferon-induced guanylate-binding protein 2) | Interferon (IFN)-inducible GTPase that plays important roles in innate immunity against a diverse range of bacterial, viral and protozoan pathogens (PubMed:31091448). Hydrolyzes GTP to GMP in 2 consecutive cleavage reactions, but the major reaction product is GDP (PubMed:8706832). Following infection, recruited to the pathogen-containing vacuoles or vacuole-escaped bacteria and acts as a positive regulator of inflammasome assembly by promoting the release of inflammasome ligands from bacteria (By similarity). Acts by promoting lysis of pathogen-containing vacuoles, releasing pathogens into the cytosol (By similarity). Following pathogen release in the cytosol, promotes recruitment of proteins that mediate bacterial cytolysis: this liberates ligands that are detected by inflammasomes, such as lipopolysaccharide (LPS) that activates the non-canonical CASP4/CASP11 inflammasome or double-stranded DNA (dsDNA) that activates the AIM2 inflammasome (By similarity). Confers protection to the protozoan pathogen Toxoplasma gondii (By similarity). Independently of its GTPase activity, acts as an inhibitor of various viruses infectivity, such as HIV-1, Zika and influenza A viruses, by inhibiting FURIN-mediated maturation of viral envelope proteins (PubMed:31091448). {ECO:0000250|UniProtKB:Q9Z0E6, ECO:0000269|PubMed:31091448, ECO:0000269|PubMed:8706832}. |
P32519 | ELF1 | S432 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P33176 | KIF5B | S175 | psp | Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) | Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}. |
P33240 | CSTF2 | S113 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P33240 | CSTF2 | S154 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P33981 | TTK | S281 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33981 | TTK | S436 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33981 | TTK | S821 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33991 | MCM4 | S71 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P33993 | MCM7 | S121 | ochoa|psp | DNA replication licensing factor MCM7 (EC 3.6.4.12) (CDC47 homolog) (P1.1-MCM3) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for S-phase checkpoint activation upon UV-induced damage. {ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P33993 | MCM7 | S365 | psp | DNA replication licensing factor MCM7 (EC 3.6.4.12) (CDC47 homolog) (P1.1-MCM3) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for S-phase checkpoint activation upon UV-induced damage. {ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P34897 | SHMT2 | S266 | ochoa | Serine hydroxymethyltransferase, mitochondrial (SHMT) (EC 2.1.2.1) (Glycine hydroxymethyltransferase) (Serine methylase) | Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis (PubMed:24075985, PubMed:25619277, PubMed:29364879, PubMed:33015733). Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate (PubMed:25619277). Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA (PubMed:21876188). Also required for mitochondrial translation by producing 5,10-methylenetetrahydrofolate; 5,10-methylenetetrahydrofolate providing methyl donors to produce the taurinomethyluridine base at the wobble position of some mitochondrial tRNAs (PubMed:29364879, PubMed:29452640). Associates with mitochondrial DNA (PubMed:18063578). In addition to its role in mitochondria, also plays a role in the deubiquitination of target proteins as component of the BRISC complex: required for IFNAR1 deubiquitination by the BRISC complex (PubMed:24075985). {ECO:0000269|PubMed:18063578, ECO:0000269|PubMed:21876188, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25619277, ECO:0000269|PubMed:29364879, ECO:0000269|PubMed:29452640, ECO:0000269|PubMed:33015733}. |
P34910 | EVI2B | S242 | ochoa | Protein EVI2B (Ecotropic viral integration site 2B protein homolog) (EVI-2B) (CD antigen CD361) | Required for granulocyte differentiation and functionality of hematopoietic progenitor cells through the control of cell cycle progression and survival of hematopoietic progenitor cells. {ECO:0000269|PubMed:28186500}. |
P34932 | HSPA4 | S384 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P34932 | HSPA4 | S408 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P35222 | CTNNB1 | S191 | ochoa|psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35222 | CTNNB1 | S246 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35222 | CTNNB1 | S605 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35228 | NOS2 | S37 | ochoa | Nitric oxide synthase, inducible (EC 1.14.13.39) (Hepatocyte NOS) (HEP-NOS) (Inducible NO synthase) (Inducible NOS) (iNOS) (NOS type II) (Peptidyl-cysteine S-nitrosylase NOS2) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body (PubMed:7504305, PubMed:7531687, PubMed:7544004, PubMed:7682706). In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (PubMed:25417112). Involved in inflammation, enhances the synthesis of pro-inflammatory mediators such as IL6 and IL8 (PubMed:19688109). {ECO:0000250|UniProtKB:P29477, ECO:0000269|PubMed:19688109, ECO:0000269|PubMed:25417112, ECO:0000269|PubMed:7504305, ECO:0000269|PubMed:7531687, ECO:0000269|PubMed:7544004, ECO:0000269|PubMed:7682706}. |
P35228 | NOS2 | S56 | ochoa | Nitric oxide synthase, inducible (EC 1.14.13.39) (Hepatocyte NOS) (HEP-NOS) (Inducible NO synthase) (Inducible NOS) (iNOS) (NOS type II) (Peptidyl-cysteine S-nitrosylase NOS2) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body (PubMed:7504305, PubMed:7531687, PubMed:7544004, PubMed:7682706). In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (PubMed:25417112). Involved in inflammation, enhances the synthesis of pro-inflammatory mediators such as IL6 and IL8 (PubMed:19688109). {ECO:0000250|UniProtKB:P29477, ECO:0000269|PubMed:19688109, ECO:0000269|PubMed:25417112, ECO:0000269|PubMed:7504305, ECO:0000269|PubMed:7531687, ECO:0000269|PubMed:7544004, ECO:0000269|PubMed:7682706}. |
P35228 | NOS2 | S745 | psp | Nitric oxide synthase, inducible (EC 1.14.13.39) (Hepatocyte NOS) (HEP-NOS) (Inducible NO synthase) (Inducible NOS) (iNOS) (NOS type II) (Peptidyl-cysteine S-nitrosylase NOS2) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body (PubMed:7504305, PubMed:7531687, PubMed:7544004, PubMed:7682706). In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (PubMed:25417112). Involved in inflammation, enhances the synthesis of pro-inflammatory mediators such as IL6 and IL8 (PubMed:19688109). {ECO:0000250|UniProtKB:P29477, ECO:0000269|PubMed:19688109, ECO:0000269|PubMed:25417112, ECO:0000269|PubMed:7504305, ECO:0000269|PubMed:7531687, ECO:0000269|PubMed:7544004, ECO:0000269|PubMed:7682706}. |
P35237 | SERPINB6 | S151 | ochoa | Serpin B6 (Cytoplasmic antiproteinase) (CAP) (Peptidase inhibitor 6) (PI-6) (Placental thrombin inhibitor) | May be involved in the regulation of serine proteinases present in the brain or extravasated from the blood (By similarity). Inhibitor of cathepsin G, kallikrein-8 and thrombin. May play an important role in the inner ear in the protection against leakage of lysosomal content during stress and loss of this protection results in cell death and sensorineural hearing loss. {ECO:0000250, ECO:0000269|PubMed:10068683, ECO:0000269|PubMed:17761692, ECO:0000269|PubMed:20451170, ECO:0000269|PubMed:8136380, ECO:0000269|PubMed:8415716}. |
P35251 | RFC1 | S518 | psp | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35367 | HRH1 | S255 | ochoa | Histamine H1 receptor (H1-R) (H1R) (HH1R) | G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity). {ECO:0000250|UniProtKB:P70174, ECO:0000269|PubMed:33828102, ECO:0000269|PubMed:8280179}. |
P35367 | HRH1 | S285 | ochoa | Histamine H1 receptor (H1-R) (H1R) (HH1R) | G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity). {ECO:0000250|UniProtKB:P70174, ECO:0000269|PubMed:33828102, ECO:0000269|PubMed:8280179}. |
P35520 | CBS | S73 | ochoa | Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) | Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}. |
P35568 | IRS1 | S503 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35568 | IRS1 | S531 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35568 | IRS1 | S1078 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35573 | AGL | S871 | ochoa | Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] | Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation. |
P35611 | ADD1 | S366 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35611 | ADD1 | S465 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35626 | GRK3 | S389 | ochoa | G protein-coupled receptor kinase 3 (EC 2.7.11.15) (Beta-adrenergic receptor kinase 2) (Beta-ARK-2) | Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors. {ECO:0000250|UniProtKB:P26819}. |
P35680 | HNF1B | S279 | ochoa | Hepatocyte nuclear factor 1-beta (HNF-1-beta) (HNF-1B) (Homeoprotein LFB3) (Transcription factor 2) (TCF-2) (Variant hepatic nuclear factor 1) (vHNF1) | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:17924661, PubMed:7900999). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (PubMed:24204001). {ECO:0000250|UniProtKB:Q03365, ECO:0000269|PubMed:17924661, ECO:0000269|PubMed:24204001, ECO:0000269|PubMed:7900999}. |
P35711 | SOX5 | S439 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P35716 | SOX11 | S71 | ochoa | Transcription factor SOX-11 | Transcription factor that acts as a transcriptional activator (PubMed:24886874, PubMed:26543203). Binds cooperatively with POU3F2/BRN2 or POU3F1/OCT6 to gene promoters, which enhances transcriptional activation (By similarity). Acts as a transcriptional activator of TEAD2 by binding to its gene promoter and first intron (By similarity). Plays a redundant role with SOX4 and SOX12 in cell survival of developing tissues such as the neural tube, branchial arches and somites, thereby contributing to organogenesis (By similarity). {ECO:0000250|UniProtKB:Q7M6Y2, ECO:0000269|PubMed:24886874, ECO:0000269|PubMed:26543203}. |
P35749 | MYH11 | S23 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P35869 | AHR | S727 | psp | Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) | Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}. |
P35968 | KDR | S229 | psp | Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}. |
P36404 | ARL2 | S45 | ochoa | ADP-ribosylation factor-like protein 2 | Small GTP-binding protein which cycles between an inactive GDP-bound and an active GTP-bound form, and the rate of cycling is regulated by guanine nucleotide exchange factors (GEF) and GTPase-activating proteins (GAP). GTP-binding protein that does not act as an allosteric activator of the cholera toxin catalytic subunit. Regulates formation of new microtubules and centrosome integrity. Prevents the TBCD-induced microtubule destruction. Participates in association with TBCD, in the disassembly of the apical junction complexes. Antagonizes the effect of TBCD on epithelial cell detachment and tight and adherens junctions disassembly. Together with ARL2, plays a role in the nuclear translocation, retention and transcriptional activity of STAT3. Component of a regulated secretory pathway involved in Ca(2+)-dependent release of acetylcholine. Required for normal progress through the cell cycle (PubMed:10831612, PubMed:16525022, PubMed:18234692, PubMed:18588884, PubMed:20740604). Also regulates mitochondrial integrity and function (PubMed:30945270). {ECO:0000269|PubMed:10831612, ECO:0000269|PubMed:16525022, ECO:0000269|PubMed:18234692, ECO:0000269|PubMed:18588884, ECO:0000269|PubMed:20740604, ECO:0000269|PubMed:30945270}. |
P36551 | CPOX | S344 | ochoa | Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial (COX) (Coprogen oxidase) (Coproporphyrinogenase) (EC 1.3.3.3) | Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen-IX and participates to the sixth step in the heme biosynthetic pathway. {ECO:0000269|PubMed:8159699}. |
P36873 | PPP1CC | S177 | ochoa | Serine/threonine-protein phosphatase PP1-gamma catalytic subunit (PP-1G) (EC 3.1.3.16) (Protein phosphatase 1C catalytic subunit) | Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets (PubMed:17936702, PubMed:25012651). Protein phosphatase 1 (PP1) is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Dephosphorylates RPS6KB1 (PubMed:17936702). Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density-associated Ca(2+)/calmodulin dependent protein kinase II. Component of the PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). In balance with CSNK1D and CSNK1E, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:21712997). May dephosphorylate CSNK1D and CSNK1E (By similarity). Regulates the recruitment of the SKA complex to kinetochores (PubMed:28982702). Dephosphorylates the 'Ser-418' residue of FOXP3 in regulatory T-cells (Treg) from patients with rheumatoid arthritis, thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed:23396208). Together with PPP1CA (PP1-alpha subunit), dephosphorylates IFIH1/MDA5 and RIG-I leading to their activation and a functional innate immune response (PubMed:23499489). Core component of the SHOC2-MRAS-PP1c (SMP) holophosphatase complex that regulates the MAPK pathway activation (PubMed:35768504, PubMed:35831509). The SMP complex specifically dephosphorylates the inhibitory phosphorylation at 'Ser-259' of RAF1 kinase, 'Ser-365' of BRAF kinase and 'Ser-214' of ARAF kinase, stimulating their kinase activities (PubMed:35768504, PubMed:35831509). Dephosphorylates MKI67 at the onset of anaphase (PubMed:25012651). The SMP complex enhances the dephosphorylation activity and substrate specificity of PP1c (PubMed:35768504, PubMed:35831509). {ECO:0000250|UniProtKB:P63087, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:21712997, ECO:0000269|PubMed:23396208, ECO:0000269|PubMed:23499489, ECO:0000269|PubMed:25012651, ECO:0000269|PubMed:28982702, ECO:0000269|PubMed:35768504, ECO:0000269|PubMed:35831509}. |
P36956 | SREBF1 | S1049 | ochoa | Sterol regulatory element-binding protein 1 (SREBP-1) (Class D basic helix-loop-helix protein 1) (bHLHd1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1 (Transcription factor SREBF1)] | [Sterol regulatory element-binding protein 1]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 1), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis and lipid homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 1]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis and lipid homeostasis (PubMed:12177166, PubMed:32322062, PubMed:8402897). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:8402897). Regulates the promoters of genes involved in cholesterol biosynthesis and the LDL receptor (LDLR) pathway of sterol regulation (PubMed:12177166, PubMed:32322062, PubMed:8402897). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:8402897}.; FUNCTION: [Isoform SREBP-1A]: Isoform expressed only in select tissues, which has higher transcriptional activity compared to SREBP-1C (By similarity). Able to stimulate both lipogenic and cholesterogenic gene expression (PubMed:12177166, PubMed:32497488). Has a role in the nutritional regulation of fatty acids and triglycerides in lipogenic organs such as the liver (By similarity). Required for innate immune response in macrophages by regulating lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32497488}.; FUNCTION: [Isoform SREBP-1C]: Predominant isoform expressed in most tissues, which has weaker transcriptional activity compared to isoform SREBP-1A (By similarity). Primarily controls expression of lipogenic gene (PubMed:12177166). Strongly activates global lipid synthesis in rapidly growing cells (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166}.; FUNCTION: [Isoform SREBP-1aDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}.; FUNCTION: [Isoform SREBP-1cDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}. |
P37231 | PPARG | S273 | psp | Peroxisome proliferator-activated receptor gamma (PPAR-gamma) (Nuclear receptor subfamily 1 group C member 3) | Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity). {ECO:0000250|UniProtKB:P37238, ECO:0000269|PubMed:16150867, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:9065481}.; FUNCTION: (Microbial infection) Upon treatment with M.tuberculosis or its lipoprotein LpqH, phosphorylation of MAPK p38 and IL-6 production are modulated, probably via this protein. {ECO:0000269|PubMed:25504154}. |
P37275 | ZEB1 | S447 | ochoa | Zinc finger E-box-binding homeobox 1 (NIL-2-A zinc finger protein) (Negative regulator of IL2) (Transcription factor 8) (TCF-8) | Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). In the absence of TGFB1, acts as a repressor of COL1A2 transcription via binding to the E-box in the upstream enhancer region (By similarity). {ECO:0000250|UniProtKB:Q64318, ECO:0000269|PubMed:19935649, ECO:0000269|PubMed:20175752, ECO:0000269|PubMed:20418909}. |
P37287 | PIGA | S21 | ochoa | Phosphatidylinositol N-acetylglucosaminyltransferase subunit A (EC 2.4.1.198) (GlcNAc-PI synthesis protein) (Phosphatidylinositol-glycan biosynthesis class A protein) (PIG-A) | Catalytic subunit of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis. {ECO:0000305|PubMed:16162815}. |
P37837 | TALDO1 | S256 | ochoa | Transaldolase (EC 2.2.1.2) | Catalyzes the rate-limiting step of the non-oxidative phase in the pentose phosphate pathway. Catalyzes the reversible conversion of sedheptulose-7-phosphate and D-glyceraldehyde 3-phosphate into erythrose-4-phosphate and beta-D-fructose 6-phosphate (PubMed:18687684, PubMed:8955144). Not only acts as a pentose phosphate pathway enzyme, but also affects other metabolite pathways by altering its subcellular localization between the nucleus and the cytoplasm (By similarity). {ECO:0000250|UniProtKB:Q93092, ECO:0000269|PubMed:18687684, ECO:0000269|PubMed:8955144}. |
P38159 | RBMX | S58 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P38398 | BRCA1 | S1497 | ochoa|psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38398 | BRCA1 | S1613 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38936 | CDKN1A | S98 | ochoa|psp | Cyclin-dependent kinase inhibitor 1 (CDK-interacting protein 1) (Melanoma differentiation-associated protein 6) (MDA-6) (p21) | Plays an important role in controlling cell cycle progression and DNA damage-induced G2 arrest (PubMed:9106657). Involved in p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage. Also involved in p53-independent DNA damage-induced G2 arrest mediated by CREB3L1 in astrocytes and osteoblasts (By similarity). Binds to and inhibits cyclin-dependent kinase activity, preventing phosphorylation of critical cyclin-dependent kinase substrates and blocking cell cycle progression. Functions in the nuclear localization and assembly of cyclin D-CDK4 complex and promotes its kinase activity towards RB1. At higher stoichiometric ratios, inhibits the kinase activity of the cyclin D-CDK4 complex. Inhibits DNA synthesis by DNA polymerase delta by competing with POLD3 for PCNA binding (PubMed:11595739). Negatively regulates the CDK4- and CDK6-driven phosphorylation of RB1 in keratinocytes, thereby resulting in the release of E2F1 and subsequent transcription of E2F1-driven G1/S phase promoting genes (By similarity). {ECO:0000250|UniProtKB:P39689, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:8242751, ECO:0000269|PubMed:9106657}. |
P39748 | FEN1 | S187 | psp | Flap endonuclease 1 (FEN-1) (EC 3.1.-.-) (DNase IV) (Flap structure-specific endonuclease 1) (Maturation factor 1) (MF1) (hFEN-1) | Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. {ECO:0000255|HAMAP-Rule:MF_03140, ECO:0000269|PubMed:10744741, ECO:0000269|PubMed:11986308, ECO:0000269|PubMed:18443037, ECO:0000269|PubMed:20729856, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:7961795, ECO:0000269|PubMed:8621570}. |
P39880 | CUX1 | S887 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P40189 | IL6ST | S667 | ochoa | Interleukin-6 receptor subunit beta (IL-6 receptor subunit beta) (IL-6R subunit beta) (IL-6R-beta) (IL-6RB) (CDw130) (Interleukin-6 signal transducer) (Membrane glycoprotein 130) (gp130) (Oncostatin-M receptor subunit alpha) (CD antigen CD130) | Signal-transducing molecule (PubMed:2261637). The receptor systems for IL6, LIF, OSM, CNTF, IL11, CTF1 and BSF3 can utilize IL6ST for initiating signal transmission. Binding of IL6 to IL6R induces IL6ST homodimerization and formation of a high-affinity receptor complex, which activates the intracellular JAK-MAPK and JAK-STAT3 signaling pathways (PubMed:19915009, PubMed:2261637, PubMed:23294003). That causes phosphorylation of IL6ST tyrosine residues which in turn activates STAT3 (PubMed:19915009, PubMed:23294003, PubMed:25731159). In parallel, the IL6 signaling pathway induces the expression of two cytokine receptor signaling inhibitors, SOCS1 and SOCS3, which inhibit JAK and terminate the activity of the IL6 signaling pathway as a negative feedback loop (By similarity). Also activates the yes-associated protein 1 (YAP) and NOTCH pathways to control inflammation-induced epithelial regeneration, independently of STAT3 (By similarity). Acts as a receptor for the neuroprotective peptide humanin as part of a complex with IL27RA/WSX1 and CNTFR (PubMed:19386761). Mediates signals which regulate immune response, hematopoiesis, pain control and bone metabolism (By similarity). Has a role in embryonic development (By similarity). Essential for survival of motor and sensory neurons and for differentiation of astrocytes (By similarity). Required for expression of TRPA1 in nociceptive neurons (By similarity). Required for the maintenance of PTH1R expression in the osteoblast lineage and for the stimulation of PTH-induced osteoblast differentiation (By similarity). Required for normal trabecular bone mass and cortical bone composition (By similarity). {ECO:0000250|UniProtKB:Q00560, ECO:0000269|PubMed:19386761, ECO:0000269|PubMed:19915009, ECO:0000269|PubMed:2261637, ECO:0000269|PubMed:23294003, ECO:0000269|PubMed:25731159, ECO:0000269|PubMed:28747427, ECO:0000269|PubMed:30309848}.; FUNCTION: [Isoform 2]: Binds to the soluble IL6:sIL6R complex (hyper-IL6), thereby blocking IL6 trans-signaling. Inhibits sIL6R-dependent acute phase response (PubMed:11121117, PubMed:21990364, PubMed:30279168). Also blocks IL11 cluster signaling through IL11R (PubMed:30279168). {ECO:0000269|PubMed:11121117, ECO:0000269|PubMed:21990364, ECO:0000269|PubMed:30279168}. |
P40818 | USP8 | S434 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P40818 | USP8 | S452 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P40926 | MDH2 | S47 | ochoa | Malate dehydrogenase, mitochondrial (EC 1.1.1.37) | None |
P41161 | ETV5 | S94 | ochoa | ETS translocation variant 5 (Ets-related protein ERM) | Binds to DNA sequences containing the consensus nucleotide core sequence 5'-GGAA.-3'. {ECO:0000269|PubMed:8152800}. |
P41162 | ETV3 | S29 | ochoa | ETS translocation variant 3 (ETS domain transcriptional repressor PE1) (PE-1) (Mitogenic Ets transcriptional suppressor) | Transcriptional repressor that contribute to growth arrest during terminal macrophage differentiation by repressing target genes involved in Ras-dependent proliferation. Represses MMP1 promoter activity. {ECO:0000269|PubMed:12007404}. |
P41212 | ETV6 | S131 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41214 | EIF2D | S184 | ochoa | Eukaryotic translation initiation factor 2D (eIF2d) (Hepatocellular carcinoma-associated antigen 56) (Ligatin) | Translation initiation factor that is able to deliver tRNA to the P-site of the eukaryotic ribosome in a GTP-independent manner. The binding of Met-tRNA(I) occurs after the AUG codon finds its position in the P-site of 40S ribosomes, the situation that takes place during initiation complex formation on some specific RNAs. Its activity in tRNA binding with 40S subunits does not require the presence of the aminoacyl moiety. Possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40S subunit. In addition to its role in initiation, can promote release of deacylated tRNA and mRNA from recycled 40S subunits following ABCE1-mediated dissociation of post-termination ribosomal complexes into subunits. {ECO:0000269|PubMed:20566627, ECO:0000269|PubMed:20713520}. |
P41214 | EIF2D | S361 | ochoa | Eukaryotic translation initiation factor 2D (eIF2d) (Hepatocellular carcinoma-associated antigen 56) (Ligatin) | Translation initiation factor that is able to deliver tRNA to the P-site of the eukaryotic ribosome in a GTP-independent manner. The binding of Met-tRNA(I) occurs after the AUG codon finds its position in the P-site of 40S ribosomes, the situation that takes place during initiation complex formation on some specific RNAs. Its activity in tRNA binding with 40S subunits does not require the presence of the aminoacyl moiety. Possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40S subunit. In addition to its role in initiation, can promote release of deacylated tRNA and mRNA from recycled 40S subunits following ABCE1-mediated dissociation of post-termination ribosomal complexes into subunits. {ECO:0000269|PubMed:20566627, ECO:0000269|PubMed:20713520}. |
P41235 | HNF4A | S167 | ochoa|psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P41235 | HNF4A | S378 | psp | Hepatocyte nuclear factor 4-alpha (HNF-4-alpha) (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14) (TCF-14) (Transcription factor HNF-4) | Transcriptional regulator which controls the expression of hepatic genes during the transition of endodermal cells to hepatic progenitor cells, facilitating the recruitment of RNA pol II to the promoters of target genes (PubMed:30597922). Activates the transcription of CYP2C38 (By similarity). Represses the CLOCK-BMAL1 transcriptional activity and is essential for circadian rhythm maintenance and period regulation in the liver and colon cells (PubMed:30530698). {ECO:0000250|UniProtKB:P49698, ECO:0000269|PubMed:30530698, ECO:0000269|PubMed:30597922}. |
P41250 | GARS1 | S335 | ochoa | Glycine--tRNA ligase (EC 6.1.1.14) (Diadenosine tetraphosphate synthetase) (Ap4A synthetase) (EC 2.7.7.-) (Glycyl-tRNA synthetase) (GlyRS) (Glycyl-tRNA synthetase 1) | Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP) (PubMed:17544401, PubMed:24898252, PubMed:28675565). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis (PubMed:19710017). {ECO:0000269|PubMed:17544401, ECO:0000269|PubMed:19710017, ECO:0000269|PubMed:24898252, ECO:0000269|PubMed:28675565}. |
P42166 | TMPO | S351 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42166 | TMPO | S370 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42229 | STAT5A | S128 | ochoa | Signal transducer and activator of transcription 5A | Carries out a dual function: signal transduction and activation of transcription. Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Mediates cellular responses to ERBB4. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Binds to the GAS element and activates PRL-induced transcription. Regulates the expression of milk proteins during lactation. {ECO:0000269|PubMed:15534001}. |
P42229 | STAT5A | S193 | ochoa | Signal transducer and activator of transcription 5A | Carries out a dual function: signal transduction and activation of transcription. Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Mediates cellular responses to ERBB4. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Binds to the GAS element and activates PRL-induced transcription. Regulates the expression of milk proteins during lactation. {ECO:0000269|PubMed:15534001}. |
P42330 | AKR1C3 | S129 | ochoa | Aldo-keto reductase family 1 member C3 (EC 1.1.1.-) (EC 1.1.1.210) (EC 1.1.1.53) (EC 1.1.1.62) (17-beta-hydroxysteroid dehydrogenase type 5) (17-beta-HSD 5) (3-alpha-HSD type II, brain) (3-alpha-hydroxysteroid dehydrogenase type 2) (3-alpha-HSD type 2) (EC 1.1.1.357) (Chlordecone reductase homolog HAKRb) (Dihydrodiol dehydrogenase 3) (DD-3) (DD3) (Dihydrodiol dehydrogenase type I) (HA1753) (Prostaglandin F synthase) (PGFS) (EC 1.1.1.188) (Testosterone 17-beta-dehydrogenase 5) (EC 1.1.1.239, EC 1.1.1.64) | Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone (PubMed:10622721, PubMed:11165022, PubMed:7650035, PubMed:9415401, PubMed:9927279). Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH (PubMed:11165022, PubMed:14672942). Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone (PubMed:20036328). Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol (PubMed:10622721, PubMed:10998348, PubMed:11165022, PubMed:15047184, PubMed:19010934, PubMed:20036328). Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:10557352, PubMed:10998348, PubMed:11165022, PubMed:14672942, PubMed:7650035, PubMed:9415401). Also displays retinaldehyde reductase activity toward 9-cis-retinal (PubMed:21851338). {ECO:0000269|PubMed:10557352, ECO:0000269|PubMed:10622721, ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:11165022, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15047184, ECO:0000269|PubMed:19010934, ECO:0000269|PubMed:20036328, ECO:0000269|PubMed:21851338, ECO:0000269|PubMed:7650035, ECO:0000269|PubMed:9415401, ECO:0000269|PubMed:9927279}. |
P42331 | ARHGAP25 | S533 | ochoa | Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
P42356 | PI4KA | S429 | ochoa | Phosphatidylinositol 4-kinase alpha (PI4-kinase alpha) (PI4K-alpha) (PtdIns-4-kinase alpha) (EC 2.7.1.67) (Phosphatidylinositol 4-Kinase III alpha) | Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate. {ECO:0000269|PubMed:10101268, ECO:0000269|PubMed:23229899}. |
P42566 | EPS15 | S140 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P42568 | MLLT3 | S483 | ochoa | Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}. |
P42575 | CASP2 | S340 | ochoa|psp | Caspase-2 (CASP-2) (EC 3.4.22.55) (Neural precursor cell expressed developmentally down-regulated protein 2) (NEDD-2) (Protease ICH-1) [Cleaved into: Caspase-2 subunit p18; Caspase-2 subunit p13; Caspase-2 subunit p12] | Is a regulator of the cascade of caspases responsible for apoptosis execution (PubMed:11156409, PubMed:15073321, PubMed:8087842). Might function by either activating some proteins required for cell death or inactivating proteins necessary for cell survival (PubMed:15073321). Associates with PIDD1 and CRADD to form the PIDDosome, a complex that activates CASP2 and triggers apoptosis in response to genotoxic stress (PubMed:15073321). {ECO:0000269|PubMed:11156409, ECO:0000269|PubMed:15073321, ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 1]: Acts as a positive regulator of apoptosis. {ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 2]: Acts as a negative regulator of apoptosis. {ECO:0000269|PubMed:8087842}.; FUNCTION: [Isoform 3]: May function as an endogenous apoptosis inhibitor that antagonizes caspase activation and cell death. {ECO:0000269|PubMed:11156409}. |
P42684 | ABL2 | S203 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42684 | ABL2 | S936 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42685 | FRK | S37 | ochoa | Tyrosine-protein kinase FRK (EC 2.7.10.2) (FYN-related kinase) (Nuclear tyrosine protein kinase RAK) (Protein-tyrosine kinase 5) | Non-receptor tyrosine-protein kinase that negatively regulates cell proliferation. Positively regulates PTEN protein stability through phosphorylation of PTEN on 'Tyr-336', which in turn prevents its ubiquitination and degradation, possibly by reducing its binding to NEDD4. May function as a tumor suppressor. {ECO:0000269|PubMed:19345329}. |
P42696 | RBM34 | S28 | ochoa | RNA-binding protein 34 (RNA-binding motif protein 34) | None |
P42702 | LIFR | S534 | ochoa | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P42702 | LIFR | S927 | ochoa | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P42702 | LIFR | S1041 | ochoa|psp | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P42702 | LIFR | S1059 | ochoa|psp | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P42858 | HTT | S2934 | ochoa | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42892 | ECE1 | S51 | ochoa | Endothelin-converting enzyme 1 (ECE-1) (EC 3.4.24.71) | Converts big endothelin-1 to endothelin-1. {ECO:0000269|PubMed:37835445, ECO:0000269|PubMed:9396733}. |
P43007 | SLC1A4 | S507 | ochoa | Neutral amino acid transporter A (Alanine/serine/cysteine/threonine transporter 1) (ASCT-1) (Solute carrier family 1 member 4) | Sodium-dependent neutral amino-acid transporter that mediates transport of alanine, serine, cysteine, proline, hydroxyproline and threonine. {ECO:0000269|PubMed:14502423, ECO:0000269|PubMed:26041762, ECO:0000269|PubMed:8101838, ECO:0000269|PubMed:8340364}. |
P43146 | DCC | S1178 | ochoa | Netrin receptor DCC (Colorectal cancer suppressor) (Immunoglobulin superfamily DCC subclass member 1) (Tumor suppressor protein DCC) | Receptor for netrin required for axon guidance. Mediates axon attraction of neuronal growth cones in the developing nervous system upon ligand binding. Its association with UNC5 proteins may trigger signaling for axon repulsion. It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand. Implicated as a tumor suppressor gene. {ECO:0000269|PubMed:8187090, ECO:0000269|PubMed:8861902}. |
P43354 | NR4A2 | S181 | ochoa|psp | Nuclear receptor subfamily 4 group A member 2 (Immediate-early response protein NOT) (Orphan nuclear receptor NURR1) (Transcriptionally-inducible nuclear receptor) | Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development (PubMed:15716272, PubMed:17184956). It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity). {ECO:0000250|UniProtKB:Q06219, ECO:0000269|PubMed:15716272, ECO:0000269|PubMed:17184956}. |
P43354 | NR4A2 | S250 | ochoa | Nuclear receptor subfamily 4 group A member 2 (Immediate-early response protein NOT) (Orphan nuclear receptor NURR1) (Transcriptionally-inducible nuclear receptor) | Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development (PubMed:15716272, PubMed:17184956). It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity). {ECO:0000250|UniProtKB:Q06219, ECO:0000269|PubMed:15716272, ECO:0000269|PubMed:17184956}. |
P43364 | MAGEA11 | S76 | ochoa | Melanoma-associated antigen 11 (Cancer/testis antigen 1.11) (CT1.11) (MAGE-11 antigen) | Acts as androgen receptor coregulator that increases androgen receptor activity by modulating the receptors interdomain interaction. May play a role in embryonal development and tumor transformation or aspects of tumor progression. {ECO:0000269|PubMed:15684378}. |
P43364 | MAGEA11 | S181 | psp | Melanoma-associated antigen 11 (Cancer/testis antigen 1.11) (CT1.11) (MAGE-11 antigen) | Acts as androgen receptor coregulator that increases androgen receptor activity by modulating the receptors interdomain interaction. May play a role in embryonal development and tumor transformation or aspects of tumor progression. {ECO:0000269|PubMed:15684378}. |
P43378 | PTPN9 | S324 | ochoa | Tyrosine-protein phosphatase non-receptor type 9 (EC 3.1.3.48) (Protein-tyrosine phosphatase MEG2) (PTPase MEG2) | Protein-tyrosine phosphatase that could participate in the transfer of hydrophobic ligands or in functions of the Golgi apparatus. {ECO:0000269|PubMed:19167335}. |
P43694 | GATA4 | S417 | ochoa | Transcription factor GATA-4 (GATA-binding factor 4) | Transcriptional activator that binds to the consensus sequence 5'-AGATAG-3' and plays a key role in cardiac development and function (PubMed:24000169, PubMed:27984724, PubMed:35182466). In cooperation with TBX5, it binds to cardiac super-enhancers and promotes cardiomyocyte gene expression, while it down-regulates endocardial and endothelial gene expression (PubMed:27984724). Involved in bone morphogenetic protein (BMP)-mediated induction of cardiac-specific gene expression. Binds to BMP response element (BMPRE) DNA sequences within cardiac activating regions (By similarity). Acts as a transcriptional activator of ANF in cooperation with NKX2-5 (By similarity). Promotes cardiac myocyte enlargement (PubMed:20081228). Required during testicular development (PubMed:21220346). May play a role in sphingolipid signaling by regulating the expression of sphingosine-1-phosphate degrading enzyme, sphingosine-1-phosphate lyase (PubMed:15734735). {ECO:0000250|UniProtKB:P46152, ECO:0000250|UniProtKB:Q08369, ECO:0000269|PubMed:15734735, ECO:0000269|PubMed:20081228, ECO:0000269|PubMed:21220346, ECO:0000269|PubMed:24000169, ECO:0000269|PubMed:27984724, ECO:0000269|PubMed:35182466}. |
P46013 | MKI67 | S357 | ochoa|psp | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S827 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1861 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2466 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2588 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2708 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46020 | PHKA1 | S735 | ochoa | Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform (Phosphorylase kinase alpha M subunit) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin. |
P46063 | RECQL | S64 | ochoa | ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) | DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}. |
P46100 | ATRX | S34 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S316 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S598 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46531 | NOTCH1 | S2121 | ochoa | Neurogenic locus notch homolog protein 1 (Notch 1) (hN1) (Translocation-associated notch protein TAN-1) [Cleaved into: Notch 1 extracellular truncation (NEXT); Notch 1 intracellular domain (NICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO). {ECO:0000269|PubMed:20616313}. |
P46782 | RPS5 | S142 | ochoa | Small ribosomal subunit protein uS7 (40S ribosomal protein S5) [Cleaved into: Small ribosomal subunit protein uS7, N-terminally processed (40S ribosomal protein S5, N-terminally processed)] | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P46821 | MAP1B | S1076 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1154 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1443 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1666 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1690 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2072 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2098 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46937 | YAP1 | S340 | ochoa | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P46937 | YAP1 | S367 | ochoa|psp | Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) | Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}. |
P46939 | UTRN | S3297 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P46939 | UTRN | S3304 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P46940 | IQGAP1 | S86 | ochoa | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P46940 | IQGAP1 | S330 | ochoa | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P46940 | IQGAP1 | S648 | ochoa | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P47736 | RAP1GAP | S74 | ochoa | Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}. |
P47900 | P2RY1 | S252 | psp | P2Y purinoceptor 1 (P2Y1) (ADP receptor) (Purinergic receptor) | Receptor for extracellular adenine nucleotides such as ADP (PubMed:25822790, PubMed:9038354, PubMed:9442040). In platelets, binding to ADP leads to mobilization of intracellular calcium ions via activation of phospholipase C, a change in platelet shape, and ultimately platelet aggregation (PubMed:9442040). {ECO:0000269|PubMed:25822790, ECO:0000269|PubMed:9038354, ECO:0000269|PubMed:9442040}. |
P48200 | IREB2 | S157 | psp | Iron-responsive element-binding protein 2 (IRE-BP 2) (Iron regulatory protein 2) (IRP2) | RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA. {ECO:0000269|PubMed:7983023}. |
P48436 | SOX9 | S211 | ochoa|psp | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P48444 | ARCN1 | S493 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P48454 | PPP3CC | S103 | ochoa | Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin, testis-specific catalytic subunit) (Calmodulin-dependent calcineurin A subunit gamma isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals. Dephosphorylates and activates transcription factor NFATC1. Dephosphorylates and inactivates transcription factor ELK1. Dephosphorylates DARPP32. {ECO:0000269|PubMed:19154138}. |
P48552 | NRIP1 | S218 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P48552 | NRIP1 | S518 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P48552 | NRIP1 | S671 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P48553 | TRAPPC10 | S573 | ochoa | Trafficking protein particle complex subunit 10 (Epilepsy holoprosencephaly candidate 1 protein) (EHOC-1) (Protein GT334) (Trafficking protein particle complex subunit TMEM1) (Transport protein particle subunit TMEM1) (TRAPP subunit TMEM1) | Specific subunit of the TRAPP (transport protein particle) II complex, a highly conserved vesicle tethering complex that functions in late Golgi trafficking as a membrane tether. {ECO:0000269|PubMed:11805826, ECO:0000269|PubMed:31467083, ECO:0000269|PubMed:35298461}. |
P48556 | PSMD8 | S106 | ochoa | 26S proteasome non-ATPase regulatory subunit 8 (26S proteasome regulatory subunit RPN12) (26S proteasome regulatory subunit S14) (p31) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
P48634 | PRRC2A | S1306 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48637 | GSS | S137 | ochoa | Glutathione synthetase (GSH synthetase) (GSH-S) (EC 6.3.2.3) (Glutathione synthase) | Catalyzes the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner (PubMed:7646467, PubMed:9215686). Glutathione (gamma-glutamylcysteinylglycine, GSH) is the most abundant intracellular thiol in living aerobic cells and is required for numerous processes including the protection of cells against oxidative damage, amino acid transport, the detoxification of foreign compounds, the maintenance of protein sulfhydryl groups in a reduced state and acts as a cofactor for a number of enzymes (PubMed:10369661). Participates in ophthalmate biosynthesis in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51855, ECO:0000269|PubMed:7646467, ECO:0000269|PubMed:9215686, ECO:0000303|PubMed:10369661}. |
P48728 | AMT | S334 | ochoa | Aminomethyltransferase, mitochondrial (EC 2.1.2.10) (Glycine cleavage system T protein) (GCVT) | The glycine cleavage system catalyzes the degradation of glycine. {ECO:0000269|PubMed:16051266}. |
P48739 | PITPNB | S184 | ochoa | Phosphatidylinositol transfer protein beta isoform (PI-TP-beta) (PtdIns transfer protein beta) (PtdInsTP beta) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (PubMed:10531358, PubMed:18636990, PubMed:20332109). Also catalyzes the transfer of sphingomyelin (By similarity). Required for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum; phosphatidylinositol and phosphatidylcholine transfer activity is essential for this function (PubMed:20332109). {ECO:0000250|UniProtKB:Q9TR36, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:18636990, ECO:0000269|PubMed:20332109}. |
P49006 | MARCKSL1 | S48 | ochoa | MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) | Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}. |
P49023 | PXN | S414 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49116 | NR2C2 | S46 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49116 | NR2C2 | S55 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49116 | NR2C2 | S219 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49137 | MAPKAPK2 | S272 | psp | MAP kinase-activated protein kinase 2 (MAPK-activated protein kinase 2) (MAPKAP kinase 2) (MAPKAP-K2) (MAPKAPK-2) (MK-2) (MK2) (EC 2.7.11.1) | Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT18, KRT20, LIMK1, LSP1, PABPC1, PARN, PDE4A, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Phosphorylates HSF1; leading to the interaction with HSP90 proteins and inhibiting HSF1 homotrimerization, DNA-binding and transactivation activities (PubMed:16278218). Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to the dissociation of HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impairment of their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins ELAVL1, HNRNPA0, PABPC1 and TTP/ZFP36, leading to the regulation of the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity, leading to inhibition of dependent degradation of ARE-containing transcripts. Phosphorylates CEP131 in response to cellular stress induced by ultraviolet irradiation which promotes binding of CEP131 to 14-3-3 proteins and inhibits formation of novel centriolar satellites (PubMed:26616734). Also involved in late G2/M checkpoint following DNA damage through a process of post-transcriptional mRNA stabilization: following DNA damage, relocalizes from nucleus to cytoplasm and phosphorylates HNRNPA0 and PARN, leading to stabilization of GADD45A mRNA. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:11844797, ECO:0000269|PubMed:12456657, ECO:0000269|PubMed:12565831, ECO:0000269|PubMed:14499342, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15629715, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16456544, ECO:0000269|PubMed:17481585, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:8093612, ECO:0000269|PubMed:8280084, ECO:0000269|PubMed:8774846}. |
P49146 | NPY2R | S251 | ochoa | Neuropeptide Y receptor type 2 (NPY2-R) (NPY-Y2 receptor) (Y2 receptor) | Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is PYY > NPY > PYY (3-36) > NPY (2-36) > [Ile-31, Gln-34] PP > [Leu-31, Pro-34] NPY > PP, [Pro-34] PYY and NPY free acid. |
P49327 | FASN | S361 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49327 | FASN | S1221 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49327 | FASN | S1411 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49327 | FASN | S1584 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49335 | POU3F4 | S265 | ochoa | POU domain, class 3, transcription factor 4 (Brain-specific homeobox/POU domain protein 4) (Brain-4) (Brn-4) (Octamer-binding protein 9) (Oct-9) (Octamer-binding transcription factor 9) (OTF-9) | Probable transcription factor which exert its primary action widely during early neural development and in a very limited set of neurons in the mature brain. |
P49366 | DHPS | S233 | psp | Deoxyhypusine synthase (DHS) (EC 2.5.1.46) | Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a critical lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue (PubMed:30661771). This is the first step of the post-translational modification of that lysine into an unusual amino acid residue named hypusine. Hypusination is unique to mature eIF-5A factor and is essential for its function. {ECO:0000269|PubMed:30661771}. |
P49588 | AARS1 | S484 | ochoa | Alanine--tRNA ligase, cytoplasmic (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS1) (EC 6.-.-.-) (Renal carcinoma antigen NY-REN-42) | Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala) (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:33909043). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:27622773, PubMed:27911835, PubMed:28493438, PubMed:29273753). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as TEAD1, TP53/p53 and YAP1 (PubMed:38512451, PubMed:38653238). Protein lactylation takes place in a two-step reaction: lactate is first activated by ATP to form lactate-AMP and then transferred to lysine residues of target proteins (PubMed:38512451, PubMed:38653238, PubMed:39322678). Acts as an inhibitor of TP53/p53 activity by catalyzing lactylation of TP53/p53 (PubMed:38653238). Acts as a positive regulator of the Hippo pathway by mediating lactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000269|PubMed:27622773, ECO:0000269|PubMed:27911835, ECO:0000269|PubMed:28493438, ECO:0000269|PubMed:29273753, ECO:0000269|PubMed:33909043, ECO:0000269|PubMed:38512451, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:39322678}. |
P49589 | CARS1 | S19 | ochoa | Cysteine--tRNA ligase, cytoplasmic (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) | Catalyzes the ATP-dependent ligation of cysteine to tRNA(Cys). {ECO:0000269|PubMed:11347887, ECO:0000269|PubMed:30824121}. |
P49590 | HARS2 | S67 | ochoa | Histidine--tRNA ligase, mitochondrial (EC 6.1.1.21) (Histidine--tRNA ligase-like) (Histidyl-tRNA synthetase) (HisRS) | Mitochondrial aminoacyl-tRNA synthetase that catalyzes the ATP-dependent ligation of histidine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (His-AMP). {ECO:0000269|PubMed:21464306}. |
P49643 | PRIM2 | S170 | ochoa | DNA primase large subunit (DNA primase 58 kDa subunit) (p58) | Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}. |
P49662 | CASP4 | S83 | ochoa | Caspase-4 (CASP-4) (EC 3.4.22.57) (ICE and Ced-3 homolog 2) (ICH-2) (ICE(rel)-II) (Mih1) (Protease TX) [Cleaved into: Caspase-4 subunit p10; Caspase-4 subunit p20] | Inflammatory caspase that acts as the effector of the non-canonical inflammasome by mediating lipopolysaccharide (LPS)-induced pyroptosis (PubMed:25119034, PubMed:26375003, PubMed:32109412, PubMed:34671164, PubMed:37001519, PubMed:37993712, PubMed:37993714). Also indirectly activates the NLRP3 and NLRP6 inflammasomes (PubMed:23516580, PubMed:26375003, PubMed:32109412, PubMed:7797510). Acts as a thiol protease that cleaves a tetrapeptide after an Asp residue at position P1: catalyzes cleavage of CGAS, GSDMD and IL18 (PubMed:15326478, PubMed:23516580, PubMed:26375003, PubMed:28314590, PubMed:32109412, PubMed:37993712, PubMed:37993714, PubMed:7797510). Effector of the non-canonical inflammasome independently of NLRP3 inflammasome and CASP1: the non-canonical inflammasome promotes pyroptosis through GSDMD cleavage without involving secretion of cytokine IL1B (PubMed:25119034, PubMed:25121752, PubMed:26375003, PubMed:31268602, PubMed:32109412, PubMed:37993712, PubMed:37993714). In the non-canonical inflammasome, CASP4 is activated by direct binding to the lipid A moiety of LPS without the need of an upstream sensor (PubMed:25119034, PubMed:25121752, PubMed:29520027, PubMed:32510692, PubMed:32581219, PubMed:37993712). LPS-binding promotes CASP4 activation and CASP4-mediated cleavage of GSDMD and IL18, followed by IL18 secretion through the GSDMD pore, pyroptosis of infected cells and their extrusion into the gut lumen (PubMed:25119034, PubMed:25121752, PubMed:37993712, PubMed:37993714). Also indirectly promotes secretion of mature cytokines (IL1A and HMGB1) downstream of GSDMD-mediated pyroptosis via activation of the NLRP3 and NLRP6 inflammasomes (PubMed:26375003, PubMed:32109412). Involved in NLRP3-dependent CASP1 activation and IL1B secretion in response to non-canonical activators, such as UVB radiation or cholera enterotoxin (PubMed:22246630, PubMed:23516580, PubMed:24879791, PubMed:25964352, PubMed:26173988, PubMed:26174085, PubMed:26508369). Involved in NLRP6 inflammasome-dependent activation in response to lipoteichoic acid (LTA), a cell-wall component of Gram-positive bacteria, which leads to CASP1 activation and IL1B secretion (PubMed:33377178). Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). The non-canonical inflammasome is required for innate immunity to cytosolic, but not vacuolar, bacteria (By similarity). Plays a crucial role in the restriction of S.typhimurium replication in colonic epithelial cells during infection (PubMed:25121752, PubMed:25964352). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation (PubMed:25121752, PubMed:25964352, PubMed:26375003). May also act as an activator of adaptive immunity in dendritic cells, following activation by oxidized phospholipid 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine, an oxidized phospholipid (oxPAPC) (By similarity). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found in Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP4 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32109412). Catalyzes cleavage and maturation of IL18; IL18 processing also depends of the exosite interface on CASP4 (PubMed:15326478, PubMed:37993712, PubMed:37993714). In contrast, it does not directly process IL1B (PubMed:7743998, PubMed:7797510, PubMed:7797592). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590). {ECO:0000250|UniProtKB:P70343, ECO:0000269|PubMed:15123740, ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:22246630, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:23661706, ECO:0000269|PubMed:24879791, ECO:0000269|PubMed:25119034, ECO:0000269|PubMed:25121752, ECO:0000269|PubMed:25964352, ECO:0000269|PubMed:26173988, ECO:0000269|PubMed:26174085, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26508369, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:29520027, ECO:0000269|PubMed:31268602, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32510692, ECO:0000269|PubMed:32581219, ECO:0000269|PubMed:33377178, ECO:0000269|PubMed:34671164, ECO:0000269|PubMed:37001519, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7743998, ECO:0000269|PubMed:7797510, ECO:0000269|PubMed:7797592}.; FUNCTION: (Microbial infection) In response to the Td92 surface protein of the periodontal pathogen T.denticola, activated by cathepsin CTSG which leads to production and secretion of IL1A and pyroptosis of gingival fibroblasts. {ECO:0000269|PubMed:29077095}. |
P49721 | PSMB2 | S76 | ochoa | Proteasome subunit beta type-2 (Macropain subunit C7-I) (Multicatalytic endopeptidase complex subunit C7-I) (Proteasome component C7-I) (Proteasome subunit beta-4) (beta-4) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P49736 | MCM2 | S381 | ochoa | DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}. |
P49756 | RBM25 | S803 | ochoa | RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) | RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}. |
P49773 | HINT1 | S45 | ochoa | Adenosine 5'-monophosphoramidase HINT1 (EC 3.9.1.-) (Desumoylating isopeptidase HINT1) (EC 3.4.22.-) (Histidine triad nucleotide-binding protein 1) (Protein kinase C inhibitor 1) (Protein kinase C-interacting protein 1) (PKCI-1) | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:15703176, PubMed:16835243, PubMed:17217311, PubMed:17337452, PubMed:22329685, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (PubMed:15703176, PubMed:16835243). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (PubMed:15703176, PubMed:17337452, PubMed:22329685). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:17217311, PubMed:17337452, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (PubMed:30772266). In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (PubMed:16014379, PubMed:22647378). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis (PubMed:16835243). Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (PubMed:19112177). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 (PubMed:31088288). Deconjugates SUMO1 from RANGAP1 (By similarity). {ECO:0000250|UniProtKB:P80912, ECO:0000269|PubMed:15703176, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16835243, ECO:0000269|PubMed:17217311, ECO:0000269|PubMed:17337452, ECO:0000269|PubMed:19112177, ECO:0000269|PubMed:22329685, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:23614568, ECO:0000269|PubMed:28691797, ECO:0000269|PubMed:29787766, ECO:0000269|PubMed:30772266, ECO:0000269|PubMed:31088288, ECO:0000269|PubMed:31990367}. |
P49790 | NUP153 | S257 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49790 | NUP153 | S529 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49790 | NUP153 | S687 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S21 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S837 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S1249 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S1573 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S1869 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S3207 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49795 | RGS19 | S151 | psp | Regulator of G-protein signaling 19 (RGS19) (G-alpha-interacting protein) (GAIP) | Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G-alpha subfamily 1 members, with the order G(i)a3 > G(i)a1 > G(o)a >> G(z)a/G(i)a2. Activity on G(z)-alpha is inhibited by phosphorylation and palmitoylation of the G-protein. |
P49802 | RGS7 | S241 | ochoa | Regulator of G-protein signaling 7 (RGS7) | GTPase activator component of the RGS7-GNB5 complex that regulates G protein-coupled receptor signaling cascades (PubMed:10521509, PubMed:10862767, PubMed:31189666). The RGS7-GNB5 complex acts as an inhibitor signal transduction by promoting the GTPase activity of G protein alpha subunits, such as GNAO1, thereby driving them into their inactive GDP-bound form (PubMed:10521509, PubMed:10862767). May play a role in synaptic vesicle exocytosis (Probable) (PubMed:12659861). Glycine-dependent regulation of the RGS7-GNB5 complex by GPR158 affects mood and cognition via its ability to regulate neuronal excitability in L2/L3 pyramidal neurons of the prefrontal cortex (By similarity). Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling (PubMed:15897264). {ECO:0000250|UniProtKB:O54829, ECO:0000269|PubMed:10521509, ECO:0000269|PubMed:10862767, ECO:0000269|PubMed:15897264, ECO:0000269|PubMed:31189666, ECO:0000305|PubMed:12659861}. |
P49815 | TSC2 | S960 | ochoa|psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P49902 | NT5C2 | S502 | ochoa|psp | Cytosolic purine 5'-nucleotidase (EC 3.1.3.5) (EC 3.1.3.99) (Cytosolic 5'-nucleotidase II) (cN-II) (Cytosolic IMP/GMP-specific 5'-nucleotidase) (Cytosolic nucleoside phosphotransferase 5'N) (EC 2.7.1.77) (High Km 5'-nucleotidase) | Broad specificity cytosolic 5'-nucleotidase that catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705). In addition, possesses a phosphotransferase activity by which it can transfer a phosphate from a donor nucleoside monophosphate to an acceptor nucleoside, preferably inosine, deoxyinosine and guanosine (PubMed:1659319, PubMed:9371705). Has the highest activities for IMP and GMP followed by dIMP, dGMP and XMP (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705). Could also catalyze the transfer of phosphates from pyrimidine monophosphates but with lower efficiency (PubMed:1659319, PubMed:9371705). Through these activities regulates the purine nucleoside/nucleotide pools within the cell (PubMed:10092873, PubMed:12907246, PubMed:1659319, PubMed:9371705). {ECO:0000269|PubMed:10092873, ECO:0000269|PubMed:12907246, ECO:0000269|PubMed:1659319, ECO:0000269|PubMed:9371705}. |
P49910 | ZNF165 | S153 | ochoa | Zinc finger protein 165 (Cancer/testis antigen 53) (CT53) (LD65) (Zinc finger and SCAN domain-containing protein 7) | May be involved in transcriptional regulation. |
P49916 | LIG3 | S210 | ochoa|psp | DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) | Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}. |
P49916 | LIG3 | S913 | ochoa|psp | DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) | Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}. |
P49959 | MRE11 | S165 | ochoa | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P50225 | SULT1A1 | S253 | ochoa | Sulfotransferase 1A1 (ST1A1) (EC 2.8.2.1) (Aryl sulfotransferase 1) (HAST1/HAST2) (Phenol sulfotransferase 1) (Phenol-sulfating phenol sulfotransferase 1) (P-PST 1) (ST1A3) (Thermostable phenol sulfotransferase) (Ts-PST) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of a wide variety of acceptor molecules bearing a hydroxyl or an amine group. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Displays broad substrate specificity for small phenolic compounds. Plays an important role in the sulfonation of endogenous molecules such as steroid hormones (PubMed:12471039, PubMed:16221673, PubMed:21723874, PubMed:22069470, PubMed:7834621). Mediates the sulfate conjugation of a variety of xenobiotics, including the drugs acetaminophen and minoxidil (By similarity). Mediates also the metabolic activation of carcinogenic N-hydroxyarylamines leading to highly reactive intermediates capable of forming DNA adducts, potentially resulting in mutagenesis (PubMed:7834621). May play a role in gut microbiota-host metabolic interaction. O-sulfonates 4-ethylphenol (4-EP), a dietary tyrosine-derived metabolite produced by gut bacteria. The product 4-EPS crosses the blood-brain barrier and may negatively regulate oligodendrocyte maturation and myelination, affecting the functional connectivity of different brain regions associated with the limbic system (PubMed:35165440). Catalyzes the sulfate conjugation of dopamine (PubMed:8093002). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000250|UniProtKB:P17988, ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:12471039, ECO:0000269|PubMed:16221673, ECO:0000269|PubMed:21723874, ECO:0000269|PubMed:22069470, ECO:0000269|PubMed:35165440, ECO:0000269|PubMed:7834621, ECO:0000269|PubMed:8093002}. |
P50395 | GDI2 | S222 | ochoa | Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2) | GDP-dissociation inhibitor preventing the GDP to GTP exchange of most Rab proteins. By keeping these small GTPases in their inactive GDP-bound form regulates intracellular membrane trafficking (PubMed:25860027). Negatively regulates protein transport to the cilium and ciliogenesis through the inhibition of RAB8A (PubMed:25860027). {ECO:0000269|PubMed:25860027}. |
P50406 | HTR6 | S350 | psp | 5-hydroxytryptamine receptor 6 (5-HT-6) (5-HT6) (Serotonin receptor 6) | G-protein coupled receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone and a mitogen (PubMed:35714614, PubMed:36989299, PubMed:37327704, PubMed:8522988). Also has a high affinity for tricyclic psychotropic drugs (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (PubMed:35714614). HTR6 is coupled to G(s) G alpha proteins and mediates activation of adenylate cyclase activity (PubMed:35714614, PubMed:37327704). Controls pyramidal neurons migration during corticogenesis, through the regulation of CDK5 activity (By similarity). Is an activator of mTOR signaling (PubMed:23027611). {ECO:0000250|UniProtKB:P31388, ECO:0000250|UniProtKB:Q9R1C8, ECO:0000269|PubMed:23027611, ECO:0000269|PubMed:35714614, ECO:0000269|PubMed:36989299, ECO:0000269|PubMed:37327704, ECO:0000269|PubMed:8522988}. |
P50461 | CSRP3 | S95 | ochoa | Cysteine and glycine-rich protein 3 (Cardiac LIM protein) (Cysteine-rich protein 3) (CRP3) (LIM domain protein, cardiac) (Muscle LIM protein) | Positive regulator of myogenesis. Acts as a cofactor for myogenic bHLH transcription factors such as MYOD1, and probably MYOG and MYF6. Enhances the DNA-binding activity of the MYOD1:TCF3 isoform E47 complex and may promote formation of a functional MYOD1:TCF3 isoform E47:MEF2A complex involved in myogenesis (By similarity). Plays a crucial and specific role in the organization of cytosolic structures in cardiomyocytes. Could play a role in mechanical stretch sensing. May be a scaffold protein that promotes the assembly of interacting proteins at Z-line structures. It is essential for calcineurin anchorage to the Z line. Required for stress-induced calcineurin-NFAT activation (By similarity). The role in regulation of cytoskeleton dynamics by association with CFL2 is reported conflictingly: Shown to enhance CFL2-mediated F-actin depolymerization dependent on the CSRP3:CFL2 molecular ratio, and also shown to reduce the ability of CLF1 and CFL2 to enhance actin depolymerization (PubMed:19752190, PubMed:24934443). Proposed to contribute to the maintenance of muscle cell integrity through an actin-based mechanism. Can directly bind to actin filaments, cross-link actin filaments into bundles without polarity selectivity and protect them from dilution- and cofilin-mediated depolymerization; the function seems to involve its self-association (PubMed:24934443). In vitro can inhibit PKC/PRKCA activity (PubMed:27353086). Proposed to be involved in cardiac stress signaling by down-regulating excessive PKC/PRKCA signaling (By similarity). {ECO:0000250|UniProtKB:P50462, ECO:0000250|UniProtKB:P50463, ECO:0000269|PubMed:19752190, ECO:0000269|PubMed:24934443, ECO:0000269|PubMed:27353086}.; FUNCTION: [Isoform 2]: May play a role in early sarcomere organization. Overexpression in myotubes negatively regulates myotube differentiation. By association with isoform 1 and thus changing the CSRP3 isoform 1:CFL2 stoichiometry is proposed to down-regulate CFL2-mediated F-actin depolymerization. {ECO:0000269|PubMed:24860983}. |
P50548 | ERF | S21 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50548 | ERF | S327 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50570 | DNM2 | S116 | ochoa | Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) | Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}. |
P50747 | HLCS | S299 | ochoa | Biotin--protein ligase (EC 6.3.4.-) (Biotin apo-protein ligase) [Includes: Biotin--[methylmalonyl-CoA-carboxytransferase] ligase (EC 6.3.4.9); Biotin--[propionyl-CoA-carboxylase [ATP-hydrolyzing]] ligase (EC 6.3.4.10) (Holocarboxylase synthetase) (HCS); Biotin--[methylcrotonoyl-CoA-carboxylase] ligase (EC 6.3.4.11); Biotin--[acetyl-CoA-carboxylase] ligase (EC 6.3.4.15)] | Biotin--protein ligase catalyzing the biotinylation of the 4 biotin-dependent carboxylases acetyl-CoA-carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and methylcrotonyl-CoA carboxylase. {ECO:0000269|PubMed:10590022, ECO:0000269|PubMed:7753853, ECO:0000269|PubMed:7842009}. |
P50750 | CDK9 | S90 | psp | Cyclin-dependent kinase 9 (EC 2.7.11.22) (EC 2.7.11.23) (C-2K) (Cell division cycle 2-like protein kinase 4) (Cell division protein kinase 9) (Serine/threonine-protein kinase PITALRE) (Tat-associated kinase complex catalytic subunit) | Protein kinase involved in the regulation of transcription (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094, PubMed:29335245). Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:16427012, PubMed:20930849, PubMed:28426094, PubMed:30134174). This complex is inactive when in the 7SK snRNP complex form (PubMed:10574912, PubMed:10757782, PubMed:11145967, PubMed:11575923, PubMed:11809800, PubMed:11884399, PubMed:14701750, PubMed:16109376, PubMed:16109377, PubMed:20930849, PubMed:28426094). Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR and the negative elongation factors DSIF and NELFE (PubMed:10912001, PubMed:11112772, PubMed:12037670, PubMed:16427012, PubMed:20081228, PubMed:20980437, PubMed:21127351, PubMed:9857195). Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling) (PubMed:17956865, PubMed:18362169). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis (PubMed:10393184, PubMed:11112772). P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export (PubMed:15564463, PubMed:19575011, PubMed:19844166). Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing (PubMed:15564463, PubMed:19575011, PubMed:19844166). The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro (PubMed:21127351). Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage (PubMed:20493174). In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6 (PubMed:20493174). Promotes cardiac myocyte enlargement (PubMed:20081228). RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription (PubMed:21127351). AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect (PubMed:10912001, PubMed:11112772, PubMed:9857195). The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation (PubMed:12037670). Catalyzes phosphorylation of KAT5, promoting KAT5 recruitment to chromatin and histone acetyltransferase activity (PubMed:29335245). {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10574912, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11145967, ECO:0000269|PubMed:11575923, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:11884399, ECO:0000269|PubMed:12037670, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15564463, ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:17956865, ECO:0000269|PubMed:18362169, ECO:0000269|PubMed:19575011, ECO:0000269|PubMed:19844166, ECO:0000269|PubMed:20081228, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:20930849, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:28426094, ECO:0000269|PubMed:29335245, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:9857195}. |
P50851 | LRBA | S979 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S1261 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S1488 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S1498 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S2201 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50851 | LRBA | S2496 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50991 | CCT4 | S381 | ochoa|psp | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P50993 | ATP1A2 | S496 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-2 (Na(+)/K(+) ATPase alpha-2 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-2) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P50993 | ATP1A2 | S719 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-2 (Na(+)/K(+) ATPase alpha-2 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-2) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P51003 | PAPOLA | S24 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51149 | RAB7A | S111 | ochoa | Ras-related protein Rab-7a (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:38538795). In its active state, RAB7A binds to a variety of effector proteins playing a key role in the regulation of endo-lysosomal trafficking. Governs early-to-late endosomal maturation, microtubule minus-end as well as plus-end directed endosomal migration and positioning, and endosome-lysosome transport through different protein-protein interaction cascades. Also plays a central role in growth-factor-mediated cell signaling, nutrient-transportor mediated nutrient uptake, neurotrophin transport in the axons of neurons and lipid metabolism. Also involved in regulation of some specialized endosomal membrane trafficking, such as maturation of melanosomes, pathogen-induced phagosomes (or vacuoles) and autophagosomes. Plays a role in the maturation and acidification of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis. Plays a role in the fusion of phagosomes with lysosomes. In concert with RAC1, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. Controls the endosomal trafficking and neurite outgrowth signaling of NTRK1/TRKA (PubMed:11179213, PubMed:12944476, PubMed:14617358, PubMed:20028791, PubMed:21255211). Regulates the endocytic trafficking of the EGF-EGFR complex by regulating its lysosomal degradation. Involved in the ADRB2-stimulated lipolysis through lipophagy, a cytosolic lipase-independent autophagic pathway (By similarity). Required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Required for vesicular trafficking and cell surface expression of ACE2 (PubMed:33147445). May play a role in PRPH neuronal intermediate filament assembly (By similarity). {ECO:0000250|UniProtKB:P51150, ECO:0000269|PubMed:11179213, ECO:0000269|PubMed:12944476, ECO:0000269|PubMed:14617358, ECO:0000269|PubMed:20028791, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:33147445, ECO:0000269|PubMed:38538795}. |
P51398 | DAP3 | S44 | ochoa | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P51398 | DAP3 | S220 | psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P51398 | DAP3 | S280 | ochoa|psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P51531 | SMARCA2 | S329 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 (SAMRCA2) (EC 3.6.4.-) (BRG1-associated factor 190B) (BAF190B) (Probable global transcription activator SNF2L2) (Protein brahma homolog) (hBRM) (SNF2-alpha) | ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically (PubMed:15075294, PubMed:22952240, PubMed:26601204). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:Q6DIC0, ECO:0000269|PubMed:15075294, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
P51587 | BRCA2 | S93 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S492 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S1946 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S2095 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S2152 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S3319 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51608 | MECP2 | S216 | ochoa|psp | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51608 | MECP2 | S229 | ochoa|psp | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51610 | HCFC1 | S598 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51610 | HCFC1 | S666 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51610 | HCFC1 | S757 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51610 | HCFC1 | S794 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51610 | HCFC1 | S984 | ochoa|psp | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51692 | STAT5B | S128 | ochoa | Signal transducer and activator of transcription 5B | Carries out a dual function: signal transduction and activation of transcription (PubMed:29844444). Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Binds to the GAS element and activates PRL-induced transcription. Positively regulates hematopoietic/erythroid differentiation. {ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:29844444, ECO:0000269|PubMed:8732682}. |
P51692 | STAT5B | S193 | ochoa|psp | Signal transducer and activator of transcription 5B | Carries out a dual function: signal transduction and activation of transcription (PubMed:29844444). Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Binds to the GAS element and activates PRL-induced transcription. Positively regulates hematopoietic/erythroid differentiation. {ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:29844444, ECO:0000269|PubMed:8732682}. |
P51788 | CLCN2 | S712 | ochoa | Chloride channel protein 2 (ClC-2) | Voltage-gated and osmosensitive chloride channel. Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Displays inward rectification currents activated upon membrane hyperpolarization and extracellular hypotonicity (PubMed:16155254, PubMed:17567819, PubMed:19191339, PubMed:23632988, PubMed:29403011, PubMed:29403012, PubMed:36964785, PubMed:38345841). Contributes to chloride conductance involved in neuron excitability. In hippocampal neurons, generates a significant part of resting membrane conductance and provides an additional chloride efflux pathway to prevent chloride accumulation in dendrites upon GABA receptor activation. In glia, associates with the auxiliary subunit HEPACAM/GlialCAM at astrocytic processes and myelinated fiber tracts where it may regulate transcellular chloride flux buffering extracellular chloride and potassium concentrations (PubMed:19191339, PubMed:22405205, PubMed:23707145). Regulates aldosterone production in adrenal glands. The opening of CLCN2 channels at hyperpolarized membrane potentials in the glomerulosa causes cell membrane depolarization, activation of voltage-gated calcium channels and increased expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis (PubMed:29403011, PubMed:29403012). Contributes to chloride conductance in retinal pigment epithelium involved in phagocytosis of shed photoreceptor outer segments and photoreceptor renewal (PubMed:36964785). Conducts chloride currents at the basolateral membrane of epithelial cells with a role in chloride reabsorption rather than secretion (By similarity) (PubMed:16155254). Permeable to small monovalent anions with chloride > thiocyanate > bromide > nitrate > iodide ion selectivity (By similarity) (PubMed:29403012). {ECO:0000250|UniProtKB:P35525, ECO:0000250|UniProtKB:Q9R0A1, ECO:0000269|PubMed:16155254, ECO:0000269|PubMed:17567819, ECO:0000269|PubMed:19191339, ECO:0000269|PubMed:22405205, ECO:0000269|PubMed:23632988, ECO:0000269|PubMed:23707145, ECO:0000269|PubMed:29403011, ECO:0000269|PubMed:29403012, ECO:0000269|PubMed:36964785, ECO:0000269|PubMed:38345841}. |
P51812 | RPS6KA3 | S715 | ochoa | Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}. |
P51825 | AFF1 | S750 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P51826 | AFF3 | S755 | ochoa | AF4/FMR2 family member 3 (Lymphoid nuclear protein related to AF4) (Protein LAF-4) | Putative transcription activator that may function in lymphoid development and oncogenesis. Binds, in vitro, to double-stranded DNA. |
P51946 | CCNH | S132 | ochoa | Cyclin-H (MO15-associated protein) (p34) (p37) | Regulates CDK7, the catalytic subunit of the CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. Its expression and activity are constant throughout the cell cycle. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:7533895}. |
P51948 | MNAT1 | S279 | ochoa | CDK-activating kinase assembly factor MAT1 (CDK7/cyclin-H assembly factor) (Cyclin-G1-interacting protein) (Menage a trois) (RING finger protein 66) (RING finger protein MAT1) (p35) (p36) | Stabilizes the cyclin H-CDK7 complex to form a functional CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. {ECO:0000269|PubMed:10024882}. |
P51955 | NEK2 | S300 | ochoa | Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) | Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}. |
P51956 | NEK3 | S355 | ochoa | Serine/threonine-protein kinase Nek3 (EC 2.7.11.1) (HSPK 36) (Never in mitosis A-related kinase 3) (NimA-related protein kinase 3) | Protein kinase which influences neuronal morphogenesis and polarity through effects on microtubules. Regulates microtubule acetylation in neurons. Contributes to prolactin-mediated phosphorylation of PXN and VAV2. Implicated in prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells through mechanisms involving RAC1 activation and phosphorylation of PXN and VAV2. {ECO:0000269|PubMed:15618286, ECO:0000269|PubMed:17297458}. |
P51957 | NEK4 | S340 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P51957 | NEK4 | S461 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P51957 | NEK4 | S484 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P51957 | NEK4 | S563 | ochoa | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P52179 | MYOM1 | S694 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52292 | KPNA2 | S62 | ochoa|psp | Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}. |
P52294 | KPNA1 | S244 | ochoa | Importin subunit alpha-5 (Karyopherin subunit alpha-1) (Nucleoprotein interactor 1) (NPI-1) (RAG cohort protein 2) (SRP1-beta) [Cleaved into: Importin subunit alpha-5, N-terminally processed] | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:27713473, PubMed:7892216, PubMed:8692858). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:27713473, PubMed:7892216, PubMed:8692858). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:27713473, PubMed:7892216). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin (PubMed:7892216). The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:7892216). Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA2 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:27713473, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7892216, ECO:0000269|PubMed:8692858}.; FUNCTION: (Microbial infection) In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. {ECO:0000269|PubMed:12610148}. |
P52333 | JAK3 | S493 | ochoa | Tyrosine-protein kinase JAK3 (EC 2.7.10.2) (Janus kinase 3) (JAK-3) (Leukocyte janus kinase) (L-JAK) | Non-receptor tyrosine kinase involved in various processes such as cell growth, development, or differentiation. Mediates essential signaling events in both innate and adaptive immunity and plays a crucial role in hematopoiesis during T-cells development. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors sharing the common subunit gamma such as IL2R, IL4R, IL7R, IL9R, IL15R and IL21R. Following ligand binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, upon IL2R activation by IL2, JAK1 and JAK3 molecules bind to IL2R beta (IL2RB) and gamma chain (IL2RG) subunits inducing the tyrosine phosphorylation of both receptor subunits on their cytoplasmic domain. Then, STAT5A and STAT5B are recruited, phosphorylated and activated by JAK1 and JAK3. Once activated, dimerized STAT5 translocates to the nucleus and promotes the transcription of specific target genes in a cytokine-specific fashion. {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:20440074, ECO:0000269|PubMed:7662955, ECO:0000269|PubMed:8022485}. |
P52569 | SLC7A2 | S455 | ochoa | Cationic amino acid transporter 2 (CAT-2) (CAT2) (Low affinity cationic amino acid transporter 2) (Solute carrier family 7 member 2) | Functions as a permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine); the affinity for its substrates differs between isoforms created by alternative splicing (PubMed:28684763, PubMed:9174363). May play a role in classical or alternative activation of macrophages via its role in arginine transport (By similarity). {ECO:0000250|UniProtKB:P18581, ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 1]: Functions as a permease that mediates the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). Shows a much higher affinity for L-arginine and L-homoarginine than isoform 2. {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 2]: Functions as a low-affinity, high capacity permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}. |
P52594 | AGFG1 | S181 | ochoa | Arf-GAP domain and FG repeat-containing protein 1 (HIV-1 Rev-binding protein) (Nucleoporin-like protein RIP) (Rev-interacting protein) (Rev/Rex activation domain-binding protein) | Required for vesicle docking or fusion during acrosome biogenesis (By similarity). May play a role in RNA trafficking or localization. In case of infection by HIV-1, acts as a cofactor for viral Rev and promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm. This step is essential for HIV-1 replication. {ECO:0000250, ECO:0000269|PubMed:10613896, ECO:0000269|PubMed:14701878, ECO:0000269|PubMed:15749819}. |
P52701 | MSH6 | S830 | ochoa|psp | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P52737 | ZNF136 | S405 | ochoa | Zinc finger protein 136 | May be involved in transcriptional regulation as a weak repressor when alone, or a potent one when fused with a heterologous protein containing a KRAB B-domain. |
P52746 | ZNF142 | S1011 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P52888 | THOP1 | S89 | ochoa | Thimet oligopeptidase (EC 3.4.24.15) (Endopeptidase 24.15) (MP78) | Involved in the metabolism of neuropeptides under 20 amino acid residues long. Involved in cytoplasmic peptide degradation (PubMed:17251185, PubMed:7639763). Able to degrade the amyloid-beta precursor protein and generate amyloidogenic fragments (PubMed:17251185, PubMed:7639763). Also acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P24155, ECO:0000269|PubMed:17251185, ECO:0000269|PubMed:7639763}. |
P52948 | NUP98 | S612 | ochoa|psp | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S623 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S839 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S1060 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S1192 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S1465 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P53396 | ACLY | S481 | ochoa | ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) | Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}. |
P53567 | CEBPG | S56 | ochoa | CCAAT/enhancer-binding protein gamma (C/EBP gamma) | Transcription factor that binds to the promoter and the enhancer regions of target genes. Binds to the enhancer element PRE-I (positive regulatory element-I) of the IL-4 gene (PubMed:7665092). Binds to the promoter and the enhancer of the immunoglobulin heavy chain. Binds to GPE1, a cis-acting element in the G-CSF gene promoter. {ECO:0000250|UniProtKB:P26801, ECO:0000250|UniProtKB:P53568, ECO:0000269|PubMed:7665092}. |
P53602 | MVD | S222 | ochoa | Diphosphomevalonate decarboxylase (EC 4.1.1.33) (Mevalonate (diphospho)decarboxylase) (MDDase) (Mevalonate pyrophosphate decarboxylase) | Catalyzes the ATP dependent decarboxylation of (R)-5-diphosphomevalonate to form isopentenyl diphosphate (IPP). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoids and sterol synthesis. {ECO:0000269|PubMed:18823933, ECO:0000269|PubMed:8626466, ECO:0000269|PubMed:9392419}. |
P53618 | COPB1 | S773 | ochoa | Coatomer subunit beta (Beta-coat protein) (Beta-COP) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. Plays a functional role in facilitating the transport of kappa-type opioid receptor mRNAs into axons and enhances translation of these proteins. Required for limiting lipid storage in lipid droplets. Involved in lipid homeostasis by regulating the presence of perilipin family members PLIN2 and PLIN3 at the lipid droplet surface and promoting the association of adipocyte surface triglyceride lipase (PNPLA2) with the lipid droplet to mediate lipolysis (By similarity). Involved in the Golgi disassembly and reassembly processes during cell cycle. Involved in autophagy by playing a role in early endosome function. Plays a role in organellar compartmentalization of secretory compartments including endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN) and recycling endosomes, and in biosynthetic transport of CAV1. Promotes degradation of Nef cellular targets CD4 and MHC class I antigens by facilitating their trafficking to degradative compartments. {ECO:0000250, ECO:0000269|PubMed:18385291, ECO:0000269|PubMed:18725938, ECO:0000269|PubMed:19364919, ECO:0000269|PubMed:20056612}. |
P53621 | COPA | S173 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P53621 | COPA | S915 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P53634 | CTSC | S329 | ochoa | Dipeptidyl peptidase 1 (EC 3.4.14.1) (Cathepsin C) (Cathepsin J) (Dipeptidyl peptidase I) (DPP-I) (DPPI) (Dipeptidyl transferase) [Cleaved into: Dipeptidyl peptidase 1 exclusion domain chain (Dipeptidyl peptidase I exclusion domain chain); Dipeptidyl peptidase 1 heavy chain (Dipeptidyl peptidase I heavy chain); Dipeptidyl peptidase 1 light chain (Dipeptidyl peptidase I light chain)] | Thiol protease (PubMed:1586157). Has dipeptidylpeptidase activity (PubMed:1586157). Active against a broad range of dipeptide substrates composed of both polar and hydrophobic amino acids (PubMed:1586157). Proline cannot occupy the P1 position and arginine cannot occupy the P2 position of the substrate (PubMed:1586157). Can act as both an exopeptidase and endopeptidase (PubMed:1586157). Activates serine proteases such as elastase, cathepsin G and granzymes A and B (PubMed:8428921). {ECO:0000269|PubMed:1586157, ECO:0000269|PubMed:8428921}. |
P53667 | LIMK1 | S210 | ochoa | LIM domain kinase 1 (LIMK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays an essential role in the regulation of actin filament dynamics. Acts downstream of several Rho family GTPase signal transduction pathways (PubMed:10436159, PubMed:11832213, PubMed:12807904, PubMed:15660133, PubMed:16230460, PubMed:18028908, PubMed:22328514, PubMed:23633677). Activated by upstream kinases including ROCK1, PAK1 and PAK4, which phosphorylate LIMK1 on a threonine residue located in its activation loop (PubMed:10436159). LIMK1 subsequently phosphorylates and inactivates the actin binding/depolymerizing factors cofilin-1/CFL1, cofilin-2/CFL2 and destrin/DSTN, thereby preventing the cleavage of filamentous actin (F-actin), and stabilizing the actin cytoskeleton (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). In this way LIMK1 regulates several actin-dependent biological processes including cell motility, cell cycle progression, and differentiation (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). Phosphorylates TPPP on serine residues, thereby promoting microtubule disassembly (PubMed:18028908). Stimulates axonal outgrowth and may be involved in brain development (PubMed:18028908). {ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:16230460, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23633677}.; FUNCTION: [Isoform 3]: Has a dominant negative effect on actin cytoskeletal changes. Required for atypical chemokine receptor ACKR2-induced phosphorylation of cofilin (CFL1). {ECO:0000269|PubMed:10196227}. |
P53804 | TTC3 | S429 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P53804 | TTC3 | S2006 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P53814 | SMTN | S576 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P53816 | PLAAT3 | S85 | ochoa | Phospholipase A and acyltransferase 3 (EC 2.3.1.-) (EC 3.1.1.32) (EC 3.1.1.4) (Adipose-specific phospholipase A2) (AdPLA) (Group XVI phospholipase A1/A2) (H-rev 107 protein homolog) (H-REV107) (HREV107-1) (HRAS-like suppressor 1) (HRAS-like suppressor 3) (HRSL3) (HREV107-3) (Renal carcinoma antigen NY-REN-65) | Exhibits both phospholipase A1/2 and acyltransferase activities (PubMed:19047760, PubMed:19615464, PubMed:22605381, PubMed:22825852, PubMed:26503625). Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids (PubMed:19047760, PubMed:19615464, PubMed:22605381, PubMed:22825852, PubMed:22923616). For most substrates, PLA1 activity is much higher than PLA2 activity (PubMed:19615464). Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid (PubMed:19615464). Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at the sn-1 position of phosphatidylcholine (PC) and other glycerophospholipids to the primary amine of phosphatidylethanolamine (PE), forming N-acylphosphatidylethanolamine (NAPE), which serves as precursor for N-acylethanolamines (NAEs) (PubMed:19047760, PubMed:19615464, PubMed:22605381, PubMed:22825852). Exhibits high N-acyltransferase activity and low phospholipase A1/2 activity (PubMed:22825852). Required for complete organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light. Organelle membrane degradation is probably catalyzed by the phospholipase activity (By similarity). {ECO:0000250|UniProtKB:Q8R3U1, ECO:0000269|PubMed:19047760, ECO:0000269|PubMed:19615464, ECO:0000269|PubMed:22605381, ECO:0000269|PubMed:22825852, ECO:0000269|PubMed:22923616, ECO:0000303|PubMed:26503625}.; FUNCTION: (Microbial infection) Acts as a host factor for picornaviruses: required during early infection to promote viral genome release into the cytoplasm (PubMed:28077878). May act as a cellular sensor of membrane damage at sites of virus entry, which relocalizes to sites of membrane rupture upon virus unfection (PubMed:28077878). Facilitates safe passage of the RNA away from LGALS8, enabling viral genome translation by host ribosome (PubMed:28077878). May also be involved in initiating pore formation, increasing pore size or in maintaining pores for genome delivery (PubMed:28077878). The lipid-modifying enzyme activity is required for this process (PubMed:28077878). {ECO:0000269|PubMed:28077878}. |
P53992 | SEC24C | S862 | ochoa | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
P53992 | SEC24C | S888 | ochoa | Protein transport protein Sec24C (SEC24-related protein C) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:10214955, PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24D may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:10214955, ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
P54132 | BLM | S464 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54132 | BLM | S714 | psp | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54132 | BLM | S1290 | ochoa|psp | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54136 | RARS1 | S38 | ochoa | Arginine--tRNA ligase, cytoplasmic (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS) | Forms part of a macromolecular complex that catalyzes the attachment of specific amino acids to cognate tRNAs during protein synthesis (PubMed:25288775). Modulates the secretion of AIMP1 and may be involved in generation of the inflammatory cytokine EMAP2 from AIMP1 (PubMed:17443684). {ECO:0000269|PubMed:17443684, ECO:0000269|PubMed:25288775}. |
P54198 | HIRA | S661 | ochoa | Protein HIRA (TUP1-like enhancer of split protein 1) | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}. |
P54198 | HIRA | S687 | ochoa | Protein HIRA (TUP1-like enhancer of split protein 1) | Cooperates with ASF1A to promote replication-independent chromatin assembly. Required for the periodic repression of histone gene transcription during the cell cycle. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit. {ECO:0000269|PubMed:12370293, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527}. |
P54253 | ATXN1 | S88 | ochoa | Ataxin-1 (Spinocerebellar ataxia type 1 protein) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression. Binds RNA in vitro. May be involved in RNA metabolism (PubMed:21475249). In concert with CIC and ATXN1L, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P54254, ECO:0000269|PubMed:21475249}. |
P54253 | ATXN1 | S406 | ochoa | Ataxin-1 (Spinocerebellar ataxia type 1 protein) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression. Binds RNA in vitro. May be involved in RNA metabolism (PubMed:21475249). In concert with CIC and ATXN1L, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P54254, ECO:0000269|PubMed:21475249}. |
P54278 | PMS2 | S220 | ochoa | Mismatch repair endonuclease PMS2 (EC 3.1.-.-) (DNA mismatch repair protein PMS2) (PMS1 protein homolog 2) | Component of the post-replicative DNA mismatch repair system (MMR) (PubMed:30653781, PubMed:35189042). Heterodimerizes with MLH1 to form MutL alpha. DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH3) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MutL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages. Possesses an ATPase activity, but in the absence of gross structural changes, ATP hydrolysis may not be necessary for proficient mismatch repair (PubMed:35189042). {ECO:0000269|PubMed:16873062, ECO:0000269|PubMed:18206974, ECO:0000269|PubMed:23709753, ECO:0000269|PubMed:30653781, ECO:0000269|PubMed:35189042}. |
P54296 | MYOM2 | S567 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54296 | MYOM2 | S601 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54296 | MYOM2 | S1042 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54578 | USP14 | S302 | ochoa | Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) | Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}. |
P54578 | USP14 | S394 | ochoa | Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) | Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}. |
P54646 | PRKAA2 | S345 | ochoa | 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK subunit alpha-2) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (PubMed:7959015). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). Involved in insulin receptor/INSR internalization (PubMed:25687571). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation (By similarity). Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1 (By similarity). Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration (PubMed:36017701). Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation (PubMed:28552616). Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:Q09137, ECO:0000250|UniProtKB:Q8BRK8, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:7959015, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
P54821 | PRRX1 | S21 | ochoa | Paired mesoderm homeobox protein 1 (Homeobox protein PHOX1) (Paired-related homeobox protein 1) (PRX-1) | Master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-beta signaling by remodeling a super-enhancer landscape. Through this function, plays an essential role in wound healing process (PubMed:35589735). Acts as a transcriptional regulator of muscle creatine kinase (MCK) and so has a role in the establishment of diverse mesodermal muscle types. The protein binds to an A/T-rich element in the muscle creatine enhancer (By similarity). May play a role in homeostasis and regeneration of bone, white adipose tissue and derm (By similarity). {ECO:0000250|UniProtKB:P63013, ECO:0000269|PubMed:35589735}.; FUNCTION: [Isoform 1]: Transcriptional activator, when transfected in fibroblastic or myoblastic cell lines. This activity may be masked by the C-terminal OAR domain. {ECO:0000250|UniProtKB:P63013}.; FUNCTION: [Isoform 2]: Transcriptional repressor, when transfected in fibroblastic or myoblastic cell lines. {ECO:0000250|UniProtKB:P63013}. |
P54821 | PRRX1 | S67 | ochoa | Paired mesoderm homeobox protein 1 (Homeobox protein PHOX1) (Paired-related homeobox protein 1) (PRX-1) | Master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-beta signaling by remodeling a super-enhancer landscape. Through this function, plays an essential role in wound healing process (PubMed:35589735). Acts as a transcriptional regulator of muscle creatine kinase (MCK) and so has a role in the establishment of diverse mesodermal muscle types. The protein binds to an A/T-rich element in the muscle creatine enhancer (By similarity). May play a role in homeostasis and regeneration of bone, white adipose tissue and derm (By similarity). {ECO:0000250|UniProtKB:P63013, ECO:0000269|PubMed:35589735}.; FUNCTION: [Isoform 1]: Transcriptional activator, when transfected in fibroblastic or myoblastic cell lines. This activity may be masked by the C-terminal OAR domain. {ECO:0000250|UniProtKB:P63013}.; FUNCTION: [Isoform 2]: Transcriptional repressor, when transfected in fibroblastic or myoblastic cell lines. {ECO:0000250|UniProtKB:P63013}. |
P54829 | PTPN5 | S268 | psp | Tyrosine-protein phosphatase non-receptor type 5 (EC 3.1.3.48) (Neural-specific protein-tyrosine phosphatase) (Striatum-enriched protein-tyrosine phosphatase) (STEP) | May regulate the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs, Src family kinases and NMDA receptors. {ECO:0000269|PubMed:21777200}. |
P54920 | NAPA | S195 | ochoa | Alpha-soluble NSF attachment protein (SNAP-alpha) (N-ethylmaleimide-sensitive factor attachment protein alpha) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus (Probable). Together with GNA12 promotes CDH5 localization to plasma membrane (PubMed:15980433). {ECO:0000269|PubMed:15980433, ECO:0000305}. |
P55011 | SLC12A2 | S944 | ochoa | Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) | Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}. |
P55064 | AQP5 | S156 | psp | Aquaporin-5 (AQP-5) | Aquaporins form homotetrameric transmembrane channels, with each monomer independently mediating water transport across the plasma membrane along its osmotic gradient (PubMed:18768791, PubMed:8621489). Plays an important role in fluid secretion in salivary glands (By similarity). Required for TRPV4 activation by hypotonicity. Together with TRPV4, controls regulatory volume decrease in salivary epithelial cells (PubMed:16571723). Seems to play a redundant role in water transport in the eye, lung and in sweat glands (By similarity). {ECO:0000250|UniProtKB:Q9WTY4, ECO:0000269|PubMed:16571723, ECO:0000269|PubMed:18768791, ECO:0000269|PubMed:8621489}. |
P55196 | AFDN | S391 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55196 | AFDN | S655 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55196 | AFDN | S1107 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55197 | MLLT10 | S536 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P55201 | BRPF1 | S84 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P55210 | CASP7 | S234 | ochoa | Caspase-7 (CASP-7) (EC 3.4.22.60) (Apoptotic protease Mch-3) (CMH-1) (ICE-like apoptotic protease 3) (ICE-LAP3) [Cleaved into: Caspase-7 subunit p20; Caspase-7 subunit p11] | Thiol protease involved in different programmed cell death processes, such as apoptosis, pyroptosis or granzyme-mediated programmed cell death, by proteolytically cleaving target proteins (PubMed:11257230, PubMed:11257231, PubMed:11701129, PubMed:15314233, PubMed:16916640, PubMed:17646170, PubMed:18723680, PubMed:19581639, PubMed:8521391, PubMed:8567622, PubMed:8576161, PubMed:9070923). Has a marked preference for Asp-Glu-Val-Asp (DEVD) consensus sequences, with some plasticity for alternate non-canonical sequences (PubMed:12824163, PubMed:15314233, PubMed:17697120, PubMed:19581639, PubMed:20566630, PubMed:23650375, PubMed:23897474, PubMed:27032039). Its involvement in the different programmed cell death processes is probably determined by upstream proteases that activate CASP7 (By similarity). Acts as an effector caspase involved in the execution phase of apoptosis: following cleavage and activation by initiator caspases (CASP8, CASP9 and/or CASP10), mediates execution of apoptosis by catalyzing cleavage of proteins, such as CLSPN, PARP1, PTGES3 and YY1 (PubMed:10497198, PubMed:16123041, PubMed:16374543, PubMed:16916640, PubMed:18723680, PubMed:20566630, PubMed:21555521, PubMed:22184066, PubMed:22451931, PubMed:27889207, PubMed:28863261, PubMed:31586028, PubMed:34156061, PubMed:35338844, PubMed:35446120). Compared to CASP3, acts as a minor executioner caspase and cleaves a limited set of target proteins (PubMed:18723680). Acts as a key regulator of the inflammatory response in response to bacterial infection by catalyzing cleavage and activation of the sphingomyelin phosphodiesterase SMPD1 in the extracellular milieu, thereby promoting membrane repair (PubMed:21157428). Regulates pyroptosis in intestinal epithelial cells: cleaved and activated by CASP1 in response to S.typhimurium infection, promoting its secretion to the extracellular milieu, where it catalyzes activation of SMPD1, generating ceramides that repair membranes and counteract the action of gasdermin-D (GSDMD) pores (By similarity). Regulates granzyme-mediated programmed cell death in hepatocytes: cleaved and activated by granzyme B (GZMB) in response to bacterial infection, promoting its secretion to the extracellular milieu, where it catalyzes activation of SMPD1, generating ceramides that repair membranes and counteract the action of perforin (PRF1) pores (By similarity). Following cleavage by CASP1 in response to inflammasome activation, catalyzes processing and inactivation of PARP1, alleviating the transcription repressor activity of PARP1 (PubMed:22464733). Acts as an inhibitor of type I interferon production during virus-induced apoptosis by mediating cleavage of antiviral proteins CGAS, IRF3 and MAVS, thereby preventing cytokine overproduction (By similarity). Cleaves and activates sterol regulatory element binding proteins (SREBPs) (PubMed:8643593). Cleaves phospholipid scramblase proteins XKR4, XKR8 and XKR9 (By similarity). In case of infection, catalyzes cleavage of Kaposi sarcoma-associated herpesvirus protein ORF57, thereby preventing expression of viral lytic genes (PubMed:20159985). Cleaves BIRC6 following inhibition of BIRC6-caspase binding by DIABLO/SMAC (PubMed:36758104, PubMed:36758106). {ECO:0000250|UniProtKB:P97864, ECO:0000269|PubMed:10497198, ECO:0000269|PubMed:11257230, ECO:0000269|PubMed:11257231, ECO:0000269|PubMed:11701129, ECO:0000269|PubMed:12824163, ECO:0000269|PubMed:15314233, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:16374543, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:17646170, ECO:0000269|PubMed:17697120, ECO:0000269|PubMed:18723680, ECO:0000269|PubMed:19581639, ECO:0000269|PubMed:20159985, ECO:0000269|PubMed:20566630, ECO:0000269|PubMed:21157428, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:22184066, ECO:0000269|PubMed:22451931, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:23650375, ECO:0000269|PubMed:23897474, ECO:0000269|PubMed:27032039, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:28863261, ECO:0000269|PubMed:31586028, ECO:0000269|PubMed:34156061, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758106, ECO:0000269|PubMed:8521391, ECO:0000269|PubMed:8567622, ECO:0000269|PubMed:8576161, ECO:0000269|PubMed:8643593, ECO:0000269|PubMed:9070923}.; FUNCTION: [Isoform Beta]: Lacks enzymatic activity. {ECO:0000269|PubMed:8521391}. |
P55211 | CASP9 | S307 | ochoa | Caspase-9 (CASP-9) (EC 3.4.22.62) (Apoptotic protease Mch-6) (Apoptotic protease-activating factor 3) (APAF-3) (ICE-like apoptotic protease 6) (ICE-LAP6) [Cleaved into: Caspase-9 subunit p35; Caspase-9 subunit p10] | Involved in the activation cascade of caspases responsible for apoptosis execution. Binding of caspase-9 to Apaf-1 leads to activation of the protease which then cleaves and activates effector caspases caspase-3 (CASP3) or caspase-7 (CASP7). Promotes DNA damage-induced apoptosis in a ABL1/c-Abl-dependent manner. Proteolytically cleaves poly(ADP-ribose) polymerase (PARP). Cleaves BIRC6 following inhibition of BIRC6-caspase binding by DIABLO/SMAC (PubMed:36758105, PubMed:36758106). {ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:16352606, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120}.; FUNCTION: [Isoform 2]: Lacks activity is an dominant-negative inhibitor of caspase-9. {ECO:0000269|PubMed:10070954}. |
P55265 | ADAR | S491 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P55273 | CDKN2D | S66 | psp | Cyclin-dependent kinase 4 inhibitor D (p19-INK4d) | Interacts strongly with CDK4 and CDK6 and inhibits them. {ECO:0000269|PubMed:7739548, ECO:0000269|PubMed:8741839}. |
P55273 | CDKN2D | S76 | psp | Cyclin-dependent kinase 4 inhibitor D (p19-INK4d) | Interacts strongly with CDK4 and CDK6 and inhibits them. {ECO:0000269|PubMed:7739548, ECO:0000269|PubMed:8741839}. |
P55347 | PKNOX1 | S41 | ochoa | Homeobox protein PKNOX1 (Homeobox protein PREP-1) (PBX/knotted homeobox 1) | Activates transcription in the presence of PBX1A and HOXA1. {ECO:0000250|UniProtKB:O70477}. |
P55735 | SEC13 | S254 | ochoa | Protein SEC13 homolog (GATOR2 complex protein SEC13) (SEC13-like protein 1) (SEC13-related protein) | Functions as a component of the nuclear pore complex (NPC) and the COPII coat (PubMed:8972206). At the endoplasmic reticulum, SEC13 is involved in the biogenesis of COPII-coated vesicles (PubMed:8972206). Required for the exit of adipsin (CFD/ADN), an adipocyte-secreted protein from the endoplasmic reticulum (By similarity). {ECO:0000250|UniProtKB:Q9D1M0, ECO:0000269|PubMed:8972206}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
P55786 | NPEPPS | S745 | ochoa | Puromycin-sensitive aminopeptidase (PSA) (EC 3.4.11.14) (Cytosol alanyl aminopeptidase) (AAP-S) | Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. {ECO:0000269|PubMed:10978616, ECO:0000269|PubMed:11062501, ECO:0000269|PubMed:17154549, ECO:0000269|PubMed:17318184, ECO:0000269|PubMed:19917696}. |
P55809 | OXCT1 | S170 | ochoa | Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial (SCOT) (EC 2.8.3.5) (3-oxoacid CoA-transferase 1) (Somatic-type succinyl-CoA:3-oxoacid CoA-transferase) (SCOT-s) (Succinyl-CoA:3-oxoacid CoA transferase) | Key enzyme for ketone body catabolism. Catalyzes the first, rate-limiting step of ketone body utilization in extrahepatic tissues, by transferring coenzyme A (CoA) from a donor thiolester species (succinyl-CoA) to an acceptor carboxylate (acetoacetate), and produces acetoacetyl-CoA. Acetoacetyl-CoA is further metabolized by acetoacetyl-CoA thiolase into two acetyl-CoA molecules which enter the citric acid cycle for energy production (PubMed:10964512). Forms a dimeric enzyme where both of the subunits are able to form enzyme-CoA thiolester intermediates, but only one subunit is competent to transfer the CoA moiety to the acceptor carboxylate (3-oxo acid) and produce a new acyl-CoA. Formation of the enzyme-CoA intermediate proceeds via an unstable anhydride species formed between the carboxylate groups of the enzyme and substrate (By similarity). {ECO:0000250|UniProtKB:Q29551, ECO:0000269|PubMed:10964512}. |
P56192 | MARS1 | S209 | psp | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
P56192 | MARS1 | S825 | ochoa|psp | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
P56524 | HDAC4 | S266 | ochoa|psp | Histone deacetylase 4 (HD4) (EC 3.5.1.98) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}. |
P56524 | HDAC4 | S400 | ochoa | Histone deacetylase 4 (HD4) (EC 3.5.1.98) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}. |
P56589 | PEX3 | S254 | ochoa | Peroxisomal biogenesis factor 3 (Peroxin-3) (Peroxisomal assembly protein PEX3) | Involved in peroxisome biosynthesis and integrity. Assembles membrane vesicles before the matrix proteins are translocated. As a docking factor for PEX19, is necessary for the import of peroxisomal membrane proteins in the peroxisomes. {ECO:0000269|PubMed:10848631, ECO:0000269|PubMed:15007061}. |
P56817 | BACE1 | S83 | psp | Beta-secretase 1 (EC 3.4.23.46) (Aspartyl protease 2) (ASP2) (Asp 2) (Beta-site amyloid precursor protein cleaving enzyme 1) (Beta-site APP cleaving enzyme 1) (Memapsin-2) (Membrane-associated aspartic protease 2) | Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase (PubMed:10656250, PubMed:10677483, PubMed:20354142). Cleaves CHL1 (By similarity). {ECO:0000250|UniProtKB:P56818, ECO:0000269|PubMed:10656250, ECO:0000269|PubMed:10677483, ECO:0000269|PubMed:20354142}. |
P56945 | BCAR1 | S18 | ochoa | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P57058 | HUNK | S585 | ochoa | Hormonally up-regulated neu tumor-associated kinase (EC 2.7.11.1) (B19) (Serine/threonine-protein kinase MAK-V) | None |
P57679 | EVC | S81 | ochoa | EvC complex member EVC (DWF-1) (Ellis-van Creveld syndrome protein) | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling. Involved in endochondral growth and skeletal development. {ECO:0000250|UniProtKB:P57680}. |
P57682 | KLF3 | S250 | ochoa|psp | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P57740 | NUP107 | S86 | ochoa | Nuclear pore complex protein Nup107 (107 kDa nucleoporin) (Nucleoporin Nup107) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:12552102, PubMed:15229283, PubMed:30179222). Required for the assembly of peripheral proteins into the NPC (PubMed:12552102, PubMed:15229283). May anchor NUP62 to the NPC (PubMed:15229283). Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:12552102, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:30179222}. |
P57768 | SNX16 | S70 | ochoa | Sorting nexin-16 | May be involved in several stages of intracellular trafficking. Plays a role in protein transport from early to late endosomes. Plays a role in protein transport to the lysosome. Promotes degradation of EGFR after EGF signaling. Plays a role in intracellular transport of vesicular stomatitis virus nucleocapsids from the endosome to the cytoplasm. {ECO:0000269|PubMed:12813048, ECO:0000269|PubMed:15951806}. |
P59923 | ZNF445 | S150 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P59923 | ZNF445 | S171 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P59923 | ZNF445 | S927 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P60228 | EIF3E | S399 | ochoa | Eukaryotic translation initiation factor 3 subunit E (eIF3e) (Eukaryotic translation initiation factor 3 subunit 6) (Viral integration site protein INT-6 homolog) (eIF-3 p48) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). Required for nonsense-mediated mRNA decay (NMD); may act in conjunction with UPF2 to divert mRNAs from translation to the NMD pathway (PubMed:17468741). May interact with MCM7 and EPAS1 and regulate the proteasome-mediated degradation of these proteins (PubMed:17310990, PubMed:17324924). {ECO:0000255|HAMAP-Rule:MF_03004, ECO:0000269|PubMed:17310990, ECO:0000269|PubMed:17324924, ECO:0000269|PubMed:17468741, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
P61006 | RAB8A | S181 | ochoa | Ras-related protein Rab-8A (EC 3.6.5.2) (Oncogene c-mel) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB8A is involved in polarized vesicular trafficking and neurotransmitter release. Together with RAB11A, RAB3IP, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with MYO5B and RAB11A participates in epithelial cell polarization (PubMed:21282656). Also involved in membrane trafficking to the cilium and ciliogenesis (PubMed:21844891, PubMed:30398148, PubMed:20631154). Together with MICALL2, may also regulate adherens junction assembly (By similarity). May play a role in insulin-induced transport to the plasma membrane of the glucose transporter GLUT4 and therefore play a role in glucose homeostasis (By similarity). Involved in autophagy (PubMed:27103069). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation (PubMed:30209220). Suppresses stress-induced lysosomal enlargement through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P35280, ECO:0000250|UniProtKB:P55258, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:21844891, ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}. |
P61221 | ABCE1 | S547 | ochoa | ATP-binding cassette sub-family E member 1 (EC 3.6.5.-) (2'-5'-oligoadenylate-binding protein) (HuHP68) (RNase L inhibitor) (Ribonuclease 4 inhibitor) (RNS4I) | Nucleoside-triphosphatase (NTPase) involved in ribosome recycling by mediating ribosome disassembly (PubMed:20122402, PubMed:21448132). Able to hydrolyze ATP, GTP, UTP and CTP (PubMed:20122402). Splits ribosomes into free 60S subunits and tRNA- and mRNA-bound 40S subunits (PubMed:20122402, PubMed:21448132). Acts either after canonical termination facilitated by release factors (ETF1/eRF1) or after recognition of stalled and vacant ribosomes by mRNA surveillance factors (PELO/Pelota) (PubMed:20122402, PubMed:21448132). Involved in the No-Go Decay (NGD) pathway: recruited to stalled ribosomes by the Pelota-HBS1L complex, and drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132). Also plays a role in quality control of translation of mitochondrial outer membrane-localized mRNA (PubMed:29861391). As part of the PINK1-regulated signaling, ubiquitinated by CNOT4 upon mitochondria damage; this modification generates polyubiquitin signals that recruit autophagy receptors to the mitochondrial outer membrane and initiate mitophagy (PubMed:29861391). RNASEL-specific protein inhibitor which antagonizes the binding of 2-5A (5'-phosphorylated 2',5'-linked oligoadenylates) to RNASEL (PubMed:9660177). Negative regulator of the anti-viral effect of the interferon-regulated 2-5A/RNASEL pathway (PubMed:11585831, PubMed:9660177, PubMed:9847332). {ECO:0000269|PubMed:11585831, ECO:0000269|PubMed:20122402, ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:29861391, ECO:0000269|PubMed:9660177, ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) May act as a chaperone for post-translational events during HIV-1 capsid assembly. {ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) Plays a role in the down-regulation of the 2-5A/RNASEL pathway during encephalomyocarditis virus (EMCV) and HIV-1 infections. {ECO:0000269|PubMed:9660177}. |
P61254 | RPL26 | S32 | ochoa | Large ribosomal subunit protein uL24 (60S ribosomal protein L26) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:26100019, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:26100019, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:26100019}. |
P61978 | HNRNPK | S116 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P61978 | HNRNPK | S216 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P61978 | HNRNPK | S353 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P62136 | PPP1CA | S177 | ochoa | Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PP-1A) (EC 3.1.3.16) | Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets (PubMed:28216226, PubMed:30158517, PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670, PubMed:39603239, PubMed:39603240). Protein phosphatase 1 (PP1) is essential for cell division, transcription elongation, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670, PubMed:39603239, PubMed:39603240). Involved in regulation of ionic conductances and long-term synaptic plasticity. May play an important role in dephosphorylating substrates such as the postsynaptic density-associated Ca(2+)/calmodulin dependent protein kinase II. Catalytic component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation: the PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). Regulates NEK2 function in terms of kinase activity and centrosome number and splitting, both in the presence and absence of radiation-induced DNA damage (PubMed:17283141). Regulator of neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development (By similarity). In balance with CSNK1D and CSNK1E, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:21712997). May dephosphorylate CSNK1D and CSNK1E (PubMed:21712997). Dephosphorylates the 'Ser-418' residue of FOXP3 in regulatory T-cells (Treg) from patients with rheumatoid arthritis, thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed:23396208). Dephosphorylates CENPA (PubMed:25556658). Dephosphorylates the 'Ser-139' residue of ATG16L1 causing dissociation of ATG12-ATG5-ATG16L1 complex, thereby inhibiting autophagy (PubMed:26083323). Together with PPP1CC (PP1-gamma subunit), dephosphorylates IFIH1/MDA5 and RIG-I leading to their activation and a functional innate immune response (PubMed:23499489). Core component of the SHOC2-MRAS-PP1c (SMP) holophosphatase complex that regulates the MAPK pathway activation (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex specifically dephosphorylates the inhibitory phosphorylation at 'Ser-259' of RAF1 kinase, 'Ser-365' of BRAF kinase and 'Ser-214' of ARAF kinase, stimulating their kinase activities (PubMed:35768504, PubMed:35830882, PubMed:35831509, PubMed:36175670). The SMP complex enhances the dephosphorylation activity and substrate specificity of PP1c (PubMed:35768504, PubMed:36175670). {ECO:0000250|UniProtKB:P62137, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:21712997, ECO:0000269|PubMed:23396208, ECO:0000269|PubMed:23499489, ECO:0000269|PubMed:25556658, ECO:0000269|PubMed:26083323, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:35768504, ECO:0000269|PubMed:35830882, ECO:0000269|PubMed:35831509, ECO:0000269|PubMed:36175670, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240}.; FUNCTION: (Microbial infection) Necessary for alphaviruses replication. {ECO:0000269|PubMed:29769351}. |
P62140 | PPP1CB | S176 | ochoa | Serine/threonine-protein phosphatase PP1-beta catalytic subunit (PP-1B) (PPP1CD) (EC 3.1.3.16) (EC 3.1.3.53) | Protein phosphatase that associates with over 200 regulatory proteins to form highly specific holoenzymes which dephosphorylate hundreds of biological targets. Protein phosphatase (PP1) is essential for cell division, it participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Involved in regulation of ionic conductances and long-term synaptic plasticity. Component of the PTW/PP1 phosphatase complex, which plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase. In balance with CSNK1D and CSNK1E, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation. May dephosphorylate CSNK1D and CSNK1E. Dephosphorylates the 'Ser-418' residue of FOXP3 in regulatory T-cells (Treg) from patients with rheumatoid arthritis, thereby inactivating FOXP3 and rendering Treg cells functionally defective (PubMed:23396208). Core component of the SHOC2-MRAS-PP1c (SMP) holophosphatase complex that regulates the MAPK pathway activation (PubMed:35768504, PubMed:35831509, PubMed:36175670). The SMP complex specifically dephosphorylates the inhibitory phosphorylation at 'Ser-259' of RAF1 kinase, 'Ser-365' of BRAF kinase and 'Ser-214' of ARAF kinase, stimulating their kinase activities (PubMed:35768504, PubMed:35831509, PubMed:36175670). The SMP complex enhances the dephosphorylation activity and substrate specificity of PP1c (PubMed:35768504, PubMed:36175670). {ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:21712997, ECO:0000269|PubMed:23396208, ECO:0000269|PubMed:35768504, ECO:0000269|PubMed:35831509, ECO:0000269|PubMed:36175670}. |
P62263 | RPS14 | S70 | ochoa | Small ribosomal subunit protein uS11 (40S ribosomal protein S14) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62280 | RPS11 | S114 | ochoa | Small ribosomal subunit protein uS17 (40S ribosomal protein S11) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P62491 | RAB11A | S190 | ochoa | Ras-related protein Rab-11A (Rab-11) (EC 3.6.5.2) (YL8) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:15601896, PubMed:15689490, PubMed:17462998, PubMed:19542231, PubMed:20026645, PubMed:20890297, PubMed:21282656, PubMed:26032412). The small Rab GTPase RAB11A regulates endocytic recycling (PubMed:20026645). Forms a functional Rab11/RAB11FIP3/dynein complex that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). Acts as a major regulator of membrane delivery during cytokinesis (PubMed:15601896). Together with MYO5B and RAB8A participates in epithelial cell polarization (PubMed:21282656). Together with Rabin8/RAB3IP, RAB8A, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Together with MYO5B participates in CFTR trafficking to the plasma membrane and TF (Transferrin) recycling in nonpolarized cells (PubMed:17462998). Required in a complex with MYO5B and RAB11FIP2 for the transport of NPC1L1 to the plasma membrane (PubMed:19542231). Participates in the sorting and basolateral transport of CDH1 from the Golgi apparatus to the plasma membrane (PubMed:15689490). Regulates the recycling of FCGRT (receptor of Fc region of monomeric IgG) to basolateral membranes (By similarity). May also play a role in melanosome transport and release from melanocytes (By similarity). Promotes Rabin8/RAB3IP preciliary vesicular trafficking to mother centriole by forming a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, thereby regulating ciliogenesis initiation (PubMed:25673879, PubMed:31204173). On the contrary, upon LPAR1 receptor signaling pathway activation, interaction with phosphorylated WDR44 prevents Rab11-RAB3IP-RAB11FIP3 complex formation and cilia growth (PubMed:31204173). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-endososomal dependent export route via interaction with WDR44 (PubMed:32344433). {ECO:0000250|UniProtKB:P62490, ECO:0000250|UniProtKB:P62492, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:15689490, ECO:0000269|PubMed:17462998, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26032412, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
P62750 | RPL23A | S43 | ochoa | Large ribosomal subunit protein uL23 (60S ribosomal protein L23a) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). Binds a specific region on the 26S rRNA (PubMed:23636399, PubMed:32669547). May promote p53/TP53 degradation possibly through the stimulation of MDM2-mediated TP53 polyubiquitination (PubMed:26203195). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}. |
P62899 | RPL31 | S98 | ochoa | Large ribosomal subunit protein eL31 (60S ribosomal protein L31) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P63010 | AP2B1 | S605 | ochoa | AP-2 complex subunit beta (AP105B) (Adaptor protein complex AP-2 subunit beta) (Adaptor-related protein complex 2 subunit beta) (Beta-2-adaptin) (Beta-adaptin) (Clathrin assembly protein complex 2 beta large chain) (Plasma membrane adaptor HA2/AP2 adaptin beta subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 beta subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins; at least some clathrin-associated sorting proteins (CLASPs) are recognized by their [DE]-X(1,2)-F-X-X-[FL]-X-X-X-R motif. The AP-2 beta subunit binds to clathrin heavy chain, promoting clathrin lattice assembly; clathrin displaces at least some CLASPs from AP2B1 which probably then can be positioned for further coat assembly. {ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:14985334, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
P63244 | RACK1 | S157 | ochoa | Small ribosomal subunit protein RACK1 (Cell proliferation-inducing gene 21 protein) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Guanine nucleotide-binding protein subunit beta-like protein 12.3) (Human lung cancer oncogene 7 protein) (HLC-7) (Receptor for activated C kinase) (Receptor of activated protein C kinase 1) [Cleaved into: Small ribosomal subunit protein RACK1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed) (Receptor of activated protein C kinase 1, N-terminally processed)] | Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression (PubMed:23636399). Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (PubMed:28132843). Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Involved in the transport of ABCB4 from the Golgi to the apical bile canalicular membrane (PubMed:19674157). Promotes migration of breast carcinoma cells by binding to and activating RHOA (PubMed:20499158). Acts as an adapter for the dephosphorylation and inactivation of AKT1 by promoting recruitment of PP2A phosphatase to AKT1 (By similarity). {ECO:0000250|UniProtKB:P68040, ECO:0000269|PubMed:11884618, ECO:0000269|PubMed:12589061, ECO:0000269|PubMed:12958311, ECO:0000269|PubMed:17108144, ECO:0000269|PubMed:17244529, ECO:0000269|PubMed:17956333, ECO:0000269|PubMed:18088317, ECO:0000269|PubMed:18258429, ECO:0000269|PubMed:18621736, ECO:0000269|PubMed:19423701, ECO:0000269|PubMed:19674157, ECO:0000269|PubMed:19785988, ECO:0000269|PubMed:20499158, ECO:0000269|PubMed:20541605, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:20976005, ECO:0000269|PubMed:21212275, ECO:0000269|PubMed:21347310, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:9584165}.; FUNCTION: (Microbial infection) Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. {ECO:0000269|PubMed:21347310}.; FUNCTION: (Microbial infection) Enhances phosphorylation of HIV-1 Nef by PKCs. {ECO:0000269|PubMed:11312657}.; FUNCTION: (Microbial infection) In case of poxvirus infection, remodels the ribosomes so that they become optimal for the viral mRNAs (containing poly-A leaders) translation but not for host mRNAs. {ECO:0000269|PubMed:28636603}.; FUNCTION: (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses. {ECO:0000269|PubMed:25416947}. |
P68371 | TUBB4B | S172 | ochoa | Tubulin beta-4B chain (Tubulin beta-2 chain) (Tubulin beta-2C chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P68402 | PAFAH1B2 | S64 | ochoa | Platelet-activating factor acetylhydrolase IB subunit alpha2 (EC 3.1.1.47) (PAF acetylhydrolase 30 kDa subunit) (PAF-AH 30 kDa subunit) (PAF-AH subunit beta) (PAFAH subunit beta) | Alpha2 catalytic subunit of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)) heterotetrameric enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and modulates the action of PAF. The activity and substrate specificity of PAF-AH (I) are affected by its subunit composition. The alpha2/alpha2 homodimer (PAFAH1B2/PAFAH1B2 homodimer) hydrolyzes PAF and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylethanolamine (AAGPE) more efficiently than 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoric acid (AAGPA). In contrast, the alpha1/alpha2 heterodimer(PAFAH1B3/PAFAH1B3 heterodimer) hydrolyzes AAGPA more efficiently than PAF, but has little hydrolytic activity towards AAGPE (By similarity). May play a role in male germ cell meiosis during the late pachytenestage and meiotic divisions as well as early spermiogenesis (By similarity). {ECO:0000250|UniProtKB:P68401, ECO:0000250|UniProtKB:Q61206}. |
P78332 | RBM6 | S362 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78347 | GTF2I | S620 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
P78347 | GTF2I | S831 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
P78352 | DLG4 | S25 | psp | Disks large homolog 4 (Postsynaptic density protein 95) (PSD-95) (Synapse-associated protein 90) (SAP-90) (SAP90) | Postsynaptic scaffolding protein that plays a critical role in synaptogenesis and synaptic plasticity by providing a platform for the postsynaptic clustering of crucial synaptic proteins. Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B. Also regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression (By similarity). Under basal conditions, cooperates with FYN to stabilize palmitoyltransferase ZDHHC5 at the synaptic membrane through FYN-mediated phosphorylation of ZDHHC5 and its subsequent inhibition of association with endocytic proteins (PubMed:26334723). {ECO:0000250|UniProtKB:Q62108, ECO:0000269|PubMed:26334723}. |
P78362 | SRPK2 | S380 | ochoa | SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}. |
P78364 | PHC1 | S669 | ochoa | Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}. |
P78364 | PHC1 | S786 | ochoa | Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}. |
P78364 | PHC1 | S895 | ochoa | Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}. |
P78367 | NKX3-2 | S73 | ochoa | Homeobox protein Nkx-3.2 (Bagpipe homeobox protein homolog 1) (Homeobox protein NK-3 homolog B) | Transcriptional repressor that acts as a negative regulator of chondrocyte maturation. PLays a role in distal stomach development; required for proper antral-pyloric morphogenesis and development of antral-type epithelium. In concert with GSC, defines the structural components of the middle ear; required for tympanic ring and gonium development and in the regulation of the width of the malleus (By similarity). {ECO:0000250}. |
P78413 | IRX4 | S430 | ochoa | Iroquois-class homeodomain protein IRX-4 (Homeodomain protein IRXA3) (Iroquois homeobox protein 4) | Likely to be an important mediator of ventricular differentiation during cardiac development. |
P78524 | DENND2B | S539 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P78527 | PRKDC | S687 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78527 | PRKDC | S1052 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78527 | PRKDC | S1203 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78527 | PRKDC | S2547 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78559 | MAP1A | S909 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S1288 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S2019 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78560 | CRADD | S114 | ochoa | Death domain-containing protein CRADD (Caspase and RIP adapter with death domain) (RIP-associated protein with a death domain) | Adapter protein that associates with PIDD1 and the caspase CASP2 to form the PIDDosome, a complex that activates CASP2 and triggers apoptosis (PubMed:15073321, PubMed:16652156, PubMed:17159900, PubMed:17289572, PubMed:9044836). Also recruits CASP2 to the TNFR-1 signaling complex through its interaction with RIPK1 and TRADD and may play a role in the tumor necrosis factor-mediated signaling pathway (PubMed:8985253). {ECO:0000269|PubMed:15073321, ECO:0000269|PubMed:16652156, ECO:0000269|PubMed:17159900, ECO:0000269|PubMed:17289572, ECO:0000269|PubMed:8985253, ECO:0000269|PubMed:9044836}. |
P78563 | ADARB1 | S26 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P78563 | ADARB1 | S344 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P80192 | MAP3K9 | S533 | ochoa | Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}. |
P82094 | TMF1 | S77 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82094 | TMF1 | S102 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82094 | TMF1 | S112 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P86790 | CCZ1B | S76 | ochoa | Vacuolar fusion protein CCZ1 homolog B (Vacuolar fusion protein CCZ1 homolog-like) | None |
P86790 | CCZ1B | S266 | ochoa | Vacuolar fusion protein CCZ1 homolog B (Vacuolar fusion protein CCZ1 homolog-like) | None |
P86791 | CCZ1 | S76 | ochoa | Vacuolar fusion protein CCZ1 homolog | Acts in concert with MON1A, as a guanine exchange factor (GEF) for RAB7, promotes the exchange of GDP to GTP, converting it from an inactive GDP-bound form into an active GTP-bound form (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
P86791 | CCZ1 | S266 | ochoa | Vacuolar fusion protein CCZ1 homolog | Acts in concert with MON1A, as a guanine exchange factor (GEF) for RAB7, promotes the exchange of GDP to GTP, converting it from an inactive GDP-bound form into an active GTP-bound form (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
P98082 | DAB2 | S227 | ochoa|psp | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
P98082 | DAB2 | S401 | ochoa|psp | Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) | Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}. |
P98088 | MUC5AC | S1618 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
P98170 | XIAP | S40 | ochoa|psp | E3 ubiquitin-protein ligase XIAP (EC 2.3.2.27) (Baculoviral IAP repeat-containing protein 4) (IAP-like protein) (ILP) (hILP) (Inhibitor of apoptosis protein 3) (IAP-3) (hIAP-3) (hIAP3) (RING-type E3 ubiquitin transferase XIAP) (X-linked inhibitor of apoptosis protein) (X-linked IAP) | Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis (PubMed:11257230, PubMed:11257231, PubMed:11447297, PubMed:12121969, PubMed:12620238, PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:9230442). Acts as a direct caspase inhibitor (PubMed:11257230, PubMed:11257231, PubMed:12620238). Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry (PubMed:11257230, PubMed:11257231, PubMed:16352606, PubMed:16916640). Inactivates CASP9 by keeping it in a monomeric, inactive state (PubMed:12620238). Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS, PTEN and BIRC5/survivin (PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:22607974, PubMed:29452636, PubMed:30026309). Acts as an important regulator of innate immunity by mediating 'Lys-63'-linked polyubiquitination of RIPK2 downstream of NOD1 and NOD2, thereby transforming RIPK2 into a scaffolding protein for downstream effectors, ultimately leading to activation of the NF-kappa-B and MAP kinases signaling (PubMed:19667203, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitination of RIPK2 also promotes recruitment of the LUBAC complex to RIPK2 (PubMed:22607974, PubMed:29452636). Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation (PubMed:17560374). Ubiquitination of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation (PubMed:20154138). Ubiquitination of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation (PubMed:17967870, PubMed:22103349). Plays a role in copper homeostasis by ubiquitinating COMMD1 and promoting its proteasomal degradation (PubMed:14685266). Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation (PubMed:21145488). Ubiquitinates and therefore mediates the proteasomal degradation of BCL2 in response to apoptosis (PubMed:29020630). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner (PubMed:22095281). Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8 (PubMed:22095281). Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES (PubMed:22304967). Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program (PubMed:22304967). {ECO:0000269|PubMed:11257230, ECO:0000269|PubMed:11257231, ECO:0000269|PubMed:11447297, ECO:0000269|PubMed:12121969, ECO:0000269|PubMed:12620238, ECO:0000269|PubMed:14685266, ECO:0000269|PubMed:16352606, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:17560374, ECO:0000269|PubMed:17967870, ECO:0000269|PubMed:19473982, ECO:0000269|PubMed:19667203, ECO:0000269|PubMed:20154138, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:22103349, ECO:0000269|PubMed:22304967, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:29020630, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:9230442, ECO:0000303|PubMed:22095281}. |
P98170 | XIAP | S87 | psp | E3 ubiquitin-protein ligase XIAP (EC 2.3.2.27) (Baculoviral IAP repeat-containing protein 4) (IAP-like protein) (ILP) (hILP) (Inhibitor of apoptosis protein 3) (IAP-3) (hIAP-3) (hIAP3) (RING-type E3 ubiquitin transferase XIAP) (X-linked inhibitor of apoptosis protein) (X-linked IAP) | Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell invasion and metastasis (PubMed:11257230, PubMed:11257231, PubMed:11447297, PubMed:12121969, PubMed:12620238, PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:9230442). Acts as a direct caspase inhibitor (PubMed:11257230, PubMed:11257231, PubMed:12620238). Directly bind to the active site pocket of CASP3 and CASP7 and obstructs substrate entry (PubMed:11257230, PubMed:11257231, PubMed:16352606, PubMed:16916640). Inactivates CASP9 by keeping it in a monomeric, inactive state (PubMed:12620238). Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and the target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, MAP3K2/MEKK2, DIABLO/SMAC, AIFM1, CCS, PTEN and BIRC5/survivin (PubMed:17560374, PubMed:17967870, PubMed:19473982, PubMed:20154138, PubMed:22103349, PubMed:22607974, PubMed:29452636, PubMed:30026309). Acts as an important regulator of innate immunity by mediating 'Lys-63'-linked polyubiquitination of RIPK2 downstream of NOD1 and NOD2, thereby transforming RIPK2 into a scaffolding protein for downstream effectors, ultimately leading to activation of the NF-kappa-B and MAP kinases signaling (PubMed:19667203, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitination of RIPK2 also promotes recruitment of the LUBAC complex to RIPK2 (PubMed:22607974, PubMed:29452636). Regulates the BMP signaling pathway and the SMAD and MAP3K7/TAK1 dependent pathways leading to NF-kappa-B and JNK activation (PubMed:17560374). Ubiquitination of CCS leads to enhancement of its chaperone activity toward its physiologic target, SOD1, rather than proteasomal degradation (PubMed:20154138). Ubiquitination of MAP3K2/MEKK2 and AIFM1 does not lead to proteasomal degradation (PubMed:17967870, PubMed:22103349). Plays a role in copper homeostasis by ubiquitinating COMMD1 and promoting its proteasomal degradation (PubMed:14685266). Can also function as E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation (PubMed:21145488). Ubiquitinates and therefore mediates the proteasomal degradation of BCL2 in response to apoptosis (PubMed:29020630). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner (PubMed:22095281). Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8 (PubMed:22095281). Acts as a positive regulator of Wnt signaling and ubiquitinates TLE1, TLE2, TLE3, TLE4 and AES (PubMed:22304967). Ubiquitination of TLE3 results in inhibition of its interaction with TCF7L2/TCF4 thereby allowing efficient recruitment and binding of the transcriptional coactivator beta-catenin to TCF7L2/TCF4 that is required to initiate a Wnt-specific transcriptional program (PubMed:22304967). {ECO:0000269|PubMed:11257230, ECO:0000269|PubMed:11257231, ECO:0000269|PubMed:11447297, ECO:0000269|PubMed:12121969, ECO:0000269|PubMed:12620238, ECO:0000269|PubMed:14685266, ECO:0000269|PubMed:16352606, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:17560374, ECO:0000269|PubMed:17967870, ECO:0000269|PubMed:19473982, ECO:0000269|PubMed:19667203, ECO:0000269|PubMed:20154138, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:22103349, ECO:0000269|PubMed:22304967, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:29020630, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:9230442, ECO:0000303|PubMed:22095281}. |
P98194 | ATP2C1 | S621 | ochoa | Calcium-transporting ATPase type 2C member 1 (ATPase 2C1) (EC 7.2.2.10) (ATP-dependent Ca(2+) pump PMR1) (Ca(2+)/Mn(2+)-ATPase 2C1) (Secretory pathway Ca(2+)-transporting ATPase type 1) (SPCA1) | ATP-driven pump that supplies the Golgi apparatus with Ca(2+) and Mn(2+) ions, both essential cofactors for processing and trafficking of newly synthesized proteins in the secretory pathway (PubMed:12707275, PubMed:16192278, PubMed:20439740, PubMed:21187401, PubMed:30923126). Within a catalytic cycle, acquires Ca(2+) or Mn(2+) ions on the cytoplasmic side of the membrane and delivers them to the lumenal side. The transfer of ions across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:16192278, PubMed:16332677, PubMed:30923126). Plays a primary role in the maintenance of Ca(2+) homeostasis in the trans-Golgi compartment with a functional impact on Golgi and post-Golgi protein sorting as well as a structural impact on cisternae morphology (PubMed:14632183, PubMed:20439740). Responsible for loading the Golgi stores with Ca(2+) ions in keratinocytes, contributing to keratinocyte differentiation and epidermis integrity (PubMed:10615129, PubMed:14632183, PubMed:20439740). Participates in Ca(2+) and Mn(2+) ions uptake into the Golgi store of hippocampal neurons and regulates protein trafficking required for neural polarity (By similarity). May also play a role in the maintenance of Ca(2+) and Mn(2+) homeostasis and signaling in the cytosol while preventing cytotoxicity (PubMed:21187401). {ECO:0000250|UniProtKB:Q80XR2, ECO:0000269|PubMed:10615129, ECO:0000269|PubMed:12707275, ECO:0000269|PubMed:14632183, ECO:0000269|PubMed:16192278, ECO:0000269|PubMed:16332677, ECO:0000269|PubMed:20439740, ECO:0000269|PubMed:21187401, ECO:0000269|PubMed:30923126}. |
P98196 | ATP11A | S459 | ochoa | Phospholipid-transporting ATPase IH (EC 7.6.2.1) (ATPase IS) (ATPase class VI type 11A) (P4-ATPase flippase complex alpha subunit ATP11A) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of the plasma membrane (PubMed:25315773, PubMed:25947375, PubMed:26567335, PubMed:29799007, PubMed:30018401, PubMed:36300302). Does not show flippase activity toward phosphatidylcholine (PC) (PubMed:34403372). Contributes to the maintenance of membrane lipid asymmetry with a specific role in morphogenesis of muscle cells. In myoblasts, mediates PS enrichment at the inner leaflet of plasma membrane, triggering PIEZO1-dependent Ca2+ influx and Rho GTPases signal transduction, subsequently leading to the assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). May be involved in the uptake of farnesyltransferase inhibitor drugs, such as lonafarnib. {ECO:0000269|PubMed:15860663, ECO:0000269|PubMed:25315773, ECO:0000269|PubMed:25947375, ECO:0000269|PubMed:26567335, ECO:0000269|PubMed:29799007, ECO:0000269|PubMed:30018401, ECO:0000269|PubMed:34403372, ECO:0000269|PubMed:36300302, ECO:0000305}. |
Q00266 | MAT1A | S114 | psp | S-adenosylmethionine synthase isoform type-1 (AdoMet synthase 1) (EC 2.5.1.6) (Methionine adenosyltransferase 1) (MAT 1) (Methionine adenosyltransferase I/III) (MAT-I/III) | Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. {ECO:0000269|PubMed:10677294}. |
Q00536 | CDK16 | S138 | ochoa|psp | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q00537 | CDK17 | S122 | ochoa | Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) | May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}. |
Q00537 | CDK17 | S165 | ochoa | Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) | May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}. |
Q00587 | CDC42EP1 | S143 | ochoa | Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) | Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}. |
Q00610 | CLTC | S412 | ochoa | Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q00653 | NFKB2 | S277 | ochoa | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q00653 | NFKB2 | S812 | ochoa | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q00975 | CACNA1B | S745 | ochoa | Voltage-dependent N-type calcium channel subunit alpha-1B (Brain calcium channel III) (BIII) (Calcium channel, L type, alpha-1 polypeptide isoform 5) (Voltage-gated calcium channel subunit alpha Cav2.2) | Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group. They are involved in pain signaling (PubMed:25296916). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons. Mediates Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). {ECO:0000250|UniProtKB:Q02294, ECO:0000269|PubMed:25296916}.; FUNCTION: [Isoform Alpha-1B-1]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. {ECO:0000269|PubMed:1321501}. |
Q01081 | U2AF1 | S145 | ochoa | Splicing factor U2AF 35 kDa subunit (U2 auxiliary factor 35 kDa subunit) (U2 small nuclear RNA auxiliary factor 1) (U2 snRNP auxiliary factor small subunit) | Plays a critical role in both constitutive and enhancer-dependent splicing by mediating protein-protein interactions and protein-RNA interactions required for accurate 3'-splice site selection. Recruits U2 snRNP to the branch point. Directly mediates interactions between U2AF2 and proteins bound to the enhancers and thus may function as a bridge between U2AF2 and the enhancer complex to recruit it to the adjacent intron. {ECO:0000269|PubMed:22158538, ECO:0000269|PubMed:25311244, ECO:0000269|PubMed:8647433}. |
Q01082 | SPTBN1 | S817 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q01082 | SPTBN1 | S2138 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q01085 | TIAL1 | S201 | ochoa | Nucleolysin TIAR (TIA-1-related protein) | RNA-binding protein involved in alternative pre-RNA splicing and in cytoplasmic stress granules formation (PubMed:10613902, PubMed:1326761, PubMed:17488725, PubMed:8576255). Shows a preference for uridine-rich RNAs (PubMed:8576255). Activates splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on its own pre-mRNA and on TIA1 mRNA (By similarity). Promotes the inclusion of TIA1 exon 5 to give rise to the long isoform (isoform a) of TIA1 (PubMed:17488725). Acts downstream of the stress-induced phosphorylation of EIF2S1/EIF2A to promote the recruitment of untranslated mRNAs to cytoplasmic stress granules (SG) (PubMed:10613902). Possesses nucleolytic activity against cytotoxic lymphocyte target cells (PubMed:1326761). May be involved in apoptosis (PubMed:1326761). {ECO:0000250|UniProtKB:P70318, ECO:0000269|PubMed:10613902, ECO:0000269|PubMed:1326761, ECO:0000269|PubMed:17488725, ECO:0000269|PubMed:8576255}. |
Q01085 | TIAL1 | S278 | ochoa | Nucleolysin TIAR (TIA-1-related protein) | RNA-binding protein involved in alternative pre-RNA splicing and in cytoplasmic stress granules formation (PubMed:10613902, PubMed:1326761, PubMed:17488725, PubMed:8576255). Shows a preference for uridine-rich RNAs (PubMed:8576255). Activates splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on its own pre-mRNA and on TIA1 mRNA (By similarity). Promotes the inclusion of TIA1 exon 5 to give rise to the long isoform (isoform a) of TIA1 (PubMed:17488725). Acts downstream of the stress-induced phosphorylation of EIF2S1/EIF2A to promote the recruitment of untranslated mRNAs to cytoplasmic stress granules (SG) (PubMed:10613902). Possesses nucleolytic activity against cytotoxic lymphocyte target cells (PubMed:1326761). May be involved in apoptosis (PubMed:1326761). {ECO:0000250|UniProtKB:P70318, ECO:0000269|PubMed:10613902, ECO:0000269|PubMed:1326761, ECO:0000269|PubMed:17488725, ECO:0000269|PubMed:8576255}. |
Q01094 | E2F1 | S307 | ochoa | Transcription factor E2F1 (E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1) (Retinoblastoma-binding protein 3) (RBBP-3) (pRB-binding protein E2F-1) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication (PubMed:10675335, PubMed:12717439, PubMed:17050006, PubMed:17704056, PubMed:18625225, PubMed:28992046). The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase (PubMed:10675335, PubMed:12717439, PubMed:17704056). E2F1 binds preferentially RB1 in a cell-cycle dependent manner (PubMed:10675335, PubMed:12717439, PubMed:17704056). It can mediate both cell proliferation and TP53/p53-dependent apoptosis (PubMed:8170954). Blocks adipocyte differentiation by binding to specific promoters repressing CEBPA binding to its target gene promoters (PubMed:20176812). Directly activates transcription of PEG10 (PubMed:17050006, PubMed:18625225, PubMed:28992046). Positively regulates transcription of RRP1B (PubMed:20040599). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:18625225, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20176812, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:8170954}. |
Q01094 | E2F1 | S375 | ochoa|psp | Transcription factor E2F1 (E2F-1) (PBR3) (Retinoblastoma-associated protein 1) (RBAP-1) (Retinoblastoma-binding protein 3) (RBBP-3) (pRB-binding protein E2F-1) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication (PubMed:10675335, PubMed:12717439, PubMed:17050006, PubMed:17704056, PubMed:18625225, PubMed:28992046). The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase (PubMed:10675335, PubMed:12717439, PubMed:17704056). E2F1 binds preferentially RB1 in a cell-cycle dependent manner (PubMed:10675335, PubMed:12717439, PubMed:17704056). It can mediate both cell proliferation and TP53/p53-dependent apoptosis (PubMed:8170954). Blocks adipocyte differentiation by binding to specific promoters repressing CEBPA binding to its target gene promoters (PubMed:20176812). Directly activates transcription of PEG10 (PubMed:17050006, PubMed:18625225, PubMed:28992046). Positively regulates transcription of RRP1B (PubMed:20040599). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:17050006, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:18625225, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20176812, ECO:0000269|PubMed:28992046, ECO:0000269|PubMed:8170954}. |
Q01130 | SRSF2 | S26 | ochoa | Serine/arginine-rich splicing factor 2 (Protein PR264) (Splicing component, 35 kDa) (Splicing factor SC35) (SC-35) (Splicing factor, arginine/serine-rich 2) | Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5'- and 3'-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5'-AGSAGAGTA-3' (S=C or G) or 5'-GTTCGAGTA-3'. Can bind to beta-globin mRNA and commit it to the splicing pathway. The phosphorylated form (by SRPK2) is required for cellular apoptosis in response to cisplatin treatment. {ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21157427}. |
Q01167 | FOXK2 | S170 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S1755 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2320 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2405 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S3840 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01664 | TFAP4 | S124 | ochoa | Transcription factor AP-4 (Activating enhancer-binding protein 4) (Class C basic helix-loop-helix protein 41) (bHLHc41) | Transcription factor that activates both viral and cellular genes by binding to the symmetrical DNA sequence 5'-CAGCTG-3'. |
Q01804 | OTUD4 | S546 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q01804 | OTUD4 | S557 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q01804 | OTUD4 | S1006 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q01814 | ATP2B2 | S1201 | ochoa | Plasma membrane calcium-transporting ATPase 2 (PMCA2) (EC 7.2.2.10) (Plasma membrane calcium ATPase isoform 2) (Plasma membrane calcium pump isoform 2) | ATP-driven Ca(2+) ion pump involved in the maintenance of basal intracellular Ca(2+) levels in specialized cells of cerebellar circuit and vestibular and cochlear systems (PubMed:15829536, PubMed:17234811). Uses ATP as an energy source to transport cytosolic Ca(2+) ions across the plasma membrane to the extracellular compartment (PubMed:15829536, PubMed:17234811). Has fast activation and Ca(2+) clearance rate suited to control fast neuronal Ca(2+) dynamics. At parallel fiber to Purkinje neuron synapse, mediates presynaptic Ca(2+) efflux in response to climbing fiber-induced Ca(2+) rise. Provides for fast return of Ca(2+) concentrations back to their resting levels, ultimately contributing to long-term depression induction and motor learning (By similarity). Plays an essential role in hearing and balance (PubMed:15829536, PubMed:17234811). In cochlear hair cells, shuttles Ca(2+) ions from stereocilia to the endolymph and dissipates Ca(2+) transients generated by the opening of the mechanoelectrical transduction channels. Regulates Ca(2+) levels in the vestibular system, where it contributes to the formation of otoconia (PubMed:15829536, PubMed:17234811). In non-excitable cells, regulates Ca(2+) signaling through spatial control of Ca(2+) ions extrusion and dissipation of Ca(2+) transients generated by store-operated channels (PubMed:25690014). In lactating mammary gland, allows for the high content of Ca(2+) ions in the milk (By similarity). {ECO:0000250|UniProtKB:Q9R0K7, ECO:0000269|PubMed:15829536, ECO:0000269|PubMed:17234811, ECO:0000269|PubMed:25690014}. |
Q01826 | SATB1 | S38 | ochoa | DNA-binding protein SATB1 (Special AT-rich sequence-binding protein 1) | Crucial silencing factor contributing to the initiation of X inactivation mediated by Xist RNA that occurs during embryogenesis and in lymphoma (By similarity). Binds to DNA at special AT-rich sequences, the consensus SATB1-binding sequence (CSBS), at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcriptional repressor controlling nuclear and viral gene expression in a phosphorylated and acetylated status-dependent manner, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes (e.g. PML at the MHC-I locus) and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Modulates genes that are essential in the maturation of the immune T-cell CD8SP from thymocytes. Required for the switching of fetal globin species, and beta- and gamma-globin genes regulation during erythroid differentiation. Plays a role in chromatin organization and nuclear architecture during apoptosis. Interacts with the unique region (UR) of cytomegalovirus (CMV). Alu-like motifs and SATB1-binding sites provide a unique chromatin context which seems preferentially targeted by the HIV-1 integration machinery. Moreover, HIV-1 Tat may overcome SATB1-mediated repression of IL2 and IL2RA (interleukin) in T-cells by binding to the same domain than HDAC1. Delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. Reprograms chromatin organization and the transcription profiles of breast tumors to promote growth and metastasis. Promotes neuronal differentiation of neural stem/progenitor cells in the adult subventricular zone, possibly by positively regulating the expression of NEUROD1 (By similarity). {ECO:0000250|UniProtKB:Q60611, ECO:0000269|PubMed:10595394, ECO:0000269|PubMed:11463840, ECO:0000269|PubMed:12374985, ECO:0000269|PubMed:12692553, ECO:0000269|PubMed:1505028, ECO:0000269|PubMed:15618465, ECO:0000269|PubMed:15713622, ECO:0000269|PubMed:16377216, ECO:0000269|PubMed:16630892, ECO:0000269|PubMed:17173041, ECO:0000269|PubMed:17376900, ECO:0000269|PubMed:18337816, ECO:0000269|PubMed:19103759, ECO:0000269|PubMed:19247486, ECO:0000269|PubMed:19332023, ECO:0000269|PubMed:19430959, ECO:0000269|PubMed:33513338, ECO:0000269|PubMed:9111059, ECO:0000269|PubMed:9548713}. |
Q01850 | CDR2 | S415 | ochoa | Cerebellar degeneration-related protein 2 (Major Yo paraneoplastic antigen) (Paraneoplastic cerebellar degeneration-associated antigen) | None |
Q01851 | POU4F1 | S122 | psp | POU domain, class 4, transcription factor 1 (Brain-specific homeobox/POU domain protein 3A) (Brain-3A) (Brn-3A) (Homeobox/POU domain protein RDC-1) (Oct-T1) | Multifunctional transcription factor with different regions mediating its different effects. Acts by binding (via its C-terminal domain) to sequences related to the consensus octamer motif 5'-ATGCAAAT-3' in the regulatory regions of its target genes. Regulates the expression of specific genes involved in differentiation and survival within a subset of neuronal lineages. It has been shown that activation of some of these genes requires its N-terminal domain, maybe through a neuronal-specific cofactor. Activates BCL2 expression and protects neuronal cells from apoptosis (via the N-terminal domain). Induces neuronal process outgrowth and the coordinate expression of genes encoding synaptic proteins. Exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. Stimulates the binding affinity of the nuclear estrogene receptor ESR1 to DNA estrogen response element (ERE), and hence modulates ESR1-induced transcriptional activity. May positively regulate POU4F2 and POU4F3. Regulates dorsal root ganglion sensory neuron specification and axonal projection into the spinal cord. Plays a role in TNFSF11-mediated terminal osteoclast differentiation. Negatively regulates its own expression interacting directly with a highly conserved autoregulatory domain surrounding the transcription initiation site. {ECO:0000250|UniProtKB:P17208}.; FUNCTION: [Isoform 2]: Able to act as transcription factor, cannot regulate the expression of the same subset of genes than isoform 1. Does not have antiapoptotic effect on neuronal cells. {ECO:0000250|UniProtKB:P17208}. |
Q01959 | SLC6A3 | S53 | psp | Sodium-dependent dopamine transporter (DA transporter) (DAT) (Solute carrier family 6 member 3) | Mediates sodium- and chloride-dependent transport of dopamine (PubMed:10375632, PubMed:11093780, PubMed:1406597, PubMed:15505207, PubMed:19478460, PubMed:39112701, PubMed:39112703, PubMed:39112705, PubMed:8302271). Also mediates sodium- and chloride-dependent transport of norepinephrine (also known as noradrenaline) (By similarity). Regulator of light-dependent retinal hyaloid vessel regression, downstream of OPN5 signaling (By similarity). {ECO:0000250|UniProtKB:P23977, ECO:0000250|UniProtKB:Q61327, ECO:0000269|PubMed:10375632, ECO:0000269|PubMed:11093780, ECO:0000269|PubMed:1406597, ECO:0000269|PubMed:15505207, ECO:0000269|PubMed:19478460, ECO:0000269|PubMed:39112701, ECO:0000269|PubMed:39112703, ECO:0000269|PubMed:39112705, ECO:0000269|PubMed:8302271}. |
Q01970 | PLCB3 | S632 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) | Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}. |
Q01974 | ROR2 | S447 | ochoa | Tyrosine-protein kinase transmembrane receptor ROR2 (EC 2.7.10.1) (Neurotrophic tyrosine kinase, receptor-related 2) | Tyrosine-protein kinase receptor which may be involved in the early formation of the chondrocytes. It seems to be required for cartilage and growth plate development (By similarity). Phosphorylates YWHAB, leading to induction of osteogenesis and bone formation (PubMed:17717073). In contrast, has also been shown to have very little tyrosine kinase activity in vitro. May act as a receptor for wnt ligand WNT5A which may result in the inhibition of WNT3A-mediated signaling (PubMed:25029443). {ECO:0000250|UniProtKB:Q9Z138, ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:25029443}. |
Q02078 | MEF2A | S223 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02086 | SP2 | S371 | ochoa | Transcription factor Sp2 | Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. |
Q02108 | GUCY1A1 | S267 | ochoa | Guanylate cyclase soluble subunit alpha-1 (GCS-alpha-1) (EC 4.6.1.2) (Guanylate cyclase soluble subunit alpha-3) (GCS-alpha-3) (Soluble guanylate cyclase large subunit) | None |
Q02156 | PRKCE | S381 | ochoa | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q02156 | PRKCE | S388 | ochoa | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q02241 | KIF23 | S902 | ochoa | Kinesin-like protein KIF23 (Kinesin-like protein 5) (Mitotic kinesin-like protein 1) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Essential for cytokinesis in Rho-mediated signaling. Required for the localization of ECT2 to the central spindle. Plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. {ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:22522702, ECO:0000269|PubMed:23570799}. |
Q02543 | RPL18A | S71 | ochoa | Large ribosomal subunit protein eL20 (60S ribosomal protein L18a) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q02779 | MAP3K10 | S502 | ochoa | Mitogen-activated protein kinase kinase kinase 10 (EC 2.7.11.25) (Mixed lineage kinase 2) (Protein kinase MST) | Activates the JUN N-terminal pathway. {ECO:0000250}. |
Q02790 | FKBP4 | S26 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02790 | FKBP4 | S118 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02880 | TOP2B | S1400 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1424 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02930 | CREB5 | S137 | ochoa | Cyclic AMP-responsive element-binding protein 5 (CREB-5) (cAMP-responsive element-binding protein 5) (cAMP-response element-binding protein A) (CRE-BPa) | Binds to the cAMP response element and activates transcription. {ECO:0000269|PubMed:8378084}. |
Q02952 | AKAP12 | S1395 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03001 | DST | S237 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S1382 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S2215 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S2671 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S2919 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S3025 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03001 | DST | S3123 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03014 | HHEX | S163 | psp | Hematopoietically-expressed homeobox protein HHEX (Homeobox protein HEX) (Homeobox protein PRH) (Proline-rich homeodomain protein) | Recognizes the DNA sequence 5'-ATTAA-3' (By similarity). Transcriptional repressor (By similarity). Activator of WNT-mediated transcription in conjunction with CTNNB1 (PubMed:20028982). Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL (By similarity). Inhibits EIF4E-mediated mRNA nuclear export (PubMed:12554669). May play a role in hematopoietic differentiation (PubMed:8096636). {ECO:0000250|UniProtKB:P43120, ECO:0000269|PubMed:12554669, ECO:0000269|PubMed:20028982, ECO:0000269|PubMed:8096636}. |
Q03052 | POU3F1 | S326 | ochoa | POU domain, class 3, transcription factor 1 (Octamer-binding protein 6) (Oct-6) (Octamer-binding transcription factor 6) (OTF-6) (POU domain transcription factor SCIP) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). Acts as a transcriptional repressor of myelin-specific genes (By similarity). {ECO:0000250|UniProtKB:P20267, ECO:0000250|UniProtKB:P21952}. |
Q03164 | KMT2A | S2098 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S2938 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S538 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03252 | LMNB2 | S541 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q03468 | ERCC6 | S158 | ochoa|psp | DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) | Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}. |
Q03468 | ERCC6 | S1276 | ochoa|psp | DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) | Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}. |
Q03519 | TAP2 | S455 | ochoa | Antigen peptide transporter 2 (APT2) (EC 7.4.2.14) (ATP-binding cassette sub-family B member 3) (Peptide supply factor 2) (Peptide transporter PSF2) (PSF-2) (Peptide transporter TAP2) (Peptide transporter involved in antigen processing 2) (Really interesting new gene 11 protein) (RING11) | ABC transporter associated with antigen processing. In complex with TAP1 mediates unidirectional translocation of peptide antigens from cytosol to endoplasmic reticulum (ER) for loading onto MHC class I (MHCI) molecules (PubMed:25377891, PubMed:25656091). Uses the chemical energy of ATP to export peptides against the concentration gradient (PubMed:25377891). During the transport cycle alternates between 'inward-facing' state with peptide binding site facing the cytosol to 'outward-facing' state with peptide binding site facing the ER lumen. Peptide antigen binding to ATP-loaded TAP1-TAP2 induces a switch to hydrolysis-competent 'outward-facing' conformation ready for peptide loading onto nascent MHCI molecules. Subsequently ATP hydrolysis resets the transporter to the 'inward facing' state for a new cycle (PubMed:11274390, PubMed:25377891, PubMed:25656091). Typically transports intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome. Binds peptides with free N- and C-termini, the first three and the C-terminal residues being critical. Preferentially selects peptides having a highly hydrophobic residue at position 3 and hydrophobic or charged residues at the C-terminal anchor. Proline at position 2 has the most destabilizing effect (PubMed:11274390, PubMed:7500034, PubMed:9256420). As a component of the peptide loading complex (PLC), acts as a molecular scaffold essential for peptide-MHCI assembly and antigen presentation (PubMed:1538751, PubMed:25377891, PubMed:26611325). {ECO:0000269|PubMed:11274390, ECO:0000269|PubMed:1538751, ECO:0000269|PubMed:25377891, ECO:0000269|PubMed:25656091, ECO:0000269|PubMed:26611325, ECO:0000269|PubMed:7500034, ECO:0000269|PubMed:9256420}. |
Q03989 | ARID5A | S256 | ochoa | AT-rich interactive domain-containing protein 5A (ARID domain-containing protein 5A) (Modulator recognition factor 1) (MRF-1) | DNA-binding protein that may regulate transcription and act as a repressor by binding to AT-rich stretches in the promoter region of target genes (PubMed:8649988). May positively regulate chondrocyte-specific transcription such as of COL2A1 in collaboration with SOX9 and positively regulate histone H3 acetylation at chondrocyte-specific genes. May stimulate early-stage chondrocyte differentiation and inhibit later stage differention (By similarity). Can repress ESR1-mediated transcriptional activation; proposed to act as corepressor for selective nuclear hormone receptors (PubMed:15941852). As an RNA-binding protein, involved in the regulation of inflammatory response by stabilizing selective inflammation-related mRNAs, such as STAT3 and TBX21 (By similarity). Also stabilizes IL6 mRNA (PubMed:32209697). Binds to stem loop structures located in the 3'UTRs of IL6, STAT3 and TBX21 mRNAs; at least for STAT3 prevents binding of ZC3H12A to the mRNA stem loop structure thus inhibiting its degradation activity. Contributes to elevated IL6 levels possibly implicated in autoimmunity processes. IL6-dependent stabilization of STAT3 mRNA may promote differentiation of naive CD4+ T-cells into T-helper Th17 cells. In CD4+ T-cells may also inhibit RORC-induced Th17 cell differentiation independently of IL6 signaling. Stabilization of TBX21 mRNA contributes to elevated interferon-gamma secretion in Th1 cells possibly implicated in the establishment of septic shock (By similarity). Stabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR; thereby competing with the mRNA-destabilizing functions of RC3H1 and endoribonuclease ZC3H12A (By similarity). {ECO:0000250|UniProtKB:Q3U108, ECO:0000269|PubMed:15941852, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:8649988}. |
Q04656 | ATP7A | S339 | ochoa|psp | Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) | ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}. |
Q04721 | NOTCH2 | S2070 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q04726 | TLE3 | S521 | ochoa | Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) | Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}. |
Q05209 | PTPN12 | S19 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05209 | PTPN12 | S332 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05209 | PTPN12 | S468 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05209 | PTPN12 | S588 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q05397 | PTK2 | S29 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05397 | PTK2 | S910 | ochoa|psp | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05519 | SRSF11 | S70 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q05519 | SRSF11 | S207 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q05639 | EEF1A2 | S358 | psp | Elongation factor 1-alpha 2 (EF-1-alpha-2) (EC 3.6.5.-) (Eukaryotic elongation factor 1 A-2) (eEF1A-2) (Statin-S1) | Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis. Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (By similarity). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (By similarity). {ECO:0000250|UniProtKB:P68104, ECO:0000250|UniProtKB:Q71V39}. |
Q05655 | PRKCD | S626 | ochoa | Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}. |
Q05682 | CALD1 | S724 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q05682 | CALD1 | S759 | ochoa|psp | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q05D32 | CTDSPL2 | S134 | ochoa|psp | CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) | Probable phosphatase. {ECO:0000250}. |
Q06187 | BTK | S21 | ochoa | Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) | Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}. |
Q06190 | PPP2R3A | S562 | ochoa | Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha (PP2A subunit B isoform PR72/PR130) (PP2A subunit B isoform R3 isoform) (PP2A subunit B isoforms B''-PR72/PR130) (PP2A subunit B isoforms B72/B130) (Serine/threonine-protein phosphatase 2A 72/130 kDa regulatory subunit B) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q06203 | PPAT | S399 | ochoa | Amidophosphoribosyltransferase (ATase) (EC 2.4.2.14) (Glutamine phosphoribosylpyrophosphate amidotransferase) (GPAT) | Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. {ECO:0000250|UniProtKB:P35433}. |
Q06210 | GFPT1 | S103 | ochoa | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
Q06265 | EXOSC9 | S65 | ochoa | Exosome complex component RRP45 (Autoantigen PM/Scl 1) (Exosome component 9) (P75 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 1) (Polymyositis/scleroderma autoantigen 75 kDa) (PM/Scl-75) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC9 binds to ARE-containing RNAs. {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563}. |
Q06710 | PAX8 | S251 | ochoa | Paired box protein Pax-8 | Transcription factor for the thyroid-specific expression of the genes exclusively expressed in the thyroid cell type, maintaining the functional differentiation of such cells. |
Q06730 | ZNF33A | S267 | ochoa | Zinc finger protein 33A (Zinc finger and ZAK-associated protein with KRAB domain) (ZZaPK) (Zinc finger protein 11A) (Zinc finger protein KOX31) | May be involved in transcriptional regulation. |
Q06945 | SOX4 | S81 | ochoa | Transcription factor SOX-4 | Transcriptional activator that binds with high affinity to the T-cell enhancer motif 5'-AACAAAG-3' motif (PubMed:30661772). Required for IL17A-producing Vgamma2-positive gamma-delta T-cell maturation and development, via binding to regulator loci of RORC to modulate expression (By similarity). Involved in skeletal myoblast differentiation by promoting gene expression of CALD1 (PubMed:26291311). {ECO:0000250|UniProtKB:Q06831, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:30661772}. |
Q07020 | RPL18 | S130 | ochoa | Large ribosomal subunit protein eL18 (60S ribosomal protein L18) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
Q07343 | PDE4B | S145 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}. |
Q07343 | PDE4B | S197 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}. |
Q07343 | PDE4B | S601 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}. |
Q07817 | BCL2L1 | S62 | psp | Bcl-2-like protein 1 (Bcl2-L-1) (Apoptosis regulator Bcl-X) | Potent inhibitor of cell death. Inhibits activation of caspases. Appears to regulate cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. Also acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis.; FUNCTION: Isoform Bcl-X(L) also regulates presynaptic plasticity, including neurotransmitter release and recovery, number of axonal mitochondria as well as size and number of synaptic vesicle clusters. During synaptic stimulation, increases ATP availability from mitochondria through regulation of mitochondrial membrane ATP synthase F(1)F(0) activity and regulates endocytic vesicle retrieval in hippocampal neurons through association with DMN1L and stimulation of its GTPase activity in synaptic vesicles. May attenuate inflammation impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release (PubMed:17418785). {ECO:0000269|PubMed:17418785}.; FUNCTION: Isoform Bcl-X(S) promotes apoptosis. |
Q07866 | KLC1 | S460 | ochoa|psp | Kinesin light chain 1 (KLC 1) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}. |
Q07869 | PPARA | S21 | psp | Peroxisome proliferator-activated receptor alpha (PPAR-alpha) (Nuclear receptor subfamily 1 group C member 1) | Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2. {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:7629123, ECO:0000269|PubMed:7684926, ECO:0000269|PubMed:9556573}. |
Q07889 | SOS1 | S757 | ochoa | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q08209 | PPP3CA | S107 | ochoa | Protein phosphatase 3 catalytic subunit alpha (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin A alpha) (Calmodulin-dependent calcineurin A subunit alpha isoform) (CNA alpha) (Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals (PubMed:15671020, PubMed:18838687, PubMed:19154138, PubMed:23468591, PubMed:30254215). Many of the substrates contain a PxIxIT motif and/or a LxVP motif (PubMed:17498738, PubMed:17502104, PubMed:22343722, PubMed:23468591, PubMed:27974827). In response to increased Ca(2+) levels, dephosphorylates and activates phosphatase SSH1 which results in cofilin dephosphorylation (PubMed:15671020). In response to increased Ca(2+) levels following mitochondrial depolarization, dephosphorylates DNM1L inducing DNM1L translocation to the mitochondrion (PubMed:18838687). Positively regulates the CACNA1B/CAV2.2-mediated Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). Dephosphorylates heat shock protein HSPB1 (By similarity). Dephosphorylates and activates transcription factor NFATC1 (PubMed:19154138). In response to increased Ca(2+) levels, regulates NFAT-mediated transcription probably by dephosphorylating NFAT and promoting its nuclear translocation (PubMed:26248042). Dephosphorylates and inactivates transcription factor ELK1 (PubMed:19154138). Dephosphorylates DARPP32 (PubMed:19154138). May dephosphorylate CRTC2 at 'Ser-171' resulting in CRTC2 dissociation from 14-3-3 proteins (PubMed:30611118). Dephosphorylates transcription factor TFEB at 'Ser-211' following Coxsackievirus B3 infection, promoting nuclear translocation (PubMed:33691586). Required for postnatal development of the nephrogenic zone and superficial glomeruli in the kidneys, cell cycle homeostasis in the nephrogenic zone, and ultimately normal kidney function (By similarity). Plays a role in intracellular AQP2 processing and localization to the apical membrane in the kidney, may thereby be required for efficient kidney filtration (By similarity). Required for secretion of salivary enzymes amylase, peroxidase, lysozyme and sialic acid via formation of secretory vesicles in the submandibular glands (By similarity). Required for calcineurin activity and homosynaptic depotentiation in the hippocampus (By similarity). Required for normal differentiation and survival of keratinocytes and therefore required for epidermis superstructure formation (By similarity). Positively regulates osteoblastic bone formation, via promotion of osteoblast differentiation (By similarity). Positively regulates osteoclast differentiation, potentially via NFATC1 signaling (By similarity). May play a role in skeletal muscle fiber type specification, potentially via NFATC1 signaling (By similarity). Negatively regulates MAP3K14/NIK signaling via inhibition of nuclear translocation of the transcription factors RELA and RELB (By similarity). Required for antigen-specific T-cell proliferation response (By similarity). Dephosphorylates KLHL3, promoting the interaction between KLHL3 and WNK4 and subsequent degradation of WNK4 (PubMed:30718414). Negatively regulates SLC9A1 activity (PubMed:31375679). {ECO:0000250|UniProtKB:P48452, ECO:0000250|UniProtKB:P63328, ECO:0000250|UniProtKB:P63329, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:17498738, ECO:0000269|PubMed:17502104, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19154138, ECO:0000269|PubMed:22343722, ECO:0000269|PubMed:23468591, ECO:0000269|PubMed:26248042, ECO:0000269|PubMed:27974827, ECO:0000269|PubMed:30254215, ECO:0000269|PubMed:30611118, ECO:0000269|PubMed:30718414, ECO:0000269|PubMed:31375679, ECO:0000269|PubMed:33691586}. |
Q08289 | CACNB2 | S255 | ochoa | Voltage-dependent L-type calcium channel subunit beta-2 (CAB2) (Calcium channel voltage-dependent subunit beta 2) (Lambert-Eaton myasthenic syndrome antigen B) (MYSB) | Beta subunit of voltage-dependent calcium channels which contributes to the function of the calcium channel by increasing peak calcium current (By similarity). Plays a role in shifting voltage dependencies of activation and inactivation of the channel (By similarity). May modulate G protein inhibition (By similarity). May contribute to beta-adrenergic augmentation of Ca(2+) influx in cardiomyocytes, thereby regulating increases in heart rate and contractile force (PubMed:36424916). Involved in membrane targeting of the alpha-1 subunit CACNA1C (PubMed:17525370). {ECO:0000250|UniProtKB:Q8CC27, ECO:0000250|UniProtKB:Q8VGC3, ECO:0000269|PubMed:17525370, ECO:0000269|PubMed:36424916}. |
Q08357 | SLC20A2 | S268 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q08462 | ADCY2 | S472 | ochoa | Adenylate cyclase type 2 (EC 4.6.1.1) (ATP pyrophosphate-lyase 2) (Adenylate cyclase type II) (Adenylyl cyclase 2) | Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642). Down-stream signaling cascades mediate changes in gene expression patterns and lead to increased IL6 production. Functions in signaling cascades downstream of the muscarinic acetylcholine receptors (By similarity). {ECO:0000250|UniProtKB:P26769, ECO:0000269|PubMed:15385642}. |
Q08495 | DMTN | S156 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q08495 | DMTN | S307 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q08499 | PDE4D | S164 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08499 | PDE4D | S171 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08499 | PDE4D | S202 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08499 | PDE4D | S255 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08499 | PDE4D | S657 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08999 | RBL2 | S413 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08999 | RBL2 | S672 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08999 | RBL2 | S1059 | ochoa | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08999 | RBL2 | S1080 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08999 | RBL2 | S1112 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08AD1 | CAMSAP2 | S611 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AD1 | CAMSAP2 | S673 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AD1 | CAMSAP2 | S936 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08AM6 | VAC14 | S517 | ochoa | Protein VAC14 homolog (Tax1-binding protein 2) | Scaffold protein component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Pentamerizes into a star-shaped structure and nucleates the assembly of the complex. The pentamer binds a single copy each of PIKFYVE and FIG4 and coordinates both PIKfyve kinase activity and FIG4 phosphatase activity, being required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:33098764). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes. {ECO:0000269|PubMed:15542851, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:33098764}. |
Q08AM6 | VAC14 | S743 | ochoa | Protein VAC14 homolog (Tax1-binding protein 2) | Scaffold protein component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Pentamerizes into a star-shaped structure and nucleates the assembly of the complex. The pentamer binds a single copy each of PIKFYVE and FIG4 and coordinates both PIKfyve kinase activity and FIG4 phosphatase activity, being required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:33098764). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes. {ECO:0000269|PubMed:15542851, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:33098764}. |
Q08AN1 | ZNF616 | S49 | ochoa | Zinc finger protein 616 | May be involved in transcriptional regulation. |
Q08AN1 | ZNF616 | S177 | ochoa | Zinc finger protein 616 | May be involved in transcriptional regulation. |
Q08J23 | NSUN2 | S139 | psp | RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) | RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}. |
Q09472 | EP300 | S90 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S255 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S285 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S499 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S1726 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S2039 | psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09472 | EP300 | S2366 | psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09666 | AHNAK | S41 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S3412 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S4516 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5077 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5110 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0IIM8 | TBC1D8B | S718 | ochoa | TBC1 domain family member 8B | Involved in vesicular recycling, probably as a RAB11B GTPase-activating protein. {ECO:0000269|PubMed:30661770}. |
Q0IIM8 | TBC1D8B | S1035 | ochoa | TBC1 domain family member 8B | Involved in vesicular recycling, probably as a RAB11B GTPase-activating protein. {ECO:0000269|PubMed:30661770}. |
Q0JRZ9 | FCHO2 | S387 | ochoa | F-BAR domain only protein 2 | Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}. |
Q0JRZ9 | FCHO2 | S394 | ochoa | F-BAR domain only protein 2 | Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}. |
Q0VD86 | INCA1 | S23 | psp | Protein INCA1 (Inhibitor of CDK interacting with cyclin A1) | Binds to CDK2-bound cyclins and inhibits the kinase activity of CDK2; binding to cyclins is critical for its function as CDK inhibitor (PubMed:21540187). Inhibits cell growth and cell proliferation and may play a role in cell cycle control (By similarity). Required for ING5-mediated regulation of S-phase progression, enhancement of Fas-induced apoptosis and inhibition of cell growth (By similarity). {ECO:0000250|UniProtKB:Q6PKN7, ECO:0000269|PubMed:21540187}. |
Q0VD86 | INCA1 | S191 | psp | Protein INCA1 (Inhibitor of CDK interacting with cyclin A1) | Binds to CDK2-bound cyclins and inhibits the kinase activity of CDK2; binding to cyclins is critical for its function as CDK inhibitor (PubMed:21540187). Inhibits cell growth and cell proliferation and may play a role in cell cycle control (By similarity). Required for ING5-mediated regulation of S-phase progression, enhancement of Fas-induced apoptosis and inhibition of cell growth (By similarity). {ECO:0000250|UniProtKB:Q6PKN7, ECO:0000269|PubMed:21540187}. |
Q0VDD7 | BRME1 | S476 | ochoa | Break repair meiotic recombinase recruitment factor 1 (Pre-T/NK cell-associated protein 3B3) | Meiotic recombination factor component of recombination bridges involved in meiotic double-strand break repair. Modulates the localization of recombinases DMC1:RAD51 to meiotic double-strand break (DSB) sites through the interaction with and stabilization of the BRCA2:HSF2BP complex during meiotic recombination. Indispensable for the DSB repair, homologous synapsis, and crossover formation that are needed for progression past metaphase I, is essential for spermatogenesis and male fertility. {ECO:0000250|UniProtKB:Q6DIA7}. |
Q0VF96 | CGNL1 | S112 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q0VF96 | CGNL1 | S261 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q10571 | MN1 | S1007 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12756 | KIF1A | S487 | ochoa | Kinesin-like protein KIF1A (EC 5.6.1.3) (Axonal transporter of synaptic vesicles) (Microtubule-based motor KIF1A) (Unc-104- and KIF1A-related protein) (hUnc-104) | Kinesin motor with a plus-end-directed microtubule motor activity (By similarity). It is required for anterograde axonal transport of synaptic vesicle precursors (PubMed:33880452). Also required for neuronal dense core vesicles (DCVs) transport to the dendritic spines and axons. The interaction calcium-dependent with CALM1 increases vesicle motility and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. {ECO:0000250|UniProtKB:F1M4A4, ECO:0000250|UniProtKB:P33173, ECO:0000269|PubMed:33880452}. |
Q12756 | KIF1A | S1337 | ochoa | Kinesin-like protein KIF1A (EC 5.6.1.3) (Axonal transporter of synaptic vesicles) (Microtubule-based motor KIF1A) (Unc-104- and KIF1A-related protein) (hUnc-104) | Kinesin motor with a plus-end-directed microtubule motor activity (By similarity). It is required for anterograde axonal transport of synaptic vesicle precursors (PubMed:33880452). Also required for neuronal dense core vesicles (DCVs) transport to the dendritic spines and axons. The interaction calcium-dependent with CALM1 increases vesicle motility and interaction with the scaffolding proteins PPFIA2 and TANC2 recruits DCVs to synaptic sites. {ECO:0000250|UniProtKB:F1M4A4, ECO:0000250|UniProtKB:P33173, ECO:0000269|PubMed:33880452}. |
Q12768 | WASHC5 | S917 | ochoa | WASH complex subunit 5 (Strumpellin) (WASH complex subunit strumpellin) | Acts as a component of the WASH core complex that functions as a nucleation-promoting factor (NPF) at the surface of endosomes, where it recruits and activates the Arp2/3 complex to induce actin polymerization, playing a key role in the fission of tubules that serve as transport intermediates during endosome sorting (PubMed:19922875, PubMed:20498093). May be involved in axonal outgrowth. Involved in cellular localization of ADRB2 (PubMed:23085491). Involved in cellular trafficking of BLOC-1 complex cargos such as ATP7A and VAMP7 (PubMed:23676666). {ECO:0000269|PubMed:19922875, ECO:0000269|PubMed:20833645, ECO:0000269|PubMed:23085491, ECO:0000269|PubMed:23676666}. |
Q12769 | NUP160 | S349 | ochoa | Nuclear pore complex protein Nup160 (160 kDa nucleoporin) (Nucleoporin Nup160) | Functions as a component of the nuclear pore complex (NPC) (PubMed:11564755, PubMed:11684705). Involved in poly(A)+ RNA transport. {ECO:0000269|PubMed:11564755, ECO:0000269|PubMed:11684705}. |
Q12770 | SCAP | S907 | ochoa | Sterol regulatory element-binding protein cleavage-activating protein (SCAP) (SREBP cleavage-activating protein) | Escort protein required for cholesterol as well as lipid homeostasis (By similarity). Regulates export of the SCAP-SREBP complex from the endoplasmic reticulum to the Golgi upon low cholesterol, thereby regulating the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497). At high sterol concentrations, formation of a ternary complex with INSIG (INSIG1 or INSIG2) leads to mask the ER export signal in SCAP, promoting retention of the complex in the endoplasmic reticulum (By similarity). Low sterol concentrations trigger release of INSIG, a conformational change in the SSD domain of SCAP, unmasking of the ER export signal, promoting recruitment into COPII-coated vesicles and transport of the SCAP-SREBP to the Golgi: in the Golgi, SREBPs are then processed, releasing the transcription factor fragment of SREBPs from the membrane, its import into the nucleus and up-regulation of LDLR, INSIG1 and the mevalonate pathway (PubMed:26311497). Binds cholesterol via its SSD domain (By similarity). {ECO:0000250|UniProtKB:P97260, ECO:0000269|PubMed:26311497}. |
Q12770 | SCAP | S1041 | ochoa | Sterol regulatory element-binding protein cleavage-activating protein (SCAP) (SREBP cleavage-activating protein) | Escort protein required for cholesterol as well as lipid homeostasis (By similarity). Regulates export of the SCAP-SREBP complex from the endoplasmic reticulum to the Golgi upon low cholesterol, thereby regulating the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497). At high sterol concentrations, formation of a ternary complex with INSIG (INSIG1 or INSIG2) leads to mask the ER export signal in SCAP, promoting retention of the complex in the endoplasmic reticulum (By similarity). Low sterol concentrations trigger release of INSIG, a conformational change in the SSD domain of SCAP, unmasking of the ER export signal, promoting recruitment into COPII-coated vesicles and transport of the SCAP-SREBP to the Golgi: in the Golgi, SREBPs are then processed, releasing the transcription factor fragment of SREBPs from the membrane, its import into the nucleus and up-regulation of LDLR, INSIG1 and the mevalonate pathway (PubMed:26311497). Binds cholesterol via its SSD domain (By similarity). {ECO:0000250|UniProtKB:P97260, ECO:0000269|PubMed:26311497}. |
Q12772 | SREBF2 | S432 | psp | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12772 | SREBF2 | S1046 | ochoa | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12772 | SREBF2 | S1098 | ochoa | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12774 | ARHGEF5 | S450 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12774 | ARHGEF5 | S474 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12774 | ARHGEF5 | S1405 | ochoa | Rho guanine nucleotide exchange factor 5 (Ephexin-3) (Guanine nucleotide regulatory protein TIM) (Oncogene TIM) (Transforming immortalized mammary oncogene) (p60 TIM) | Guanine nucleotide exchange factor which activates Rho GTPases (PubMed:15601624). Strongly activates RHOA (PubMed:15601624). Also strongly activates RHOB, weakly activates RHOC and RHOG and shows no effect on RHOD, RHOV, RHOQ or RAC1 (By similarity). Involved in regulation of cell shape and actin cytoskeletal organization (PubMed:15601624). Plays a role in actin organization by generating a loss of actin stress fibers and the formation of membrane ruffles and filopodia (PubMed:14662653). Required for SRC-induced podosome formation (By similarity). Involved in positive regulation of immature dendritic cell migration (By similarity). {ECO:0000250|UniProtKB:E9Q7D5, ECO:0000269|PubMed:14662653, ECO:0000269|PubMed:15601624}. |
Q12778 | FOXO1 | S249 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12778 | FOXO1 | S287 | ochoa|psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12778 | FOXO1 | S383 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12788 | TBL3 | S257 | ochoa | Transducin beta-like protein 3 (WD repeat-containing protein SAZD) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}. |
Q12789 | GTF3C1 | S1653 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12802 | AKAP13 | S790 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S1683 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S656 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S763 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S1251 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S2060 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S2098 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S2370 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12849 | GRSF1 | S244 | ochoa | G-rich sequence factor 1 (GRSF-1) | Regulator of post-transcriptional mitochondrial gene expression, required for assembly of the mitochondrial ribosome and for recruitment of mRNA and lncRNA. Binds RNAs containing the 14 base G-rich element. Preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long non-coding RNAs for MT-CYB and MT-ND5, each of which contains multiple consensus binding sequences (PubMed:23473033, PubMed:23473034, PubMed:29967381). Involved in the degradosome-mediated decay of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381). Acts by unwinding G-quadruplex RNA structures in MT-ncRNA, thus facilitating their degradation by the degradosome (PubMed:29967381). G-quadruplexes (G4) are non-canonical 4 stranded structures formed by transcripts from the light strand of mtDNA (PubMed:29967381). {ECO:0000269|PubMed:23473033, ECO:0000269|PubMed:23473034, ECO:0000269|PubMed:29967381}. |
Q12851 | MAP4K2 | S394 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 2 (EC 2.7.11.1) (B lymphocyte serine/threonine-protein kinase) (Germinal center kinase) (GC kinase) (MAPK/ERK kinase kinase kinase 2) (MEK kinase kinase 2) (MEKKK 2) (Rab8-interacting protein) | Serine/threonine-protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Acts as a MAPK kinase kinase kinase (MAP4K) and is an upstream activator of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway and to a lesser extent of the p38 MAPKs signaling pathway. Required for the efficient activation of JNKs by TRAF6-dependent stimuli, including pathogen-associated molecular patterns (PAMPs) such as polyinosine-polycytidine (poly(IC)), lipopolysaccharides (LPS), lipid A, peptidoglycan (PGN), or bacterial flagellin. To a lesser degree, IL-1 and engagement of CD40 also stimulate MAP4K2-mediated JNKs activation. The requirement for MAP4K2/GCK is most pronounced for LPS signaling, and extends to LPS stimulation of c-Jun phosphorylation and induction of IL-8. Enhances MAP3K1 oligomerization, which may relieve N-terminal mediated MAP3K1 autoinhibition and lead to activation following autophosphorylation. Also mediates the SAP/JNK signaling pathway and the p38 MAPKs signaling pathway through activation of the MAP3Ks MAP3K10/MLK2 and MAP3K11/MLK3. May play a role in the regulation of vesicle targeting or fusion. regulation of vesicle targeting or fusion. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:11784851, ECO:0000269|PubMed:15456887, ECO:0000269|PubMed:17584736, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:7477268, ECO:0000269|PubMed:7515885, ECO:0000269|PubMed:9712898}. |
Q12852 | MAP3K12 | S500 | ochoa | Mitogen-activated protein kinase kinase kinase 12 (EC 2.7.11.25) (Dual leucine zipper bearing kinase) (DLK) (Leucine-zipper protein kinase) (ZPK) (MAPK-upstream kinase) (MUK) (Mixed lineage kinase) | Part of a non-canonical MAPK signaling pathway (PubMed:28111074). Activated by APOE, enhances the AP-1-mediated transcription of APP, via a MAP kinase signal transduction pathway composed of MAP2K7 and MAPK1/ERK2 and MAPK3/ERK1 (PubMed:28111074). May be an activator of the JNK/SAPK pathway. {ECO:0000269|PubMed:28111074}. |
Q12879 | GRIN2A | S882 | ochoa | Glutamate receptor ionotropic, NMDA 2A (GluN2A) (Glutamate [NMDA] receptor subunit epsilon-1) (N-methyl D-aspartate receptor subtype 2A) (NMDAR2A) (NR2A) (hNR2A) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:20890276, PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:28242877, PubMed:36117210, PubMed:38538865, PubMed:8768735). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the slow phase of excitatory postsynaptic current, long-term synaptic potentiation, and learning (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:27288002, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28182669, PubMed:29644724, PubMed:38307912, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761). Participates in the synaptic plasticity regulation through activation by the L-glutamate releaseed by BEST1, into the synaptic cleft, upon F2R/PAR-1 activation in astrocyte (By similarity). {ECO:0000250|UniProtKB:P35436, ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:20890276, ECO:0000269|PubMed:23933818, ECO:0000269|PubMed:23933819, ECO:0000269|PubMed:23933820, ECO:0000269|PubMed:24504326, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27288002, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28182669, ECO:0000269|PubMed:28242877, ECO:0000269|PubMed:29644724, ECO:0000269|PubMed:36117210, ECO:0000269|PubMed:38307912, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q12882 | DPYD | S587 | ochoa | Dihydropyrimidine dehydrogenase [NADP(+)] (DHPDHase) (DPD) (EC 1.3.1.2) (Dihydrothymine dehydrogenase) (Dihydrouracil dehydrogenase) | Involved in pyrimidine base degradation (PubMed:1512248). Catalyzes the reduction of uracil and thymine (PubMed:1512248). Also involved the degradation of the chemotherapeutic drug 5-fluorouracil (PubMed:1512248). {ECO:0000269|PubMed:1512248}. |
Q12882 | DPYD | S905 | ochoa | Dihydropyrimidine dehydrogenase [NADP(+)] (DHPDHase) (DPD) (EC 1.3.1.2) (Dihydrothymine dehydrogenase) (Dihydrouracil dehydrogenase) | Involved in pyrimidine base degradation (PubMed:1512248). Catalyzes the reduction of uracil and thymine (PubMed:1512248). Also involved the degradation of the chemotherapeutic drug 5-fluorouracil (PubMed:1512248). {ECO:0000269|PubMed:1512248}. |
Q12888 | TP53BP1 | S630 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1028 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1288 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1678 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1701 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12912 | IRAG2 | S185 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q12923 | PTPN13 | S2032 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12926 | ELAVL2 | S221 | ochoa | ELAV-like protein 2 (ELAV-like neuronal protein 1) (Hu-antigen B) (HuB) (Nervous system-specific RNA-binding protein Hel-N1) | RNA-binding protein that binds to the 3' untranslated region (3'UTR) of target mRNAs (By similarity). Seems to recognize a GAAA motif (By similarity). Can bind to its own 3'UTR, the FOS 3'UTR and the ID 3'UTR (By similarity). {ECO:0000250|UniProtKB:Q60899}. |
Q12931 | TRAP1 | S511 | psp | Heat shock protein 75 kDa, mitochondrial (HSP 75) (Heat shock protein family C member 5) (TNFR-associated protein 1) (Tumor necrosis factor type 1 receptor-associated protein) (TRAP-1) | Chaperone that expresses an ATPase activity. Involved in maintaining mitochondrial function and polarization, downstream of PINK1 and mitochondrial complex I. Is a negative regulator of mitochondrial respiration able to modulate the balance between oxidative phosphorylation and aerobic glycolysis. The impact of TRAP1 on mitochondrial respiration is probably mediated by modulation of mitochondrial SRC and inhibition of SDHA. {ECO:0000269|PubMed:23525905, ECO:0000269|PubMed:23564345, ECO:0000269|PubMed:23747254}. |
Q12948 | FOXC1 | S521 | ochoa | Forkhead box protein C1 (Forkhead-related protein FKHL7) (Forkhead-related transcription factor 3) (FREAC-3) | DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development (PubMed:11782474, PubMed:14506133, PubMed:14578375, PubMed:15277473, PubMed:15299087, PubMed:15684392, PubMed:16449236, PubMed:16492674, PubMed:17210863, PubMed:19279310, PubMed:19793056, PubMed:25786029, PubMed:27804176, PubMed:27907090). Acts either as a transcriptional activator or repressor (PubMed:11782474). Binds to the consensus binding site 5'-[G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes (PubMed:11782474, PubMed:12533514, PubMed:14506133, PubMed:19793056, PubMed:27804176, PubMed:7957066). Upon DNA-binding, promotes DNA bending (PubMed:14506133, PubMed:7957066). Acts as a transcriptional coactivator (PubMed:26565916). Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By similarity). Also acts as a transcriptional coregulator by increasing DNA-binding capacity of GLI2 in breast cancer cells (PubMed:26565916). Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye (PubMed:17993506). Cooperates with transcription factor FOXC2 in regulating expression of genes that maintain podocyte integrity (By similarity). Promotes cell growth inhibition by stopping the cell cycle in the G1 phase through TGFB1-mediated signals (PubMed:12408963). Involved in epithelial-mesenchymal transition (EMT) induction by increasing cell proliferation, migration and invasion (PubMed:20406990, PubMed:22991501). Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). Plays a role in the gene regulatory network essential for epidermal keratinocyte terminal differentiation (PubMed:27907090). Essential developmental transcriptional factor required for mesoderm-derived tissues, such as the somites, skin, bone and cartilage. Positively regulates CXCL12 and stem cell factor expression in bone marrow mesenchymal progenitor cells, and hence plays a role in the development and maintenance of mesenchymal niches for haematopoietic stem and progenitor cells (HSPC). Plays a role in corneal transparency by preventing both blood vessel and lymphatic vessel growth during embryonic development in a VEGF-dependent manner. Involved in chemokine CXCL12-induced endothelial cell migration through the control of CXCR4 expression (By similarity). May function as a tumor suppressor (PubMed:12408963). {ECO:0000250|UniProtKB:Q61572, ECO:0000269|PubMed:11782474, ECO:0000269|PubMed:12408963, ECO:0000269|PubMed:12533514, ECO:0000269|PubMed:14506133, ECO:0000269|PubMed:14578375, ECO:0000269|PubMed:15277473, ECO:0000269|PubMed:15299087, ECO:0000269|PubMed:15684392, ECO:0000269|PubMed:16449236, ECO:0000269|PubMed:16492674, ECO:0000269|PubMed:17210863, ECO:0000269|PubMed:17993506, ECO:0000269|PubMed:19279310, ECO:0000269|PubMed:19793056, ECO:0000269|PubMed:20406990, ECO:0000269|PubMed:22991501, ECO:0000269|PubMed:25786029, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:27804176, ECO:0000269|PubMed:27907090, ECO:0000269|PubMed:7957066}. |
Q12955 | ANK3 | S623 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S2009 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S4229 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12959 | DLG1 | S122 | ochoa|psp | Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) | Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}. |
Q12968 | NFATC3 | S98 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12968 | NFATC3 | S117 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12968 | NFATC3 | S366 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12968 | NFATC3 | S397 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) | Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}. |
Q12979 | ABR | S366 | ochoa | Active breakpoint cluster region-related protein | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:7479768). The central Dbl homology (DH) domain functions as a guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:7479768). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF-1 directed motility and phagocytosis through the modulation of RAC1 activity (By similarity). {ECO:0000250|UniProtKB:Q5SSL4, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:7479768}. |
Q12986 | NFX1 | S50 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q12986 | NFX1 | S326 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q12986 | NFX1 | S392 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q13017 | ARHGAP5 | S765 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13017 | ARHGAP5 | S968 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13023 | AKAP6 | S1067 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13023 | AKAP6 | S1644 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13029 | PRDM2 | S447 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13029 | PRDM2 | S1141 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13033 | STRN3 | S229 | ochoa | Striatin-3 (Cell cycle autoantigen SG2NA) (S/G2 antigen) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:30622739, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399, ECO:0000305|PubMed:26876214}. |
Q13033 | STRN3 | S335 | ochoa | Striatin-3 (Cell cycle autoantigen SG2NA) (S/G2 antigen) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:30622739, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399, ECO:0000305|PubMed:26876214}. |
Q13043 | STK4 | S82 | psp | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q13045 | FLII | S856 | ochoa | Protein flightless-1 homolog | Is a regulator of actin polymerization, required for proper myofibril organization and regulation of the length of sarcomeric thin filaments (By similarity). It also plays a role in the assembly of cardiomyocyte cell adhesion complexes (By similarity). Regulates cytoskeletal rearrangements involved in cytokinesis and cell migration, by inhibiting Rac1-dependent paxillin phosphorylation (By similarity). May play a role as coactivator in transcriptional activation by hormone-activated nuclear receptors (NR) and acts in cooperation with NCOA2 and CARM1 (PubMed:14966289). Involved in estrogen hormone signaling. {ECO:0000250|UniProtKB:Q9JJ28, ECO:0000269|PubMed:14966289}. |
Q13077 | TRAF1 | S66 | ochoa | TNF receptor-associated factor 1 (Epstein-Barr virus-induced protein 6) | Adapter molecule that regulates the activation of NF-kappa-B and JNK. Plays a role in the regulation of cell survival and apoptosis. The heterotrimer formed by TRAF1 and TRAF2 is part of a E3 ubiquitin-protein ligase complex that promotes ubiquitination of target proteins, such as MAP3K14. The TRAF1/TRAF2 complex recruits the antiapoptotic E3 protein-ubiquitin ligases BIRC2 and BIRC3 to TNFRSF1B/TNFR2. {ECO:0000269|PubMed:10692572, ECO:0000269|PubMed:16323247, ECO:0000269|PubMed:18429822, ECO:0000269|PubMed:19287455, ECO:0000269|PubMed:19698991, ECO:0000269|PubMed:20385093}. |
Q13085 | ACACA | S50 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13085 | ACACA | S104 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13085 | ACACA | S488 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13085 | ACACA | S756 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13085 | ACACA | S2327 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13098 | GPS1 | S468 | ochoa|psp | COP9 signalosome complex subunit 1 (SGN1) (Signalosome subunit 1) (G protein pathway suppressor 1) (GPS-1) (JAB1-containing signalosome subunit 1) (Protein MFH) | Essential component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Suppresses G-protein- and mitogen-activated protein kinase-mediated signal transduction. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}. |
Q13105 | ZBTB17 | S120 | ochoa | Zinc finger and BTB domain-containing protein 17 (Myc-interacting zinc finger protein 1) (Miz-1) (Zinc finger protein 151) (Zinc finger protein 60) | Transcription factor that can function as an activator or repressor depending on its binding partners, and by targeting negative regulators of cell cycle progression. Plays a critical role in early lymphocyte development, where it is essential to prevent apoptosis in lymphoid precursors, allowing them to survive in response to IL7 and undergo proper lineage commitment. Has been shown to bind to the promoters of adenovirus major late protein and cyclin D1 and activate transcription. Required for early embryonic development during gastrulation. Represses RB1 transcription; this repression can be blocked by interaction with ZBTB49 isoform 3/ZNF509S1 (PubMed:25245946). {ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:25245946, ECO:0000269|PubMed:9308237, ECO:0000269|PubMed:9312026}. |
Q13112 | CHAF1B | S538 | ochoa | Chromatin assembly factor 1 subunit B (CAF-1 subunit B) (Chromatin assembly factor I p60 subunit) (CAF-I 60 kDa subunit) (CAF-I p60) (M-phase phosphoprotein 7) | Acts as a component of the histone chaperone complex chromatin assembly factor 1 (CAF-1), which assembles histone octamers onto DNA during replication and repair. CAF-1 performs the first step of the nucleosome assembly process, bringing newly synthesized histones H3 and H4 to replicating DNA; histones H2A/H2B can bind to this chromatin precursor subsequent to DNA replication to complete the histone octamer. {ECO:0000269|PubMed:9813080}. |
Q13118 | KLF10 | S206 | ochoa|psp | Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) | Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}. |
Q13127 | REST | S750 | ochoa | RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) | Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}. |
Q13127 | REST | S766 | ochoa | RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) | Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}. |
Q13136 | PPFIA1 | S150 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13144 | EIF2B5 | S544 | ochoa|psp | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q13144 | EIF2B5 | S610 | ochoa | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q13191 | CBLB | S614 | ochoa | E3 ubiquitin-protein ligase CBL-B (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene b) (RING finger protein 56) (RING-type E3 ubiquitin transferase CBL-B) (SH3-binding protein CBL-B) (Signal transduction protein CBL-B) | E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome. Negatively regulates TCR (T-cell receptor), BCR (B-cell receptor) and FCER1 (high affinity immunoglobulin epsilon receptor) signal transduction pathways. In naive T-cells, inhibits VAV1 activation upon TCR engagement and imposes a requirement for CD28 costimulation for proliferation and IL-2 production. Also acts by promoting PIK3R1/p85 ubiquitination, which impairs its recruitment to the TCR and subsequent activation. In activated T-cells, inhibits PLCG1 activation and calcium mobilization upon restimulation and promotes anergy. In B-cells, acts by ubiquitinating SYK and promoting its proteasomal degradation. Slightly promotes SRC ubiquitination. May be involved in EGFR ubiquitination and internalization. May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBL, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:Q3TTA7, ECO:0000269|PubMed:10022120, ECO:0000269|PubMed:10086340, ECO:0000269|PubMed:11087752, ECO:0000269|PubMed:11526404, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:20525694}. |
Q13203 | MYBPH | S445 | ochoa | Myosin-binding protein H (MyBP-H) (H-protein) | Binds to myosin; probably involved in interaction with thick myofilaments in the A-band. |
Q13207 | TBX2 | S676 | ochoa | T-box transcription factor TBX2 (T-box protein 2) | Transcription factor which acts as a transcriptional repressor (PubMed:11062467, PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). May also function as a transcriptional activator (By similarity). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). Required for cardiac atrioventricular canal formation (PubMed:29726930). May cooperate with NKX2.5 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). May play a role as a positive regulator of TGFB2 expression, perhaps acting in concert with GATA4 in the developing outflow tract myocardium (By similarity). Plays a role in limb pattern formation (PubMed:29726930). Acts as a transcriptional repressor of ADAM10 gene expression, perhaps in concert with histone deacetylase HDAC1 as cofactor (PubMed:30599067). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX3 (By similarity). Required, together with TBX3, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with TBX3, in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). Acts as a negative regulator of expression of CDKN1A/p21, IL33 and CCN4; repression of CDKN1A is enhanced in response to UV-induced stress, perhaps as a result of phosphorylation by p38 MAPK (By similarity). Negatively modulates expression of CDKN2A/p14ARF and CDH1/E-cadherin (PubMed:11062467, PubMed:12000749, PubMed:22844464). Plays a role in induction of the epithelial-mesenchymal transition (EMT) (PubMed:22844464). Plays a role in melanocyte proliferation, perhaps via regulation of cyclin CCND1 (By similarity). Involved in melanogenesis, acting via negative modulation of expression of DHICA oxidase/TYRP1 and P protein/OCA2 (By similarity). Involved in regulating retinal pigment epithelium (RPE) cell proliferation, perhaps via negatively modulating transcription of the transcription factor CEBPD (PubMed:28910203). {ECO:0000250|UniProtKB:Q60707, ECO:0000269|PubMed:11062467, ECO:0000269|PubMed:11111039, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537, ECO:0000269|PubMed:22844464, ECO:0000269|PubMed:28910203, ECO:0000269|PubMed:29726930, ECO:0000269|PubMed:30599067}. |
Q13224 | GRIN2B | S917 | ochoa | Glutamate receptor ionotropic, NMDA 2B (GluN2B) (Glutamate [NMDA] receptor subunit epsilon-2) (N-methyl D-aspartate receptor subtype 2B) (NMDAR2B) (NR2B) (N-methyl-D-aspartate receptor subunit 3) (NR3) (hNR3) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). Participates in synaptic plasticity for learning and memory formation by contributing to the long-term depression (LTD) of hippocampus membrane currents (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:24272827, PubMed:24863970, PubMed:26875626, PubMed:26919761, PubMed:27839871, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:28095420, PubMed:28126851, PubMed:38538865, PubMed:8768735). In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). {ECO:0000250|UniProtKB:P35438, ECO:0000250|UniProtKB:Q01097, ECO:0000269|PubMed:24272827, ECO:0000269|PubMed:24863970, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27839871, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
Q13233 | MAP3K1 | S1018 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13233 | MAP3K1 | S1043 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13237 | PRKG2 | S97 | ochoa | cGMP-dependent protein kinase 2 (cGK 2) (cGK2) (EC 2.7.11.12) (cGMP-dependent protein kinase II) (cGKII) | Crucial regulator of intestinal secretion and bone growth. Phosphorylates and activates CFTR on the plasma membrane. Plays a key role in intestinal secretion by regulating cGMP-dependent translocation of CFTR in jejunum (PubMed:33106379). Acts downstream of NMDAR to activate the plasma membrane accumulation of GRIA1/GLUR1 in synapse and increase synaptic plasticity. Phosphorylates GRIA1/GLUR1 at Ser-863 (By similarity). Acts as a regulator of gene expression and activator of the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2 in mechanically stimulated osteoblasts. Under fluid shear stress, mediates ERK activation and subsequent induction of FOS, FOSL1/FRA1, FOSL2/FRA2 and FOSB that play a key role in the osteoblast anabolic response to mechanical stimulation (By similarity). {ECO:0000250|UniProtKB:Q61410, ECO:0000250|UniProtKB:Q64595, ECO:0000269|PubMed:33106379}. |
Q13239 | SLA | S190 | ochoa | Src-like-adapter (Src-like-adapter protein 1) (SLAP-1) (hSLAP) | Adapter protein, which negatively regulates T-cell receptor (TCR) signaling. Inhibits T-cell antigen-receptor induced activation of nuclear factor of activated T-cells. Involved in the negative regulation of positive selection and mitosis of T-cells. May act by linking signaling proteins such as ZAP70 with CBL, leading to a CBL dependent degradation of signaling proteins. {ECO:0000269|PubMed:10449770, ECO:0000269|PubMed:11696592}. |
Q13263 | TRIM28 | S697 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13263 | TRIM28 | S757 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13303 | KCNAB2 | S31 | psp | Voltage-gated potassium channel subunit beta-2 (EC 1.1.1.-) (K(+) channel subunit beta-2) (Kv-beta-2) (hKvbeta2) | Regulatory subunit of the voltage-gated potassium (Kv) Shaker channels composed of pore-forming and potassium-conducting alpha subunits and of regulatory beta subunits (PubMed:11825900, PubMed:7649300). The beta-2/KCNAB2 cytoplasmic subunit promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore (PubMed:11825900, PubMed:7649300). Promotes the inactivation of Kv1.4/KCNA4 and Kv1.5/KCNA5 alpha subunit-containing channels (PubMed:11825900, PubMed:7649300). Displays nicotinamide adenine dinucleotide phosphate (NADPH)-dependent aldoketoreductase activity by catalyzing the NADPH-dependent reduction of a wide range of aldehyde and ketone substrates (By similarity). Substrate specificity includes methylglyoxal, 9,10-phenanthrenequinone, prostaglandin J2, 4-nitrobenzaldehyde, 4-nitroacetophenone and 4-oxo-trans-2-nonenal (in vitro, no physiological substrate identified yet) (By similarity). The binding of oxidized and reduced nucleotide alters Kv channel gating and may contribute to dynamic fine tuning of cell excitability (By similarity). Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). {ECO:0000250|UniProtKB:P62482, ECO:0000250|UniProtKB:P62483, ECO:0000269|PubMed:11825900, ECO:0000269|PubMed:7649300}. |
Q13310 | PABPC4 | S315 | ochoa | Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) | Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}. |
Q13315 | ATM | S794 | psp | Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T mutated) | Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15064416, PubMed:15448695, PubMed:15456891, PubMed:15790808, PubMed:15916964, PubMed:17923702, PubMed:21757780, PubMed:24534091, PubMed:35076389, PubMed:9733514). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15448695, PubMed:15456891, PubMed:15916964, PubMed:17923702, PubMed:24534091, PubMed:9733514). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBQLN4 and DCLRE1C (PubMed:10550055, PubMed:10766245, PubMed:10802669, PubMed:10839545, PubMed:10910365, PubMed:10973490, PubMed:11375976, PubMed:12086603, PubMed:15456891, PubMed:19965871, PubMed:21757780, PubMed:24534091, PubMed:26240375, PubMed:26774286, PubMed:30171069, PubMed:30612738, PubMed:30886146, PubMed:30952868, PubMed:38128537, PubMed:9733515, PubMed:9843217). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed:19965871). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed:15916964). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:15448695). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed:26344566). {ECO:0000250|UniProtKB:Q62388, ECO:0000269|PubMed:10550055, ECO:0000269|PubMed:10766245, ECO:0000269|PubMed:10802669, ECO:0000269|PubMed:10839545, ECO:0000269|PubMed:10910365, ECO:0000269|PubMed:10973490, ECO:0000269|PubMed:11375976, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12556884, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:16858402, ECO:0000269|PubMed:17923702, ECO:0000269|PubMed:19431188, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:21757780, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9733514, ECO:0000269|PubMed:9733515, ECO:0000269|PubMed:9843217}. |
Q13322 | GRB10 | S104 | ochoa|psp | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13322 | GRB10 | S418 | ochoa | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13322 | GRB10 | S476 | ochoa|psp | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13323 | BIK | S124 | psp | Bcl-2-interacting killer (Apoptosis inducer NBK) (BIP1) (BP4) | Accelerates programmed cell death. Association to the apoptosis repressors Bcl-X(L), BHRF1, Bcl-2 or its adenovirus homolog E1B 19k protein suppresses this death-promoting activity. Does not interact with BAX. {ECO:0000269|PubMed:8521816}. |
Q13330 | MTA1 | S386 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13330 | MTA1 | S576 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13342 | SP140 | S185 | ochoa | Nuclear body protein SP140 (Lymphoid-restricted homolog of Sp100) (LYSp100) (Nuclear autoantigen Sp-140) (Speckled 140 kDa) | Component of the nuclear body, also known as nuclear domain 10, PML oncogenic domain, and KR body (PubMed:8910577). May be involved in the pathogenesis of acute promyelocytic leukemia and viral infection (PubMed:8910577). May play a role in chromatin-mediated regulation of gene expression although it does not bind to histone H3 tails (PubMed:24267382). {ECO:0000269|PubMed:24267382, ECO:0000269|PubMed:8910577, ECO:0000303|PubMed:8910577}. |
Q13347 | EIF3I | S238 | ochoa | Eukaryotic translation initiation factor 3 subunit I (eIF3i) (Eukaryotic translation initiation factor 3 subunit 2) (TGF-beta receptor-interacting protein 1) (TRIP-1) (eIF-3-beta) (eIF3 p36) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03008, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q13352 | ITGB3BP | S46 | psp | Centromere protein R (CENP-R) (Beta-3-endonexin) (Integrin beta-3-binding protein) (Nuclear receptor-interacting factor 3) | Transcription coregulator that can have both coactivator and corepressor functions. Isoform 1, but not other isoforms, is involved in the coactivation of nuclear receptors for retinoid X (RXRs) and thyroid hormone (TRs) in a ligand-dependent fashion. In contrast, it does not coactivate nuclear receptors for retinoic acid, vitamin D, progesterone receptor, nor glucocorticoid. Acts as a coactivator for estrogen receptor alpha. Acts as a transcriptional corepressor via its interaction with the NFKB1 NF-kappa-B subunit, possibly by interfering with the transactivation domain of NFKB1. Induces apoptosis in breast cancer cells, but not in other cancer cells, via a caspase-2 mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. May also act as an inhibitor of cyclin A-associated kinase. Also acts a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:11713274, ECO:0000269|PubMed:12244126, ECO:0000269|PubMed:15082778, ECO:0000269|PubMed:15254226, ECO:0000269|PubMed:16622420}. |
Q13368 | MPP3 | S307 | ochoa | MAGUK p55 subfamily member 3 (Discs large homolog 3) (Protein MPP3) | Participates in cell spreading through the phosphoinositide-3-kinase (PI3K) pathway by connecting CADM1 to DLG1 and the regulatory subunit of phosphoinositide-3-kinase (PI3K) (PubMed:24503895). Stabilizes HTR2C at the plasma membrane and prevents its desensitization. May participates in the maintenance of adherens junctions (By similarity). {ECO:0000250|UniProtKB:O88910, ECO:0000269|PubMed:24503895}. |
Q13370 | PDE3B | S514 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3B (EC 3.1.4.17) (CGIPDE1) (CGIP1) (Cyclic GMP-inhibited phosphodiesterase B) (CGI-PDE B) | Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological process (PubMed:14592490, PubMed:21393242). Regulates angiogenesis by inhibiting the cAMP-dependent guanine nucleotide exchange factor RAPGEF3 and downstream phosphatidylinositol 3-kinase gamma-mediated signaling (PubMed:21393242). Controls cardiac contractility by reducing cAMP concentration in cardiocytes (By similarity). {ECO:0000250|UniProtKB:Q61409, ECO:0000269|PubMed:14592490, ECO:0000269|PubMed:21393242}. |
Q13393 | PLD1 | S45 | ochoa | Phospholipase D1 (PLD 1) (hPLD1) (EC 3.1.4.4) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D1) | Function as phospholipase selective for phosphatidylcholine (PubMed:25936805, PubMed:8530346, PubMed:9582313). Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). {ECO:0000250|UniProtKB:Q9Z280, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:8530346, ECO:0000269|PubMed:9582313}. |
Q13415 | ORC1 | S273 | ochoa|psp | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13415 | ORC1 | S610 | ochoa | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13416 | ORC2 | S280 | ochoa | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13422 | IKZF1 | S389 | ochoa | DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) | Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}. |
Q13427 | PPIG | S397 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13427 | PPIG | S415 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13428 | TCOF1 | S823 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S1111 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13439 | GOLGA4 | S78 | ochoa | Golgin subfamily A member 4 (256 kDa golgin) (Golgin-245) (Protein 72.1) (Trans-Golgi p230) | Involved in vesicular trafficking at the Golgi apparatus level. May play a role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with MACF1. Involved in endosome-to-Golgi trafficking (PubMed:29084197). {ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:29084197}. |
Q13459 | MYO9B | S83 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13459 | MYO9B | S1323 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13459 | MYO9B | S1405 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13464 | ROCK1 | S1328 | ochoa | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
Q13469 | NFATC2 | S737 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13470 | TNK1 | S255 | ochoa | Non-receptor tyrosine-protein kinase TNK1 (EC 2.7.10.2) (CD38 negative kinase 1) | Involved in negative regulation of cell growth. Has tumor suppressor properties. Plays a negative regulatory role in the Ras-MAPK pathway. May function in signaling pathways utilized broadly during fetal development and more selectively in adult tissues and in cells of the lymphohematopoietic system. Could specifically be involved in phospholipid signal transduction. {ECO:0000269|PubMed:10873601, ECO:0000269|PubMed:18974114}. |
Q13480 | GAB1 | S274 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13480 | GAB1 | S381 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13485 | SMAD4 | S138 | psp | Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (Deletion target in pancreatic carcinoma 4) (SMAD family member 4) (SMAD 4) (Smad4) (hSMAD4) | In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression. Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (By similarity). Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling (PubMed:25514493). Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. {ECO:0000250, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:9389648}. |
Q13490 | BIRC2 | S98 | ochoa | Baculoviral IAP repeat-containing protein 2 (EC 2.3.2.27) (Cellular inhibitor of apoptosis 1) (C-IAP1) (IAP homolog B) (Inhibitor of apoptosis protein 2) (hIAP-2) (hIAP2) (RING finger protein 48) (RING-type E3 ubiquitin transferase BIRC2) (TNFR2-TRAF-signaling complex protein 2) | Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and cell proliferation, as well as cell invasion and metastasis. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and regulates both canonical and non-canonical NF-kappa-B signaling by acting in opposite directions: acts as a positive regulator of the canonical pathway and suppresses constitutive activation of non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF2, DIABLO/SMAC, MAP3K14/NIK, MAP3K5/ASK1, IKBKG/NEMO, IKBKE and MXD1/MAD1. Can also function as an E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Acts as an important regulator of innate immune signaling via regulation of Toll-like receptors (TLRs), Nodlike receptors (NLRs) and RIG-I like receptors (RLRs), collectively referred to as pattern recognition receptors (PRRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Can stimulate the transcriptional activity of E2F1. Plays a role in the modulation of the cell cycle. {ECO:0000269|PubMed:15665297, ECO:0000269|PubMed:18082613, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:21653699, ECO:0000269|PubMed:21931591, ECO:0000269|PubMed:23453969}. |
Q13492 | PICALM | S474 | ochoa | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) | Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}. |
Q13495 | MAMLD1 | S676 | ochoa | Mastermind-like domain-containing protein 1 (F18) (Protein CG1) | Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-canonical NOTCH target gene which lacks binding sites for RBPJ. {ECO:0000269|PubMed:18162467}. |
Q13501 | SQSTM1 | S170 | ochoa | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13501 | SQSTM1 | S249 | ochoa | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13505 | MTX1 | S197 | ochoa | Metaxin-1 (Mitochondrial outer membrane import complex protein 1) | Involved in transport of proteins into the mitochondrion. Essential for embryonic development (By similarity). {ECO:0000250}. |
Q13506 | NAB1 | S328 | ochoa | NGFI-A-binding protein 1 (EGR-1-binding protein 1) (Transcriptional regulatory protein p54) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. {ECO:0000250}. |
Q13506 | NAB1 | S407 | ochoa | NGFI-A-binding protein 1 (EGR-1-binding protein 1) (Transcriptional regulatory protein p54) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. {ECO:0000250}. |
Q13507 | TRPC3 | S785 | psp | Short transient receptor potential channel 3 (TrpC3) (Transient receptor protein 3) (TRP-3) (hTrp-3) (hTrp3) | Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:29726814, PubMed:30139744, PubMed:35051376, PubMed:9417057, PubMed:9930701, PubMed:10611319). {ECO:0000269|PubMed:10611319, ECO:0000269|PubMed:29726814, ECO:0000269|PubMed:30139744, ECO:0000269|PubMed:35051376, ECO:0000269|PubMed:9417057, ECO:0000269|PubMed:9930701}.; FUNCTION: [Isoform 2]: Forms a receptor-activated non-selective calcium permeant cation channel. May be operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. {ECO:0000269|PubMed:8646775}. |
Q13509 | TUBB3 | S172 | ochoa | Tubulin beta-3 chain (Tubulin beta-4 chain) (Tubulin beta-III) | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:34996871, PubMed:38305685, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:34996871, PubMed:38305685, PubMed:38609661). Below the cap, alpha-beta tubulin heterodimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). TUBB3 plays a critical role in proper axon guidance and maintenance (PubMed:20074521). Binding of NTN1/Netrin-1 to its receptor UNC5C might cause dissociation of UNC5C from polymerized TUBB3 in microtubules and thereby lead to increased microtubule dynamics and axon repulsion (PubMed:28483977). Plays a role in dorsal root ganglion axon projection towards the spinal cord (PubMed:28483977). {ECO:0000269|PubMed:20074521, ECO:0000269|PubMed:28483977, ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
Q13522 | PPP1R1A | S67 | ochoa|psp | Protein phosphatase 1 regulatory subunit 1A (Protein phosphatase inhibitor 1) (I-1) (IPP-1) | Inhibitor of protein-phosphatase 1. This protein may be important in hormonal control of glycogen metabolism. Hormones that elevate intracellular cAMP increase I-1 activity in many tissues. I-1 activation may impose cAMP control over proteins that are not directly phosphorylated by PKA. Following a rise in intracellular calcium, I-1 is inactivated by calcineurin (or PP2B). Does not inhibit type-2 phosphatases. |
Q13535 | ATR | S428 | ochoa|psp | Serine/threonine-protein kinase ATR (EC 2.7.11.1) (Ataxia telangiectasia and Rad3-related protein) (FRAP-related protein 1) | Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor (PubMed:10597277, PubMed:10608806, PubMed:10859164, PubMed:11721054, PubMed:12791985, PubMed:12814551, PubMed:14657349, PubMed:14729973, PubMed:14742437, PubMed:15210935, PubMed:15496423, PubMed:16260606, PubMed:21144835, PubMed:21777809, PubMed:23273981, PubMed:25083873, PubMed:27723717, PubMed:27723720, PubMed:30139873, PubMed:33848395, PubMed:37788673, PubMed:37832547, PubMed:9427750, PubMed:9636169). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10597277, PubMed:10608806, PubMed:10859164, PubMed:11721054, PubMed:12791985, PubMed:12814551, PubMed:14657349, PubMed:14729973, PubMed:14742437, PubMed:15210935, PubMed:15496423, PubMed:16260606, PubMed:21144835, PubMed:23273981, PubMed:27723717, PubMed:27723720, PubMed:33848395, PubMed:9427750, PubMed:9636169). Phosphorylates BRCA1, CHEK1, MCM2, RAD17, RBBP8, RPA2, SMC1 and p53/TP53, which collectively inhibit DNA replication and mitosis and promote DNA repair, recombination and apoptosis (PubMed:11114888, PubMed:11418864, PubMed:11865061, PubMed:21777809, PubMed:23273981, PubMed:25083873, PubMed:9925639). Phosphorylates 'Ser-139' of histone variant H2AX at sites of DNA damage, thereby regulating DNA damage response mechanism (PubMed:11673449). Required for FANCD2 ubiquitination (PubMed:15314022). Critical for maintenance of fragile site stability and efficient regulation of centrosome duplication (PubMed:12526805). Acts as a regulator of the S-G2 transition by restricting the activity of CDK1 during S-phase to prevent premature entry into G2 (PubMed:30139873). Acts as a regulator of the nuclear envelope integrity in response to DNA damage and stress (PubMed:25083873, PubMed:37788673, PubMed:37832547). Acts as a mechanical stress sensor at the nuclear envelope: relocalizes to the nuclear envelope in response to mechanical stress and mediates a checkpoint via phosphorylation of CHEK1 (PubMed:25083873). Also promotes nuclear envelope rupture in response to DNA damage by mediating phosphorylation of LMNA at 'Ser-282', leading to lamin disassembly (PubMed:37832547). Involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability and catalyzing phosphorylation of LMNA at 'Ser-395', priming LMNA for subsequent phosphorylation by CDK1 and micronuclei envelope rupture (PubMed:37788673). The rupture of micronuclear envelope triggers the cGAS-STING pathway thereby activating the type I interferon response and innate immunity (PubMed:37788673). Positively regulates the restart of stalled replication forks following activation by the KHDC3L-OOEP scaffold complex (By similarity). {ECO:0000250|UniProtKB:Q9JKK8, ECO:0000269|PubMed:10597277, ECO:0000269|PubMed:10608806, ECO:0000269|PubMed:10859164, ECO:0000269|PubMed:11114888, ECO:0000269|PubMed:11418864, ECO:0000269|PubMed:11673449, ECO:0000269|PubMed:11721054, ECO:0000269|PubMed:11865061, ECO:0000269|PubMed:12526805, ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:12814551, ECO:0000269|PubMed:14657349, ECO:0000269|PubMed:14729973, ECO:0000269|PubMed:14742437, ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15496423, ECO:0000269|PubMed:16260606, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:25083873, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873, ECO:0000269|PubMed:33848395, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547, ECO:0000269|PubMed:9427750, ECO:0000269|PubMed:9636169, ECO:0000269|PubMed:9925639}. |
Q13535 | ATR | S1871 | ochoa | Serine/threonine-protein kinase ATR (EC 2.7.11.1) (Ataxia telangiectasia and Rad3-related protein) (FRAP-related protein 1) | Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor (PubMed:10597277, PubMed:10608806, PubMed:10859164, PubMed:11721054, PubMed:12791985, PubMed:12814551, PubMed:14657349, PubMed:14729973, PubMed:14742437, PubMed:15210935, PubMed:15496423, PubMed:16260606, PubMed:21144835, PubMed:21777809, PubMed:23273981, PubMed:25083873, PubMed:27723717, PubMed:27723720, PubMed:30139873, PubMed:33848395, PubMed:37788673, PubMed:37832547, PubMed:9427750, PubMed:9636169). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10597277, PubMed:10608806, PubMed:10859164, PubMed:11721054, PubMed:12791985, PubMed:12814551, PubMed:14657349, PubMed:14729973, PubMed:14742437, PubMed:15210935, PubMed:15496423, PubMed:16260606, PubMed:21144835, PubMed:23273981, PubMed:27723717, PubMed:27723720, PubMed:33848395, PubMed:9427750, PubMed:9636169). Phosphorylates BRCA1, CHEK1, MCM2, RAD17, RBBP8, RPA2, SMC1 and p53/TP53, which collectively inhibit DNA replication and mitosis and promote DNA repair, recombination and apoptosis (PubMed:11114888, PubMed:11418864, PubMed:11865061, PubMed:21777809, PubMed:23273981, PubMed:25083873, PubMed:9925639). Phosphorylates 'Ser-139' of histone variant H2AX at sites of DNA damage, thereby regulating DNA damage response mechanism (PubMed:11673449). Required for FANCD2 ubiquitination (PubMed:15314022). Critical for maintenance of fragile site stability and efficient regulation of centrosome duplication (PubMed:12526805). Acts as a regulator of the S-G2 transition by restricting the activity of CDK1 during S-phase to prevent premature entry into G2 (PubMed:30139873). Acts as a regulator of the nuclear envelope integrity in response to DNA damage and stress (PubMed:25083873, PubMed:37788673, PubMed:37832547). Acts as a mechanical stress sensor at the nuclear envelope: relocalizes to the nuclear envelope in response to mechanical stress and mediates a checkpoint via phosphorylation of CHEK1 (PubMed:25083873). Also promotes nuclear envelope rupture in response to DNA damage by mediating phosphorylation of LMNA at 'Ser-282', leading to lamin disassembly (PubMed:37832547). Involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability and catalyzing phosphorylation of LMNA at 'Ser-395', priming LMNA for subsequent phosphorylation by CDK1 and micronuclei envelope rupture (PubMed:37788673). The rupture of micronuclear envelope triggers the cGAS-STING pathway thereby activating the type I interferon response and innate immunity (PubMed:37788673). Positively regulates the restart of stalled replication forks following activation by the KHDC3L-OOEP scaffold complex (By similarity). {ECO:0000250|UniProtKB:Q9JKK8, ECO:0000269|PubMed:10597277, ECO:0000269|PubMed:10608806, ECO:0000269|PubMed:10859164, ECO:0000269|PubMed:11114888, ECO:0000269|PubMed:11418864, ECO:0000269|PubMed:11673449, ECO:0000269|PubMed:11721054, ECO:0000269|PubMed:11865061, ECO:0000269|PubMed:12526805, ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:12814551, ECO:0000269|PubMed:14657349, ECO:0000269|PubMed:14729973, ECO:0000269|PubMed:14742437, ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15496423, ECO:0000269|PubMed:16260606, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:25083873, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873, ECO:0000269|PubMed:33848395, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547, ECO:0000269|PubMed:9427750, ECO:0000269|PubMed:9636169, ECO:0000269|PubMed:9925639}. |
Q13542 | EIF4EBP2 | S83 | ochoa | Eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) (eIF4E-binding protein 2) | Repressor of translation initiation involved in synaptic plasticity, learning and memory formation (PubMed:30765518). Regulates EIF4E activity by preventing its assembly into the eIF4F complex: hypophosphorylated form of EIF4EBP2 competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation (PubMed:25533957, PubMed:30765518). EIF4EBP2 is enriched in brain and acts as a regulator of synapse activity and neuronal stem cell renewal via its ability to repress translation initiation (By similarity). Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways (By similarity). {ECO:0000250|UniProtKB:P70445, ECO:0000269|PubMed:25533957, ECO:0000269|PubMed:30765518}. |
Q13561 | DCTN2 | S320 | ochoa | Dynactin subunit 2 (50 kDa dynein-associated polypeptide) (Dynactin complex 50 kDa subunit) (DCTN-50) (p50 dynamitin) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In the dynactin soulder domain, binds the ACTR1A filament and acts as a molecular ruler to determine the length (By similarity). Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development (By similarity). {ECO:0000250|UniProtKB:A0A5G2QD80, ECO:0000250|UniProtKB:Q99KJ8}. |
Q13572 | ITPK1 | S396 | ochoa | Inositol-tetrakisphosphate 1-kinase (EC 2.7.1.134) (Inositol 1,3,4-trisphosphate 5/6-kinase) (Inositol-triphosphate 5/6-kinase) (Ins(1,3,4)P(3) 5/6-kinase) (EC 2.7.1.159) | Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3 (PubMed:11042108, PubMed:8662638). Phosphorylates Ins(3,4,5,6)P4 at position 1 to form Ins(1,3,4,5,6)P5 (PubMed:11042108). This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not. Also phosphorylates Ins(1,3,4)P3 on O-5 and O-6 to form Ins(1,3,4,6)P4, an essential molecule in the hexakisphosphate (InsP6) pathway (PubMed:11042108, PubMed:8662638). Also acts as an inositol polyphosphate phosphatase that dephosphorylates Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 to Ins(1,3,4)P3, and Ins(1,3,4,5,6)P5 to Ins(3,4,5,6)P4 (PubMed:11909533, PubMed:17616525). May also act as an isomerase that interconverts the inositol tetrakisphosphate isomers Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 in the presence of ADP and magnesium (PubMed:11909533). Probably acts as the rate-limiting enzyme of the InsP6 pathway. Modifies TNF-alpha-induced apoptosis by interfering with the activation of TNFRSF1A-associated death domain (PubMed:11909533, PubMed:12925536, PubMed:17616525). Plays an important role in MLKL-mediated necroptosis. Produces highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which bind to MLKL mediating the release of an N-terminal auto-inhibitory region leading to its activation. Essential for activated phospho-MLKL to oligomerize and localize to the cell membrane during necroptosis (PubMed:17616525). {ECO:0000269|PubMed:11042108, ECO:0000269|PubMed:11909533, ECO:0000269|PubMed:12925536, ECO:0000269|PubMed:17616525, ECO:0000269|PubMed:8662638}. |
Q13576 | IQGAP2 | S396 | ochoa | Ras GTPase-activating-like protein IQGAP2 | Binds to activated CDC42 and RAC1 but does not seem to stimulate their GTPase activity. Associates with calmodulin. |
Q13586 | STIM1 | S486 | psp | Stromal interaction molecule 1 | Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}. |
Q13618 | CUL3 | S737 | ochoa | Cullin-3 (CUL-3) | Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. BCR complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins (PubMed:27565346). As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1. The functional specificity of the BCR complex depends on the BTB domain-containing protein as the substrate recognition component. BCR(KLHL42) is involved in ubiquitination of KATNA1. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, BRMS1, MACROH2A1 and DAXX, GLI2 and GLI3. Can also form a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex containing homodimeric SPOPL or the heterodimer formed by SPOP and SPOPL; these complexes have lower ubiquitin ligase activity. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B) (PubMed:22358839, PubMed:27716508). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; by mediating ubiquitination of WNK4 (PubMed:23387299, PubMed:23453970, PubMed:23576762). The BCR(KLHL20) E3 ubiquitin ligase complex is involved in interferon response and anterograde Golgi to endosome transport: it mediates both ubiquitination leading to degradation and 'Lys-33'-linked ubiquitination (PubMed:20389280, PubMed:21670212, PubMed:21840486, PubMed:24768539). The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of AURKB (PubMed:19995937). The BCR(KLHL22) ubiquitin ligase complex mediates monoubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation (PubMed:23455478). The BCR(KLHL22) ubiquitin ligase complex is also responsible for the amino acid-stimulated 'Lys-48' polyubiquitination and proteasomal degradation of DEPDC5. Through the degradation of DEPDC5, releases the GATOR1 complex-mediated inhibition of the TORC1 pathway (PubMed:29769719). The BCR(KLHL25) ubiquitin ligase complex is involved in translational homeostasis by mediating ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) (PubMed:22578813). The BCR(KLHL25) ubiquitin ligase complex is also involved in lipid synthesis by mediating ubiquitination and degradation of ACLY (PubMed:27664236). The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition. Involved in the ubiquitination of KEAP1, ENC1 and KLHL41 (PubMed:15983046). In concert with ATF2 and RBX1, promotes degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. The BCR(KCTD17) E3 ubiquitin ligase complex mediates ubiquitination and degradation of TCHP, a down-regulator of cilium assembly, thereby inducing ciliogenesis (PubMed:25270598). The BCR(KLHL24) E3 ubiquitin ligase complex mediates ubiquitination of KRT14, controls KRT14 levels during keratinocytes differentiation, and is essential for skin integrity (PubMed:27798626). The BCR(KLHL18) E3 ubiquitin ligase complex mediates the ubiquitination of AURKA leading to its activation at the centrosome which is required for initiating mitotic entry (PubMed:23213400). The BCR(KEAP1) E3 ubiquitin ligase complex acts as a key sensor of oxidative and electrophilic stress by mediating ubiquitination and degradation of NFE2L2/NRF2, a transcription factor regulating expression of many cytoprotective genes (PubMed:15601839, PubMed:16006525). As part of the CUL3(KBTBD6/7) E3 ubiquitin ligase complex functions mediates 'Lys-48' ubiquitination and proteasomal degradation of TIAM1 (PubMed:25684205). By controlling the ubiquitination of that RAC1 guanine exchange factors (GEF), regulates RAC1 signal transduction and downstream biological processes including the organization of the cytoskeleton, cell migration and cell proliferation (PubMed:25684205). The BCR(KBTBD4) E3 ubiquitin ligase complex targets CoREST corepressor complex components RCOR1, KDM1A/LSD1 and HDAC2 for proteasomal degradation with RCOR1 likely to be the primary target while degradation of KDM1A and HDAC2 is likely due to their association with RCOR1 (PubMed:33417871). It also targets RCOR3, MIER2 and MIER3 for proteasomal degradation as well as associated proteins ZNF217 and RREB1 with degradation being dependent on the presence of an ELM2 domain in the target proteins (PubMed:36997086). The BCR(ARMC5) complex mediates premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation by mediating ubiquitination of Pol II subunit POLR2A (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). Required for 'Lys-63'-linked ubiquitination of large ribosomal subunit protein MRPL12 (PubMed:37526061). {ECO:0000269|PubMed:10500095, ECO:0000269|PubMed:11311237, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:15897469, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16006525, ECO:0000269|PubMed:16524876, ECO:0000269|PubMed:17543862, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:19261606, ECO:0000269|PubMed:19995937, ECO:0000269|PubMed:20389280, ECO:0000269|PubMed:21670212, ECO:0000269|PubMed:21840486, ECO:0000269|PubMed:22085717, ECO:0000269|PubMed:22358839, ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22632832, ECO:0000269|PubMed:23213400, ECO:0000269|PubMed:23387299, ECO:0000269|PubMed:23453970, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23576762, ECO:0000269|PubMed:24768539, ECO:0000269|PubMed:25270598, ECO:0000269|PubMed:25684205, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:27565346, ECO:0000269|PubMed:27664236, ECO:0000269|PubMed:27716508, ECO:0000269|PubMed:27798626, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:33417871, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:36997086, ECO:0000269|PubMed:37526061, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}. |
Q13637 | RAB32 | S134 | ochoa | Ras-related protein Rab-32 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:11784320, PubMed:21808068). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:11784320). Also acts as an A-kinase anchoring protein by binding to the type II regulatory subunit of protein kinase A and anchoring it to the mitochondrion. Also involved in synchronization of mitochondrial fission (PubMed:12186851). Plays a role in the maturation of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis (PubMed:21255211). Plays an important role in the control of melanin production and melanosome biogenesis (PubMed:23084991). In concert with RAB38, regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). Stimulates phosphorylation of RAB10 'Thr-73' by LRRK2 (PubMed:38127736). {ECO:0000250|UniProtKB:Q9CZE3, ECO:0000269|PubMed:11784320, ECO:0000269|PubMed:12186851, ECO:0000269|PubMed:21255211, ECO:0000269|PubMed:21808068, ECO:0000269|PubMed:23084991, ECO:0000269|PubMed:38127736}. |
Q13637 | RAB32 | S154 | ochoa | Ras-related protein Rab-32 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:11784320, PubMed:21808068). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:11784320). Also acts as an A-kinase anchoring protein by binding to the type II regulatory subunit of protein kinase A and anchoring it to the mitochondrion. Also involved in synchronization of mitochondrial fission (PubMed:12186851). Plays a role in the maturation of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis (PubMed:21255211). Plays an important role in the control of melanin production and melanosome biogenesis (PubMed:23084991). In concert with RAB38, regulates the proper trafficking of melanogenic enzymes TYR, TYRP1 and DCT/TYRP2 to melanosomes in melanocytes (By similarity). Stimulates phosphorylation of RAB10 'Thr-73' by LRRK2 (PubMed:38127736). {ECO:0000250|UniProtKB:Q9CZE3, ECO:0000269|PubMed:11784320, ECO:0000269|PubMed:12186851, ECO:0000269|PubMed:21255211, ECO:0000269|PubMed:21808068, ECO:0000269|PubMed:23084991, ECO:0000269|PubMed:38127736}. |
Q13685 | AAMP | S248 | ochoa | Angio-associated migratory cell protein | Plays a role in angiogenesis and cell migration. In smooth muscle cell migration, may act through the RhoA pathway. {ECO:0000269|PubMed:10329261, ECO:0000269|PubMed:18634987}. |
Q13796 | SHROOM2 | S456 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13796 | SHROOM2 | S1297 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13796 | SHROOM2 | S1524 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13813 | SPTAN1 | S982 | ochoa | Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. |
Q13813 | SPTAN1 | S1190 | ochoa | Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. |
Q13868 | EXOSC2 | S175 | ochoa | Exosome complex component RRP4 (Exosome component 2) (Ribosomal RNA-processing protein 4) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC2 as peripheral part of the Exo-9 complex stabilizes the hexameric ring of RNase PH-domain subunits through contacts with EXOSC4 and EXOSC7. {ECO:0000269|PubMed:17545563}. |
Q13873 | BMPR2 | S515 | ochoa | Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}. |
Q13884 | SNTB1 | S389 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q13885 | TUBB2A | S172 | ochoa | Tubulin beta-2A chain (Tubulin beta class IIa) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q13888 | GTF2H2 | S237 | ochoa | General transcription factor IIH subunit 2 (Basic transcription factor 2 44 kDa subunit) (BTF2 p44) (General transcription factor IIH polypeptide 2) (TFIIH basal transcription factor complex p44 subunit) | Component of the general transcription and DNA repair factor IIH (TFIIH) core complex, which is involved in general and transcription-coupled nucleotide excision repair (NER) of damaged DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. In NER, TFIIH acts by opening DNA around the lesion to allow the excision of the damaged oligonucleotide and its replacement by a new DNA fragment. In transcription, TFIIH has an essential role in transcription initiation. When the pre-initiation complex (PIC) has been established, TFIIH is required for promoter opening and promoter escape. Phosphorylation of the C-terminal tail (CTD) of the largest subunit of RNA polymerase II by the kinase module CAK controls the initiation of transcription. The N-terminus of GTF2H2 interacts with and regulates XPD whereas an intact C-terminus is required for a successful escape of RNAP II form the promoter. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:11319235, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:8194529, ECO:0000269|PubMed:9852112}. |
Q13936 | CACNA1C | S815 | ochoa | Voltage-dependent L-type calcium channel subunit alpha-1C (Calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle) (Voltage-gated calcium channel subunit alpha Cav1.2) | Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:12181424, PubMed:15454078, PubMed:15863612, PubMed:16299511, PubMed:17224476, PubMed:20953164, PubMed:23677916, PubMed:24728418, PubMed:26253506, PubMed:27218670, PubMed:29078335, PubMed:29742403, PubMed:30023270, PubMed:30172029, PubMed:34163037, PubMed:8099908). Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm (PubMed:15454078, PubMed:15863612, PubMed:17224476, PubMed:24728418, PubMed:26253506). Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via its role in the contraction of arterial smooth muscle cells (PubMed:28119464). Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group (Probable). {ECO:0000250|UniProtKB:P15381, ECO:0000269|PubMed:12181424, ECO:0000269|PubMed:15454078, ECO:0000269|PubMed:15863612, ECO:0000269|PubMed:16299511, ECO:0000269|PubMed:17224476, ECO:0000269|PubMed:20953164, ECO:0000269|PubMed:23677916, ECO:0000269|PubMed:24728418, ECO:0000269|PubMed:25260352, ECO:0000269|PubMed:25633834, ECO:0000269|PubMed:26253506, ECO:0000269|PubMed:27218670, ECO:0000269|PubMed:28119464, ECO:0000269|PubMed:29078335, ECO:0000269|PubMed:29742403, ECO:0000269|PubMed:30023270, ECO:0000269|PubMed:30172029, ECO:0000269|PubMed:31430211, ECO:0000269|PubMed:34163037, ECO:0000269|PubMed:8099908, ECO:0000305}.; FUNCTION: [Isoform 12]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:12176756, ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 13]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 14]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 15]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 16]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9087614}.; FUNCTION: [Isoform 17]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9087614}.; FUNCTION: [Isoform 18]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:8392192}.; FUNCTION: [Isoform 19]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 20]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 21]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 22]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 23]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 24]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 25]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 26]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9013606}.; FUNCTION: [Isoform 27]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9013606}.; FUNCTION: [Isoform 34]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:11741969}.; FUNCTION: (Microbial infection) Acts as a receptor for Influenzavirus (PubMed:29779930). May play a critical role in allowing virus entry when sialylated and expressed on lung tissues (PubMed:29779930). {ECO:0000269|PubMed:29779930}. |
Q13950 | RUNX2 | S503 | psp | Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) | Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}. |
Q14008 | CKAP5 | S1904 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14106 | TOB2 | S254 | ochoa|psp | Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) | Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases. |
Q14135 | VGLL4 | S149 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14139 | UBE4A | S551 | ochoa | Ubiquitin conjugation factor E4 A (EC 2.3.2.27) (RING-type E3 ubiquitin transferase E4 A) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases. May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase. Mediates 'Lys-48'-linked polyubiquitination of substrates. {ECO:0000250|UniProtKB:E9Q735, ECO:0000250|UniProtKB:P54860}. |
Q14139 | UBE4A | S940 | ochoa | Ubiquitin conjugation factor E4 A (EC 2.3.2.27) (RING-type E3 ubiquitin transferase E4 A) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases. May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase. Mediates 'Lys-48'-linked polyubiquitination of substrates. {ECO:0000250|UniProtKB:E9Q735, ECO:0000250|UniProtKB:P54860}. |
Q14139 | UBE4A | S1034 | ochoa | Ubiquitin conjugation factor E4 A (EC 2.3.2.27) (RING-type E3 ubiquitin transferase E4 A) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases. May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase. Mediates 'Lys-48'-linked polyubiquitination of substrates. {ECO:0000250|UniProtKB:E9Q735, ECO:0000250|UniProtKB:P54860}. |
Q14145 | KEAP1 | S104 | psp | Kelch-like ECH-associated protein 1 (Cytosolic inhibitor of Nrf2) (INrf2) (Kelch-like protein 19) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that regulates the response to oxidative stress by targeting NFE2L2/NRF2 for ubiquitination (PubMed:14585973, PubMed:15379550, PubMed:15572695, PubMed:15601839, PubMed:15983046, PubMed:37339955). KEAP1 acts as a key sensor of oxidative and electrophilic stress: in normal conditions, the BCR(KEAP1) complex mediates ubiquitination and degradation of NFE2L2/NRF2, a transcription factor regulating expression of many cytoprotective genes (PubMed:15601839, PubMed:16006525). In response to oxidative stress, different electrophile metabolites trigger non-enzymatic covalent modifications of highly reactive cysteine residues in KEAP1, leading to inactivate the ubiquitin ligase activity of the BCR(KEAP1) complex, promoting NFE2L2/NRF2 nuclear accumulation and expression of phase II detoxifying enzymes (PubMed:16006525, PubMed:17127771, PubMed:18251510, PubMed:19489739, PubMed:29590092). In response to selective autophagy, KEAP1 is sequestered in inclusion bodies following its interaction with SQSTM1/p62, leading to inactivation of the BCR(KEAP1) complex and activation of NFE2L2/NRF2 (PubMed:20452972). The BCR(KEAP1) complex also mediates ubiquitination of SQSTM1/p62, increasing SQSTM1/p62 sequestering activity and degradation (PubMed:28380357). The BCR(KEAP1) complex also targets BPTF and PGAM5 for ubiquitination and degradation by the proteasome (PubMed:15379550, PubMed:17046835). {ECO:0000269|PubMed:14585973, ECO:0000269|PubMed:15379550, ECO:0000269|PubMed:15572695, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16006525, ECO:0000269|PubMed:17046835, ECO:0000269|PubMed:17127771, ECO:0000269|PubMed:18251510, ECO:0000269|PubMed:19489739, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:29590092, ECO:0000269|PubMed:37339955}. |
Q14149 | MORC3 | S765 | ochoa | MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) | Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}. |
Q14151 | SAFB2 | S444 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14155 | ARHGEF7 | S257 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14159 | SPIDR | S826 | ochoa | DNA repair-scaffolding protein (Scaffolding protein involved in DNA repair) | Plays a role in DNA double-strand break (DBS) repair via homologous recombination (HR). Serves as a scaffolding protein that helps to promote the recruitment of DNA-processing enzymes like the helicase BLM and recombinase RAD51 to site of DNA damage, and hence contributes to maintain genomic integrity. {ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:23754376, ECO:0000269|PubMed:27967308, ECO:0000269|PubMed:34697795}. |
Q14160 | SCRIB | S1140 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14161 | GIT2 | S634 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14183 | DOC2A | S221 | ochoa | Double C2-like domain-containing protein alpha (Doc2) (Doc2-alpha) | Calcium sensor which most probably regulates fusion of vesicles with membranes. Binds calcium and phospholipids. May be involved in calcium dependent neurotransmitter release through the interaction with UNC13A. May be involved in calcium-dependent spontaneous release of neurotransmitter in absence of action potentials in neuronal cells. Regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells. {ECO:0000269|PubMed:18354201, ECO:0000269|PubMed:9736751, ECO:0000269|PubMed:9804756}. |
Q14186 | TFDP1 | S23 | ochoa|psp | Transcription factor Dp-1 (DRTF1-polypeptide 1) (DRTF1) (E2F dimerization partner 1) | Can stimulate E2F-dependent transcription. Binds DNA cooperatively with E2F family members through the E2 recognition site, 5'-TTTC[CG]CGC-3', found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication (PubMed:7739537, PubMed:8405995). The E2F1:DP complex appears to mediate both cell proliferation and apoptosis. Blocks adipocyte differentiation by repressing CEBPA binding to its target gene promoters (PubMed:20176812). {ECO:0000269|PubMed:20176812, ECO:0000269|PubMed:7739537, ECO:0000269|PubMed:8405995}. |
Q14188 | TFDP2 | S24 | ochoa | Transcription factor Dp-2 (E2F dimerization partner 2) | Can stimulate E2F-dependent transcription. Binds DNA cooperatively with E2F family members through the E2 recognition site, 5'-TTTC[CG]CGC-3', found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The TFDP2:E2F complex functions in the control of cell-cycle progression from G1 to S phase. The E2F1:DP complex appears to mediate both cell proliferation and apoptosis. Blocks adipocyte differentiation by repressing CEBPA binding to its target gene promoters (PubMed:20176812). {ECO:0000305|PubMed:20176812}. |
Q14202 | ZMYM3 | S464 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14203 | DCTN1 | S1180 | ochoa | Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}. |
Q14204 | DYNC1H1 | S1903 | ochoa | Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) | Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}. |
Q14204 | DYNC1H1 | S3082 | ochoa | Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) | Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}. |
Q14207 | NPAT | S1100 | ochoa|psp | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14209 | E2F2 | S117 | ochoa | Transcription factor E2F2 (E2F-2) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from g1 to s phase. E2F2 binds specifically to RB1 in a cell-cycle dependent manner. |
Q14242 | SELPLG | S358 | ochoa | P-selectin glycoprotein ligand 1 (PSGL-1) (Selectin P ligand) (CD antigen CD162) | A SLe(x)-type proteoglycan, which through high affinity, calcium-dependent interactions with E-, P- and L-selectins, mediates rapid rolling of leukocytes over vascular surfaces during the initial steps in inflammation. Critical for the initial leukocyte capture. {ECO:0000269|PubMed:11566773, ECO:0000269|PubMed:12403782}.; FUNCTION: (Microbial infection) Acts as a receptor for enterovirus 71. {ECO:0000269|PubMed:19543284}. |
Q14244 | MAP7 | S219 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14244 | MAP7 | S315 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14244 | MAP7 | S657 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14258 | TRIM25 | S46 | ochoa | E3 ubiquitin/ISG15 ligase TRIM25 (EC 6.3.2.n3) (Estrogen-responsive finger protein) (RING finger protein 147) (RING-type E3 ubiquitin transferase) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase TRIM25) (Tripartite motif-containing protein 25) (Ubiquitin/ISG15-conjugating enzyme TRIM25) (Zinc finger protein 147) | Functions as a ubiquitin E3 ligase and as an ISG15 E3 ligase (PubMed:16352599). Involved in innate immune defense against viruses by mediating ubiquitination of RIGI and IFIH1 (PubMed:17392790, PubMed:29357390, PubMed:30193849, PubMed:31710640, PubMed:33849980, PubMed:36045682). Mediates 'Lys-63'-linked polyubiquitination of the RIGI N-terminal CARD-like region and may play a role in signal transduction that leads to the production of interferons in response to viral infection (PubMed:17392790, PubMed:23950712). Mediates 'Lys-63'-linked polyubiquitination of IFIH1 (PubMed:30193849). Promotes ISGylation of 14-3-3 sigma (SFN), an adapter protein implicated in the regulation of a large spectrum signaling pathway (PubMed:16352599, PubMed:17069755). Mediates estrogen action in various target organs (PubMed:22452784). Mediates the ubiquitination and subsequent proteasomal degradation of ZFHX3 (PubMed:22452784). Plays a role in promoting the restart of stalled replication forks via interaction with the KHDC3L-OOEP scaffold and subsequent ubiquitination of BLM, resulting in the recruitment and retainment of BLM at DNA replication forks (By similarity). Plays an essential role in the antiviral activity of ZAP/ZC3HAV1; an antiviral protein which inhibits the replication of certain viruses. Mechanistically, mediates 'Lys-63'-linked polyubiquitination of ZAP/ZC3HAV1 that is required for its optimal binding to target mRNA (PubMed:28060952, PubMed:28202764). Also mediates the ubiquitination of various substrates implicated in stress granule formation, nonsense-mediated mRNA decay, nucleoside synthesis and mRNA translation and stability (PubMed:36067236). {ECO:0000250|UniProtKB:Q61510, ECO:0000269|PubMed:16352599, ECO:0000269|PubMed:17069755, ECO:0000269|PubMed:17392790, ECO:0000269|PubMed:22452784, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:29357390, ECO:0000269|PubMed:30193849, ECO:0000269|PubMed:31710640, ECO:0000269|PubMed:33849980, ECO:0000269|PubMed:36045682, ECO:0000269|PubMed:36067236}. |
Q14258 | TRIM25 | S187 | ochoa | E3 ubiquitin/ISG15 ligase TRIM25 (EC 6.3.2.n3) (Estrogen-responsive finger protein) (RING finger protein 147) (RING-type E3 ubiquitin transferase) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase TRIM25) (Tripartite motif-containing protein 25) (Ubiquitin/ISG15-conjugating enzyme TRIM25) (Zinc finger protein 147) | Functions as a ubiquitin E3 ligase and as an ISG15 E3 ligase (PubMed:16352599). Involved in innate immune defense against viruses by mediating ubiquitination of RIGI and IFIH1 (PubMed:17392790, PubMed:29357390, PubMed:30193849, PubMed:31710640, PubMed:33849980, PubMed:36045682). Mediates 'Lys-63'-linked polyubiquitination of the RIGI N-terminal CARD-like region and may play a role in signal transduction that leads to the production of interferons in response to viral infection (PubMed:17392790, PubMed:23950712). Mediates 'Lys-63'-linked polyubiquitination of IFIH1 (PubMed:30193849). Promotes ISGylation of 14-3-3 sigma (SFN), an adapter protein implicated in the regulation of a large spectrum signaling pathway (PubMed:16352599, PubMed:17069755). Mediates estrogen action in various target organs (PubMed:22452784). Mediates the ubiquitination and subsequent proteasomal degradation of ZFHX3 (PubMed:22452784). Plays a role in promoting the restart of stalled replication forks via interaction with the KHDC3L-OOEP scaffold and subsequent ubiquitination of BLM, resulting in the recruitment and retainment of BLM at DNA replication forks (By similarity). Plays an essential role in the antiviral activity of ZAP/ZC3HAV1; an antiviral protein which inhibits the replication of certain viruses. Mechanistically, mediates 'Lys-63'-linked polyubiquitination of ZAP/ZC3HAV1 that is required for its optimal binding to target mRNA (PubMed:28060952, PubMed:28202764). Also mediates the ubiquitination of various substrates implicated in stress granule formation, nonsense-mediated mRNA decay, nucleoside synthesis and mRNA translation and stability (PubMed:36067236). {ECO:0000250|UniProtKB:Q61510, ECO:0000269|PubMed:16352599, ECO:0000269|PubMed:17069755, ECO:0000269|PubMed:17392790, ECO:0000269|PubMed:22452784, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:29357390, ECO:0000269|PubMed:30193849, ECO:0000269|PubMed:31710640, ECO:0000269|PubMed:33849980, ECO:0000269|PubMed:36045682, ECO:0000269|PubMed:36067236}. |
Q14289 | PTK2B | S839 | ochoa | Protein-tyrosine kinase 2-beta (EC 2.7.10.2) (Calcium-dependent tyrosine kinase) (CADTK) (Calcium-regulated non-receptor proline-rich tyrosine kinase) (Cell adhesion kinase beta) (CAK-beta) (CAKB) (Focal adhesion kinase 2) (FADK 2) (Proline-rich tyrosine kinase 2) (Related adhesion focal tyrosine kinase) (RAFTK) | Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:12771146, ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:14585963, ECO:0000269|PubMed:15050747, ECO:0000269|PubMed:15166227, ECO:0000269|PubMed:17634955, ECO:0000269|PubMed:18086875, ECO:0000269|PubMed:18339875, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18765415, ECO:0000269|PubMed:19086031, ECO:0000269|PubMed:19207108, ECO:0000269|PubMed:19244237, ECO:0000269|PubMed:19428251, ECO:0000269|PubMed:19648005, ECO:0000269|PubMed:19880522, ECO:0000269|PubMed:20001213, ECO:0000269|PubMed:20381867, ECO:0000269|PubMed:20521079, ECO:0000269|PubMed:21357692, ECO:0000269|PubMed:21533080, ECO:0000269|PubMed:7544443, ECO:0000269|PubMed:8670418, ECO:0000269|PubMed:8849729}. |
Q14315 | FLNC | S2256 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14324 | MYBPC2 | S1017 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14324 | MYBPC2 | S1111 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14449 | GRB14 | S419 | ochoa|psp | Growth factor receptor-bound protein 14 (GRB14 adapter protein) | Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}. |
Q14451 | GRB7 | S361 | ochoa|psp | Growth factor receptor-bound protein 7 (B47) (Epidermal growth factor receptor GRB-7) (GRB7 adapter protein) | Adapter protein that interacts with the cytoplasmic domain of numerous receptor kinases and modulates down-stream signaling. Promotes activation of down-stream protein kinases, including STAT3, AKT1, MAPK1 and/or MAPK3. Promotes activation of HRAS. Plays a role in signal transduction in response to EGF. Plays a role in the regulation of cell proliferation and cell migration. Plays a role in the assembly and stability of RNA stress granules. Binds to the 5'UTR of target mRNA molecules and represses translation of target mRNA species, when not phosphorylated. Phosphorylation impairs RNA binding and promotes stress granule disassembly during recovery after cellular stress (By similarity). {ECO:0000250, ECO:0000269|PubMed:10893408, ECO:0000269|PubMed:12021278, ECO:0000269|PubMed:12223469, ECO:0000269|PubMed:20622016}. |
Q14498 | RBM39 | S136 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14500 | KCNJ12 | S405 | ochoa | ATP-sensitive inward rectifier potassium channel 12 (Inward rectifier K(+) channel Kir2.2) (IRK-2) (Inward rectifier K(+) channel Kir2.2v) (Potassium channel, inwardly rectifying subfamily J member 12) | Inward rectifying potassium channel that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. {ECO:0000269|PubMed:12417321, ECO:0000269|PubMed:20921230, ECO:0000269|PubMed:7859381, ECO:0000269|PubMed:8647284}. |
Q14517 | FAT1 | S150 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q14526 | HIC1 | S704 | ochoa | Hypermethylated in cancer 1 protein (Hic-1) (Zinc finger and BTB domain-containing protein 29) | Transcriptional repressor (PubMed:12052894, PubMed:15231840). Recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3' (PubMed:15231840). May act as a tumor suppressor (PubMed:20154726). Involved in development of head, face, limbs and ventral body wall (By similarity). Involved in down-regulation of SIRT1 and thereby is involved in regulation of p53/TP53-dependent apoptotic DNA-damage responses (PubMed:16269335). The specific target gene promoter association seems to be depend on corepressors, such as CTBP1 or CTBP2 and MTA1 (PubMed:12052894, PubMed:20547755). In cooperation with MTA1 (indicative for an association with the NuRD complex) represses transcription from CCND1/cyclin-D1 and CDKN1C/p57Kip2 specifically in quiescent cells (PubMed:20547755). Involved in regulation of the Wnt signaling pathway probably by association with TCF7L2 and preventing TCF7L2 and CTNNB1 association with promoters of TCF-responsive genes (PubMed:16724116). Seems to repress transcription from E2F1 and ATOH1 which involves ARID1A, indicative for the participation of a distinct SWI/SNF-type chromatin-remodeling complex (PubMed:18347096, PubMed:19486893). Probably represses transcription of ACKR3, FGFBP1 and EFNA1 (PubMed:16690027, PubMed:19525223, PubMed:20154726). {ECO:0000250|UniProtKB:Q9R1Y5, ECO:0000269|PubMed:12052894, ECO:0000269|PubMed:15231840, ECO:0000269|PubMed:16269335, ECO:0000269|PubMed:16690027, ECO:0000269|PubMed:16724116, ECO:0000269|PubMed:18347096, ECO:0000269|PubMed:19486893, ECO:0000269|PubMed:19525223, ECO:0000269|PubMed:20154726, ECO:0000269|PubMed:20547755}. |
Q14541 | HNF4G | S121 | ochoa | Hepatocyte nuclear factor 4-gamma (HNF-4-gamma) (Nuclear receptor subfamily 2 group A member 2) | Transcription factor. Has a lower transcription activation potential than HNF4-alpha. |
Q14558 | PRPSAP1 | S177 | ochoa | Phosphoribosyl pyrophosphate synthase-associated protein 1 (PRPP synthase-associated protein 1) (39 kDa phosphoribosypyrophosphate synthase-associated protein) (PAP39) | Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis. |
Q14558 | PRPSAP1 | S215 | ochoa | Phosphoribosyl pyrophosphate synthase-associated protein 1 (PRPP synthase-associated protein 1) (39 kDa phosphoribosypyrophosphate synthase-associated protein) (PAP39) | Seems to play a negative regulatory role in 5-phosphoribose 1-diphosphate synthesis. |
Q14566 | MCM6 | S413 | ochoa | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q14566 | MCM6 | S689 | ochoa | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q14574 | DSC3 | S859 | ochoa | Desmocollin-3 (Cadherin family member 3) (Desmocollin-4) (HT-CP) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (By similarity). Required for cell-cell adhesion in the epidermis, as a result required for the maintenance of the dermal cohesion and the dermal barrier function (PubMed:19717567). Required for cell-cell adhesion of epithelial cell layers surrounding the telogen hair club, as a result plays an important role in telogen hair shaft anchorage (By similarity). Essential for successful completion of embryo compaction and embryo development (By similarity). {ECO:0000250|UniProtKB:P55850, ECO:0000269|PubMed:19717567}. |
Q14590 | ZNF235 | S249 | ochoa | Zinc finger protein 235 (Zinc finger protein 270) (Zinc finger protein 93 homolog) (Zfp-93) (Zinc finger protein HZF6) | May be involved in transcriptional regulation. |
Q14592 | ZNF460 | S489 | ochoa | Zinc finger protein 460 (Zinc finger protein 272) (Zinc finger protein HZF8) | May be involved in transcriptional regulation. |
Q14653 | IRF3 | S123 | psp | Interferon regulatory factor 3 (IRF-3) | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}. |
Q14653 | IRF3 | S339 | psp | Interferon regulatory factor 3 (IRF-3) | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}. |
Q14669 | TRIP12 | S1016 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14669 | TRIP12 | S1427 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14671 | PUM1 | S209 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14676 | MDC1 | S108 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14676 | MDC1 | S1820 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14678 | KANK1 | S641 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14678 | KANK1 | S916 | ochoa | KN motif and ankyrin repeat domain-containing protein 1 (Ankyrin repeat domain-containing protein 15) (Kidney ankyrin repeat-containing protein) | Adapter protein that links structural and signaling protein complexes positioned to guide microtubule and actin cytoskeleton dynamics during cell morphogenesis (PubMed:22084092, PubMed:24120883). At focal adhesions (FAs) rims, organizes cortical microtubule stabilizing complexes (CMSCs) and directly interacts with major FA component TLN1, forming macromolecular assemblies positioned to control microtubule-actin crosstalk at the cell edge (PubMed:24120883, PubMed:27410476). Recruits KIF21A in CMSCs at axonal growth cones and regulates axon guidance by suppressing microtubule growth without inducing microtubule disassembly once it reaches the cell cortex (PubMed:24120883). Interacts with ARFGEF1 and participates in establishing microtubule-organizing center (MTOC) orientation and directed cell movement in wound healing (PubMed:22084092). Regulates actin stress fiber formation and cell migration by inhibiting RHOA activation in response to growth factors; this function involves phosphorylation through PI3K/Akt signaling and may depend on the competitive interaction with 14-3-3 adapter proteins to sequester them from active complexes (PubMed:18458160, PubMed:25961457). Inhibits the formation of lamellipodia but not of filopodia; this function may depend on the competitive interaction with BAIAP2 to block its association with activated RAC1. Inhibits fibronectin-mediated cell spreading; this function is partially mediated by BAIAP2 (PubMed:19171758). In the nucleus, is involved in beta-catenin-dependent activation of transcription (PubMed:16968744). During cell division, may regulate DAAM1-dependent RHOA activation that signals centrosome maturation and chromosomal segregation. May also be involved in contractile ring formation during cytokinesis (By similarity). Potential tumor suppressor for renal cell carcinoma (Probable). {ECO:0000250|UniProtKB:E9Q238, ECO:0000269|PubMed:16968744, ECO:0000269|PubMed:18458160, ECO:0000269|PubMed:19171758, ECO:0000269|PubMed:22084092, ECO:0000269|PubMed:24120883, ECO:0000269|PubMed:25961457, ECO:0000269|PubMed:27410476, ECO:0000305|PubMed:12133830}. |
Q14684 | RRP1B | S160 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14684 | RRP1B | S706 | ochoa|psp | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14686 | NCOA6 | S884 | ochoa|psp | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14686 | NCOA6 | S1481 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14687 | GSE1 | S857 | ochoa | Genetic suppressor element 1 | None |
Q14690 | PDCD11 | S144 | ochoa | Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) | Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}. |
Q14690 | PDCD11 | S1360 | ochoa | Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) | Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}. |
Q14692 | BMS1 | S552 | ochoa | Ribosome biogenesis protein BMS1 homolog (EC 3.6.5.-) (Ribosome assembly protein BMS1 homolog) | GTPase required for the synthesis of 40S ribosomal subunits and for processing of pre-ribosomal RNA (pre-rRNA) at sites A0, A1, and A2. Controls access of pre-rRNA intermediates to RCL1 during ribosome biogenesis by binding RCL1 in a GTP-dependent manner, and delivering it to pre-ribosomes. GTP-binding and/or GTP hydrolysis may induce conformational rearrangements within the BMS1-RCL1 complex allowing the interaction of RCL1 with its RNA substrate. Required for RCL1 import into the nucleus. {ECO:0000250|UniProtKB:Q08965}. |
Q14694 | USP10 | S547 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14694 | USP10 | S718 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14739 | LBR | S357 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q14761 | PTPRCAP | S163 | ochoa|psp | Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) | None |
Q14781 | CBX2 | S302 | ochoa | Chromobox protein homolog 2 | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) or at 'Lys-27' (H3K27me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). Involved in sexual development, acting as activator of NR5A1 expression (PubMed:19361780). {ECO:0000250|UniProtKB:P30658, ECO:0000269|PubMed:19361780, ECO:0000269|PubMed:21282530}. |
Q14789 | GOLGB1 | S2872 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14814 | MEF2D | S110 | ochoa|psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q14865 | ARID5B | S566 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14865 | ARID5B | S1133 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14872 | MTF1 | S609 | ochoa | Metal regulatory transcription factor 1 (MRE-binding transcription factor) (Transcription factor MTF-1) | Zinc-dependent transcriptional regulator of cellular adaption to conditions of exposure to heavy metals (PubMed:8065932). Binds to metal responsive elements (MRE) in promoters and activates the transcription of metallothionein genes like metallothionein-2/MT2A (PubMed:8065932). Also regulates the expression of metalloproteases in response to intracellular zinc and functions as a catabolic regulator of cartilages (By similarity). {ECO:0000250|UniProtKB:Q07243, ECO:0000269|PubMed:8065932}. |
Q14914 | PTGR1 | S88 | ochoa | Prostaglandin reductase 1 (PRG-1) (15-oxoprostaglandin 13-reductase) (EC 1.3.1.48) (Dithiolethione-inducible gene 1 protein) (D3T-inducible gene 1 protein) (DIG-1) (Leukotriene B4 12-hydroxydehydrogenase) (NAD(P)H-dependent alkenal/one oxidoreductase) (EC 1.3.1.74) | NAD(P)H-dependent oxidoreductase involved in metabolic inactivation of pro- and anti-inflammatory eicosanoids: prostaglandins (PG), leukotrienes (LT) and lipoxins (LX) (PubMed:25619643). Catalyzes with high efficiency the reduction of the 13,14 double bond of 15-oxoPGs, including 15-oxo-PGE1, 15-oxo-PGE2, 15-oxo-PGF1-alpha and 15-oxo-PGF2-alpha (PubMed:25619643). Catalyzes with lower efficiency the oxidation of the hydroxyl group at C12 of LTB4 and its derivatives, converting them into biologically less active 12-oxo-LTB4 metabolites (By similarity) (PubMed:25619643). Reduces 15-oxo-LXA4 to 13,14 dihydro-15-oxo-LXA4, enhancing neutrophil recruitment at the inflammatory site (By similarity). May play a role in metabolic detoxification of alkenals and ketones. Reduces alpha,beta-unsaturated alkenals and ketones, particularly those with medium-chain length, showing highest affinity toward (2E)-decenal and (3E)-3-nonen-2-one (PubMed:25619643). May inactivate 4-hydroxy-2-nonenal, a cytotoxic lipid constituent of oxidized low-density lipoprotein particles (By similarity). {ECO:0000250|UniProtKB:P97584, ECO:0000250|UniProtKB:Q29073, ECO:0000269|PubMed:25619643}. |
Q14934 | NFATC4 | S676 | psp | Nuclear factor of activated T-cells, cytoplasmic 4 (NF-ATc4) (NFATc4) (T-cell transcription factor NFAT3) (NF-AT3) | Ca(2+)-regulated transcription factor that is involved in several processes, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems (PubMed:11514544, PubMed:11997522, PubMed:17213202, PubMed:17875713, PubMed:18668201, PubMed:25663301, PubMed:7749981). Involved in T-cell activation, stimulating the transcription of cytokine genes, including that of IL2 and IL4 (PubMed:18347059, PubMed:18668201, PubMed:7749981). Along with NFATC3, involved in embryonic heart development. Following JAK/STAT signaling activation and as part of a complex with NFATC3 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). Involved in mitochondrial energy metabolism required for cardiac morphogenesis and function (By similarity). Transactivates many genes involved in the cardiovascular system, including AGTR2, NPPB/BNP (in synergy with GATA4), NPPA/ANP/ANF and MYH7/beta-MHC (By similarity). Involved in the regulation of adult hippocampal neurogenesis. Involved in BDNF-driven pro-survival signaling in hippocampal adult-born neurons. Involved in the formation of long-term spatial memory and long-term potentiation (By similarity). In cochlear nucleus neurons, may play a role in deafferentation-induced apoptosis during the developmental critical period, when auditory neurons depend on afferent input for survival (By similarity). Binds to and activates the BACE1/Beta-secretase 1 promoter, hence may regulate the proteolytic processing of the amyloid precursor protein (APP) (PubMed:25663301). Plays a role in adipocyte differentiation (PubMed:11997522). May be involved in myoblast differentiation into myotubes (PubMed:17213202). Binds the consensus DNA sequence 5'-GGAAAAT-3' (Probable). In the presence of CREBBP, activates TNF transcription (PubMed:11514544). Binds to PPARG gene promoter and regulates its activity (PubMed:11997522). Binds to PPARG and REG3G gene promoters (By similarity). {ECO:0000250|UniProtKB:D3Z9H7, ECO:0000250|UniProtKB:Q8K120, ECO:0000269|PubMed:11514544, ECO:0000269|PubMed:11997522, ECO:0000269|PubMed:17213202, ECO:0000269|PubMed:17875713, ECO:0000269|PubMed:18347059, ECO:0000269|PubMed:18668201, ECO:0000269|PubMed:25663301, ECO:0000269|PubMed:7749981, ECO:0000305}. |
Q14938 | NFIX | S301 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14938 | NFIX | S381 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14956 | GPNMB | S531 | ochoa | Transmembrane glycoprotein NMB (Hematopoietic growth factor inducible neurokinin-1 type) | Could be a melanogenic enzyme. {ECO:0000250}. |
Q14966 | ZNF638 | S383 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14966 | ZNF638 | S420 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14966 | ZNF638 | S605 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14966 | ZNF638 | S1119 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14980 | NUMA1 | S112 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14980 | NUMA1 | S169 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14980 | NUMA1 | S2077 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14999 | CUL7 | S616 | ochoa | Cullin-7 (CUL-7) | Core component of the 3M and Cul7-RING(FBXW8) complexes, which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:12481031, PubMed:12904573, PubMed:21572988, PubMed:21737058, PubMed:24793695, PubMed:35982156). Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity (PubMed:21572988, PubMed:21737058, PubMed:24793695). It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695). The Cul7-RING(FBXW8) complex alone lacks ubiquitination activity and does not promote polyubiquitination and proteasomal degradation of p53/TP53 (PubMed:16547496, PubMed:17332328, PubMed:35982156). However it mediates recruitment of p53/TP53 for ubiquitination by neddylated CUL1-RBX1 (PubMed:35982156). Interaction with CUL9 is required to inhibit CUL9 activity and ubiquitination of BIRC5 (PubMed:24793696). The Cul7-RING(FBXW8) complex also mediates ubiquitination and consequent degradation of target proteins such as GORASP1, IRS1 and MAP4K1/HPK1 (PubMed:21572988, PubMed:24362026). Ubiquitination of GORASP1 regulates Golgi morphogenesis and dendrite patterning in brain (PubMed:21572988). Mediates ubiquitination and degradation of IRS1 in a mTOR-dependent manner: the Cul7-RING(FBXW8) complex recognizes and binds IRS1 previously phosphorylated by S6 kinase (RPS6KB1 or RPS6KB2) (PubMed:18498745). The Cul7-RING(FBXW8) complex also mediates ubiquitination of MAP4K1/HPK1: recognizes and binds autophosphorylated MAP4K1/HPK1, leading to its degradation, thereby affecting cell proliferation and differentiation (PubMed:24362026). Acts as a regulator in trophoblast cell epithelial-mesenchymal transition and placental development (PubMed:20139075). While the Cul7-RING(FBXW8) and the 3M complexes are associated and involved in common processes, CUL7 and the Cul7-RING(FBXW8) complex may have additional functions. Probably plays a role in the degradation of proteins involved in endothelial proliferation and/or differentiation. {ECO:0000269|PubMed:12481031, ECO:0000269|PubMed:12904573, ECO:0000269|PubMed:16547496, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:18498745, ECO:0000269|PubMed:20139075, ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:21737058, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:35982156}. |
Q149N8 | SHPRH | S93 | ochoa | E3 ubiquitin-protein ligase SHPRH (EC 2.3.2.27) (EC 3.6.4.-) (RING-type E3 ubiquitin transferase SHPRH) (SNF2, histone-linker, PHD and RING finger domain-containing helicase) | E3 ubiquitin-protein ligase involved in DNA repair. Upon genotoxic stress, accepts ubiquitin from the UBE2N-UBE2V2 E2 complex and transfers it to 'Lys-164' of PCNA which had been monoubiquitinated by UBE2A/B-RAD18, promoting the formation of non-canonical poly-ubiquitin chains linked through 'Lys-63'. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:17130289, ECO:0000269|PubMed:18719106}. |
Q14BN4 | SLMAP | S148 | ochoa | Sarcolemmal membrane-associated protein (Sarcolemmal-associated protein) | Associates with the striatin-interacting phosphatase and kinase (STRIPAK) core complex, forming the extended (SIKE1:SLMAP)STRIPAK complex (PubMed:29063833, PubMed:30622739). The (SIKE1:SLMAP)STRIPAK complex dephosphorylates STK3 leading to the inhibition of Hippo signaling and the control of cell growth (PubMed:29063833, PubMed:30622739). May play a role during myoblast fusion (By similarity). {ECO:0000250|UniProtKB:Q3URD3, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739}. |
Q14CW9 | ATXN7L3 | S281 | ochoa | Ataxin-7-like protein 3 (SAGA-associated factor 11 homolog) | Component of the transcription regulatory histone acetylation (HAT) complex SAGA, a multiprotein complex that activates transcription by remodeling chromatin and mediating histone acetylation and deubiquitination. Within the SAGA complex, participates in a subcomplex that specifically deubiquitinates both histones H2A and H2B (PubMed:18206972, PubMed:21746879). The SAGA complex is recruited to specific gene promoters by activators such as MYC, where it is required for transcription. Required for nuclear receptor-mediated transactivation. Within the complex, it is required to recruit USP22 and ENY2 into the SAGA complex (PubMed:18206972). Regulates H2B monoubiquitination (H2Bub1) levels. Affects subcellular distribution of ENY2, USP22 and ATXN7L3B (PubMed:27601583). {ECO:0000255|HAMAP-Rule:MF_03047, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:21746879, ECO:0000269|PubMed:27601583}. |
Q15007 | WTAP | S341 | ochoa|psp | Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Required for accumulation of METTL3 and METTL14 to nuclear speckle (PubMed:24316715, PubMed:24407421, PubMed:24981863). Acts as a mRNA splicing regulator (PubMed:12444081). Regulates G2/M cell-cycle transition by binding to the 3' UTR of CCNA2, which enhances its stability (PubMed:17088532). Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (PubMed:17095724). {ECO:0000269|PubMed:12444081, ECO:0000269|PubMed:17088532, ECO:0000269|PubMed:17095724, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q15013 | MAD2L1BP | S102 | ochoa|psp | MAD2L1-binding protein (Caught by MAD2 protein) (p31(comet)) | May function to silence the spindle checkpoint and allow mitosis to proceed through anaphase by binding MAD2L1 after it has become dissociated from the MAD2L1-CDC20 complex. {ECO:0000269|PubMed:18022368}. |
Q15020 | SART3 | S778 | ochoa | Spliceosome associated factor 3, U4/U6 recycling protein (Squamous cell carcinoma antigen recognized by T-cells 3) (SART-3) (Tat-interacting protein of 110 kDa) (Tip110) (p110 nuclear RNA-binding protein) | U6 snRNP-binding protein that functions as a recycling factor of the splicing machinery. Promotes the initial reassembly of U4 and U6 snRNPs following their ejection from the spliceosome during its maturation (PubMed:12032085). Also binds U6atac snRNPs and may function as a recycling factor for U4atac/U6atac spliceosomal snRNP, an initial step in the assembly of U12-type spliceosomal complex. The U12-type spliceosomal complex plays a role in the splicing of introns with non-canonical splice sites (PubMed:14749385). May also function as a substrate-targeting factor for deubiquitinases like USP4 and USP15. Recruits USP4 to ubiquitinated PRPF3 within the U4/U5/U6 tri-snRNP complex, promoting PRPF3 deubiquitination and thereby regulating the spliceosome U4/U5/U6 tri-snRNP spliceosomal complex disassembly (PubMed:20595234). May also recruit the deubiquitinase USP15 to histone H2B and mediate histone deubiquitination, thereby regulating gene expression and/or DNA repair (PubMed:24526689). May play a role in hematopoiesis probably through transcription regulation of specific genes including MYC (By similarity). {ECO:0000250|UniProtKB:Q9JLI8, ECO:0000269|PubMed:12032085, ECO:0000269|PubMed:14749385, ECO:0000269|PubMed:20595234, ECO:0000269|PubMed:24526689}.; FUNCTION: Regulates Tat transactivation activity through direct interaction. May be a cellular factor for HIV-1 gene expression and viral replication. {ECO:0000269|PubMed:11959860}. |
Q15032 | R3HDM1 | S187 | ochoa | R3H domain-containing protein 1 | None |
Q15046 | KARS1 | S207 | psp | Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:18029264, PubMed:18272479, PubMed:9278442). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages (PubMed:15851690). Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity (PubMed:14975237, PubMed:19524539, PubMed:23159739, PubMed:5338216). {ECO:0000269|PubMed:14975237, ECO:0000269|PubMed:15851690, ECO:0000269|PubMed:18029264, ECO:0000269|PubMed:19524539, ECO:0000269|PubMed:28887846, ECO:0000269|PubMed:5338216, ECO:0000269|PubMed:9278442}.; FUNCTION: (Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation. {ECO:0000269|PubMed:15220430}. |
Q15046 | KARS1 | S470 | ochoa | Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:18029264, PubMed:18272479, PubMed:9278442). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages (PubMed:15851690). Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity (PubMed:14975237, PubMed:19524539, PubMed:23159739, PubMed:5338216). {ECO:0000269|PubMed:14975237, ECO:0000269|PubMed:15851690, ECO:0000269|PubMed:18029264, ECO:0000269|PubMed:19524539, ECO:0000269|PubMed:28887846, ECO:0000269|PubMed:5338216, ECO:0000269|PubMed:9278442}.; FUNCTION: (Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation. {ECO:0000269|PubMed:15220430}. |
Q15049 | MLC1 | S357 | ochoa | Membrane protein MLC1 (Megalencephalic leukoencephalopathy with subcortical cysts protein 1) | Transmembrane protein mainly expressed in brain astrocytes that may play a role in transport across the blood-brain and brain-cerebrospinal fluid barriers (PubMed:22328087). Regulates the response of astrocytes to hypo-osmosis by promoting calcium influx (PubMed:22328087). May function as regulatory protein of membrane protein complexes such as ion channels (Probable). {ECO:0000269|PubMed:22328087, ECO:0000305|PubMed:22328087}. |
Q15052 | ARHGEF6 | S622 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15057 | ACAP2 | S334 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 (Centaurin-beta-2) (Cnt-b2) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6). Doesn't show GAP activity for RAB35 (PubMed:30905672). {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:30905672}. |
Q15057 | ACAP2 | S379 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 (Centaurin-beta-2) (Cnt-b2) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6). Doesn't show GAP activity for RAB35 (PubMed:30905672). {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:30905672}. |
Q15061 | WDR43 | S77 | ochoa | WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) | Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q15061 | WDR43 | S590 | ochoa | WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) | Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q15080 | NCF4 | S161 | ochoa | Neutrophil cytosol factor 4 (NCF-4) (Neutrophil NADPH oxidase factor 4) (SH3 and PX domain-containing protein 4) (p40-phox) (p40phox) | Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (Probable). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (By similarity). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (By similarity). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P04839, ECO:0000250|UniProtKB:P14598, ECO:0000305|PubMed:8280052}. |
Q15120 | PDK3 | S23 | ochoa | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 3) | Inhibits pyruvate dehydrogenase activity by phosphorylation of the E1 subunit PDHA1, and thereby regulates glucose metabolism and aerobic respiration. Can also phosphorylate PDHA2. Decreases glucose utilization and increases fat metabolism in response to prolonged fasting, and as adaptation to a high-fat diet. Plays a role in glucose homeostasis and in maintaining normal blood glucose levels in function of nutrient levels and under starvation. Plays a role in the generation of reactive oxygen species. {ECO:0000269|PubMed:10748134, ECO:0000269|PubMed:11486000, ECO:0000269|PubMed:15861126, ECO:0000269|PubMed:16436377, ECO:0000269|PubMed:17683942, ECO:0000269|PubMed:18718909, ECO:0000269|PubMed:22865452}. |
Q15149 | PLEC | S720 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S1194 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S1435 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15173 | PPP2R5B | S368 | psp | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform (PP2A B subunit isoform B'-beta) (PP2A B subunit isoform B56-beta) (PP2A B subunit isoform PR61-beta) (PP2A B subunit isoform R5-beta) | As the regulatory component of the serine/threonine-protein phosphatase 2A (PP2A) holoenzyme, modulates substrate specificity, subcellular localization, and responsiveness to phosphorylation. The phosphorylated form mediates the interaction between PP2A and AKT1, leading to AKT1 dephosphorylation. {ECO:0000269|PubMed:21329884}. |
Q15181 | PPA1 | S250 | ochoa | Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase) | None |
Q15256 | PTPRR | S272 | ochoa | Receptor-type tyrosine-protein phosphatase R (R-PTP-R) (EC 3.1.3.48) (Ch-1PTPase) (NC-PTPCOM1) (Protein-tyrosine phosphatase PCPTP1) | Sequesters mitogen-activated protein kinases (MAPKs) such as MAPK1, MAPK3 and MAPK14 in the cytoplasm in an inactive form. The MAPKs bind to a dephosphorylated kinase interacting motif, phosphorylation of which by the protein kinase A complex releases the MAPKs for activation and translocation into the nucleus (By similarity). {ECO:0000250}. |
Q15262 | PTPRK | S828 | ochoa | Receptor-type tyrosine-protein phosphatase kappa (Protein-tyrosine phosphatase kappa) (R-PTP-kappa) (EC 3.1.3.48) | Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa. {ECO:0000269|PubMed:19836242}. |
Q15262 | PTPRK | S856 | ochoa | Receptor-type tyrosine-protein phosphatase kappa (Protein-tyrosine phosphatase kappa) (R-PTP-kappa) (EC 3.1.3.48) | Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa. {ECO:0000269|PubMed:19836242}. |
Q15311 | RALBP1 | S99 | ochoa | RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) | Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}. |
Q15329 | E2F5 | S318 | ochoa | Transcription factor E2F5 (E2F-5) | Transcriptional activator that binds to E2F sites, these sites are present in the promoter of many genes whose products are involved in cell proliferation. May mediate growth factor-initiated signal transduction. It is likely involved in the early responses of resting cells to growth factor stimulation. Specifically required for multiciliate cell differentiation: together with MCIDAS and E2F5, binds and activate genes required for centriole biogenesis. {ECO:0000250|UniProtKB:Q6DE14}. |
Q15345 | LRRC41 | S155 | ochoa | Leucine-rich repeat-containing protein 41 (Protein Muf1) | Probable substrate recognition component of an ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000269|PubMed:15601820}. |
Q15349 | RPS6KA2 | S679 | ochoa | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Q15361 | TTF1 | S65 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15365 | PCBP1 | S173 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15386 | UBE3C | S672 | ochoa | Ubiquitin-protein ligase E3C (EC 2.3.2.26) (HECT-type ubiquitin transferase E3C) (Homologous to E6AP carboxyl terminus homologous protein 2) (HectH2) (RTA-associated ubiquitin ligase) (RAUL) | E3 ubiquitin-protein ligase that specifically catalyzes 'Lys-29'- and 'Lys-48'-linked polyubiquitin chains (PubMed:11278995, PubMed:12692129, PubMed:16341092, PubMed:16601690, PubMed:24158444, PubMed:24811749, PubMed:25752573, PubMed:25752577, PubMed:32039437, PubMed:33637724, PubMed:34239127). Accepts ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D1 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:32039437, PubMed:9575161). Associates with the proteasome and promotes elongation of ubiquitin chains on substrates bound to the 26S proteasome (PubMed:24158444, PubMed:28396413, PubMed:31375563). Also catalyzes 'Lys-29'- and 'Lys-48'-linked ubiquitination of 26S proteasome subunit ADRM1/RPN13 in response to proteotoxic stress, impairing the ability of the proteasome to bind and degrade ubiquitin-conjugated proteins (PubMed:24811749, PubMed:31375563). Acts as a negative regulator of autophagy by mediating 'Lys-29'- and 'Lys-48'-linked ubiquitination of PIK3C3/VPS34, promoting its degradation (PubMed:33637724). Can assemble unanchored poly-ubiquitin chains in either 'Lys-29'- or 'Lys-48'-linked polyubiquitin chains; with some preference for 'Lys-48' linkages (PubMed:11278995, PubMed:16601690, PubMed:25752577). Acts as a negative regulator of type I interferon by mediating 'Lys-48'-linked ubiquitination of IRF3 and IRF7, leading to their degradation by the proteasome (PubMed:21167755). Catalyzes ubiquitination and degradation of CAND2 (PubMed:12692129). {ECO:0000269|PubMed:11278995, ECO:0000269|PubMed:12692129, ECO:0000269|PubMed:16341092, ECO:0000269|PubMed:16601690, ECO:0000269|PubMed:21167755, ECO:0000269|PubMed:24158444, ECO:0000269|PubMed:24811749, ECO:0000269|PubMed:25752573, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:31375563, ECO:0000269|PubMed:32039437, ECO:0000269|PubMed:33637724, ECO:0000269|PubMed:34239127, ECO:0000269|PubMed:9575161}. |
Q15393 | SF3B3 | S156 | ochoa | Splicing factor 3B subunit 3 (Pre-mRNA-splicing factor SF3b 130 kDa subunit) (SF3b130) (STAF130) (Spliceosome-associated protein 130) (SAP 130) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10490618, PubMed:10882114, PubMed:12234937, PubMed:27720643, PubMed:28781166, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B3 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10490618, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q15398 | DLGAP5 | S618 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15398 | DLGAP5 | S806 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15424 | SAFB | S443 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15434 | RBMS2 | S106 | ochoa | RNA-binding motif, single-stranded-interacting protein 2 (Suppressor of CDC2 with RNA-binding motif 3) | None |
Q15464 | SHB | S18 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q15468 | STIL | S719 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15468 | STIL | S1111 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15468 | STIL | S1225 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15475 | SIX1 | S150 | ochoa | Homeobox protein SIX1 (Sine oculis homeobox homolog 1) | Transcription factor that is involved in the regulation of cell proliferation, apoptosis and embryonic development (By similarity). Plays an important role in the development of several organs, including kidney, muscle and inner ear (By similarity). Depending on context, functions as a transcriptional repressor or activator (By similarity). Lacks an activation domain, and requires interaction with EYA family members for transcription activation (PubMed:15141091). Mediates nuclear translocation of EYA1 and EYA2 (PubMed:19497856). Binds the 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 element in the MYOG promoter and CIDEA enhancer (PubMed:15141091, PubMed:19497856, PubMed:23435380, PubMed:27923061). Regulates the expression of numerous genes, including MYC, CCND1 and EZR (By similarity). Acts as an activator of the IGFBP5 promoter, probably coactivated by EYA2 (By similarity). Repression of precursor cell proliferation in myoblasts is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex (By similarity). During myogenesis, seems to act together with EYA2 and DACH2 (By similarity). Regulates the expression of CCNA1 (PubMed:15123840). Promotes brown adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q62231, ECO:0000269|PubMed:15123840, ECO:0000269|PubMed:15141091, ECO:0000269|PubMed:19497856, ECO:0000269|PubMed:23435380, ECO:0000269|PubMed:27923061}. |
Q15475 | SIX1 | S204 | ochoa | Homeobox protein SIX1 (Sine oculis homeobox homolog 1) | Transcription factor that is involved in the regulation of cell proliferation, apoptosis and embryonic development (By similarity). Plays an important role in the development of several organs, including kidney, muscle and inner ear (By similarity). Depending on context, functions as a transcriptional repressor or activator (By similarity). Lacks an activation domain, and requires interaction with EYA family members for transcription activation (PubMed:15141091). Mediates nuclear translocation of EYA1 and EYA2 (PubMed:19497856). Binds the 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 element in the MYOG promoter and CIDEA enhancer (PubMed:15141091, PubMed:19497856, PubMed:23435380, PubMed:27923061). Regulates the expression of numerous genes, including MYC, CCND1 and EZR (By similarity). Acts as an activator of the IGFBP5 promoter, probably coactivated by EYA2 (By similarity). Repression of precursor cell proliferation in myoblasts is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex (By similarity). During myogenesis, seems to act together with EYA2 and DACH2 (By similarity). Regulates the expression of CCNA1 (PubMed:15123840). Promotes brown adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q62231, ECO:0000269|PubMed:15123840, ECO:0000269|PubMed:15141091, ECO:0000269|PubMed:19497856, ECO:0000269|PubMed:23435380, ECO:0000269|PubMed:27923061}. |
Q15477 | SKIC2 | S245 | ochoa | Superkiller complex protein 2 (Ski2) (EC 3.6.4.13) (Helicase-like protein) (HLP) | Helicase component of the SKI complex, a multiprotein complex that assists the RNA-degrading exosome during the mRNA decay and quality-control pathways (PubMed:16024656, PubMed:32006463, PubMed:35120588). The SKI complex catalyzes mRNA extraction from 80S ribosomal complexes in the 3'-5' direction and channels mRNA to the cytosolic exosome for degradation (PubMed:32006463, PubMed:35120588). SKI-mediated extraction of mRNA from stalled ribosomes allow binding of the Pelota-HBS1L complex and subsequent ribosome disassembly by ABCE1 for ribosome recycling (PubMed:32006463). In the nucleus, the SKI complex associates with transcriptionally active genes in a manner dependent on PAF1 complex (PAF1C) (PubMed:16024656). {ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:32006463, ECO:0000269|PubMed:35120588}. |
Q15527 | SURF2 | S59 | ochoa | Surfeit locus protein 2 (Surf-2) | None |
Q15561 | TEAD4 | S254 | ochoa | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15562 | TEAD2 | S260 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15596 | NCOA2 | S402 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15596 | NCOA2 | S655 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15596 | NCOA2 | S851 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15599 | NHERF2 | S303 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (NHERF-2) (NHE3 kinase A regulatory protein E3KARP) (SRY-interacting protein 1) (SIP-1) (Sodium-hydrogen exchanger regulatory factor 2) (Solute carrier family 9 isoform A3 regulatory factor 2) (Tyrosine kinase activator protein 1) (TKA-1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3 (PubMed:18829453). May also act as scaffold protein in the nucleus. {ECO:0000269|PubMed:10455146, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:9096337}. |
Q155Q3 | DIXDC1 | S74 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q15643 | TRIP11 | S1313 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q15645 | TRIP13 | S18 | ochoa | Pachytene checkpoint protein 2 homolog (Human papillomavirus type 16 E1 protein-binding protein) (16E1-BP) (HPV16 E1 protein-binding protein) (Thyroid hormone receptor interactor 13) (Thyroid receptor-interacting protein 13) (TR-interacting protein 13) (TRIP-13) | Plays a key role in chromosome recombination and chromosome structure development during meiosis. Required at early steps in meiotic recombination that leads to non-crossovers pathways. Also needed for efficient completion of homologous synapsis by influencing crossover distribution along the chromosomes affecting both crossovers and non-crossovers pathways. Also required for development of higher-order chromosome structures and is needed for synaptonemal-complex formation. In males, required for efficient synapsis of the sex chromosomes and for sex body formation. Promotes early steps of the DNA double-strand breaks (DSBs) repair process upstream of the assembly of RAD51 complexes. Required for depletion of HORMAD1 and HORMAD2 from synapsed chromosomes (By similarity). Plays a role in mitotic spindle assembly checkpoint (SAC) activation (PubMed:28553959). {ECO:0000250|UniProtKB:Q3UA06, ECO:0000269|PubMed:28553959}. |
Q15648 | MED1 | S238 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15648 | MED1 | S664 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15650 | TRIP4 | S387 | ochoa | Activating signal cointegrator 1 (ASC-1) (Thyroid receptor-interacting protein 4) (TR-interacting protein 4) (TRIP-4) | Transcription coactivator which associates with nuclear receptors, transcriptional coactivators including EP300, CREBBP and NCOA1, and basal transcription factors like TBP and TFIIA to facilitate nuclear receptors-mediated transcription (PubMed:10454579, PubMed:25219498). May thereby play an important role in establishing distinct coactivator complexes under different cellular conditions (PubMed:10454579, PubMed:25219498). Plays a role in thyroid hormone receptor and estrogen receptor transactivation (PubMed:10454579, PubMed:25219498). Also involved in androgen receptor transactivation (By similarity). Plays a pivotal role in the transactivation of NF-kappa-B, SRF and AP1 (PubMed:12077347). Acts as a mediator of transrepression between nuclear receptor and either AP1 or NF-kappa-B (PubMed:12077347). May play a role in the development of neuromuscular junction (PubMed:26924529). May play a role in late myogenic differentiation (By similarity). Also functions as part of the RQC trigger (RQT) complex that activates the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). {ECO:0000250|UniProtKB:Q9QXN3, ECO:0000269|PubMed:10454579, ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26924529, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q15652 | JMJD1C | S284 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S652 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S943 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S1748 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S2007 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S2047 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15678 | PTPN14 | S614 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15696 | ZRSR2 | S349 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 2) (Renal carcinoma antigen NY-REN-20) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 2) (U2AF35-related protein) (URP) | Pre-mRNA-binding protein required for splicing of both U2- and U12-type introns. Selectively interacts with the 3'-splice site of U2- and U12-type pre-mRNAs and promotes different steps in U2 and U12 intron splicing. Recruited to U12 pre-mRNAs in an ATP-dependent manner and is required for assembly of the pre-spliceosome, a precursor to other spliceosomal complexes. For U2-type introns, it is selectively and specifically required for the second step of splicing. {ECO:0000269|PubMed:21041408, ECO:0000269|PubMed:9237760}. |
Q15697 | ZNF174 | S266 | ochoa | Zinc finger protein 174 (AW-1) (Zinc finger and SCAN domain-containing protein 8) | Transcriptional repressor. {ECO:0000269|PubMed:7673192}. |
Q15699 | ALX1 | S69 | ochoa | ALX homeobox protein 1 (Cartilage homeoprotein 1) (CART-1) | Sequence-specific DNA-binding transcription factor that binds palindromic sequences within promoters and may activate or repress the transcription of a subset of genes (PubMed:8756334, PubMed:9753625). Most probably regulates the expression of genes involved in the development of mesenchyme-derived craniofacial structures. Early on in development, it plays a role in forebrain mesenchyme survival (PubMed:20451171). May also induce epithelial to mesenchymal transition (EMT) through the expression of SNAI1 (PubMed:23288509). {ECO:0000269|PubMed:20451171, ECO:0000269|PubMed:23288509, ECO:0000269|PubMed:8756334, ECO:0000269|PubMed:9753625}. |
Q15699 | ALX1 | S105 | ochoa | ALX homeobox protein 1 (Cartilage homeoprotein 1) (CART-1) | Sequence-specific DNA-binding transcription factor that binds palindromic sequences within promoters and may activate or repress the transcription of a subset of genes (PubMed:8756334, PubMed:9753625). Most probably regulates the expression of genes involved in the development of mesenchyme-derived craniofacial structures. Early on in development, it plays a role in forebrain mesenchyme survival (PubMed:20451171). May also induce epithelial to mesenchymal transition (EMT) through the expression of SNAI1 (PubMed:23288509). {ECO:0000269|PubMed:20451171, ECO:0000269|PubMed:23288509, ECO:0000269|PubMed:8756334, ECO:0000269|PubMed:9753625}. |
Q15700 | DLG2 | S65 | ochoa | Disks large homolog 2 (Channel-associated protein of synapse-110) (Chapsyn-110) (Postsynaptic density protein PSD-93) | Required for perception of chronic pain through NMDA receptor signaling. Regulates surface expression of NMDA receptors in dorsal horn neurons of the spinal cord. Interacts with the cytoplasmic tail of NMDA receptor subunits as well as inward rectifying potassium channels. Involved in regulation of synaptic stability at cholinergic synapses. Part of the postsynaptic protein scaffold of excitatory synapses (By similarity). {ECO:0000250}. |
Q15717 | ELAVL1 | S202 | ochoa|psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q15723 | ELF2 | S107 | psp | ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) | Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation. |
Q15746 | MYLK | S947 | ochoa|psp | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q15750 | TAB1 | S438 | ochoa|psp | TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 1) (TGF-beta-activated kinase 1-binding protein 1) (TAK1-binding protein 1) | Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (PubMed:22307082, PubMed:24403530). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (PubMed:10838074, PubMed:25260751, PubMed:37832545). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (PubMed:11847341, PubMed:29229647). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism (PubMed:14592977). Also plays a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits (PubMed:18021073). {ECO:0000269|PubMed:10838074, ECO:0000269|PubMed:11847341, ECO:0000269|PubMed:14592977, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:22307082, ECO:0000269|PubMed:24403530, ECO:0000269|PubMed:25260751, ECO:0000269|PubMed:29229647, ECO:0000269|PubMed:37832545}. |
Q15751 | HERC1 | S1502 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q15771 | RAB30 | S185 | ochoa | Ras-related protein Rab-30 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:22188167). RAB30 is required for maintaining the structural integrity of the Golgi apparatus, possibly by mediating interactions with cytoplasmic scaffolding proteins (PubMed:22188167). Facilitates lipid homeostasis during fasting by regulating hepatic protein and lipid trafficking in a PPAR-alpha-dependent manner (By similarity). Promotes autophagosome biogenesis during bacterial infection such as group A Streptococcus infection (PubMed:26771875). {ECO:0000250|UniProtKB:Q923S9, ECO:0000269|PubMed:22188167, ECO:0000269|PubMed:26771875}. |
Q15772 | SPEG | S2047 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15788 | NCOA1 | S325 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q15796 | SMAD2 | S255 | psp | Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) | Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}. |
Q15813 | TBCE | S495 | ochoa|psp | Tubulin-specific chaperone E (Tubulin-folding cofactor E) | Tubulin-folding protein; involved in the second step of the tubulin folding pathway and in the regulation of tubulin heterodimer dissociation. Required for correct organization of microtubule cytoskeleton and mitotic splindle, and maintenance of the neuronal microtubule network. {ECO:0000269|PubMed:11847227, ECO:0000269|PubMed:27666369}. |
Q15911 | ZFHX3 | S1590 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q15911 | ZFHX3 | S2207 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q15911 | ZFHX3 | S2801 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q15937 | ZNF79 | S158 | ochoa | Zinc finger protein 79 (ZNFpT7) | May be involved in transcriptional regulation. |
Q16512 | PKN1 | S205 | ochoa | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q16512 | PKN1 | S608 | ochoa | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q16512 | PKN1 | S916 | ochoa|psp | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q16513 | PKN2 | S213 | ochoa | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q16531 | DDB1 | S720 | ochoa | DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}. |
Q16539 | MAPK14 | S28 | ochoa | Mitogen-activated protein kinase 14 (MAP kinase 14) (MAPK 14) (EC 2.7.11.24) (Cytokine suppressive anti-inflammatory drug-binding protein) (CSAID-binding protein) (CSBP) (MAP kinase MXI2) (MAX-interacting protein 2) (Mitogen-activated protein kinase p38 alpha) (MAP kinase p38 alpha) (Stress-activated protein kinase 2a) (SAPK2a) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510, PubMed:9792677). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery (PubMed:9687510, PubMed:9792677). On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). MAPK14 also interacts with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53 (PubMed:10747897). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3 (PubMed:17003045). MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9 (PubMed:19893488). Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors (PubMed:16932740). Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17 (PubMed:20188673). Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:9430721, PubMed:9858528). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation (PubMed:11333986). Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation (PubMed:20932473). The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression (PubMed:10943842). Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113' (PubMed:15905572). Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590). {ECO:0000269|PubMed:10330143, ECO:0000269|PubMed:10747897, ECO:0000269|PubMed:10943842, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11333986, ECO:0000269|PubMed:15905572, ECO:0000269|PubMed:16932740, ECO:0000269|PubMed:17003045, ECO:0000269|PubMed:17724032, ECO:0000269|PubMed:19893488, ECO:0000269|PubMed:20188673, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:35857590, ECO:0000269|PubMed:9430721, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9792677, ECO:0000269|PubMed:9858528}.; FUNCTION: (Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minutes and is inhibited by kinase-specific inhibitors SB203580 and siRNA (PubMed:21586573). {ECO:0000269|PubMed:21586573}. |
Q16584 | MAP3K11 | S507 | ochoa | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16594 | TAF9 | S85 | ochoa | Transcription initiation factor TFIID subunit 9 (RNA polymerase II TBP-associated factor subunit G) (STAF31/32) (Transcription initiation factor TFIID 31 kDa subunit) (TAFII-31) (TAFII31) (Transcription initiation factor TFIID 32 kDa subunit) (TAFII-32) (TAFII32) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF9 is also a component of the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:15899866). TAF9 and its paralog TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes (PubMed:15899866). Essential for cell viability (PubMed:15899866). May have a role in gene regulation associated with apoptosis (PubMed:15899866). {ECO:0000269|PubMed:15899866, ECO:0000269|PubMed:33795473}. |
Q16594 | TAF9 | S196 | ochoa | Transcription initiation factor TFIID subunit 9 (RNA polymerase II TBP-associated factor subunit G) (STAF31/32) (Transcription initiation factor TFIID 31 kDa subunit) (TAFII-31) (TAFII31) (Transcription initiation factor TFIID 32 kDa subunit) (TAFII-32) (TAFII32) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF9 is also a component of the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:15899866). TAF9 and its paralog TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes (PubMed:15899866). Essential for cell viability (PubMed:15899866). May have a role in gene regulation associated with apoptosis (PubMed:15899866). {ECO:0000269|PubMed:15899866, ECO:0000269|PubMed:33795473}. |
Q16600 | ZNF239 | S28 | ochoa | Zinc finger protein 239 (Zinc finger protein HOK-2) (Zinc finger protein MOK-2) | May be involved in transcriptional regulation. |
Q16600 | ZNF239 | S38 | ochoa | Zinc finger protein 239 (Zinc finger protein HOK-2) (Zinc finger protein MOK-2) | May be involved in transcriptional regulation. |
Q16625 | OCLN | S321 | ochoa | Occludin | May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions. {ECO:0000269|PubMed:19114660}.; FUNCTION: (Microbial infection) Acts as a coreceptor for hepatitis C virus (HCV) in hepatocytes. {ECO:0000269|PubMed:19182773, ECO:0000269|PubMed:20375010}. |
Q16630 | CPSF6 | S38 | ochoa | Cleavage and polyadenylation specificity factor subunit 6 (Cleavage and polyadenylation specificity factor 68 kDa subunit) (CPSF 68 kDa subunit) (Cleavage factor Im complex 68 kDa subunit) (CFIm68) (Pre-mRNA cleavage factor Im 68 kDa subunit) (Protein HPBRII-4/7) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:14690600, PubMed:29276085, PubMed:8626397, PubMed:9659921). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:14690600, PubMed:8626397, PubMed:9659921). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF6 enhances NUDT21/CPSF5 binding to 5'-UGUA-3' elements localized upstream of pA signals and promotes RNA looping, and hence activates directly the mRNA 3'-processing machinery (PubMed:15169763, PubMed:21295486, PubMed:29276085). Plays a role in mRNA export (PubMed:19864460). {ECO:0000269|PubMed:14690600, ECO:0000269|PubMed:15169763, ECO:0000269|PubMed:19864460, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:21295486, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397, ECO:0000269|PubMed:9659921}.; FUNCTION: (Microbial infection) Binds HIV-1 capsid-nucleocapsid (HIV-1 CA-NC) complexes and might thereby promote the integration of the virus in the nucleus of dividing cells (in vitro). {ECO:0000269|PubMed:24130490}. |
Q16643 | DBN1 | S142 | ochoa|psp | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q16644 | MAPKAPK3 | S251 | psp | MAP kinase-activated protein kinase 3 (MAPK-activated protein kinase 3) (MAPKAP kinase 3) (MAPKAP-K3) (MAPKAPK-3) (MK-3) (EC 2.7.11.1) (Chromosome 3p kinase) (3pK) | Stress-activated serine/threonine-protein kinase involved in cytokines production, endocytosis, cell migration, chromatin remodeling and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. MAPKAPK2 and MAPKAPK3, share the same function and substrate specificity, but MAPKAPK3 kinase activity and level in protein expression are lower compared to MAPKAPK2. Phosphorylates HSP27/HSPB1, KRT18, KRT20, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to dissociate HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impair their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins, such as TTP/ZFP36, leading to regulate the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity leading to inhibition of dependent degradation of ARE-containing transcript. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. Also acts as a modulator of Polycomb-mediated repression. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:15563468, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20599781, ECO:0000269|PubMed:8626550, ECO:0000269|PubMed:8774846}. |
Q16647 | PTGIS | S116 | ochoa | Prostacyclin synthase (EC 5.3.99.4) (Hydroperoxy icosatetraenoate dehydratase) (EC 4.2.1.152) (Prostaglandin I2 synthase) | Catalyzes the biosynthesis and metabolism of eicosanoids. Catalyzes the isomerization of prostaglandin H2 to prostacyclin (= prostaglandin I2), a potent mediator of vasodilation and inhibitor of platelet aggregation (PubMed:12372404, PubMed:15115769, PubMed:18032380, PubMed:25623425). Additionally, displays dehydratase activity, toward hydroperoxyeicosatetraenoates (HPETEs), especially toward (15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoate (15(S)-HPETE) (PubMed:17459323). {ECO:0000269|PubMed:12372404, ECO:0000269|PubMed:15115769, ECO:0000269|PubMed:17459323, ECO:0000269|PubMed:18032380, ECO:0000269|PubMed:25623425}. |
Q16649 | NFIL3 | S301 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16649 | NFIL3 | S353 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16656 | NRF1 | S136 | ochoa|psp | Nuclear respiratory factor 1 (NRF-1) (Alpha palindromic-binding protein) (Alpha-pal) | Transcription factor that activates the expression of the EIF2S1 (EIF2-alpha) gene. Links the transcriptional modulation of key metabolic genes to cellular growth and development. Implicated in the control of nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. |
Q16658 | FSCN1 | S127 | ochoa | Fascin (55 kDa actin-bundling protein) (Singed-like protein) (p55) | Actin-binding protein that contains 2 major actin binding sites (PubMed:21685497, PubMed:23184945). Organizes filamentous actin into parallel bundles (PubMed:20393565, PubMed:21685497, PubMed:23184945). Plays a role in the organization of actin filament bundles and the formation of microspikes, membrane ruffles, and stress fibers (PubMed:22155786). Important for the formation of a diverse set of cell protrusions, such as filopodia, and for cell motility and migration (PubMed:20393565, PubMed:21685497, PubMed:23184945). Mediates reorganization of the actin cytoskeleton and axon growth cone collapse in response to NGF (PubMed:22155786). {ECO:0000269|PubMed:20137952, ECO:0000269|PubMed:20393565, ECO:0000269|PubMed:21685497, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:23184945, ECO:0000269|PubMed:9362073, ECO:0000269|PubMed:9571235}. |
Q16665 | HIF1A | S641 | ochoa|psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16762 | TST | S38 | ochoa | Thiosulfate sulfurtransferase (EC 2.8.1.1) (Rhodanese) | Formation of iron-sulfur complexes, cyanide detoxification or modification of sulfur-containing enzymes. Other thiol compounds, besides cyanide, can act as sulfur ion acceptors. Also has weak mercaptopyruvate sulfurtransferase (MST) activity (By similarity). Together with MRPL18, acts as a mitochondrial import factor for the cytosolic 5S rRNA. Only the nascent unfolded cytoplasmic form is able to bind to the 5S rRNA. {ECO:0000250, ECO:0000269|PubMed:20663881, ECO:0000269|PubMed:21685364}. |
Q16821 | PPP1R3A | S375 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q16821 | PPP1R3A | S584 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q16828 | DUSP6 | S159 | psp | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16828 | DUSP6 | S197 | psp | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16828 | DUSP6 | S331 | ochoa | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16828 | DUSP6 | S351 | ochoa | Dual specificity protein phosphatase 6 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST1) (Mitogen-activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) (MKP-3) | Dual specificity protein phosphatase, which mediates dephosphorylation and inactivation of MAP kinases (PubMed:8670865). Has a specificity for the ERK family (PubMed:8670865). Plays an important role in alleviating chronic postoperative pain (By similarity). Necessary for the normal dephosphorylation of the long-lasting phosphorylated forms of spinal MAPK1/3 and MAP kinase p38 induced by peripheral surgery, which drives the resolution of acute postoperative allodynia (By similarity). Also important for dephosphorylation of MAPK1/3 in local wound tissue, which further contributes to resolution of acute pain (By similarity). Promotes cell differentiation by regulating MAPK1/MAPK3 activity and regulating the expression of AP1 transcription factors (PubMed:29043977). {ECO:0000250|UniProtKB:Q9DBB1, ECO:0000269|PubMed:29043977, ECO:0000269|PubMed:8670865}. |
Q16829 | DUSP7 | S369 | ochoa | Dual specificity protein phosphatase 7 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase PYST2) | Dual specificity protein phosphatase (PubMed:9788880). Shows high activity towards MAPK1/ERK2 (PubMed:9788880). Also has lower activity towards MAPK14 and MAPK8 (PubMed:9788880). In arrested oocytes, plays a role in meiotic resumption (By similarity). Promotes nuclear envelope breakdown and activation of the CDK1/Cyclin-B complex in oocytes, probably by dephosphorylating and inactivating the conventional protein kinase C (cPKC) isozyme PRKCB (By similarity). May also inactivate PRKCA and/or PRKCG (By similarity). Also important in oocytes for normal chromosome alignment on the metaphase plate and progression to anaphase, where it might regulate activity of the spindle-assembly checkpoint (SAC) complex (By similarity). {ECO:0000250|UniProtKB:Q91Z46, ECO:0000269|PubMed:9788880}. |
Q16831 | UPP1 | S61 | ochoa | Uridine phosphorylase 1 (UPase 1) (UrdPase 1) (EC 2.4.2.3) | Catalyzes the reversible phosphorylytic cleavage of uridine to uracil and ribose-1-phosphate which can then be utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis (PubMed:7488099). Shows broad substrate specificity and can also accept deoxyuridine and other analogous compounds (Probable). {ECO:0000269|PubMed:7488099, ECO:0000305|PubMed:13737038}. |
Q16877 | PFKFB4 | S176 | ochoa | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (6PF-2-K/Fru-2,6-P2ase 4) (PFK/FBPase 4) (6PF-2-K/Fru-2,6-P2ase testis-type isozyme) [Includes: 6-phosphofructo-2-kinase (EC 2.7.1.105); Fructose-2,6-bisphosphatase (EC 3.1.3.46)] | Synthesis and degradation of fructose 2,6-bisphosphate. |
Q17R89 | ARHGAP44 | S596 | ochoa | Rho GTPase-activating protein 44 (NPC-A-10) (Rho-type GTPase-activating protein RICH2) (RhoGAP interacting with CIP4 homologs protein 2) (RICH-2) | GTPase-activating protein (GAP) that stimulates the GTPase activity of Rho-type GTPases. Thereby, controls Rho-type GTPases cycling between their active GTP-bound and inactive GDP-bound states. Acts as a GAP at least for CDC42 and RAC1 (PubMed:11431473). In neurons, is involved in dendritic spine formation and synaptic plasticity in a specific RAC1-GAP activity (By similarity). Limits the initiation of exploratory dendritic filopodia. Recruited to actin-patches that seed filopodia, binds specifically to plasma membrane sections that are deformed inward by acto-myosin mediated contractile forces. Acts through GAP activity on RAC1 to reduce actin polymerization necessary for filopodia formation (By similarity). In association with SHANK3, promotes GRIA1 exocytosis from recycling endosomes and spine morphological changes associated to long-term potentiation (By similarity). {ECO:0000250|UniProtKB:F1LQX4, ECO:0000250|UniProtKB:Q5SSM3, ECO:0000269|PubMed:11431473}. |
Q17R98 | ZNF827 | S66 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S102 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S146 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S157 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S207 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S242 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S477 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S518 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S760 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17R98 | ZNF827 | S771 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q17RY0 | CPEB4 | S332 | ochoa | Cytoplasmic polyadenylation element-binding protein 4 (CPE-BP4) (CPE-binding protein 4) (hCPEB-4) | Sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element (CPE), an uridine-rich sequence element (consensus sequence 5'-UUUUUAU-3') within the mRNA 3'-UTR (PubMed:24990967). RNA binding results in a clear conformational change analogous to the Venus fly trap mechanism (PubMed:24990967). Regulates activation of unfolded protein response (UPR) in the process of adaptation to ER stress in liver, by maintaining translation of CPE-regulated mRNAs in conditions in which global protein synthesis is inhibited (By similarity). Required for cell cycle progression, specifically for cytokinesis and chromosomal segregation (PubMed:26398195). Plays a role as an oncogene promoting tumor growth and progression by positively regulating translation of t-plasminogen activator/PLAT (PubMed:22138752). Stimulates proliferation of melanocytes (PubMed:27857118). In contrast to CPEB1 and CPEB3, does not play role in synaptic plasticity, learning and memory (By similarity). {ECO:0000250|UniProtKB:Q7TN98, ECO:0000269|PubMed:22138752, ECO:0000269|PubMed:24990967, ECO:0000269|PubMed:26398195, ECO:0000269|PubMed:27857118}. |
Q1AE95 | TMEM183BP | S336 | ochoa | Putative transmembrane protein 183BP (Transmembrane protein 183B pseudogene) | None |
Q1ED39 | KNOP1 | S42 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q1ED39 | KNOP1 | S387 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q1HG44 | DUOXA2 | S296 | ochoa | Dual oxidase maturation factor 2 (Dual oxidase activator 2) | Required for the maturation and the transport from the endoplasmic reticulum to the plasma membrane of functional DUOX2. May play a role in thyroid hormone synthesis. {ECO:0000269|PubMed:16651268}. |
Q1KMD3 | HNRNPUL2 | S228 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q1MSJ5 | CSPP1 | S459 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q1MSJ5 | CSPP1 | S747 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q1MSJ5 | CSPP1 | S882 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q24JP5 | TMEM132A | S913 | ochoa | Transmembrane protein 132A (HSPA5-binding protein 1) | May play a role in embryonic and postnatal development of the brain. Increased resistance to cell death induced by serum starvation in cultured cells. Regulates cAMP-induced GFAP gene expression via STAT3 phosphorylation (By similarity). {ECO:0000250}. |
Q29RF7 | PDS5A | S793 | ochoa | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q29RF7 | PDS5A | S1097 | ochoa | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q29RF7 | PDS5A | S1305 | ochoa | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q2KHR3 | QSER1 | S759 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2KHR3 | QSER1 | S931 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2KHR3 | QSER1 | S1272 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2KHT3 | CLEC16A | S980 | ochoa | Protein CLEC16A (C-type lectin domain family 16 member A) | Regulator of mitophagy through the upstream regulation of the RNF41/NRDP1-PRKN pathway. Mitophagy is a selective form of autophagy necessary for mitochondrial quality control. The RNF41/NRDP1-PRKN pathway regulates autophagosome-lysosome fusion during late mitophagy. May protect RNF41/NRDP1 from proteasomal degradation, RNF41/NRDP1 which regulates proteasomal degradation of PRKN. Plays a key role in beta cells functions by regulating mitophagy/autophagy and mitochondrial health. {ECO:0000269|PubMed:24949970}. |
Q2KJY2 | KIF26B | S1958 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2LD37 | BLTP1 | S1287 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S2368 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S2603 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S2737 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S3196 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S3894 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S4097 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2LD37 | BLTP1 | S4894 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M1K9 | ZNF423 | S1160 | ochoa | Zinc finger protein 423 (Olf1/EBF-associated zinc finger protein) (hOAZ) (Smad- and Olf-interacting zinc finger protein) | Transcription factor that can both act as an activator or a repressor depending on the context. Plays a central role in BMP signaling and olfactory neurogenesis. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved in terminal olfactory receptor neurons differentiation; this interaction preventing EBF1 to bind DNA and activate olfactory-specific genes. Involved in olfactory neurogenesis by participating in a developmental switch that regulates the transition from differentiation to maturation in olfactory receptor neurons. Controls proliferation and differentiation of neural precursors in cerebellar vermis formation. {ECO:0000269|PubMed:10660046}. |
Q2M1Z3 | ARHGAP31 | S460 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M1Z3 | ARHGAP31 | S863 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M1Z3 | ARHGAP31 | S1054 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M2Z5 | KIZ | S179 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2M2Z5 | KIZ | S276 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2M2Z5 | KIZ | S436 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2M2Z5 | KIZ | S623 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2M3G4 | SHROOM1 | S364 | ochoa | Protein Shroom1 (Apical protein 2) | May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}. |
Q2NKX8 | ERCC6L | S399 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2NKX8 | ERCC6L | S1188 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2PPJ7 | RALGAPA2 | S981 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q2TAL8 | QRICH1 | S303 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q2TAL8 | QRICH1 | S345 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q2WGJ9 | FER1L6 | S62 | ochoa | Fer-1-like protein 6 | None |
Q2Y0W8 | SLC4A8 | S259 | ochoa | Electroneutral sodium bicarbonate exchanger 1 (Electroneutral Na(+)-driven Cl-HCO3 exchanger) (Solute carrier family 4 member 8) (k-NBC3) | Mediates electroneutral sodium- and carbonate-dependent chloride-HCO3(-) exchange with a Na(+):HCO3(-) stoichiometry of 2:1 (PubMed:18577713). Plays a major role in pH regulation in neurons (By similarity). Mediates sodium reabsorption in the renal cortical collecting ducts (By similarity). {ECO:0000250|UniProtKB:Q8JZR6, ECO:0000269|PubMed:18577713}. |
Q32NB8 | PGS1 | S102 | ochoa | CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, mitochondrial (EC 2.7.8.5) (Phosphatidylglycerophosphate synthase 1) (PGP synthase 1) | Functions in the biosynthesis of the anionic phospholipids phosphatidylglycerol and cardiolipin. {ECO:0000250}. |
Q32NC0 | C18orf21 | S158 | ochoa | UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) | None |
Q32P28 | P3H1 | S505 | ochoa | Prolyl 3-hydroxylase 1 (EC 1.14.11.7) (Growth suppressor 1) (Leucine- and proline-enriched proteoglycan 1) (Leprecan-1) | Basement membrane-associated chondroitin sulfate proteoglycan (CSPG). Has prolyl 3-hydroxylase activity catalyzing the post-translational formation of 3-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens, especially types IV and V. May be involved in the secretory pathway of cells. Has growth suppressive activity in fibroblasts. {ECO:0000269|PubMed:10951563}. |
Q3B726 | POLR1F | S60 | ochoa | DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}. |
Q3B7T1 | EDRF1 | S1144 | ochoa | Erythroid differentiation-related factor 1 | Transcription factor involved in erythroid differentiation. Involved in transcriptional activation of the globin gene. {ECO:0000269|PubMed:12609092}. |
Q3B820 | FAM161A | S396 | ochoa | Protein FAM161A | Involved in ciliogenesis. {ECO:0000269|PubMed:22940612}. |
Q3KP31 | ZNF791 | S85 | ochoa | Zinc finger protein 791 | May be involved in transcriptional regulation. |
Q3KQU3 | MAP7D1 | S241 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KQU3 | MAP7D1 | S410 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KR16 | PLEKHG6 | S537 | ochoa | Pleckstrin homology domain-containing family G member 6 (PH domain-containing family G member 6) (Myosin-interacting guanine nucleotide exchange factor) (MyoGEF) | Guanine nucleotide exchange factor activating the small GTPase RHOA, which, in turn, induces myosin filament formation. Also activates RHOG. Does not activate RAC1, or to a much lower extent than RHOA and RHOG. Part of a functional unit, involving PLEKHG6, MYH10 and RHOA, at the cleavage furrow to advance furrow ingression during cytokinesis. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with EZR, required for normal macropinocytosis. {ECO:0000269|PubMed:16721066, ECO:0000269|PubMed:17881735}. |
Q3KR37 | GRAMD1B | S550 | ochoa | Protein Aster-B (GRAM domain-containing protein 1B) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}. |
Q3KR37 | GRAMD1B | S581 | ochoa | Protein Aster-B (GRAM domain-containing protein 1B) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}. |
Q3L8U1 | CHD9 | S2861 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q3MII6 | TBC1D25 | S130 | ochoa | TBC1 domain family member 25 | Acts as a GTPase-activating protein specific for RAB33B. Involved in the regulation of autophagosome maturation, the process in which autophagosomes fuse with endosomes and lysosomes. {ECO:0000269|PubMed:21383079}. |
Q3T8J9 | GON4L | S476 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S775 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S1268 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S2053 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S2107 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3V6T2 | CCDC88A | S1387 | ochoa|psp | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q3V6T2 | CCDC88A | S1566 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q3V6T2 | CCDC88A | S1837 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q3ZCW2 | LGALSL | S25 | ochoa | Galectin-related protein (Galectin-like protein) (Lectin galactoside-binding-like protein) | Does not bind lactose, and may not bind carbohydrates. {ECO:0000269|PubMed:18320588, ECO:0000269|PubMed:18433051}. |
Q499Z4 | ZNF672 | S189 | ochoa | Zinc finger protein 672 | May be involved in transcriptional regulation. |
Q49A88 | CCDC14 | S308 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q49A88 | CCDC14 | S374 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q4AC94 | C2CD3 | S1606 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4AC94 | C2CD3 | S1829 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4AC94 | C2CD3 | S1874 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4ADV7 | RIC1 | S1132 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q4ADV7 | RIC1 | S1371 | ochoa | Guanine nucleotide exchange factor subunit RIC1 (Connexin-43-interacting protein of 150 kDa) (Protein RIC1 homolog) (RAB6A-GEF complex partner protein 1) | The RIC1-RGP1 complex acts as a guanine nucleotide exchange factor (GEF), which activates RAB6A by exchanging bound GDP for free GTP, and may thereby be required for efficient fusion of endosome-derived vesicles with the Golgi compartment (PubMed:23091056). The RIC1-RGP1 complex participates in the recycling of mannose-6-phosphate receptors (PubMed:23091056). Required for phosphorylation and localization of GJA1 (PubMed:16112082). Is a regulator of procollagen transport and secretion, and is required for correct cartilage morphogenesis and development of the craniofacial skeleton (PubMed:31932796). {ECO:0000269|PubMed:16112082, ECO:0000269|PubMed:23091056, ECO:0000269|PubMed:31932796}. |
Q4FZB7 | KMT5B | S532 | ochoa | Histone-lysine N-methyltransferase KMT5B (Lysine N-methyltransferase 5B) (Lysine-specific methyltransferase 5B) (Suppressor of variegation 4-20 homolog 1) (Su(var)4-20 homolog 1) (Suv4-20h1) ([histone H4]-N-methyl-L-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.362) ([histone H4]-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.361) | Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:24396869, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (PubMed:24396869). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions. KMT5B is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (By similarity). Plays a role in myogenesis by regulating the expression of target genes, such as EID3 (PubMed:23720823). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). {ECO:0000250|UniProtKB:Q3U8K7, ECO:0000269|PubMed:23720823, ECO:0000269|PubMed:24396869, ECO:0000269|PubMed:28114273}. |
Q4FZB7 | KMT5B | S635 | ochoa | Histone-lysine N-methyltransferase KMT5B (Lysine N-methyltransferase 5B) (Lysine-specific methyltransferase 5B) (Suppressor of variegation 4-20 homolog 1) (Su(var)4-20 homolog 1) (Suv4-20h1) ([histone H4]-N-methyl-L-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.362) ([histone H4]-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.361) | Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:24396869, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (PubMed:24396869). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions. KMT5B is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (By similarity). Plays a role in myogenesis by regulating the expression of target genes, such as EID3 (PubMed:23720823). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). {ECO:0000250|UniProtKB:Q3U8K7, ECO:0000269|PubMed:23720823, ECO:0000269|PubMed:24396869, ECO:0000269|PubMed:28114273}. |
Q4G0A6 | MINDY4 | S392 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q4G0A6 | MINDY4 | S524 | ochoa | Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) | Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}. |
Q4KWH8 | PLCH1 | S1386 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q4V328 | GRIPAP1 | S655 | ochoa | GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] | Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}. |
Q4V9L6 | TMEM119 | S185 | ochoa | Transmembrane protein 119 (Osteoblast induction factor) (OBIF) | Plays an important role in bone formation and normal bone mineralization. Promotes the differentiation of myoblasts into osteoblasts (PubMed:20025746). May induce the commitment and differentiation of myoblasts into osteoblasts through an enhancement of BMP2 production and interaction with the BMP-RUNX2 pathway. Up-regulates the expression of ATF4, a transcription factor which plays a central role in osteoblast differentiation. Essential for normal spermatogenesis and late testicular differentiation (By similarity). {ECO:0000250|UniProtKB:Q8R138, ECO:0000269|PubMed:20025746}. |
Q4VC05 | BCL7A | S83 | ochoa | B-cell CLL/lymphoma 7 protein family member A | None |
Q4VC44 | FLYWCH1 | S503 | ochoa | FLYWCH-type zinc finger-containing protein 1 | Transcription cofactor (PubMed:30097457). Negatively regulates transcription activation by catenin beta-1 CTNNB1, perhaps acting by competing with TCF4 for CTNNB1 binding (PubMed:30097457). May play a role in DNA-damage response signaling (PubMed:33924684). Binds specifically to DNA sequences at peri-centromeric chromatin loci. {ECO:0000269|PubMed:30097457, ECO:0000269|PubMed:33924684, ECO:0000269|PubMed:34408139}. |
Q504Q3 | PAN2 | S474 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q52LW3 | ARHGAP29 | S1029 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53ET0 | CRTC2 | S624 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q53EU6 | GPAT3 | S77 | ochoa | Glycerol-3-phosphate acyltransferase 3 (GPAT-3) (EC 2.3.1.15) (1-acyl-sn-glycerol-3-phosphate O-acyltransferase 10) (AGPAT 10) (1-acyl-sn-glycerol-3-phosphate O-acyltransferase 9) (1-AGP acyltransferase 9) (1-AGPAT 9) (EC 2.3.1.51) (Acyl-CoA:glycerol-3-phosphate acyltransferase 3) (hGPAT3) (Lung cancer metastasis-associated protein 1) (Lysophosphatidic acid acyltransferase theta) (LPAAT-theta) (MAG-1) | Converts glycerol-3-phosphate to 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) by incorporating an acyl moiety at the sn-1 position of the glycerol backbone (PubMed:17170135). Also converts LPA into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (PubMed:19318427). Protects cells against lipotoxicity (PubMed:30846318). {ECO:0000269|PubMed:17170135, ECO:0000269|PubMed:19318427, ECO:0000269|PubMed:30846318}. |
Q53F19 | NCBP3 | S415 | ochoa | Nuclear cap-binding protein subunit 3 (Protein ELG) | Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}. |
Q53GG5 | PDLIM3 | S89 | ochoa | PDZ and LIM domain protein 3 (Actinin-associated LIM protein) (Alpha-actinin-2-associated LIM protein) | May play a role in the organization of actin filament arrays within muscle cells. {ECO:0000250}. |
Q53HL2 | CDCA8 | S219 | ochoa|psp | Borealin (Cell division cycle-associated protein 8) (Dasra-B) (hDasra-B) (Pluripotent embryonic stem cell-related gene 3 protein) | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Major effector of the TTK kinase in the control of attachment-error-correction and chromosome alignment. {ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:15260989, ECO:0000269|PubMed:16571674, ECO:0000269|PubMed:18243099}. |
Q53RE8 | ANKRD39 | S153 | ochoa | Ankyrin repeat domain-containing protein 39 | None |
Q53RY4 | KRTCAP3 | S214 | ochoa | Keratinocyte-associated protein 3 (KCP-3) | None |
Q53T59 | HS1BP3 | S139 | ochoa | HCLS1-binding protein 3 (HS1-binding protein 3) (HSP1BP-3) | May be a modulator of IL-2 signaling. {ECO:0000250}. |
Q53TQ3 | INO80D | S132 | ochoa | INO80 complex subunit D | Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q562E7 | WDR81 | S686 | ochoa | WD repeat-containing protein 81 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated protein aggregates. In this process, may regulate the interaction of SQSTM1 with ubiquitinated proteins and also recruit MAP1LC3C (PubMed:28404643). May also be involved in maintenance of normal mitochondrial structure and organization (By similarity). {ECO:0000250|UniProtKB:Q5ND34, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989, ECO:0000269|PubMed:28404643}. |
Q562E7 | WDR81 | S1272 | ochoa | WD repeat-containing protein 81 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated protein aggregates. In this process, may regulate the interaction of SQSTM1 with ubiquitinated proteins and also recruit MAP1LC3C (PubMed:28404643). May also be involved in maintenance of normal mitochondrial structure and organization (By similarity). {ECO:0000250|UniProtKB:Q5ND34, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989, ECO:0000269|PubMed:28404643}. |
Q562F6 | SGO2 | S266 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q562F6 | SGO2 | S1181 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q56NI9 | ESCO2 | S29 | ochoa | N-acetyltransferase ESCO2 (EC 2.3.1.-) (Establishment factor-like protein 2) (EFO2) (EFO2p) (hEFO2) (Establishment of cohesion 1 homolog 2) (ECO1 homolog 2) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15821733, PubMed:15958495). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3 (PubMed:21111234). {ECO:0000269|PubMed:15821733, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234}. |
Q56NI9 | ESCO2 | S75 | ochoa | N-acetyltransferase ESCO2 (EC 2.3.1.-) (Establishment factor-like protein 2) (EFO2) (EFO2p) (hEFO2) (Establishment of cohesion 1 homolog 2) (ECO1 homolog 2) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15821733, PubMed:15958495). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3 (PubMed:21111234). {ECO:0000269|PubMed:15821733, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234}. |
Q587J7 | TDRD12 | S211 | ochoa | Putative ATP-dependent RNA helicase TDRD12 (EC 3.6.4.13) (ES cell-associated transcript 8 protein) (Tudor domain-containing protein 12) | Probable ATP-binding RNA helicase required during spermatogenesis to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Involved in the secondary piRNAs metabolic process. Acts via the PET complex, a multiprotein complex required during the secondary piRNAs metabolic process for the PIWIL2 slicing-triggered loading of PIWIL4 piRNAs. {ECO:0000250|UniProtKB:Q9CWU0}. |
Q58WW2 | DCAF6 | S467 | ochoa | DDB1- and CUL4-associated factor 6 (Androgen receptor complex-associated protein) (ARCAP) (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP) | Ligand-dependent coactivator of nuclear receptors. Enhance transcriptional activity of the nuclear receptors NR3C1 and AR. May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:15784617, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5BKX5 | ACTMAP | S316 | ochoa | Actin maturation protease (EC 3.4.11.-) (Actin aminopeptidase ACTMAP) | Actin maturation protease that specifically mediates the cleavage of immature acetylated N-terminal actin, thereby contributing to actin maturation (PubMed:36173861). Cleaves N-terminal acetylated methionine of immature cytoplasmic beta- and gamma-actins ACTB and ACTG1 after translation (PubMed:36173861). Cleaves N-terminal acetylated cysteine of muscle alpha-actins ACTA1, ACTC1 and ACTA2 after canonical removal of N-terminal methionine (By similarity). {ECO:0000250|UniProtKB:J3QPC3, ECO:0000269|PubMed:36173861}. |
Q5D0E6 | DALRD3 | S209 | ochoa | DALR anticodon-binding domain-containing protein 3 | Involved in tRNA methylation. Facilitates the recognition and targeting of tRNA(Arg)(CCU) and tRNA(Arg)(UCU) substrates for N(3)-methylcytidine modification by METTL2A and METTL2B. {ECO:0000269|PubMed:32427860}. |
Q5D1E8 | ZC3H12A | S386 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5DJT8 | CT45A2 | S24 | ochoa | Cancer/testis antigen family 45 member A2 (Cancer/testis antigen 45-2) (Cancer/testis antigen 45A2) | None |
Q5FBB7 | SGO1 | S436 | ochoa | Shugoshin 1 (Serologically defined breast cancer antigen NY-BR-85) (Shugoshin-like 1) | Plays a central role in chromosome cohesion during mitosis by preventing premature dissociation of cohesin complex from centromeres after prophase, when most of cohesin complex dissociates from chromosomes arms. May act by preventing phosphorylation of the STAG2 subunit of cohesin complex at the centromere, ensuring cohesin persistence at centromere until cohesin cleavage by ESPL1/separase at anaphase. Essential for proper chromosome segregation during mitosis and this function requires interaction with PPP2R1A. Its phosphorylated form is necessary for chromosome congression and for the proper attachment of spindle microtubule to the kinetochore. Necessary for kinetochore localization of PLK1 and CENPF. May play a role in the tension sensing mechanism of the spindle-assembly checkpoint by regulating PLK1 kinetochore affinity. Isoform 3 plays a role in maintaining centriole cohesion involved in controlling spindle pole integrity. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000269|PubMed:15604152, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:15737064, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:20739936}. |
Q5FBB7 | SGO1 | S468 | ochoa | Shugoshin 1 (Serologically defined breast cancer antigen NY-BR-85) (Shugoshin-like 1) | Plays a central role in chromosome cohesion during mitosis by preventing premature dissociation of cohesin complex from centromeres after prophase, when most of cohesin complex dissociates from chromosomes arms. May act by preventing phosphorylation of the STAG2 subunit of cohesin complex at the centromere, ensuring cohesin persistence at centromere until cohesin cleavage by ESPL1/separase at anaphase. Essential for proper chromosome segregation during mitosis and this function requires interaction with PPP2R1A. Its phosphorylated form is necessary for chromosome congression and for the proper attachment of spindle microtubule to the kinetochore. Necessary for kinetochore localization of PLK1 and CENPF. May play a role in the tension sensing mechanism of the spindle-assembly checkpoint by regulating PLK1 kinetochore affinity. Isoform 3 plays a role in maintaining centriole cohesion involved in controlling spindle pole integrity. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000269|PubMed:15604152, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:15737064, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:20739936}. |
Q5FBB7 | SGO1 | S507 | psp | Shugoshin 1 (Serologically defined breast cancer antigen NY-BR-85) (Shugoshin-like 1) | Plays a central role in chromosome cohesion during mitosis by preventing premature dissociation of cohesin complex from centromeres after prophase, when most of cohesin complex dissociates from chromosomes arms. May act by preventing phosphorylation of the STAG2 subunit of cohesin complex at the centromere, ensuring cohesin persistence at centromere until cohesin cleavage by ESPL1/separase at anaphase. Essential for proper chromosome segregation during mitosis and this function requires interaction with PPP2R1A. Its phosphorylated form is necessary for chromosome congression and for the proper attachment of spindle microtubule to the kinetochore. Necessary for kinetochore localization of PLK1 and CENPF. May play a role in the tension sensing mechanism of the spindle-assembly checkpoint by regulating PLK1 kinetochore affinity. Isoform 3 plays a role in maintaining centriole cohesion involved in controlling spindle pole integrity. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000269|PubMed:15604152, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:15737064, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:20739936}. |
Q5FWF4 | ZRANB3 | S588 | ochoa | DNA annealing helicase and endonuclease ZRANB3 (Annealing helicase 2) (AH2) (Zinc finger Ran-binding domain-containing protein 3) [Includes: DNA annealing helicase ZRANB3 (EC 3.6.4.-); Endonuclease ZRANB3 (EC 3.1.-.-)] | DNA annealing helicase and endonuclease required to maintain genome stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events (PubMed:21078962, PubMed:22704558, PubMed:22705370, PubMed:22759634, PubMed:26884333). Recruited to the sites of stalled DNA replication by polyubiquitinated PCNA and acts as a structure-specific endonuclease that cleaves the replication fork D-loop intermediate, generating an accessible 3'-OH group in the template of the leading strand, which is amenable to extension by DNA polymerase (PubMed:22759634). In addition to endonuclease activity, also catalyzes the fork regression via annealing helicase activity in order to prevent disintegration of the replication fork and the formation of double-strand breaks (PubMed:22704558, PubMed:22705370). {ECO:0000269|PubMed:21078962, ECO:0000269|PubMed:22704558, ECO:0000269|PubMed:22705370, ECO:0000269|PubMed:22759634, ECO:0000269|PubMed:26884333}. |
Q5FWF5 | ESCO1 | S200 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5FWF5 | ESCO1 | S412 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5FWF5 | ESCO1 | S423 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5GLZ8 | HERC4 | S180 | ochoa | Probable E3 ubiquitin-protein ligase HERC4 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 4) (HECT-type E3 ubiquitin transferase HERC4) | Probable E3 ubiquitin-protein ligase involved in either protein trafficking or in the distribution of cellular structures. Required for spermatozoon maturation and fertility, and for the removal of the cytoplasmic droplet of the spermatozoon. E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer it to targeted substrates. {ECO:0000250|UniProtKB:Q6PAV2}. |
Q5H9L2 | TCEAL5 | S127 | ochoa | Transcription elongation factor A protein-like 5 (TCEA-like protein 5) (Transcription elongation factor S-II protein-like 5) | May be involved in transcriptional regulation. |
Q5HY98 | ZNF766 | S147 | ochoa | Zinc finger protein 766 | May be involved in transcriptional regulation. |
Q5HYC2 | BRD10 | S1816 | ochoa | Uncharacterized bromodomain-containing protein 10 | None |
Q5HYI7 | MTX3 | S249 | ochoa | Metaxin-3 | Could function in transport of proteins into the mitochondrion. {ECO:0000250}. |
Q5HYN5 | CT45A1 | S24 | ochoa | Cancer/testis antigen family 45 member A1 (Cancer/testis antigen 45-1) (Cancer/testis antigen 45A1) | None |
Q5HYN5 | CT45A1 | S115 | ochoa | Cancer/testis antigen family 45 member A1 (Cancer/testis antigen 45-1) (Cancer/testis antigen 45A1) | None |
Q5I0X7 | TTC32 | S47 | ochoa | Tetratricopeptide repeat protein 32 (TPR repeat protein 32) | None |
Q5JPH6 | EARS2 | S143 | ochoa | Nondiscriminating glutamyl-tRNA synthetase EARS2, mitochondrial (EC 6.1.1.24) (Glutamate--tRNA(Gln) ligase EARS2, mitochondrial) (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS) (Mitochondrial glutamyl-tRNA synthetase) (mtGluRS) | Non-discriminating glutamyl-tRNA synthetase that catalyzes aminoacylation of both mitochondrial tRNA(Glu) and tRNA(Gln) and participates in RNA aminoacylation for mitochondrial protein translation (PubMed:19805282). Attachs glutamate to tRNA(Glu) or tRNA(Gln) in a two-step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) or tRNA(Gln) (PubMed:19805282). In vitro, cytoplasmic tRNA(Gln) is slightly glutamylated, but with low activity (PubMed:19805282). {ECO:0000269|PubMed:19805282}. |
Q5JR59 | MTUS2 | S954 | ochoa | Microtubule-associated tumor suppressor candidate 2 (Cardiac zipper protein) (Microtubule plus-end tracking protein TIP150) (Tracking protein of 150 kDa) | Binds microtubules. Together with MAPRE1 may target the microtubule depolymerase KIF2C to the plus-end of microtubules. May regulate the dynamics of microtubules at their growing distal tip. {ECO:0000269|PubMed:19543227}. |
Q5JRX3 | PITRM1 | S530 | ochoa | Presequence protease, mitochondrial (hPreP) (EC 3.4.24.-) (Pitrilysin metalloproteinase 1) (Metalloprotease 1) (hMP1) | Metalloendopeptidase of the mitochondrial matrix that functions in peptide cleavage and degradation rather than in protein processing (PubMed:10360838, PubMed:16849325, PubMed:19196155, PubMed:24931469). Has an ATP-independent activity (PubMed:16849325). Specifically cleaves peptides in the range of 5 to 65 residues (PubMed:19196155). Shows a preference for cleavage after small polar residues and before basic residues, but without any positional preference (PubMed:10360838, PubMed:19196155, PubMed:24931469). Degrades the transit peptides of mitochondrial proteins after their cleavage (PubMed:19196155). Also degrades other unstructured peptides (PubMed:19196155). It is also able to degrade amyloid-beta protein 40, one of the peptides produced by APP processing, when it accumulates in mitochondrion (PubMed:16849325, PubMed:24931469, PubMed:26697887). It is a highly efficient protease, at least toward amyloid-beta protein 40 (PubMed:24931469, PubMed:29383861, PubMed:29764912). Cleaves that peptide at a specific position and is probably not processive, releasing digested peptides intermediates that can be further cleaved subsequently (PubMed:24931469). It is also able to degrade amyloid-beta protein 42 (PubMed:29764912). {ECO:0000269|PubMed:10360838, ECO:0000269|PubMed:16849325, ECO:0000269|PubMed:19196155, ECO:0000269|PubMed:24931469, ECO:0000269|PubMed:26697887, ECO:0000269|PubMed:29383861, ECO:0000269|PubMed:29764912}. |
Q5JSH3 | WDR44 | S96 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JSZ5 | PRRC2B | S907 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JSZ5 | PRRC2B | S1453 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JSZ5 | PRRC2B | S1843 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTC6 | AMER1 | S518 | psp | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5JTD0 | TJAP1 | S449 | ochoa | Tight junction-associated protein 1 (Protein incorporated later into tight junctions) (Tight junction protein 4) | Plays a role in regulating the structure of the Golgi apparatus. {ECO:0000250|UniProtKB:Q9DCD5}. |
Q5JTV8 | TOR1AIP1 | S315 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JTW2 | CEP78 | S654 | ochoa | Centrosomal protein of 78 kDa (Cep78) | Centriole wall protein that localizes to mature centrioles and regulates centriole and cilia biogenesis (PubMed:27246242, PubMed:27588451, PubMed:28242748, PubMed:34259627). Involved in centrosome duplication: required for efficient PLK4 centrosomal localization and PLK4-induced overduplication of centrioles (PubMed:27246242). Involved in cilium biogenesis and controls cilium length (PubMed:27588451). Acts as a regulator of protein stability by preventing ubiquitination of centrosomal proteins, such as CCP110 and tektins (PubMed:28242748, PubMed:34259627). Associates with the EDVP complex, preventing ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Promotes deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5) via its interaction with USP16 (By similarity). {ECO:0000250|UniProtKB:Q6IRU7, ECO:0000269|PubMed:27246242, ECO:0000269|PubMed:27588451, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}. |
Q5JUX0 | SPIN3 | S195 | ochoa | Spindlin-3 (Spindlin-like protein 3) (SPIN-3) | Exhibits H3K4me3-binding activity. {ECO:0000269|PubMed:29061846}. |
Q5JWR5 | DOP1A | S1023 | ochoa | Protein DOP1A | May be involved in protein traffic between late Golgi and early endosomes. {ECO:0000250|UniProtKB:Q03921}. |
Q5K651 | SAMD9 | S858 | ochoa | Sterile alpha motif domain-containing protein 9 (SAM domain-containing protein 9) | Double-stranded nucleic acid binding that acts as an antiviral factor by playing an essential role in the formation of cytoplasmic antiviral granules (PubMed:25428864, PubMed:28157624). May play a role in the inflammatory response to tissue injury and the control of extra-osseous calcification, acting as a downstream target of TNF-alpha signaling. Involved in the regulation of EGR1, in coordination with RGL2. May be involved in endosome fusion. {ECO:0000269|PubMed:16960814, ECO:0000269|PubMed:18094730, ECO:0000269|PubMed:21160498, ECO:0000269|PubMed:24029230, ECO:0000269|PubMed:25428864, ECO:0000269|PubMed:28157624}. |
Q5MIZ7 | PPP4R3B | S155 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3B (SMEK homolog 2) | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. |
Q5QJE6 | DNTTIP2 | S117 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5QJE6 | DNTTIP2 | S381 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5R372 | RABGAP1L | S292 | ochoa | Rab GTPase-activating protein 1-like | GTP-hydrolysis activating protein (GAP) for small GTPase RAB22A, converting active RAB22A-GTP to the inactive form RAB22A-GDP (PubMed:16923123). Plays a role in endocytosis and intracellular protein transport. Recruited by ANK2 to phosphatidylinositol 3-phosphate (PI3P)-positive early endosomes, where it inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:A6H6A9, ECO:0000269|PubMed:16923123}. |
Q5S007 | LRRK2 | S926 | psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5SQI0 | ATAT1 | S346 | ochoa | Alpha-tubulin N-acetyltransferase 1 (Alpha-TAT) (Alpha-TAT1) (TAT) (EC 2.3.1.108) (Acetyltransferase mec-17 homolog) | Specifically acetylates 'Lys-40' in alpha-tubulin on the lumenal side of microtubules. Promotes microtubule destabilization and accelerates microtubule dynamics; this activity may be independent of acetylation activity. Acetylates alpha-tubulin with a slow enzymatic rate, due to a catalytic site that is not optimized for acetyl transfer. Enters the microtubule through each end and diffuses quickly throughout the lumen of microtubules. Acetylates only long/old microtubules because of its slow acetylation rate since it does not have time to act on dynamically unstable microtubules before the enzyme is released. Required for normal sperm flagellar function. Promotes directional cell locomotion and chemotaxis, through AP2A2-dependent acetylation of alpha-tubulin at clathrin-coated pits that are concentrated at the leading edge of migrating cells. May facilitate primary cilium assembly. {ECO:0000255|HAMAP-Rule:MF_03130, ECO:0000269|PubMed:20829795, ECO:0000269|PubMed:21068373, ECO:0000269|PubMed:24097348, ECO:0000269|PubMed:24906155}. |
Q5SSJ5 | HP1BP3 | S156 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5SW79 | CEP170 | S313 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S845 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S971 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1251 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SXH7 | PLEKHS1 | S185 | ochoa | Pleckstrin homology domain-containing family S member 1 (PH domain-containing family S member 1) (Epididymis luminal protein 185) (hEL185) | None |
Q5SXM2 | SNAPC4 | S702 | ochoa | snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}. |
Q5SY16 | NOL9 | S249 | ochoa | Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}. |
Q5SY16 | NOL9 | S487 | ochoa | Polynucleotide 5'-hydroxyl-kinase NOL9 (EC 2.7.1.78) (Nucleolar protein 9) | Polynucleotide kinase that can phosphorylate the 5'-hydroxyl groups of single-stranded and double-stranded RNA and DNA substrates (PubMed:21063389). Involved in rRNA processing and its kinase activity is required for the processing of the 32S precursor into 5.8S and 28S rRNAs, more specifically for the generation of the major 5.8S(S) form (PubMed:21063389). Required for the efficient pre-rRNA processing of internal transcribed spacer 2 (ITS2) (PubMed:21063389). Associates with LAS1L to form an ITS2 pre-rRNA endonuclease-kinase complex and is responsible for the transport of this complex into the nucleolus (PubMed:31288032). {ECO:0000269|PubMed:21063389, ECO:0000269|PubMed:31288032}. |
Q5T011 | SZT2 | S215 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T011 | SZT2 | S1209 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T011 | SZT2 | S2458 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T0B9 | ZNF362 | S169 | ochoa | Zinc finger protein 362 | May be involved in transcriptional regulation. |
Q5T0D9 | TPRG1L | S227 | ochoa | Tumor protein p63-regulated gene 1-like protein (Mossy fiber terminal-associated vertebrate-specific presynaptic protein) (Protein FAM79A) | Presynaptic protein involved in the synaptic transmission tuning. Regulates synaptic release probability by decreasing the calcium sensitivity of release. {ECO:0000250|UniProtKB:A8WCF8}. |
Q5T0F9 | CC2D1B | S593 | ochoa | Coiled-coil and C2 domain-containing protein 1B (Five prime repressor element under dual repression-binding protein 2) (FRE under dual repression-binding protein 2) (Freud-2) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. {ECO:0000269|PubMed:19423080}. |
Q5T0W9 | FAM83B | S764 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T0W9 | FAM83B | S915 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T0Z8 | C6orf132 | S558 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1R4 | HIVEP3 | S382 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S2034 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S2255 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1V6 | DDX59 | S64 | ochoa | Probable ATP-dependent RNA helicase DDX59 (EC 3.6.4.13) (DEAD box protein 59) (Zinc finger HIT domain-containing protein 5) | None |
Q5T1V6 | DDX59 | S578 | ochoa | Probable ATP-dependent RNA helicase DDX59 (EC 3.6.4.13) (DEAD box protein 59) (Zinc finger HIT domain-containing protein 5) | None |
Q5T200 | ZC3H13 | S64 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S993 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T2N8 | ATAD3C | S146 | ochoa | ATPase family AAA domain-containing protein 3C | None |
Q5T3I0 | GPATCH4 | S139 | ochoa | G patch domain-containing protein 4 | None |
Q5T3J3 | LRIF1 | S386 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T3J3 | LRIF1 | S402 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T3J3 | LRIF1 | S451 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T481 | RBM20 | S980 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T4S7 | UBR4 | S178 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5P2 | KIAA1217 | S1684 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5X7 | BEND3 | S93 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T5X7 | BEND3 | S710 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T5Y3 | CAMSAP1 | S217 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T5Y3 | CAMSAP1 | S1052 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T7B8 | KIF24 | S102 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7B8 | KIF24 | S524 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7B8 | KIF24 | S1275 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7W0 | ZNF618 | S120 | ochoa | Zinc finger protein 618 | Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}. |
Q5T7W0 | ZNF618 | S429 | ochoa | Zinc finger protein 618 | Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}. |
Q5T7W7 | TSTD2 | S269 | ochoa | Thiosulfate sulfurtransferase/rhodanese-like domain-containing protein 2 (Rhodanese domain-containing protein 2) | None |
Q5T8P6 | RBM26 | S518 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5T8P6 | RBM26 | S616 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5T9A4 | ATAD3B | S321 | ochoa | ATPase family AAA domain-containing protein 3B (AAA-TOB3) | May play a role in a mitochondrial network organization typical for stem cells, characterized by reduced mitochondrial metabolism, low mtDNA copies and fragmentated mitochondrial network. May act by suppressing ATAD3A function, interfering with ATAD3A interaction with matrix nucleoid complexes. {ECO:0000269|PubMed:22664726}. |
Q5T9S5 | CCDC18 | S79 | ochoa | Coiled-coil domain-containing protein 18 (Sarcoma antigen NY-SAR-24) | None |
Q5TAX3 | TUT4 | S49 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TAX3 | TUT4 | S209 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TAX3 | TUT4 | S841 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TB30 | DEPDC1 | S110 | ochoa|psp | DEP domain-containing protein 1A | May be involved in transcriptional regulation as a transcriptional corepressor. The DEPDC1A-ZNF224 complex may play a critical role in bladder carcinogenesis by repressing the transcription of the A20 gene, leading to transport of NF-KB protein into the nucleus, resulting in suppression of apoptosis of bladder cancer cells. {ECO:0000269|PubMed:20587513}. |
Q5TBA9 | FRY | S1380 | ochoa | Protein furry homolog | Plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting PLK1 activity at the spindle poles in early mitosis. May function as a scaffold promoting the interaction between AURKA and PLK1, thereby enhancing AURKA-mediated PLK1 phosphorylation. {ECO:0000269|PubMed:22753416}. |
Q5TC79 | ZBTB37 | S195 | ochoa | Zinc finger and BTB domain-containing protein 37 | May be involved in transcriptional regulation. |
Q5TC79 | ZBTB37 | S480 | ochoa | Zinc finger and BTB domain-containing protein 37 | May be involved in transcriptional regulation. |
Q5TC82 | RC3H1 | S811 | ochoa | Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}. |
Q5TCX8 | MAP3K21 | S528 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TCX8 | MAP3K21 | S650 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TCZ1 | SH3PXD2A | S662 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5TF39 | MFSD4B | S496 | ochoa | Sodium-dependent glucose transporter 1 (Major facilitator superfamily domain-containing protein 4B) | May function as a sodium-dependent glucose transporter. Potential channels for urea in the inner medulla of kidney. {ECO:0000250|UniProtKB:Q80T22}. |
Q5TGL8 | PXDC1 | S150 | ochoa | PX domain-containing protein 1 | None |
Q5TGY3 | AHDC1 | S596 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TGY3 | AHDC1 | S633 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TGY3 | AHDC1 | S1324 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5TH69 | ARFGEF3 | S1676 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5TH69 | ARFGEF3 | S2061 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5THJ4 | VPS13D | S1138 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S2919 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S2983 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S3319 | psp | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THK1 | PRR14L | S437 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5THK1 | PRR14L | S582 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5THK1 | PRR14L | S717 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5THK1 | PRR14L | S945 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5TKA1 | LIN9 | S76 | ochoa | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q5TKA1 | LIN9 | S321 | ochoa|psp | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q5U3C3 | TMEM164 | S71 | ochoa | Transmembrane protein 164 (Arachidonoyl ether phospholipid synthase) | Positive regulator of ferroptosis (PubMed:35947500, PubMed:36782012). Involved in the acylation of ether lysophospholipids with the arachidonoyl chain (5Z,8Z,11Z,14Z-eicosatetraenoyl; C20:4) of diacylglycerophospholipids, generating C20:4 ether glycerophospholipids (ePEs) such as 1-(1Z-octadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine (PE (P-18:0/20:4)), which promotes ferroptosis (PubMed:36782012). Selectively mediates ATG5-dependent autophagosome formation during ferroptosis, rather than during starvation, and regulates the degradation of ferritin, GPX4 and lipid droplets to increase iron accumulation and lipid peroxidation, thereby promoting ferroptotic cell death (PubMed:35947500). {ECO:0000269|PubMed:35947500, ECO:0000269|PubMed:36782012}. |
Q5U5Q3 | MEX3C | S320 | ochoa | RNA-binding E3 ubiquitin-protein ligase MEX3C (EC 2.3.2.27) (RING finger and KH domain-containing protein 2) (RING finger protein 194) (RING-type E3 ubiquitin transferase MEX3C) | E3 ubiquitin ligase responsible for the post-transcriptional regulation of common HLA-A allotypes. Binds to the 3' UTR of HLA-A2 mRNA, and regulates its levels by promoting mRNA decay. RNA binding is sufficient to prevent translation, but ubiquitin ligase activity is required for mRNA degradation. {ECO:0000269|PubMed:22863774, ECO:0000269|PubMed:23446422}. |
Q5U651 | RASIP1 | S27 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q5U651 | RASIP1 | S419 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q5UIP0 | RIF1 | S1616 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1854 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2144 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2196 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2348 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VST9 | OBSCN | S747 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VST9 | OBSCN | S6201 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT06 | CEP350 | S258 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S567 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S939 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S1061 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S1133 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S1502 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2115 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2206 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2482 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT25 | CDC42BPA | S364 | ochoa | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VT97 | SYDE2 | S317 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VT97 | SYDE2 | S554 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VU43 | PDE4DIP | S1156 | ochoa | Myomegalin (Cardiomyopathy-associated protein 2) (Phosphodiesterase 4D-interacting protein) | Functions as an anchor sequestering components of the cAMP-dependent pathway to Golgi and/or centrosomes (By similarity). {ECO:0000250|UniProtKB:Q9WUJ3}.; FUNCTION: [Isoform 13]: Participates in microtubule dynamics, promoting microtubule assembly. Depending upon the cell context, may act at the level of the Golgi apparatus or that of the centrosome (PubMed:25217626, PubMed:27666745, PubMed:28814570, PubMed:29162697). In complex with AKAP9, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745, PubMed:28814570). In complex with AKAP9, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension from the centrosome to the cell periphery, a crucial process for directed cell migration, mitotic spindle orientation and cell-cycle progression (PubMed:29162697). {ECO:0000269|PubMed:25217626, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28814570, ECO:0000269|PubMed:29162697}. |
Q5VU92 | DCAF12L1 | S23 | ochoa | DDB1- and CUL4-associated factor 12-like protein 1 (WD repeat-containing protein 40B) | None |
Q5VUA4 | ZNF318 | S173 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S237 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S464 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S1043 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S1856 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S1896 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S1907 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2035 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2050 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2091 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2189 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2243 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VV42 | CDKAL1 | S53 | ochoa | Threonylcarbamoyladenosine tRNA methylthiotransferase (EC 2.8.4.5) (CDK5 regulatory subunit-associated protein 1-like 1) (tRNA-t(6)A37 methylthiotransferase) | Catalyzes the methylthiolation of N6-threonylcarbamoyladenosine (t(6)A), leading to the formation of 2-methylthio-N6-threonylcarbamoyladenosine (ms(2)t(6)A) at position 37 in tRNAs that read codons beginning with adenine. {ECO:0000250|UniProtKB:Q91WE6}. |
Q5VV67 | PPRC1 | S548 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VV67 | PPRC1 | S1076 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VVJ2 | MYSM1 | S110 | ochoa | Deubiquitinase MYSM1 (2A-DUB) (EC 3.4.19.-) (Myb-like, SWIRM and MPN domain-containing protein 1) | Metalloprotease with deubiquitinase activity that plays important regulator roles in hematopoietic stem cell function, blood cell production and immune response (PubMed:24062447, PubMed:26220525, PubMed:28115216). Participates in the normal programming of B-cell responses to antigen after the maturation process (By similarity). Within the cytoplasm, plays critical roles in the repression of innate immunity and autoimmunity (PubMed:33086059). Removes 'Lys-63'-linked polyubiquitins from TRAF3 and TRAF6 complexes (By similarity). Attenuates NOD2-mediated inflammation and tissue injury by promoting 'Lys-63'-linked deubiquitination of RIPK2 component (By similarity). Suppresses the CGAS-STING1 signaling pathway by cleaving STING1 'Lys-63'-linked ubiquitin chains (PubMed:33086059). In the nucleus, acts as a hematopoietic transcription regulator derepressing a range of genes essential for normal stem cell differentiation including EBF1 and PAX5 in B-cells, ID2 in NK-cell progenitor or FLT3 in dendritic cell precursors (PubMed:24062447). Deubiquitinates monoubiquitinated histone H2A, a specific tag for epigenetic transcriptional repression, leading to dissociation of histone H1 from the nucleosome (PubMed:17707232). {ECO:0000250|UniProtKB:Q69Z66, ECO:0000269|PubMed:17707232, ECO:0000269|PubMed:22169041, ECO:0000269|PubMed:24062447, ECO:0000269|PubMed:26220525, ECO:0000269|PubMed:28115216, ECO:0000269|PubMed:33086059}. |
Q5VVQ6 | YOD1 | S130 | ochoa | Ubiquitin thioesterase OTU1 (EC 3.4.19.12) (DUBA-8) (HIV-1-induced protease 7) (HIN-7) (HsHIN7) (OTU domain-containing protein 2) | Hydrolase that can remove conjugated ubiquitin from proteins and participates in endoplasmic reticulum-associated degradation (ERAD) for misfolded lumenal proteins. May act by triming the ubiquitin chain on the associated substrate to facilitate their threading through the VCP/p97 pore. Ubiquitin moieties on substrates may present a steric impediment to the threading process when the substrate is transferred to the VCP pore and threaded through VCP's axial channel. Mediates deubiquitination of 'Lys-27'-, 'Lys-29'- and 'Lys-33'-linked polyubiquitin chains. Also able to hydrolyze 'Lys-11'-linked ubiquitin chains. Cleaves both polyubiquitin and di-ubiquitin. May play a role in macroautophagy, regulating for instance the clearance of damaged lysosomes. May recruit PLAA, UBXN6 and VCP to damaged lysosome membranes decorated with K48-linked ubiquitin chains and remove these chains allowing autophagosome formation (PubMed:27753622). {ECO:0000269|PubMed:19818707, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:27753622}. |
Q5VWN6 | TASOR2 | S19 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S219 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S675 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S1025 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S1087 | ochoa | Protein TASOR 2 | None |
Q5VWN6 | TASOR2 | S1172 | ochoa | Protein TASOR 2 | None |
Q5VWQ8 | DAB2IP | S702 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VWQ8 | DAB2IP | S957 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VWQ8 | DAB2IP | S1168 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VYS4 | MEDAG | S274 | ochoa | Mesenteric estrogen-dependent adipogenesis protein (Activated in W/Wv mouse stomach 3 homolog) (hAWMS3) (Mesenteric estrogen-dependent adipose 4) (MEDA-4) | Involved in processes that promote adipocyte differentiation, lipid accumulation, and glucose uptake in mature adipocytes. {ECO:0000250}. |
Q5VYS8 | TUT7 | S939 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5VYS8 | TUT7 | S960 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5VZ89 | DENND4C | S703 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZ89 | DENND4C | S741 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZ89 | DENND4C | S1225 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S122 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q5VZK9 | CARMIL1 | S1151 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q5W0B1 | OBI1 | S210 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q5W0B1 | OBI1 | S616 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q5W0Q7 | USPL1 | S200 | ochoa | SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) | SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}. |
Q5W0Q7 | USPL1 | S1055 | ochoa | SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) | SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}. |
Q5XKK7 | FAM219B | S91 | ochoa | Protein FAM219B | None |
Q63HK3 | ZKSCAN2 | S136 | ochoa | Zinc finger protein with KRAB and SCAN domains 2 (Zinc finger protein 694) | May be involved in transcriptional regulation. |
Q63HK3 | ZKSCAN2 | S144 | ochoa | Zinc finger protein with KRAB and SCAN domains 2 (Zinc finger protein 694) | May be involved in transcriptional regulation. |
Q63HK5 | TSHZ3 | S463 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HK5 | TSHZ3 | S515 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HK5 | TSHZ3 | S600 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HN8 | RNF213 | S2273 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q63HN8 | RNF213 | S4118 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q658Y4 | FAM91A1 | S340 | ochoa | Protein FAM91A1 | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1. {ECO:0000269|PubMed:29426865}. |
Q659A1 | ICE2 | S17 | ochoa | Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}. |
Q659A1 | ICE2 | S326 | ochoa | Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}. |
Q659C4 | LARP1B | S633 | ochoa | La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) | None |
Q66GS9 | CEP135 | S439 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q66K14 | TBC1D9B | S363 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q66K14 | TBC1D9B | S741 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q66K64 | DCAF15 | S50 | ochoa | DDB1- and CUL4-associated factor 15 | Substrate-recognition component of the DCX(DCAF15) complex, a cullin-4-RING E3 ubiquitin-protein ligase complex that mediates ubiquitination and degradation of target proteins (PubMed:16949367, PubMed:31452512). The DCX(DCAF15) complex acts as a regulator of the natural killer (NK) cells effector functions, possibly by mediating ubiquitination and degradation of cohesin subunits SMC1A and SMC3 (PubMed:31452512). May play a role in the activation of antigen-presenting cells (APC) and their interaction with NK cells (PubMed:31452512). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:31452512}.; FUNCTION: Binding of aryl sulfonamide anticancer drugs, such as indisulam (E7070) or E7820, change the substrate specificity of the DCX(DCAF15) complex, leading to promote ubiquitination and degradation of splicing factor RBM39 (PubMed:28302793, PubMed:28437394, PubMed:31452512, PubMed:31693891). RBM39 degradation results in splicing defects and death in cancer cell lines (PubMed:28302793, PubMed:28437394, PubMed:31693891). Aryl sulfonamide anticancer drugs change the substrate specificity of DCAF15 by acting as a molecular glue that promotes binding between DCAF15 and weak affinity interactor RBM39 (PubMed:31686031, PubMed:31819272). Aryl sulfonamide anticancer drugs also promote ubiquitination and degradation of RBM23 and PRPF39 (PubMed:31626998, PubMed:31686031, PubMed:31693891). {ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31452512, ECO:0000269|PubMed:31626998, ECO:0000269|PubMed:31686031, ECO:0000269|PubMed:31693891, ECO:0000269|PubMed:31819272}. |
Q66K89 | E4F1 | S318 | ochoa | Transcription factor E4F1 (EC 2.3.2.27) (E4F transcription factor 1) (Putative E3 ubiquitin-protein ligase E4F1) (RING-type E3 ubiquitin transferase E4F1) (Transcription factor E4F) (p120E4F) (p50E4F) | May function as a transcriptional repressor. May also function as a ubiquitin ligase mediating ubiquitination of chromatin-associated TP53. Functions in cell survival and proliferation through control of the cell cycle. Functions in the p53 and pRB tumor suppressor pathways and regulates the cyclin CCNA2 transcription.; FUNCTION: Identified as a cellular target of the adenoviral oncoprotein E1A, it is required for both transcriptional activation and repression of viral genes. |
Q674X7 | KAZN | S339 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q676U5 | ATG16L1 | S70 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q676U5 | ATG16L1 | S255 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q676U5 | ATG16L1 | S331 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q68CP4 | HGSNAT | S243 | ochoa | Heparan-alpha-glucosaminide N-acetyltransferase (EC 2.3.1.78) (Transmembrane protein 76) | Lysosomal acetyltransferase that acetylates the non-reducing terminal alpha-glucosamine residue of intralysosomal heparin or heparan sulfate, converting it into a substrate for luminal alpha-N-acetyl glucosaminidase. {ECO:0000269|PubMed:16960811, ECO:0000269|PubMed:17033958, ECO:0000269|PubMed:19823584, ECO:0000269|PubMed:20650889}. |
Q68CP9 | ARID2 | S689 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q68CP9 | ARID2 | S1391 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q68CP9 | ARID2 | S1496 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q68D06 | SLFN13 | S170 | ochoa | Schlafen family member 13 (EC 3.1.-.-) (Schlafen-13) (hSLFN13) | Endoribonuclease that cleaves tRNAs and rRNAs (PubMed:29563550). Cleaves tRNAs 11 nucleotides from the 3'-terminus at the acceptor stem (PubMed:29563550). Does not act on tRNA(Sec) (PubMed:29563550). Able to restrict HIV-1 virus replication; ability to inhibit HIV-1 replication is dependent on endoribonuclease activity (PubMed:29563550). {ECO:0000269|PubMed:29563550}. |
Q68DA7 | FMN1 | S620 | ochoa | Formin-1 (Limb deformity protein homolog) | Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}. |
Q68DA7 | FMN1 | S842 | ochoa | Formin-1 (Limb deformity protein homolog) | Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}. |
Q68DI1 | ZNF776 | S75 | ochoa | Zinc finger protein 776 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q68DK2 | ZFYVE26 | S703 | ochoa | Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) | Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}. |
Q68DQ2 | CRYBG3 | S457 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S636 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S655 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S679 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S912 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S931 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S994 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S1280 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S1934 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S2277 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q69YH5 | CDCA2 | S53 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S120 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S131 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S291 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S437 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S726 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YH5 | CDCA2 | S756 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6AI08 | HEATR6 | S643 | ochoa | HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) | Amplification-dependent oncogene. |
Q6AI39 | BICRAL | S623 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6AI39 | BICRAL | S675 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6AI39 | BICRAL | S980 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6AWC2 | WWC2 | S269 | ochoa | Protein WWC2 (BH-3-only member B) (WW domain-containing protein 2) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway. Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway. {ECO:0000269|PubMed:24682284}. |
Q6AWC2 | WWC2 | S513 | ochoa | Protein WWC2 (BH-3-only member B) (WW domain-containing protein 2) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway. Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway. {ECO:0000269|PubMed:24682284}. |
Q6BDS2 | BLTP3A | S988 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DN90 | IQSEC1 | S515 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6EKJ0 | GTF2IRD2B | S205 | ochoa | General transcription factor II-I repeat domain-containing protein 2B (GTF2I repeat domain-containing protein 2B) (Transcription factor GTF2IRD2-beta) | None |
Q6EKJ0 | GTF2IRD2B | S516 | ochoa | General transcription factor II-I repeat domain-containing protein 2B (GTF2I repeat domain-containing protein 2B) (Transcription factor GTF2IRD2-beta) | None |
Q6GTX8 | LAIR1 | S268 | ochoa | Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) (hLAIR1) (CD antigen CD305) | Functions as an inhibitory receptor that plays a constitutive negative regulatory role on cytolytic function of natural killer (NK) cells, B-cells and T-cells. Activation by Tyr phosphorylation results in recruitment and activation of the phosphatases PTPN6 and PTPN11. It also reduces the increase of intracellular calcium evoked by B-cell receptor ligation. May also play its inhibitory role independently of SH2-containing phosphatases. Modulates cytokine production in CD4+ T-cells, down-regulating IL2 and IFNG production while inducing secretion of transforming growth factor beta. Also down-regulates IgG and IgE production in B-cells as well as IL8, IL10 and TNF secretion. Inhibits proliferation and induces apoptosis in myeloid leukemia cell lines as well as prevents nuclear translocation of NF-kappa-B p65 subunit/RELA and phosphorylation of I-kappa-B alpha/CHUK in these cells. Inhibits the differentiation of peripheral blood precursors towards dendritic cells. {ECO:0000269|PubMed:10229813, ECO:0000269|PubMed:10764762, ECO:0000269|PubMed:11069054, ECO:0000269|PubMed:11160222, ECO:0000269|PubMed:12072189, ECO:0000269|PubMed:15939744, ECO:0000269|PubMed:15950745, ECO:0000269|PubMed:16380958, ECO:0000269|PubMed:9285412, ECO:0000269|PubMed:9692876}. |
Q6GYQ0 | RALGAPA1 | S740 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6GYQ0 | RALGAPA1 | S1478 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6H8Q1 | ABLIM2 | S17 | ochoa | Actin-binding LIM protein 2 (abLIM-2) (Actin-binding LIM protein family member 2) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
Q6H8Q1 | ABLIM2 | S476 | ochoa | Actin-binding LIM protein 2 (abLIM-2) (Actin-binding LIM protein family member 2) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
Q6IC98 | GRAMD4 | S24 | ochoa | GRAM domain-containing protein 4 (Death-inducing protein) | Plays a role as a mediator of E2F1-induced apoptosis in the absence of p53/TP53 (PubMed:15565177). Plays a role as a mediator of E2F1-induced apoptosis in the absence of p53/TP53. Inhibits TLR9 response to nucelic acids and regulates TLR9-mediated innate immune response (By similarity). {ECO:0000250|UniProtKB:Q8CB44, ECO:0000269|PubMed:15565177}. |
Q6ICB4 | PHETA2 | S180 | ochoa | Sesquipedalian-2 (Ses2) (27 kDa inositol polyphosphate phosphatase interacting protein B) (IPIP27B) (PH domain-containing endocytic trafficking adaptor 2) | Plays a role in endocytic trafficking. Required for receptor recycling from endosomes, both to the trans-Golgi network and the plasma membrane. {ECO:0000269|PubMed:21233288}. |
Q6IN85 | PPP4R3A | S741 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6IPM2 | IQCE | S322 | ochoa | IQ domain-containing protein E | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling (By similarity). Required for proper limb morphogenesis (PubMed:28488682). {ECO:0000250|UniProtKB:Q6PCQ0, ECO:0000269|PubMed:28488682}. |
Q6IPX3 | TCEAL6 | S121 | ochoa | Transcription elongation factor A protein-like 6 (TCEA-like protein 6) (Transcription elongation factor S-II protein-like 6) | May be involved in transcriptional regulation. |
Q6IQ19 | CCSAP | S145 | ochoa | Centriole, cilia and spindle-associated protein | Plays a role in microtubule (MT) stabilization and this stabilization involves the maintenance of NUMA1 at the spindle poles. Colocalizes with polyglutamylated MTs to promote MT stabilization and regulate bipolar spindle formation in mitosis. Binding of CCSAP to centrosomes and the spindle around centrosomes during mitosis inhibits MT depolymerization, thereby stabilizing the mitotic spindle (PubMed:26562023). May play a role in embryonic development. May be required for proper cilia beating (By similarity). {ECO:0000250|UniProtKB:Q6P3G4, ECO:0000269|PubMed:26562023}. |
Q6IQ26 | DENND5A | S52 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6IQ26 | DENND5A | S455 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6IQ26 | DENND5A | S739 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6IQ26 | DENND5A | S1085 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6IQ26 | DENND5A | S1096 | ochoa | DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) | Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}. |
Q6IQ55 | TTBK2 | S422 | ochoa | Tau-tubulin kinase 2 (EC 2.7.11.1) | Serine/threonine kinase that acts as a key regulator of ciliogenesis: controls the initiation of ciliogenesis by binding to the distal end of the basal body and promoting the removal of CCP110, which caps the mother centriole, leading to the recruitment of IFT proteins, which build the ciliary axoneme. Has some substrate preference for proteins that are already phosphorylated on a Tyr residue at the +2 position relative to the phosphorylation site. Able to phosphorylate tau on serines in vitro (PubMed:23141541). Phosphorylates MPHOSPH9 which promotes its ubiquitination and proteasomal degradation, loss of MPHOSPH9 facilitates the removal of the CP110-CEP97 complex (a negative regulator of ciliogenesis) from the mother centrioles, promoting the initiation of ciliogenesis (PubMed:30375385). Required for recruitment of CPLANE2 and INTU to the mother centriole (By similarity). {ECO:0000250|UniProtKB:Q3UVR3, ECO:0000269|PubMed:21548880, ECO:0000269|PubMed:23141541, ECO:0000269|PubMed:30375385}. |
Q6IQ55 | TTBK2 | S577 | ochoa | Tau-tubulin kinase 2 (EC 2.7.11.1) | Serine/threonine kinase that acts as a key regulator of ciliogenesis: controls the initiation of ciliogenesis by binding to the distal end of the basal body and promoting the removal of CCP110, which caps the mother centriole, leading to the recruitment of IFT proteins, which build the ciliary axoneme. Has some substrate preference for proteins that are already phosphorylated on a Tyr residue at the +2 position relative to the phosphorylation site. Able to phosphorylate tau on serines in vitro (PubMed:23141541). Phosphorylates MPHOSPH9 which promotes its ubiquitination and proteasomal degradation, loss of MPHOSPH9 facilitates the removal of the CP110-CEP97 complex (a negative regulator of ciliogenesis) from the mother centrioles, promoting the initiation of ciliogenesis (PubMed:30375385). Required for recruitment of CPLANE2 and INTU to the mother centriole (By similarity). {ECO:0000250|UniProtKB:Q3UVR3, ECO:0000269|PubMed:21548880, ECO:0000269|PubMed:23141541, ECO:0000269|PubMed:30375385}. |
Q6KC79 | NIPBL | S103 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S2568 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6MZP7 | LIN54 | S150 | ochoa | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6MZP7 | LIN54 | S264 | ochoa|psp | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6MZQ0 | PRR5L | S29 | ochoa | Proline-rich protein 5-like (Protein observed with Rictor-2) (Protor-2) | Associates with the mTORC2 complex that regulates cellular processes including survival and organization of the cytoskeleton (PubMed:17461779). Regulates the activity of the mTORC2 complex in a substrate-specific manner preventing for instance the specific phosphorylation of PKCs and thereby controlling cell migration (PubMed:22609986). Plays a role in the stimulation of ZFP36-mediated mRNA decay of several ZFP36-associated mRNAs, such as TNF-alpha and GM-CSF, in response to stress (PubMed:21964062). Required for ZFP36 localization to cytoplasmic stress granule (SG) and P-body (PB) in response to stress (PubMed:21964062). {ECO:0000269|PubMed:17461779, ECO:0000269|PubMed:21964062, ECO:0000269|PubMed:22609986}. |
Q6N021 | TET2 | S1107 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NT76 | HMBOX1 | S133 | ochoa | Homeobox-containing protein 1 (Homeobox telomere-binding protein 1) (Telomere-associated homeobox-containing protein 1) | Binds directly to 5'-TTAGGG-3' repeats in telomeric DNA (PubMed:23685356, PubMed:23813958). Associates with the telomerase complex at sites of active telomere processing and positively regulates telomere elongation (PubMed:23685356). Important for TERT binding to chromatin, indicating a role in recruitment of the telomerase complex to telomeres (By similarity). Also plays a role in the alternative lengthening of telomeres (ALT) pathway in telomerase-negative cells where it promotes formation and/or maintenance of ALT-associated promyelocytic leukemia bodies (APBs) (PubMed:23813958). Enhances formation of telomere C-circles in ALT cells, suggesting a possible role in telomere recombination (PubMed:23813958). Might also be involved in the DNA damage response at telomeres (PubMed:23813958). {ECO:0000250|UniProtKB:Q8BJA3, ECO:0000269|PubMed:23685356, ECO:0000269|PubMed:23813958}. |
Q6NTE8 | MRNIP | S193 | ochoa | MRN complex-interacting protein (MRN-interacting protein) | Plays a role in the cellular response to DNA damage and the maintenance of genome stability through its association with the MRN damage-sensing complex (PubMed:27568553). Promotes chromatin loading and activity of the MRN complex to facilitate subsequent ATM-mediated DNA damage response signaling and DNA repair (PubMed:27568553). |
Q6NTE8 | MRNIP | S217 | ochoa | MRN complex-interacting protein (MRN-interacting protein) | Plays a role in the cellular response to DNA damage and the maintenance of genome stability through its association with the MRN damage-sensing complex (PubMed:27568553). Promotes chromatin loading and activity of the MRN complex to facilitate subsequent ATM-mediated DNA damage response signaling and DNA repair (PubMed:27568553). |
Q6NUJ5 | PWWP2B | S60 | ochoa | PWWP domain-containing protein 2B | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260). Plays a role in facilitating transcriptional elongation through regulation of histone acetylation (By similarity). Negatively regulates brown adipocyte thermogenesis by interacting with and stabilizing HDAC1 at the UCP1 gene promoter, thereby promoting histone deacetylation at the promoter leading to the repression of UCP1 expression (By similarity). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:30228260}. |
Q6NUN9 | ZNF746 | S322 | psp | Zinc finger protein 746 (Parkin-interacting substrate) (PARIS) | Transcription repressor that specifically binds to the 5'-TATTTT[T/G]-3' consensus sequence on promoters and repress transcription of PGC-1-alpha (PPARGC1A), thereby playing a role in regulation of neuron death. {ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:31856708}. |
Q6NV74 | CRACDL | S185 | ochoa | CRACD-like protein | None |
Q6NVY1 | HIBCH | S234 | ochoa | 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial (EC 3.1.2.4) (3-hydroxyisobutyryl-coenzyme A hydrolase) (HIB-CoA hydrolase) (HIBYL-CoA-H) | Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Also hydrolyzes 3-hydroxypropanoyl-CoA. {ECO:0000269|PubMed:8824301}. |
Q6NW29 | RWDD4 | S28 | ochoa | RWD domain-containing protein 4 (Protein FAM28A) | None |
Q6NW34 | NEPRO | S265 | ochoa | Nucleolus and neural progenitor protein | May play a role in cortex development as part of the Notch signaling pathway. Downstream of Notch may repress the expression of proneural genes and inhibit neuronal differentiation thereby maintaining neural progenitors. May also play a role in preimplentation embryo development. {ECO:0000250|UniProtKB:Q8R2U2}. |
Q6NXN4 | DPY19L2P1 | S17 | ochoa | Putative C-mannosyltransferase DPY19L2P1 (EC 2.4.1.-) (Dpy-19-like protein 2 pseudogene 1) (Protein dpy-19 homolog 2-like 1) | Probable C-mannosyltransferase that mediates C-mannosylation of tryptophan residues on target proteins. {ECO:0000250}. |
Q6NYC1 | JMJD6 | S38 | ochoa | Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 (EC 1.14.11.-) (Histone arginine demethylase JMJD6) (JmjC domain-containing protein 6) (Jumonji domain-containing protein 6) (Lysyl-hydroxylase JMJD6) (Peptide-lysine 5-dioxygenase JMJD6) (Phosphatidylserine receptor) (Protein PTDSR) | Dioxygenase that can both act as a arginine demethylase and a lysyl-hydroxylase (PubMed:17947579, PubMed:20684070, PubMed:21060799, PubMed:22189873, PubMed:24498420). Acts as a lysyl-hydroxylase that catalyzes 5-hydroxylation on specific lysine residues of target proteins such as U2AF2/U2AF65 and LUC7L2. Regulates RNA splicing by mediating 5-hydroxylation of U2AF2/U2AF65, affecting the pre-mRNA splicing activity of U2AF2/U2AF65 (PubMed:19574390). Hydroxylates its own N-terminus, which is required for homooligomerization (PubMed:22189873). Plays a role in the regulation of nucleolar liquid-liquid phase separation (LLPS) by post-translationally modifying LIAT1 at its lysine-rich domain which inhibits LIAT1 nucleolar targeting (By similarity). In addition to peptidyl-lysine 5-dioxygenase activity, may act as an RNA hydroxylase, as suggested by its ability to bind single strand RNA (PubMed:20679243, PubMed:29176719). Also acts as an arginine demethylase which preferentially demethylates asymmetric dimethylation (PubMed:17947579, PubMed:24360279, PubMed:24498420). Demethylates histone H3 at 'Arg-2' (H3R2me) and histone H4 at 'Arg-3' (H4R3me), including mono-, symmetric di- and asymmetric dimethylated forms, thereby playing a role in histone code (PubMed:17947579, PubMed:24360279). However, histone arginine demethylation may not constitute the primary activity in vivo (PubMed:17947579, PubMed:21060799, PubMed:22189873). In collaboration with BRD4, interacts with the positive transcription elongation factor b (P-TEFb) complex in its active form to regulate polymerase II promoter-proximal pause release for transcriptional activation of a large cohort of genes. On distal enhancers, so called anti-pause enhancers, demethylates both histone H4R3me2 and the methyl cap of 7SKsnRNA leading to the dismissal of the 7SKsnRNA:HEXIM1 inhibitor complex. After removal of repressive marks, the complex BRD4:JMJD6 attract and retain the P-TEFb complex on chromatin, leading to its activation, promoter-proximal polymerase II pause release, and transcriptional activation (PubMed:24360279). Demethylates other arginine methylated-proteins such as ESR1 (PubMed:24498420). Has no histone lysine demethylase activity (PubMed:21060799). Required for differentiation of multiple organs during embryogenesis. Acts as a key regulator of hematopoietic differentiation: required for angiogenic sprouting by regulating the pre-mRNA splicing activity of U2AF2/U2AF65 (By similarity). Seems to be necessary for the regulation of macrophage cytokine responses (PubMed:15622002). {ECO:0000250|UniProtKB:Q9ERI5, ECO:0000269|PubMed:15622002, ECO:0000269|PubMed:17947579, ECO:0000269|PubMed:19574390, ECO:0000269|PubMed:20679243, ECO:0000269|PubMed:20684070, ECO:0000269|PubMed:21060799, ECO:0000269|PubMed:22189873, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:24498420, ECO:0000269|PubMed:29176719}. |
Q6NYC8 | PPP1R18 | S175 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6P0N0 | MIS18BP1 | S365 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0N0 | MIS18BP1 | S690 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0N0 | MIS18BP1 | S1042 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0Q8 | MAST2 | S66 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P0Q8 | MAST2 | S290 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P1J9 | CDC73 | S465 | psp | Parafibromin (Cell division cycle protein 73 homolog) (Hyperparathyroidism 2 protein) | Tumor suppressor probably involved in transcriptional and post-transcriptional control pathways. May be involved in cell cycle progression through the regulation of cyclin D1/PRAD1 expression. Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the cleavage and polyadenylation specificity factor (CPSF) complex and the cleavage stimulation factor (CSTF) complex, and with Wnt signaling. Involved in polyadenylation of mRNA precursors. {ECO:0000269|PubMed:15580289, ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15923622, ECO:0000269|PubMed:16630820, ECO:0000269|PubMed:16989776, ECO:0000269|PubMed:19136632, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6P1K8 | GTF2H2C; | S237 | ochoa | General transcription factor IIH subunit 2-like protein (General transcription factor IIH polypeptide 2-like protein) | Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. {ECO:0000250}. |
Q6P1L5 | FAM117B | S449 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6P1L8 | MRPL14 | S49 | ochoa | Large ribosomal subunit protein uL14m (39S ribosomal protein L14, mitochondrial) (L14mt) (MRP-L14) (39S ribosomal protein L32, mitochondrial) (L32mt) (MRP-L32) | Forms part of 2 intersubunit bridges in the assembled ribosome. Upon binding to MALSU1 intersubunit bridge formation is blocked, preventing ribosome formation and repressing translation (Probable). {ECO:0000305|PubMed:22829778}. |
Q6P1M3 | LLGL2 | S802 | ochoa | LLGL scribble cell polarity complex component 2 (HGL) (Lethal(2) giant larvae protein homolog 2) | Part of a complex with GPSM2/LGN, PRKCI/aPKC and PARD6B/Par-6, which may ensure the correct organization and orientation of bipolar spindles for normal cell division. This complex plays roles in the initial phase of the establishment of epithelial cell polarity. {ECO:0000269|PubMed:15632202}. |
Q6P2H3 | CEP85 | S141 | ochoa | Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) | Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}. |
Q6P2H3 | CEP85 | S270 | ochoa | Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) | Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}. |
Q6P4E1 | GOLM2 | S366 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6P4F7 | ARHGAP11A | S318 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4F7 | ARHGAP11A | S422 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4F7 | ARHGAP11A | S484 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4F7 | ARHGAP11A | S559 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4F7 | ARHGAP11A | S675 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4I2 | WDR73 | S216 | ochoa | Integrator complex assembly factor WDR73 (WD repeat-containing protein 73) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489). Associates with INTS9 and INTS11 in the cytoplasm, stabilizing the INTS9-INTS11 heterodimer and blocking the active site of INTS11 (PubMed:39032489). BRAT1 then joins the complex and plugs the active site of INTS11, leading to WDR73 release and nuclear import of INTS9 and INTS11 (PubMed:39032489). {ECO:0000269|PubMed:39032489}. |
Q6P4Q7 | CNNM4 | S728 | ochoa | Metal transporter CNNM4 (Ancient conserved domain-containing protein 4) (Cyclin-M4) | Probable metal transporter. The interaction with the metal ion chaperone COX11 suggests that it may play a role in sensory neuron functions (By similarity). May play a role in biomineralization and retinal function. {ECO:0000250, ECO:0000269|PubMed:19200525, ECO:0000269|PubMed:19200527}. |
Q6P597 | KLC3 | S167 | ochoa | Kinesin light chain 3 (KLC2-like) (kinesin light chain 2) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. Plays a role during spermiogenesis in the development of the sperm tail midpiece and in the normal function of spermatozoa (By similarity). May play a role in the formation of the mitochondrial sheath formation in the developing spermatid midpiece (By similarity). {ECO:0000250|UniProtKB:Q91W40}. |
Q6P5Q4 | LMOD2 | S186 | ochoa | Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) | Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}. |
Q6P995 | FAM171B | S779 | ochoa | Protein FAM171B | None |
Q6P995 | FAM171B | S794 | ochoa | Protein FAM171B | None |
Q6P996 | PDXDC1 | S652 | ochoa | Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) | None |
Q6P9H4 | CNKSR3 | S244 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6P9H4 | CNKSR3 | S383 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6PCD5 | RFWD3 | S425 | ochoa | E3 ubiquitin-protein ligase RFWD3 (EC 2.3.2.27) (RING finger and WD repeat domain-containing protein 3) (RING finger protein 201) | E3 ubiquitin-protein ligase required for the repair of DNA interstrand cross-links (ICL) in response to DNA damage (PubMed:21504906, PubMed:21558276, PubMed:26474068, PubMed:28575657, PubMed:28575658, PubMed:33321094). Plays a key role in RPA-mediated DNA damage signaling and repair (PubMed:21504906, PubMed:21558276, PubMed:26474068, PubMed:28575657, PubMed:28575658, PubMed:28691929). Acts by mediating ubiquitination of the RPA complex (RPA1, RPA2 and RPA3 subunits) and RAD51 at stalled replication forks, leading to remove them from DNA damage sites and promote homologous recombination (PubMed:26474068, PubMed:28575657, PubMed:28575658). Also mediates the ubiquitination of p53/TP53 in the late response to DNA damage, and acts as a positive regulator of p53/TP53 stability, thereby regulating the G1/S DNA damage checkpoint (PubMed:20173098). May act by catalyzing the formation of short polyubiquitin chains on p53/TP53 that are not targeted to the proteasome (PubMed:20173098). In response to ionizing radiation, interacts with MDM2 and enhances p53/TP53 ubiquitination, possibly by restricting MDM2 from extending polyubiquitin chains on ubiquitinated p53/TP53 (PubMed:20173098). Required to translesion DNA synthesis across DNA-protein cross-link adducts by catalyzing ubiquitination of proteins on single-stranded DNA (ssDNA) (PubMed:33321094). {ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:21504906, ECO:0000269|PubMed:21558276, ECO:0000269|PubMed:26474068, ECO:0000269|PubMed:28575657, ECO:0000269|PubMed:28575658, ECO:0000269|PubMed:28691929, ECO:0000269|PubMed:33321094}. |
Q6PD62 | CTR9 | S159 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6PGN9 | PSRC1 | S140 | ochoa | Proline/serine-rich coiled-coil protein 1 | Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate, and for normal rate of chromosomal segregation during anaphase. Plays a role in the regulation of mitotic spindle dynamics. Increases the rate of turnover of microtubules on metaphase spindles, and contributes to the generation of normal tension across sister kinetochores. Recruits KIF2A and ANKRD53 to the mitotic spindle and spindle poles. May participate in p53/TP53-regulated growth suppression. {ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:19738423, ECO:0000269|PubMed:26820536}. |
Q6PGQ7 | BORA | S183 | ochoa | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PGQ7 | BORA | S325 | ochoa|psp | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PID6 | TTC33 | S197 | ochoa | Tetratricopeptide repeat protein 33 (TPR repeat protein 33) (Osmosis-responsive factor) | None |
Q6PIF6 | MYO7B | S934 | ochoa | Unconventional myosin-VIIb | Myosins are actin-based motor molecules with ATPase activity. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length (PubMed:24725409, PubMed:26812018, PubMed:32209652). May link the complex to the actin core bundle of microvilli. {ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018, ECO:0000269|PubMed:32209652, ECO:0000305|PubMed:24725409, ECO:0000305|PubMed:26812018}. |
Q6PII3 | CCDC174 | S197 | ochoa | Coiled-coil domain-containing protein 174 | Probably involved in neuronal development. {ECO:0000269|PubMed:26358778}. |
Q6PIY7 | TENT2 | S62 | ochoa|psp | Poly(A) RNA polymerase GLD2 (hGLD-2) (EC 2.7.7.19) (PAP-associated domain-containing protein 4) (Terminal nucleotidyltransferase 2) (Terminal uridylyltransferase 2) (TUTase 2) | Cytoplasmic poly(A) RNA polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a poly(A) tail (PubMed:15070731, PubMed:31792053). In contrast to the canonical nuclear poly(A) RNA polymerase, it only adds poly(A) to selected cytoplasmic mRNAs (PubMed:15070731). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Adds a single nucleotide to the 3' end of specific miRNAs, monoadenylation stabilizes and prolongs the activity of some but not all miRNAs (PubMed:23200856, PubMed:31792053). {ECO:0000269|PubMed:15070731, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:23200856, ECO:0000269|PubMed:31792053}. |
Q6PIY7 | TENT2 | S69 | ochoa | Poly(A) RNA polymerase GLD2 (hGLD-2) (EC 2.7.7.19) (PAP-associated domain-containing protein 4) (Terminal nucleotidyltransferase 2) (Terminal uridylyltransferase 2) (TUTase 2) | Cytoplasmic poly(A) RNA polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a poly(A) tail (PubMed:15070731, PubMed:31792053). In contrast to the canonical nuclear poly(A) RNA polymerase, it only adds poly(A) to selected cytoplasmic mRNAs (PubMed:15070731). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Adds a single nucleotide to the 3' end of specific miRNAs, monoadenylation stabilizes and prolongs the activity of some but not all miRNAs (PubMed:23200856, PubMed:31792053). {ECO:0000269|PubMed:15070731, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:23200856, ECO:0000269|PubMed:31792053}. |
Q6PIY7 | TENT2 | S95 | ochoa | Poly(A) RNA polymerase GLD2 (hGLD-2) (EC 2.7.7.19) (PAP-associated domain-containing protein 4) (Terminal nucleotidyltransferase 2) (Terminal uridylyltransferase 2) (TUTase 2) | Cytoplasmic poly(A) RNA polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a poly(A) tail (PubMed:15070731, PubMed:31792053). In contrast to the canonical nuclear poly(A) RNA polymerase, it only adds poly(A) to selected cytoplasmic mRNAs (PubMed:15070731). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Adds a single nucleotide to the 3' end of specific miRNAs, monoadenylation stabilizes and prolongs the activity of some but not all miRNAs (PubMed:23200856, PubMed:31792053). {ECO:0000269|PubMed:15070731, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:23200856, ECO:0000269|PubMed:31792053}. |
Q6PJ61 | FBXO46 | S313 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PJG6 | BRAT1 | S742 | ochoa | Integrator complex assembly factor BRAT1 (BRCA1-associated ATM activator 1) (BRCA1-associated protein required for ATM activation protein 1) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489, PubMed:39032490). Associates with INTS9 and INTS11 in the cytoplasm and blocks the active site of INTS11 to inhibit the endonuclease activity of INTS11 before formation of the full integrator complex (PubMed:39032489, PubMed:39032490). Following dissociation of WDR73 of the complex, BRAT1 facilitates the nuclear import of the INTS9-INTS11 heterodimer (PubMed:39032489). In the nucleus, INTS4 is integrated to the INTS9-INTS11 heterodimer and BRAT1 is released from the mature RNA endonuclease module by inositol hexakisphosphate (InsP6) (PubMed:39032489). BRAT1 is also involved in DNA damage response; activates kinases ATM, SMC1A and PRKDC by modulating their phosphorylation status following ionizing radiation (IR) stress (PubMed:16452482, PubMed:22977523). Plays a role in regulating mitochondrial function and cell proliferation (PubMed:25070371). Required for protein stability of MTOR and MTOR-related proteins, and cell cycle progress by growth factors (PubMed:25657994). {ECO:0000269|PubMed:16452482, ECO:0000269|PubMed:22977523, ECO:0000269|PubMed:25070371, ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:39032489, ECO:0000269|PubMed:39032490}. |
Q6PJG6 | BRAT1 | S798 | ochoa | Integrator complex assembly factor BRAT1 (BRCA1-associated ATM activator 1) (BRCA1-associated protein required for ATM activation protein 1) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489, PubMed:39032490). Associates with INTS9 and INTS11 in the cytoplasm and blocks the active site of INTS11 to inhibit the endonuclease activity of INTS11 before formation of the full integrator complex (PubMed:39032489, PubMed:39032490). Following dissociation of WDR73 of the complex, BRAT1 facilitates the nuclear import of the INTS9-INTS11 heterodimer (PubMed:39032489). In the nucleus, INTS4 is integrated to the INTS9-INTS11 heterodimer and BRAT1 is released from the mature RNA endonuclease module by inositol hexakisphosphate (InsP6) (PubMed:39032489). BRAT1 is also involved in DNA damage response; activates kinases ATM, SMC1A and PRKDC by modulating their phosphorylation status following ionizing radiation (IR) stress (PubMed:16452482, PubMed:22977523). Plays a role in regulating mitochondrial function and cell proliferation (PubMed:25070371). Required for protein stability of MTOR and MTOR-related proteins, and cell cycle progress by growth factors (PubMed:25657994). {ECO:0000269|PubMed:16452482, ECO:0000269|PubMed:22977523, ECO:0000269|PubMed:25070371, ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:39032489, ECO:0000269|PubMed:39032490}. |
Q6PJI9 | WDR59 | S603 | ochoa | GATOR2 complex protein WDR59 (WD repeat-containing protein 59) | As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027, PubMed:36577058). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:27487210). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027, ECO:0000269|PubMed:36577058}. |
Q6PJP8 | DCLRE1A | S238 | ochoa | DNA cross-link repair 1A protein (Beta-lactamase DCLRE1A) (EC 3.5.2.6) (SNM1 homolog A) (hSNM1) (hSNM1A) | May be required for DNA interstrand cross-link repair. Also required for checkpoint mediated cell cycle arrest in early prophase in response to mitotic spindle poisons. Possesses beta-lactamase activity, catalyzing the hydrolysis of penicillin G and nitrocefin (PubMed:31434986). Exhibits no activity towards other beta-lactam antibiotic classes including cephalosporins (cefotaxime) and carbapenems (imipenem) (PubMed:31434986). {ECO:0000269|PubMed:15542852}. |
Q6PJP8 | DCLRE1A | S590 | ochoa | DNA cross-link repair 1A protein (Beta-lactamase DCLRE1A) (EC 3.5.2.6) (SNM1 homolog A) (hSNM1) (hSNM1A) | May be required for DNA interstrand cross-link repair. Also required for checkpoint mediated cell cycle arrest in early prophase in response to mitotic spindle poisons. Possesses beta-lactamase activity, catalyzing the hydrolysis of penicillin G and nitrocefin (PubMed:31434986). Exhibits no activity towards other beta-lactam antibiotic classes including cephalosporins (cefotaxime) and carbapenems (imipenem) (PubMed:31434986). {ECO:0000269|PubMed:15542852}. |
Q6PJT7 | ZC3H14 | S274 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6PJT7 | ZC3H14 | S409 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6PJT7 | ZC3H14 | S527 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6PJW8 | CNST | S348 | ochoa | Consortin | Required for targeting of connexins to the plasma membrane. {ECO:0000269|PubMed:19864490}. |
Q6PK04 | CCDC137 | S233 | ochoa | Coiled-coil domain-containing protein 137 | None |
Q6PKG0 | LARP1 | S143 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6PKG0 | LARP1 | S220 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6PL18 | ATAD2 | S696 | ochoa | ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) | May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}. |
Q6PL24 | TMED8 | S63 | ochoa | Protein TMED8 | None |
Q6PL24 | TMED8 | S153 | ochoa | Protein TMED8 | None |
Q6R327 | RICTOR | S265 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6R327 | RICTOR | S1353 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6R327 | RICTOR | S1396 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6RI45 | BRWD3 | S693 | ochoa | Bromodomain and WD repeat-containing protein 3 | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}. |
Q6RI45 | BRWD3 | S1386 | ochoa | Bromodomain and WD repeat-containing protein 3 | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}. |
Q6SZW1 | SARM1 | S548 | ochoa|psp | NAD(+) hydrolase SARM1 (NADase SARM1) (hSARM1) (EC 3.2.2.6) (NADP(+) hydrolase SARM1) (EC 3.2.2.-) (Sterile alpha and Armadillo repeat protein) (Sterile alpha and TIR motif-containing protein 1) (Sterile alpha motif domain-containing protein 2) (MyD88-5) (SAM domain-containing protein 2) (Tir-1 homolog) (HsTIR) | NAD(+) hydrolase, which plays a key role in axonal degeneration following injury by regulating NAD(+) metabolism (PubMed:25908823, PubMed:27671644, PubMed:28334607). Acts as a negative regulator of MYD88- and TRIF-dependent toll-like receptor signaling pathway by promoting Wallerian degeneration, an injury-induced form of programmed subcellular death which involves degeneration of an axon distal to the injury site (PubMed:15123841, PubMed:16964262, PubMed:20306472, PubMed:25908823). Wallerian degeneration is triggered by NAD(+) depletion: in response to injury, SARM1 is activated and catalyzes cleavage of NAD(+) into ADP-D-ribose (ADPR), cyclic ADPR (cADPR) and nicotinamide; NAD(+) cleavage promoting cytoskeletal degradation and axon destruction (PubMed:25908823, PubMed:28334607, PubMed:30333228, PubMed:31128467, PubMed:31439792, PubMed:31439793, PubMed:32049506, PubMed:32828421, PubMed:33053563). Also able to hydrolyze NADP(+), but not other NAD(+)-related molecules (PubMed:29395922). Can activate neuronal cell death in response to stress (PubMed:20306472). Regulates dendritic arborization through the MAPK4-JNK pathway (By similarity). Involved in innate immune response: inhibits both TICAM1/TRIF- and MYD88-dependent activation of JUN/AP-1, TRIF-dependent activation of NF-kappa-B and IRF3, and the phosphorylation of MAPK14/p38 (PubMed:16964262). {ECO:0000250|UniProtKB:Q6PDS3, ECO:0000269|PubMed:15123841, ECO:0000269|PubMed:16964262, ECO:0000269|PubMed:20306472, ECO:0000269|PubMed:25908823, ECO:0000269|PubMed:27671644, ECO:0000269|PubMed:28334607, ECO:0000269|PubMed:29395922, ECO:0000269|PubMed:30333228, ECO:0000269|PubMed:31128467, ECO:0000269|PubMed:31439792, ECO:0000269|PubMed:31439793, ECO:0000269|PubMed:32049506, ECO:0000269|PubMed:32828421, ECO:0000269|PubMed:33053563}. |
Q6T4R5 | NHS | S292 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | S418 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | S571 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | S1329 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6TFL4 | KLHL24 | S19 | ochoa | Kelch-like protein 24 (Kainate receptor-interacting protein for GluR6) (KRIP6) (Protein DRE1) | Necessary to maintain the balance between intermediate filament stability and degradation, a process that is essential for skin integrity (PubMed:27889062). As part of the BCR(KLHL24) E3 ubiquitin ligase complex, mediates ubiquitination of KRT14 and controls its levels during keratinocytes differentiation (PubMed:27798626). Specifically reduces kainate receptor-mediated currents in hippocampal neurons, most probably by modulating channel properties (By similarity). Has a crucial role in cardiac development and function (PubMed:30715372). {ECO:0000250|UniProtKB:Q56A24, ECO:0000269|PubMed:27798626, ECO:0000269|PubMed:27889062, ECO:0000269|PubMed:30715372}. |
Q6U841 | SLC4A10 | S89 | ochoa | Sodium-driven chloride bicarbonate exchanger (Solute carrier family 4 member 10) | Sodium/bicarbonate cotransporter which plays an important role in regulating intracellular pH (PubMed:18319254). Has been shown to act as a sodium/bicarbonate cotransporter in exchange for intracellular chloride (By similarity). Has also been shown to act as a sodium/biocarbonate cotransporter which does not couple net influx of bicarbonate to net efflux of chloride, with the observed chloride efflux being due to chloride self-exchange (PubMed:18319254). Controls neuronal pH and may contribute to the secretion of cerebrospinal fluid (By similarity). Acting on presynaptic intracellular pH, it promotes GABA release, reduces the excitability of CA1 pyramidal neurons, and modulates short-term synaptic plasticity (By similarity). Required in retinal cells to maintain normal pH which is necessary for normal vision (By similarity). In the kidney, likely to mediate bicarbonate reclamation in the apical membrane of the proximal tubules (By similarity). {ECO:0000250|UniProtKB:Q5DTL9, ECO:0000250|UniProtKB:Q80ZA5, ECO:0000269|PubMed:18319254}. |
Q6UB35 | MTHFD1L | S62 | ochoa | Monofunctional C1-tetrahydrofolate synthase, mitochondrial (EC 6.3.4.3) (Formyltetrahydrofolate synthetase) | May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism complementing thus the enzymatic activities of MTHFD2. {ECO:0000250, ECO:0000269|PubMed:16171773}. |
Q6UB98 | ANKRD12 | S149 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S526 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S543 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S568 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S1401 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S1573 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB98 | ANKRD12 | S1799 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB99 | ANKRD11 | S276 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UB99 | ANKRD11 | S556 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UB99 | ANKRD11 | S609 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UB99 | ANKRD11 | S1509 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UN15 | FIP1L1 | S304 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6UUV7 | CRTC3 | S536 | ochoa | CREB-regulated transcription coactivator 3 (Transducer of regulated cAMP response element-binding protein 3) (TORC-3) (Transducer of CREB protein 3) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:15466468, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223, ECO:0000269|PubMed:17644518}. |
Q6UUV9 | CRTC1 | S139 | ochoa | CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}. |
Q6UWE0 | LRSAM1 | S604 | ochoa | E3 ubiquitin-protein ligase LRSAM1 (EC 2.3.2.27) (Leucine-rich repeat and sterile alpha motif-containing protein 1) (RING-type E3 ubiquitin transferase LRSAM1) (Tsg101-associated ligase) (hTAL) | E3 ubiquitin-protein ligase that mediates monoubiquitination of TSG101 at multiple sites, leading to inactivate the ability of TSG101 to sort endocytic (EGF receptors) and exocytic (HIV-1 viral proteins) cargos (PubMed:15256501). Bacterial recognition protein that defends the cytoplasm from invasive pathogens (PubMed:23245322). Localizes to several intracellular bacterial pathogens and generates the bacteria-associated ubiquitin signal leading to autophagy-mediated intracellular bacteria degradation (xenophagy) (PubMed:23245322, PubMed:25484098). {ECO:0000269|PubMed:15256501, ECO:0000269|PubMed:23245322, ECO:0000269|PubMed:25484098}. |
Q6UWZ7 | ABRAXAS1 | S336 | ochoa | BRCA1-A complex subunit Abraxas 1 (Coiled-coil domain-containing protein 98) (Protein FAM175A) | Involved in DNA damage response and double-strand break (DSB) repair. Component of the BRCA1-A complex, acting as a central scaffold protein that assembles the various components of the complex and mediates the recruitment of BRCA1. The BRCA1-A complex specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesion sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at DSBs. This complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. {ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:17643122, ECO:0000269|PubMed:18077395, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:22357538, ECO:0000269|PubMed:26778126}. |
Q6UXM1 | LRIG3 | S949 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 3 (LIG-3) | May play a role in craniofacial and inner ear morphogenesis during embryonic development. May act within the otic vesicle epithelium to control formation of the lateral semicircular canal in the inner ear, possibly by restricting the expression of NTN1 (By similarity). {ECO:0000250}. |
Q6VAB6 | KSR2 | S357 | ochoa | Kinase suppressor of Ras 2 (hKSR2) (EC 2.7.11.1) | Location-regulated scaffold connecting MEK to RAF. Has very low protein kinase activity and can phosphorylate MAP2K1 at several Ser and Thr residues with very low efficiency (in vitro). Acts as MAP2K1/MEK1-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 (PubMed:29433126). Interaction with BRAF enhances KSR2-mediated phosphorylation of MAP2K1 (in vitro). Blocks MAP3K8 kinase activity and MAP3K8-mediated signaling. Acts as a negative regulator of MAP3K3-mediated activation of ERK, JNK and NF-kappa-B pathways, inhibiting MAP3K3-mediated interleukin-8 production. {ECO:0000269|PubMed:12975377, ECO:0000269|PubMed:16039990, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126}. |
Q6VMQ6 | ATF7IP | S899 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6W2J9 | BCOR | S177 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6W2J9 | BCOR | S367 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6W2J9 | BCOR | S1410 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6WCQ1 | MPRIP | S326 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6WCQ1 | MPRIP | S977 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6WKZ4 | RAB11FIP1 | S1214 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6XE24 | RBMS3 | S111 | ochoa | RNA-binding motif, single-stranded-interacting protein 3 | Binds poly(A) and poly(U) oligoribonucleotides. {ECO:0000269|PubMed:10675610}. |
Q6XQN6 | NAPRT | S513 | ochoa | Nicotinate phosphoribosyltransferase (NAPRTase) (EC 6.3.4.21) (FHA-HIT-interacting protein) (Nicotinate phosphoribosyltransferase domain-containing protein 1) | Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate (PubMed:17604275, PubMed:21742010, PubMed:26042198). Helps prevent cellular oxidative stress via its role in NAD biosynthesis (PubMed:17604275). {ECO:0000269|PubMed:17604275, ECO:0000269|PubMed:21742010, ECO:0000269|PubMed:26042198}. |
Q6XR72 | SLC30A10 | S402 | ochoa | Calcium/manganese antiporter SLC30A10 (Solute carrier family 30 member 10) (Zinc transporter 10) (ZnT-10) | Calcium:manganese antiporter of the plasma membrane mediating the efflux of intracellular manganese coupled to an active extracellular calcium exchange (PubMed:30755481). Required for intracellular manganese homeostasis, an essential cation for the function of several enzymes, including some crucially important for the metabolism of neurotransmitters and other neuronal metabolic pathways. Manganese can also be cytotoxic and induce oxidative stress, mitochondrial dysfunction and apoptosis (PubMed:22341972, PubMed:25319704, PubMed:26728129, PubMed:27226609, PubMed:27307044). Could also have an intracellular zinc ion transporter activity, directly regulating intracellular zinc ion homeostasis and more indirectly various signaling pathway and biological processes (PubMed:22427991, PubMed:26728129). {ECO:0000269|PubMed:22341972, ECO:0000269|PubMed:22427991, ECO:0000269|PubMed:25319704, ECO:0000269|PubMed:26728129, ECO:0000269|PubMed:27226609, ECO:0000269|PubMed:27307044, ECO:0000269|PubMed:30755481}. |
Q6ZMB5 | TMEM184A | S368 | ochoa | Transmembrane protein 184A | Acts as a heparin receptor in vascular cells (By similarity). May be involved in vesicle transport in exocrine cells and Sertoli cells (By similarity). {ECO:0000250|UniProtKB:Q3UFJ6, ECO:0000250|UniProtKB:Q4QQS1}. |
Q6ZMT1 | STAC2 | S192 | ochoa | SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) | Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}. |
Q6ZMT4 | KDM7A | S503 | ochoa | Lysine-specific demethylase 7A (JmjC domain-containing histone demethylation protein 1D) (Lysine-specific demethylase 7) ([histone H3]-dimethyl-L-lysine9 demethylase 7A) (EC 1.14.11.65) | Histone demethylase required for brain development. Specifically demethylates dimethylated 'Lys-9', 'Lys-27' and 'Lys-36' (H3K9me2, H3K27me2, H3K36me2, respectively) of histone H3 and monomethylated histone H4 'Lys-20' residue (H4K20Me1), thereby playing a central role in histone code (PubMed:20023638, PubMed:20622853). Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: in presence of H3K4me3, it has no demethylase activity toward H3K9me2, while it has high activity toward H3K27me2. Demethylates H3K9me2 in absence of H3K4me3 (PubMed:20023638). Has activity toward H4K20Me1 only when nucleosome is used as a substrate and when not histone octamer is used as substrate (PubMed:20622853). {ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20622853}. |
Q6ZMU5 | TRIM72 | S255 | ochoa|psp | Tripartite motif-containing protein 72 (EC 2.3.2.27) (Mitsugumin-53) (Mg53) | Muscle-specific E3 ubiquitin-protein ligase that plays a central role in cell membrane repair by nucleating the assembly of the repair machinery at injury sites (PubMed:36944613). Its ubiquitination activity is mediated by E2 ubiquitin-conjugating enzymes UBE2D1, UBE2D2 and UBE2D3 (By similarity). Acts as a sensor of oxidation: upon membrane damage, entry of extracellular oxidative environment results in disulfide bond formation and homooligomerization at the injury site (By similarity). This oligomerization acts as a nucleation site for recruitment of TRIM72-containing vesicles to the injury site, leading to membrane patch formation (By similarity). Probably acts upstream of the Ca(2+)-dependent membrane resealing process (By similarity). Required for transport of DYSF to sites of cell injury during repair patch formation (By similarity). Regulates membrane budding and exocytosis (By similarity). May be involved in the regulation of the mobility of KCNB1-containing endocytic vesicles (By similarity). {ECO:0000250|UniProtKB:Q1XH17, ECO:0000269|PubMed:36944613}. |
Q6ZMZ3 | SYNE3 | S900 | ochoa | Nesprin-3 (KASH domain-containing protein 3) (KASH3) (Nuclear envelope spectrin repeat protein 3) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Probable anchoring protein which tethers the nucleus to the cytoskeleton by binding PLEC which can associate with the intermediate filament system. Plays a role in the regulation of aortic epithelial cell morphology, and is required for flow-induced centrosome polarization and directional migration in aortic endothelial cells. {ECO:0000269|PubMed:16330710, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:21937718}. |
Q6ZN17 | LIN28B | S221 | ochoa | Protein lin-28 homolog B (Lin-28B) | Suppressor of microRNA (miRNA) biogenesis, including that of let-7 and possibly of miR107, miR-143 and miR-200c. Binds primary let-7 transcripts (pri-let-7), including pri-let-7g and pri-let-7a-1, and sequester them in the nucleolus, away from the microprocessor complex, hence preventing their processing into mature miRNA (PubMed:22118463). Does not act on pri-miR21 (PubMed:22118463). The repression of let-7 expression is required for normal development and contributes to maintain the pluripotent state of embryonic stem cells by preventing let-7-mediated differentiation. When overexpressed, recruits ZCCHC11/TUT4 uridylyltransferase to pre-let-7 transcripts, leading to their terminal uridylation and degradation (PubMed:19703396). This activity might not be relevant in vivo, as LIN28B-mediated inhibition of let-7 miRNA maturation appears to be ZCCHC11-independent (PubMed:22118463). Interaction with target pre-miRNAs occurs via an 5'-GGAG-3' motif in the pre-miRNA terminal loop. Mediates MYC-induced let-7 repression (By similarity). When overexpressed, isoform 1 stimulates growth of the breast adenocarcinoma cell line MCF-7. Isoform 2 has no effect on cell growth. {ECO:0000250|UniProtKB:Q45KJ6, ECO:0000269|PubMed:16971064, ECO:0000269|PubMed:18951094, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22118463}. |
Q6ZN28 | MACC1 | S201 | ochoa | Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) | Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}. |
Q6ZN30 | BNC2 | S403 | ochoa | Zinc finger protein basonuclin-2 | Probable transcription factor specific for skin keratinocytes. May play a role in the differentiation of spermatozoa and oocytes (PubMed:14988505). May also play an important role in early urinary-tract development (PubMed:31051115). {ECO:0000269|PubMed:14988505, ECO:0000269|PubMed:31051115}. |
Q6ZN30 | BNC2 | S937 | ochoa | Zinc finger protein basonuclin-2 | Probable transcription factor specific for skin keratinocytes. May play a role in the differentiation of spermatozoa and oocytes (PubMed:14988505). May also play an important role in early urinary-tract development (PubMed:31051115). {ECO:0000269|PubMed:14988505, ECO:0000269|PubMed:31051115}. |
Q6ZN44 | UNC5A | S414 | ochoa | Netrin receptor UNC5A (Protein unc-5 homolog 1) (Protein unc-5 homolog A) | Receptor for netrin required for axon guidance. Functions in the netrin signaling pathway and promotes neurite outgrowth in response to NTN1. Mediates axon repulsion of neuronal growth cones in the developing nervous system in response to netrin. Axon repulsion in growth cones may be mediated by its association with DCC that may trigger signaling for repulsion. It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand. {ECO:0000250|UniProtKB:O08721}. |
Q6ZN55 | ZNF574 | S113 | ochoa | Zinc finger protein 574 | May be involved in transcriptional regulation. |
Q6ZNC4 | ZNF704 | S97 | ochoa | Zinc finger protein 704 | Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}. |
Q6ZNC4 | ZNF704 | S367 | ochoa | Zinc finger protein 704 | Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}. |
Q6ZNG1 | ZNF600 | S143 | ochoa | Zinc finger protein 600 | May be involved in transcriptional regulation. |
Q6ZNJ1 | NBEAL2 | S1350 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S2208 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNL6 | FGD5 | S642 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZRI6 | C15orf39 | S586 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZRV2 | FAM83H | S974 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZRV2 | FAM83H | S1147 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZS17 | RIPOR1 | S171 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZS81 | WDFY4 | S1688 | ochoa | WD repeat- and FYVE domain-containing protein 4 | Plays a critical role in the regulation of cDC1-mediated cross-presentation of viral and tumor antigens in dendritic cells. Mechanistically, acts near the plasma membrane and interacts with endosomal membranes to promote endosomal-to-cytosol antigen trafficking. Also plays a role in B-cell survival through regulation of autophagy. {ECO:0000250|UniProtKB:E9Q2M9}. |
Q6ZSB9 | ZBTB49 | S178 | ochoa | Zinc finger and BTB domain-containing protein 49 (Zinc finger protein 509) | Transcription factor. Inhibits cell proliferation by activating either CDKN1A/p21 transcription or RB1 transcription. {ECO:0000269|PubMed:25245946}.; FUNCTION: [Isoform 1]: Binds CDKN1A promoter and activates its transcription; this activity is further potentiated in the presence of EP300 (synergistic) and ZBTB17/Miz-1 (additive). {ECO:0000269|PubMed:25245946}.; FUNCTION: [Isoform 3]: Activates RB1 transcription most probably by antagonizing ZBTB17 repression of RB1. Does not bind directly RB1 promoter. {ECO:0000269|PubMed:25245946}. |
Q6ZSB9 | ZBTB49 | S592 | ochoa | Zinc finger and BTB domain-containing protein 49 (Zinc finger protein 509) | Transcription factor. Inhibits cell proliferation by activating either CDKN1A/p21 transcription or RB1 transcription. {ECO:0000269|PubMed:25245946}.; FUNCTION: [Isoform 1]: Binds CDKN1A promoter and activates its transcription; this activity is further potentiated in the presence of EP300 (synergistic) and ZBTB17/Miz-1 (additive). {ECO:0000269|PubMed:25245946}.; FUNCTION: [Isoform 3]: Activates RB1 transcription most probably by antagonizing ZBTB17 repression of RB1. Does not bind directly RB1 promoter. {ECO:0000269|PubMed:25245946}. |
Q6ZSJ9 | SHISA6 | S241 | ochoa | Protein shisa-6 | Involved in maintenance of high-frequency synaptic transmission at hippocampal CA3-CA1 synapses. Regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression. May play a role in self-renewal and differentiation of spermatogonial stem cells by inhibiting canonical Wnt signaling pathway. {ECO:0000250|UniProtKB:Q3UH99}. |
Q6ZSS7 | MFSD6 | S733 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZSZ6 | TSHZ1 | S62 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZSZ6 | TSHZ1 | S830 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZU52 | KIAA0408 | S529 | ochoa | Uncharacterized protein KIAA0408 | None |
Q6ZU65 | UBN2 | S941 | ochoa | Ubinuclein-2 | None |
Q6ZUJ8 | PIK3AP1 | S174 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q6ZUT9 | DENND5B | S724 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6ZUT9 | DENND5B | S822 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6ZUT9 | DENND5B | S1068 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6ZUU3 | FOXL2NB | S35 | ochoa | FOXL2 neighbor protein | None |
Q6ZV73 | FGD6 | S70 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q6ZV73 | FGD6 | S1210 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q6ZV73 | FGD6 | S1293 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q6ZV89 | SH2D5 | S231 | ochoa | SH2 domain-containing protein 5 | May be involved in synaptic plasticity regulation through the control of Rac-GTP levels. {ECO:0000250|UniProtKB:Q8JZW5}. |
Q6ZVD8 | PHLPP2 | S1182 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 2 (EC 3.1.3.16) (PH domain leucine-rich repeat-containing protein phosphatase-like) (PHLPP-like) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT1, 'Ser-660' of PRKCB isoform beta-II and 'Ser-657' of PRKCA. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and decreases cell proliferation. Also controls the phosphorylation of AKT3. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). {ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:20513427, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
Q6ZVD8 | PHLPP2 | S1189 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 2 (EC 3.1.3.16) (PH domain leucine-rich repeat-containing protein phosphatase-like) (PHLPP-like) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT1, 'Ser-660' of PRKCB isoform beta-II and 'Ser-657' of PRKCA. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and decreases cell proliferation. Also controls the phosphorylation of AKT3. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). {ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:20513427, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
Q6ZVH7 | ESPNL | S635 | ochoa | Espin-like protein | Binds to but does not cross-link actin. Required for the formation and maintenance of inner ear hair cell stereocilia and staircase formation. Essential for normal hearing. {ECO:0000250|UniProtKB:Q3UYR4}. |
Q6ZVM7 | TOM1L2 | S160 | ochoa | TOM1-like protein 2 (Target of Myb-like protein 2) | Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}. |
Q6ZW49 | PAXIP1 | S332 | ochoa | PAX-interacting protein 1 (PAX transactivation activation domain-interacting protein) | Involved in DNA damage response and in transcriptional regulation through histone methyltransferase (HMT) complexes. Plays a role in early development. In DNA damage response is required for cell survival after ionizing radiation. In vitro shown to be involved in the homologous recombination mechanism for the repair of double-strand breaks (DSBs). Its localization to DNA damage foci requires RNF8 and UBE2N. Recruits TP53BP1 to DNA damage foci and, at least in particular repair processes, effective DNA damage response appears to require the association with TP53BP1 phosphorylated by ATM at 'Ser-25'. Together with TP53BP1 regulates ATM association. Proposed to recruit PAGR1 to sites of DNA damage and the PAGR1:PAXIP1 complex is required for cell survival in response to DNA damage; the function is probably independent of MLL-containing histone methyltransferase (HMT) complexes. However, this function has been questioned (By similarity). Promotes ubiquitination of PCNA following UV irradiation and may regulate recruitment of polymerase eta and RAD51 to chromatin after DNA damage. Proposed to be involved in transcriptional regulation by linking MLL-containing histone methyltransferase (HMT) complexes to gene promoters by interacting with promoter-bound transcription factors such as PAX2. Associates with gene promoters that are known to be regulated by KMT2D/MLL2. During immunoglobulin class switching in activated B-cells is involved in trimethylation of histone H3 at 'Lys-4' and in transcription initiation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus; this function appears to involve the recruitment of MLL-containing HMT complexes. Conflictingly, its function in transcriptional regulation during immunoglobulin class switching is reported to be independent of the MLL2/MLL3 complex (By similarity). {ECO:0000250|UniProtKB:Q6NZQ4, ECO:0000269|PubMed:14576432, ECO:0000269|PubMed:15456759, ECO:0000269|PubMed:17690115, ECO:0000269|PubMed:17925232, ECO:0000269|PubMed:18353733, ECO:0000269|PubMed:20088963, ECO:0000269|PubMed:23727112}. |
Q6ZW76 | ANKS3 | S225 | ochoa | Ankyrin repeat and SAM domain-containing protein 3 | May be involved in vasopressin signaling in the kidney. {ECO:0000250|UniProtKB:Q9CZK6}. |
Q6ZWE6 | PLEKHM3 | S192 | ochoa | Pleckstrin homology domain-containing family M member 3 (PH domain-containing family M member 3) (Differentiation associated protein) | Involved in skeletal muscle differentiation. May act as a scaffold protein for AKT1 during muscle differentiation. {ECO:0000250|UniProtKB:Q8BM47}. |
Q709C8 | VPS13C | S1894 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q70CQ3 | USP30 | S210 | ochoa | Ubiquitin carboxyl-terminal hydrolase 30 (EC 3.4.19.12) (Deubiquitinating enzyme 30) (Ubiquitin thioesterase 30) (Ubiquitin-specific-processing protease 30) (Ub-specific protease 30) | Deubiquitinating enzyme tethered to the mitochondrial outer membrane that acts as a key inhibitor of mitophagy by counteracting the action of parkin (PRKN): hydrolyzes ubiquitin attached by parkin on target proteins, such as RHOT1/MIRO1 and TOMM20, thereby blocking parkin's ability to drive mitophagy (PubMed:18287522, PubMed:24896179, PubMed:25527291, PubMed:25621951). Preferentially cleaves 'Lys-6'- and 'Lys-11'-linked polyubiquitin chains, 2 types of linkage that participate in mitophagic signaling (PubMed:25621951). Does not cleave efficiently polyubiquitin phosphorylated at 'Ser-65' (PubMed:25527291). Acts as a negative regulator of mitochondrial fusion by mediating deubiquitination of MFN1 and MFN2 (By similarity). {ECO:0000250|UniProtKB:Q3UN04, ECO:0000269|PubMed:18287522, ECO:0000269|PubMed:24896179, ECO:0000269|PubMed:25527291, ECO:0000269|PubMed:25621951}. |
Q70E73 | RAPH1 | S54 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q70EK8 | USP53 | S492 | ochoa | Ubiquitin carboxyl-terminal hydrolase 53 (EC 3.4.19.12) (Ubiquitin-specific peptidase 53) | Deubiquitinase that mediates 'Lys-63'-linked deubiquitination of tight junction proteins, such as MARVELD2 and LSR, and which is involved in the survival of auditory hair cells and hearing (PubMed:32124521, PubMed:39587316). Specifically cleaves 'Lys-63'-linked polyubiquitin chains composed of at least 3 ubiquitin molecules, while it is not able to deubiquitinate substrates with shorter ubiquitin chains: recognizes ubiquitin chain in position S2 and catalyzes en bloc cleavage of polyubiquitin chains from substrate proteins (PubMed:39587316). Probably acts by modulating the barrier properties and mechanical stability of tight junctions via deubiquitination of MARVELD2 and LSR (PubMed:32124521, PubMed:39587316). {ECO:0000269|PubMed:32124521, ECO:0000269|PubMed:39587316}. |
Q70EL1 | USP54 | S603 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70EL1 | USP54 | S1036 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70EL1 | USP54 | S1286 | ochoa | Ubiquitin carboxyl-terminal hydrolase 54 (EC 3.4.19.12) (Ubiquitin-specific peptidase 54) | Deubiquitinase that specifically mediates 'Lys-63'-linked deubiquitination of substrates with a polyubiquitin chain composed of at least 3 ubiquitins (PubMed:39587316). Specifically recognizes ubiquitin chain in position S2 and catalyzes cleavage of polyubiquitin within 'Lys-63'-linked chains (PubMed:39587316). Not able to deubiquitinate substrates with shorter ubiquitin chains (PubMed:39587316). Mediates deubiquitination of PLK4, maintaining PLK4 stability by reducing its ubiquitination-mediated degradation (PubMed:36590171). {ECO:0000269|PubMed:36590171, ECO:0000269|PubMed:39587316}. |
Q70EL2 | USP45 | S599 | ochoa | Ubiquitin carboxyl-terminal hydrolase 45 (EC 3.4.19.12) (Deubiquitinating enzyme 45) (Ubiquitin thioesterase 45) (Ubiquitin-specific-processing protease 45) | Catalyzes the deubiquitination of SPDL1 (PubMed:30258100). Plays a role in the repair of UV-induced DNA damage via deubiquitination of ERCC1, promoting its recruitment to DNA damage sites (PubMed:25538220). May be involved in the maintenance of photoreceptor function (PubMed:30573563). May play a role in normal retinal development (By similarity). Plays a role in cell migration (PubMed:30258100). {ECO:0000250|UniProtKB:E9QG68, ECO:0000269|PubMed:25538220, ECO:0000269|PubMed:30258100, ECO:0000269|PubMed:30573563}. |
Q70EL4 | USP43 | S226 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q70EL4 | USP43 | S966 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q711Q0 | CEFIP | S323 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q711Q0 | CEFIP | S517 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q711Q0 | CEFIP | S844 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q711Q0 | CEFIP | S1149 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q71F56 | MED13L | S826 | ochoa | Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. |
Q71F56 | MED13L | S878 | ochoa | Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. |
Q71RC2 | LARP4 | S647 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q71SY5 | MED25 | S184 | ochoa | Mediator of RNA polymerase II transcription subunit 25 (Activator interaction domain-containing protein 1) (Activator-recruited cofactor 92 kDa component) (ARC92) (Mediator complex subunit 25) (p78) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Required for RARA/RXRA-mediated transcription. {ECO:0000269|PubMed:14657022, ECO:0000269|PubMed:14983011, ECO:0000269|PubMed:17641689}. |
Q765P7 | MTSS2 | S441 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76FK4 | NOL8 | S617 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76FK4 | NOL8 | S660 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76FK4 | NOL8 | S723 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76I76 | SSH2 | S17 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q76I76 | SSH2 | S1283 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q76L83 | ASXL2 | S51 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q76L83 | ASXL2 | S600 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q76L83 | ASXL2 | S648 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q76N32 | CEP68 | S435 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7KZF4 | SND1 | S781 | ochoa|psp | Staphylococcal nuclease domain-containing protein 1 (EC 3.1.31.1) (100 kDa coactivator) (EBNA2 coactivator p100) (Tudor domain-containing protein 11) (p100 co-activator) | Endonuclease that mediates miRNA decay of both protein-free and AGO2-loaded miRNAs (PubMed:18453631, PubMed:28546213). As part of its function in miRNA decay, regulates mRNAs involved in G1-to-S phase transition (PubMed:28546213). Functions as a bridging factor between STAT6 and the basal transcription factor (PubMed:12234934). Plays a role in PIM1 regulation of MYB activity (PubMed:9809063). Functions as a transcriptional coactivator for STAT5 (By similarity). {ECO:0000250|UniProtKB:Q78PY7, ECO:0000269|PubMed:12234934, ECO:0000269|PubMed:18453631, ECO:0000269|PubMed:28546213, ECO:0000269|PubMed:9809063}.; FUNCTION: (Microbial infection) Functions as a transcriptional coactivator for the Epstein-Barr virus nuclear antigen 2 (EBNA2). {ECO:0000269|PubMed:7651391}.; FUNCTION: (Microbial infection) Promotes SARS-CoV-2 RNA synthesis by binding to negative-sense RNA and the viral protein nsp9. {ECO:0000269|PubMed:37794589}. |
Q7L190 | DPPA4 | S221 | ochoa | Developmental pluripotency-associated protein 4 | May be involved in the maintenance of active epigenetic status of target genes. May inhibit differentiation of embryonic cells into a primitive ectoderm lineage. {ECO:0000250|UniProtKB:Q8CCG4}. |
Q7L273 | KCTD9 | S198 | ochoa | BTB/POZ domain-containing protein KCTD9 | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of target proteins, leading to their degradation by the proteasome. {ECO:0000305}. |
Q7L2J0 | MEPCE | S217 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7L2J0 | MEPCE | S254 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7L4I2 | RSRC2 | S32 | ochoa | Arginine/serine-rich coiled-coil protein 2 | None |
Q7L590 | MCM10 | S644 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7L591 | DOK3 | S194 | ochoa | Docking protein 3 (Downstream of tyrosine kinase 3) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}. |
Q7L5Y9 | MAEA | S311 | ochoa | E3 ubiquitin-protein transferase MAEA (EC 2.3.2.27) (Cell proliferation-inducing gene 5 protein) (Erythroblast macrophage protein) (Human lung cancer oncogene 10 protein) (HLC-10) (Macrophage erythroblast attacher) (P44EMLP) | Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1. MAEA and RMND5A are both required for catalytic activity of the CTLH E3 ubiquitin-protein ligase complex (PubMed:29911972). MAEA is required for normal cell proliferation (PubMed:29911972). The CTLH E3 ubiquitin-protein ligase complex is not required for the degradation of enzymes involved in gluconeogenesis, such as FBP1 (PubMed:29911972). Plays a role in erythroblast enucleation during erythrocyte maturation and in the development of mature macrophages (By similarity). Mediates the attachment of erythroid cell to mature macrophages; this MAEA-mediated contact inhibits erythroid cell apoptosis (PubMed:9763581). Participates in erythroblastic island formation, which is the functional unit of definitive erythropoiesis. Associates with F-actin to regulate actin distribution in erythroblasts and macrophages (By similarity). May contribute to nuclear architecture and cells division events (Probable). {ECO:0000250|UniProtKB:Q4VC33, ECO:0000269|PubMed:29911972, ECO:0000269|PubMed:9763581, ECO:0000305|PubMed:16510120}. |
Q7L622 | G2E3 | S320 | ochoa | G2/M phase-specific E3 ubiquitin-protein ligase (EC 2.3.2.26) (G2/M phase-specific HECT-type E3 ubiquitin transferase) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Essential in early embryonic development to prevent apoptotic death. {ECO:0000269|PubMed:18511420}. |
Q7L775 | EPM2AIP1 | S146 | ochoa | EPM2A-interacting protein 1 (Laforin-interacting protein) | None |
Q7L7V1 | DHX32 | S718 | ochoa | Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX32 (EC 3.6.4.13) (DEAD/H box 32) (DEAD/H helicase-like protein 1) (DHLP1) (DEAH box protein 32) (HuDDX32) | None |
Q7L804 | RAB11FIP2 | S270 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7L804 | RAB11FIP2 | S382 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7L804 | RAB11FIP2 | S388 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7LBC6 | KDM3B | S1253 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7RTN6 | STRADA | S313 | ochoa | STE20-related kinase adapter protein alpha (STRAD alpha) (STE20-related adapter protein) (Serologically defined breast cancer antigen NY-BR-96) | Pseudokinase which, in complex with CAB39/MO25 (CAB39/MO25alpha or CAB39L/MO25beta), binds to and activates STK11/LKB1. Adopts a closed conformation typical of active protein kinases and binds STK11/LKB1 as a pseudosubstrate, promoting conformational change of STK11/LKB1 in an active conformation. {ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:19892943}. |
Q7RTV5 | PRXL2C | S143 | ochoa | Peroxiredoxin-like 2C (AhpC/TSA antioxidant enzyme domain-containing protein 1) (Thioredoxin-like protein AAED1) | May positively regulate ERK1/2 signaling and AKT1 activation leading to HIF1A up-regulation with an increased expression of glycolysis genes and enhanced glycolysis. {ECO:0000269|PubMed:29901208}. |
Q7Z2D5 | PLPPR4 | S472 | ochoa | Phospholipid phosphatase-related protein type 4 (Brain-specific phosphatidic acid phosphatase-like protein 1) (Inactive 2-lysophosphatidate phosphatase PLPPR4) (Lipid phosphate phosphatase-related protein type 4) (Plasticity-related gene 1 protein) (PRG-1) | Postsynaptic density membrane protein that indirectly regulates glutamatergic synaptic transmission through lysophosphatidic acid (LPA)-mediated signaling pathways. Binds lysophosphatidic acid (LPA) and mediates its internalization into cells. Could act as receptor or a transporter of this lipid at the post-synaptic membrane (By similarity). Modulates lysophosphatidic acid (LPA) activity in neuron axonal outgrowth during development by attenuating phospholipid-induced axon collapse (By similarity). {ECO:0000250|UniProtKB:Q7TMB7, ECO:0000250|UniProtKB:Q7TME0}. |
Q7Z2D5 | PLPPR4 | S592 | ochoa | Phospholipid phosphatase-related protein type 4 (Brain-specific phosphatidic acid phosphatase-like protein 1) (Inactive 2-lysophosphatidate phosphatase PLPPR4) (Lipid phosphate phosphatase-related protein type 4) (Plasticity-related gene 1 protein) (PRG-1) | Postsynaptic density membrane protein that indirectly regulates glutamatergic synaptic transmission through lysophosphatidic acid (LPA)-mediated signaling pathways. Binds lysophosphatidic acid (LPA) and mediates its internalization into cells. Could act as receptor or a transporter of this lipid at the post-synaptic membrane (By similarity). Modulates lysophosphatidic acid (LPA) activity in neuron axonal outgrowth during development by attenuating phospholipid-induced axon collapse (By similarity). {ECO:0000250|UniProtKB:Q7TMB7, ECO:0000250|UniProtKB:Q7TME0}. |
Q7Z2K8 | GPRIN1 | S436 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2K8 | GPRIN1 | S452 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2Z1 | TICRR | S441 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S820 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S923 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1013 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1057 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1064 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1750 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1850 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1881 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z2 | EFL1 | S948 | ochoa | Elongation factor-like GTPase 1 (EC 3.6.5.-) (Elongation factor Tu GTP-binding domain-containing protein 1) (Elongation factor-like 1) (Protein FAM42A) | GTPase involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. {ECO:0000269|PubMed:21536732}. |
Q7Z333 | SETX | S615 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z333 | SETX | S642 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z333 | SETX | S980 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z333 | SETX | S1686 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z340 | ZNF551 | S126 | ochoa | Zinc finger protein 551 (Zinc finger protein KOX23) | May be involved in transcriptional regulation. |
Q7Z3B3 | KANSL1 | S1045 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z3B4 | NUP54 | S289 | ochoa | Nucleoporin p54 (54 kDa nucleoporin) | Component of the nuclear pore complex, a complex required for the trafficking across the nuclear membrane. {ECO:0000250|UniProtKB:P70582}. |
Q7Z3E2 | CCDC186 | S139 | ochoa | Coiled-coil domain-containing protein 186 (CTCL tumor antigen HD-CL-01/L14-2) | None |
Q7Z3F1 | GPR155 | S741 | ochoa | Lysosomal cholesterol signaling protein (LYCHOS) (G-protein coupled receptor PGR22) | Cholesterol-binding protein that acts as a regulator of mTORC1 signaling pathway (PubMed:36007018). Acts as a sensor of cholesterol to signal cholesterol sufficiency to mTORC1: in presence of cholesterol, binds cholesterol, leading to disruption of the interaction between the GATOR1 and KICSTOR complexes and promotion of mTORC1 signaling (PubMed:36007018, PubMed:39358511). Upon cholesterol starvation, GPR155/LYCHOS is unable to perturb the association between GATOR1 and KICSTOR, leading to mTORC1 signaling inhibition (PubMed:36007018). Binds indole-3-acetic acid and may play a role in tryptophan metabolism (PubMed:39358511). {ECO:0000269|PubMed:36007018, ECO:0000269|PubMed:39358511}. |
Q7Z3G6 | PRICKLE2 | S66 | ochoa | Prickle-like protein 2 | None |
Q7Z3J3 | RGPD4 | S789 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3K3 | POGZ | S333 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3T8 | ZFYVE16 | S815 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3T8 | ZFYVE16 | S845 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3T8 | ZFYVE16 | S939 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3U7 | MON2 | S1177 | ochoa | Protein MON2 homolog (Protein SF21) | Plays a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q7Z401 | DENND4A | S1217 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z406 | MYH14 | S221 | ochoa | Myosin-14 (Myosin heavy chain 14) (Myosin heavy chain, non-muscle IIc) (Non-muscle myosin heavy chain IIc) (NMHC II-C) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. {ECO:0000250}. |
Q7Z406 | MYH14 | S337 | ochoa | Myosin-14 (Myosin heavy chain 14) (Myosin heavy chain, non-muscle IIc) (Non-muscle myosin heavy chain IIc) (NMHC II-C) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. {ECO:0000250}. |
Q7Z417 | NUFIP2 | S629 | ochoa | FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) | Binds RNA. {ECO:0000269|PubMed:12837692}. |
Q7Z434 | MAVS | S430 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z460 | CLASP1 | S1223 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z478 | DHX29 | S200 | ochoa | ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) | ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}. |
Q7Z4H7 | HAUS6 | S387 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4H7 | HAUS6 | S507 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4H7 | HAUS6 | S715 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4H7 | HAUS6 | S867 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4K8 | TRIM46 | S627 | ochoa | Tripartite motif-containing protein 46 (Gene Y protein) (GeneY) (Tripartite, fibronectin type-III and C-terminal SPRY motif protein) | Microtubule-associated protein that is involved in the formation of parallel microtubule bundles linked by cross-bridges in the proximal axon. Required for the uniform orientation and maintenance of the parallel microtubule fascicles, which are important for efficient cargo delivery and trafficking in axons. Thereby also required for proper axon specification, the establishment of neuronal polarity and proper neuronal migration. {ECO:0000250|UniProtKB:Q7TNM2}. |
Q7Z4S6 | KIF21A | S1212 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z4S6 | KIF21A | S1239 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z4V5 | HDGFL2 | S490 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z569 | BRAP | S52 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z569 | BRAP | S571 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z589 | EMSY | S238 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z589 | EMSY | S1130 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z591 | AKNA | S1228 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5J4 | RAI1 | S538 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5J4 | RAI1 | S560 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5J4 | RAI1 | S683 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5J4 | RAI1 | S1192 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5K2 | WAPL | S226 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z5K2 | WAPL | S549 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z5Q1 | CPEB2 | S164 | ochoa | Cytoplasmic polyadenylation element-binding protein 2 (CPE-BP2) (CPE-binding protein 2) (hCPEB-2) | May play a role in translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids. Binds to poly(U) RNA oligomers (By similarity). Required for cell cycle progression, specifically for the transition from metaphase to anaphase (PubMed:26398195). {ECO:0000250|UniProtKB:Q812E0, ECO:0000269|PubMed:26398195}. |
Q7Z5Q1 | CPEB2 | S314 | ochoa | Cytoplasmic polyadenylation element-binding protein 2 (CPE-BP2) (CPE-binding protein 2) (hCPEB-2) | May play a role in translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids. Binds to poly(U) RNA oligomers (By similarity). Required for cell cycle progression, specifically for the transition from metaphase to anaphase (PubMed:26398195). {ECO:0000250|UniProtKB:Q812E0, ECO:0000269|PubMed:26398195}. |
Q7Z5U6 | WDR53 | S60 | ochoa | WD repeat-containing protein 53 | None |
Q7Z628 | NET1 | S106 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z628 | NET1 | S508 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z698 | SPRED2 | S104 | ochoa | Sprouty-related, EVH1 domain-containing protein 2 (Spred-2) | Negatively regulates Ras signaling pathways and downstream activation of MAP kinases (PubMed:15683364, PubMed:34626534). Recruits and translocates NF1 to the cell membrane, thereby enabling NF1-dependent hydrolysis of active GTP-bound Ras to inactive GDP-bound Ras (PubMed:34626534). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S7, ECO:0000269|PubMed:15683364, ECO:0000269|PubMed:34626534}. |
Q7Z699 | SPRED1 | S105 | ochoa|psp | Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) | Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}. |
Q7Z6B7 | SRGAP1 | S932 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6B7 | SRGAP1 | S1010 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6E9 | RBBP6 | S873 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6J0 | SH3RF1 | S327 | ochoa | E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) | Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}. |
Q7Z6J8 | UBE3D | S184 | ochoa | E3 ubiquitin-protein ligase E3D (EC 2.3.2.26) (HECT-type E3 ubiquitin transferase E3D) (UbcH10-binding protein with a HECT-like domain) (Ubiquitin-conjugating enzyme E2C-binding protein) | E3 ubiquitin-protein ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and transfers it to substrates, generally promoting their degradation by the proteasome (PubMed:15749827). Independently of its E3 ubiquitin-protein ligase activity, acts as an inhibitor of CPSF3 endonuclease activity by blocking CPSF3 active site (PubMed:39032490). {ECO:0000269|PubMed:15749827, ECO:0000269|PubMed:39032490}. |
Q7Z6J9 | TSEN54 | S178 | ochoa | tRNA-splicing endonuclease subunit Sen54 (SEN54 homolog) (HsSEN54) (tRNA-intron endonuclease Sen54) | Non-catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5' and 3' splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3' cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. {ECO:0000269|PubMed:15109492}. |
Q7Z6K3 | PTAR1 | S45 | ochoa | Protein prenyltransferase alpha subunit repeat-containing protein 1 | None |
Q7Z6L0 | PRRT2 | S90 | ochoa | Proline-rich transmembrane protein 2 (Dispanin subfamily B member 3) (DSPB3) | As a component of the outer core of AMPAR complex, may be involved in synaptic transmission in the central nervous system. In hippocampal neurons, in presynaptic terminals, plays an important role in the final steps of neurotransmitter release, possibly by regulating Ca(2+)-sensing. In the cerebellum, may inhibit SNARE complex formation and down-regulate short-term facilitation. {ECO:0000250|UniProtKB:E9PUL5}. |
Q7Z6M1 | RABEPK | S27 | ochoa | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q7Z6Z7 | HUWE1 | S1218 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z6Z7 | HUWE1 | S2855 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z6Z7 | HUWE1 | S3127 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z6Z7 | HUWE1 | S3662 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z739 | YTHDF3 | S385 | ochoa | YTH domain-containing family protein 3 (DF3) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:28106072, PubMed:28106076, PubMed:28281539, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:28106072, PubMed:28281539, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT complex or PAN3 (PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:28106076, PubMed:32492408). Acts as a negative regulator of type I interferon response by down-regulating interferon-stimulated genes (ISGs) expression: acts by binding to FOXO3 mRNAs (By similarity). Binds to FOXO3 mRNAs independently of METTL3-mediated m6A modification (By similarity). Can also act as a regulator of mRNA stability in cooperation with YTHDF2 by binding to m6A-containing mRNA and promoting their degradation (PubMed:28106072). Recognizes and binds m6A-containing circular RNAs (circRNAs); circRNAs are generated through back-splicing of pre-mRNAs, a non-canonical splicing process promoted by dsRNA structures across circularizing exons (PubMed:28281539). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind N1-methyladenosine (m1A)-containing mRNAs: inhibits trophoblast invasion by binding to m1A-methylated transcripts of IGF1R, promoting their degradation (PubMed:32194978). {ECO:0000250|UniProtKB:Q8BYK6, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:28106076, ECO:0000269|PubMed:28281539, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:32194978, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: Has some antiviral activity against HIV-1 virus: incorporated into HIV-1 particles in a nucleocapsid-dependent manner and reduces viral infectivity in the next cycle of infection (PubMed:32053707). May interfere with this early step of the viral life cycle by binding to N6-methyladenosine (m6A) modified sites on the HIV-1 RNA genome (PubMed:32053707). {ECO:0000269|PubMed:32053707}. |
Q7Z7A1 | CNTRL | S831 | ochoa | Centriolin (Centrosomal protein 1) (Centrosomal protein of 110 kDa) (Cep110) | Involved in cell cycle progression and cytokinesis. During the late steps of cytokinesis, anchors exocyst and SNARE complexes at the midbody, thereby allowing secretory vesicle-mediated abscission. {ECO:0000269|PubMed:12732615, ECO:0000269|PubMed:16213214}. |
Q7Z7B0 | FILIP1 | S1111 | ochoa | Filamin-A-interacting protein 1 (FILIP) | By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}. |
Q7Z7B1 | PIGW | S416 | ochoa | Glucosaminyl-phosphatidylinositol-acyltransferase PIGW (GlcN-PI-acyltransferase) (EC 2.3.-.-) (Phosphatidylinositol-glycan biosynthesis class W protein) (PIG-W) | Acyltransferase that catalyzes the acyl transfer from an acyl-CoA at the 2-OH position of the inositol ring of glucosaminyl phosphatidylinositol (GlcN-PI) to generate glucosaminyl acyl phosphatidylinositol (GlcN-(acyl)PI) and participates in the fourth step of GPI-anchor biosynthesis (By similarity). Required for the transport of GPI-anchored proteins to the plasma membrane (PubMed:24367057). Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity). {ECO:0000250|UniProtKB:Q7TSN4, ECO:0000269|PubMed:24367057}. |
Q7Z7G8 | VPS13B | S414 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q7Z7G8 | VPS13B | S1019 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q7Z7L9 | ZSCAN2 | S191 | ochoa | Zinc finger and SCAN domain-containing protein 2 (Zinc finger protein 29 homolog) (Zfp-29) (Zinc finger protein 854) | May be involved in transcriptional regulation during the post-meiotic stages of spermatogenesis. {ECO:0000250}. |
Q7Z7M9 | GALNT5 | S202 | ochoa | Polypeptide N-acetylgalactosaminyltransferase 5 (EC 2.4.1.41) (Polypeptide GalNAc transferase 5) (GalNAc-T5) (pp-GaNTase 5) (Protein-UDP acetylgalactosaminyltransferase 5) (UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 5) | Catalyzes the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue on the protein receptor. Has activity toward EA2 peptide substrate, but has a weak activity toward Muc2 or Muc1b substrates (By similarity). {ECO:0000250}. |
Q86SJ2 | AMIGO2 | S446 | ochoa | Amphoterin-induced protein 2 (AMIGO-2) (Alivin-1) (Differentially expressed in gastric adenocarcinomas) (DEGA) | Required for depolarization-dependent survival of cultured cerebellar granule neurons. May mediate homophilic as well as heterophilic cell-cell interaction with AMIGO1 or AMIGO3. May contribute to signal transduction through its intracellular domain. May be required for tumorigenesis of a subset of gastric adenocarcinomas. |
Q86SQ0 | PHLDB2 | S82 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86SQ0 | PHLDB2 | S909 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86SQ7 | SDCCAG8 | S92 | ochoa | Serologically defined colon cancer antigen 8 (Antigen NY-CO-8) (Centrosomal colon cancer autoantigen protein) (hCCCAP) | Plays a role in the establishment of cell polarity and epithelial lumen formation (By similarity). Also plays an essential role in ciliogenesis and subsequent Hedgehog signaling pathway that requires the presence of intact primary cilia for pathway activation. Mechanistically, interacts with and mediates RABEP2 centrosomal localization which is critical for ciliogenesis (PubMed:27224062). {ECO:0000250|UniProtKB:Q80UF4, ECO:0000269|PubMed:27224062}. |
Q86T82 | USP37 | S462 | ochoa | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86T90 | KIAA1328 | S484 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86T90 | KIAA1328 | S499 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86T90 | KIAA1328 | S521 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86TB3 | ALPK2 | S1698 | ochoa | Alpha-protein kinase 2 (EC 2.7.11.1) (Heart alpha-protein kinase) | Protein kinase that recognizes phosphorylation sites in which the surrounding peptides have an alpha-helical conformation (PubMed:10021370). Regulates cardiac development and cardiomyocyte differentiation by negatively regulating Wnt/beta-catenin signaling (PubMed:29888752). {ECO:0000269|PubMed:29888752, ECO:0000303|PubMed:10021370}. |
Q86TC9 | MYPN | S108 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TC9 | MYPN | S418 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TC9 | MYPN | S960 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TI0 | TBC1D1 | S69 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86TI2 | DPP9 | S173 | ochoa | Dipeptidyl peptidase 9 (DP9) (EC 3.4.14.5) (Dipeptidyl peptidase IV-related protein 2) (DPRP-2) (Dipeptidyl peptidase IX) (DPP IX) (Dipeptidyl peptidase-like protein 9) (DPLP9) | Dipeptidyl peptidase that cleaves off N-terminal dipeptides from proteins having a Pro or Ala residue at position 2 (PubMed:12662155, PubMed:16475979, PubMed:19667070, PubMed:29382749, PubMed:30291141, PubMed:33731929, PubMed:36112693). Acts as a key inhibitor of caspase-1-dependent monocyte and macrophage pyroptosis in resting cells by preventing activation of NLRP1 and CARD8 (PubMed:27820798, PubMed:29967349, PubMed:30291141, PubMed:31525884, PubMed:32796818, PubMed:36112693, PubMed:36357533). Sequesters the cleaved C-terminal part of NLRP1 and CARD8, which respectively constitute the active part of the NLRP1 and CARD8 inflammasomes, in a ternary complex, thereby preventing their oligomerization and activation (PubMed:33731929, PubMed:33731932, PubMed:34019797). The dipeptidyl peptidase activity is required to suppress NLRP1 and CARD8; however, neither NLRP1 nor CARD8 are bona fide substrates of DPP9, suggesting the existence of substrate(s) required for NLRP1 and CARD8 inhibition (PubMed:33731929). {ECO:0000269|PubMed:12662155, ECO:0000269|PubMed:16475979, ECO:0000269|PubMed:19667070, ECO:0000269|PubMed:27820798, ECO:0000269|PubMed:29382749, ECO:0000269|PubMed:29967349, ECO:0000269|PubMed:30291141, ECO:0000269|PubMed:31525884, ECO:0000269|PubMed:32796818, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932, ECO:0000269|PubMed:34019797, ECO:0000269|PubMed:36112693, ECO:0000269|PubMed:36357533}. |
Q86TJ2 | TADA2B | S365 | ochoa | Transcriptional adapter 2-beta (ADA2-like protein beta) (ADA2-beta) | Coactivates PAX5-dependent transcription together with either SMARCA4 or GCN5L2. {ECO:0000269|PubMed:12972612}. |
Q86TJ5 | ZNF554 | S229 | ochoa | Zinc finger protein 554 | May be involved in transcriptional regulation. |
Q86TV6 | TTC7B | S202 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86U06 | RBM23 | S149 | ochoa | Probable RNA-binding protein 23 (CAPER beta) (CAPERbeta) (RNA-binding motif protein 23) (RNA-binding region-containing protein 4) (Splicing factor SF2) | RNA-binding protein that acts both as a transcription coactivator and pre-mRNA splicing factor (PubMed:15694343). Regulates steroid hormone receptor-mediated transcription, independently of the pre-mRNA splicing factor activity (PubMed:15694343). {ECO:0000269|PubMed:15694343}. |
Q86U44 | METTL3 | S525 | psp | N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) | The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}. |
Q86U70 | LDB1 | S265 | ochoa | LIM domain-binding protein 1 (LDB-1) (Carboxyl-terminal LIM domain-binding protein 2) (CLIM-2) (LIM domain-binding factor CLIM2) (hLdb1) (Nuclear LIM interactor) | Binds to the LIM domain of a wide variety of LIM domain-containing transcription factors. May regulate the transcriptional activity of LIM-containing proteins by determining specific partner interactions. Plays a role in the development of interneurons and motor neurons in cooperation with LHX3 and ISL1. Acts synergistically with LHX1/LIM1 in axis formation and activation of gene expression. Acts with LMO2 in the regulation of red blood cell development, maintaining erythroid precursors in an immature state. {ECO:0000250|UniProtKB:P70662}. |
Q86U70 | LDB1 | S323 | ochoa | LIM domain-binding protein 1 (LDB-1) (Carboxyl-terminal LIM domain-binding protein 2) (CLIM-2) (LIM domain-binding factor CLIM2) (hLdb1) (Nuclear LIM interactor) | Binds to the LIM domain of a wide variety of LIM domain-containing transcription factors. May regulate the transcriptional activity of LIM-containing proteins by determining specific partner interactions. Plays a role in the development of interneurons and motor neurons in cooperation with LHX3 and ISL1. Acts synergistically with LHX1/LIM1 in axis formation and activation of gene expression. Acts with LMO2 in the regulation of red blood cell development, maintaining erythroid precursors in an immature state. {ECO:0000250|UniProtKB:P70662}. |
Q86U70 | LDB1 | S388 | ochoa | LIM domain-binding protein 1 (LDB-1) (Carboxyl-terminal LIM domain-binding protein 2) (CLIM-2) (LIM domain-binding factor CLIM2) (hLdb1) (Nuclear LIM interactor) | Binds to the LIM domain of a wide variety of LIM domain-containing transcription factors. May regulate the transcriptional activity of LIM-containing proteins by determining specific partner interactions. Plays a role in the development of interneurons and motor neurons in cooperation with LHX3 and ISL1. Acts synergistically with LHX1/LIM1 in axis formation and activation of gene expression. Acts with LMO2 in the regulation of red blood cell development, maintaining erythroid precursors in an immature state. {ECO:0000250|UniProtKB:P70662}. |
Q86U86 | PBRM1 | S636 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86U86 | PBRM1 | S648 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UA6 | RPAIN | S18 | ochoa | RPA-interacting protein (hRIP) | Mediates the import of RPA complex into the nucleus, possibly via some interaction with importin beta. Isoform 2 is sumoylated and mediates the localization of RPA complex into the PML body of the nucleus, thereby participating in RPA function in DNA metabolism. {ECO:0000269|PubMed:16135809}. |
Q86UL8 | MAGI2 | S1014 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (Atrophin-1-interacting protein 1) (AIP-1) (Atrophin-1-interacting protein A) (Membrane-associated guanylate kinase inverted 2) (MAGI-2) | Seems to act as a scaffold molecule at synaptic junctions by assembling neurotransmitter receptors and cell adhesion proteins (By similarity). Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth (By similarity). May play a role in regulating activin-mediated signaling in neuronal cells (By similarity). Enhances the ability of PTEN to suppress AKT1 activation (PubMed:10760291). Plays a role in receptor-mediated clathrin-dependent endocytosis which is required for ciliogenesis (By similarity). {ECO:0000250|UniProtKB:O88382, ECO:0000250|UniProtKB:Q9WVQ1, ECO:0000269|PubMed:10760291}. |
Q86UP2 | KTN1 | S243 | ochoa | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
Q86UP3 | ZFHX4 | S508 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86UP3 | ZFHX4 | S1455 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86UP3 | ZFHX4 | S2825 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86UP8 | GTF2IRD2 | S205 | ochoa | General transcription factor II-I repeat domain-containing protein 2A (GTF2I repeat domain-containing protein 2A) (Transcription factor GTF2IRD2-alpha) | None |
Q86UR5 | RIMS1 | S578 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86UR5 | RIMS1 | S881 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86UR5 | RIMS1 | S1613 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86US8 | SMG6 | S203 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86US8 | SMG6 | S363 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86US8 | SMG6 | S484 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86US8 | SMG6 | S884 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86UW6 | N4BP2 | S751 | ochoa | NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) | Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}. |
Q86UZ6 | ZBTB46 | S234 | ochoa | Zinc finger and BTB domain-containing protein 46 (BTB-ZF protein expressed in effector lymphocytes) (BZEL) (BTB/POZ domain-containing protein 4) (Zinc finger protein 340) | Functions as a transcriptional repressor for PRDM1. {ECO:0000250}. |
Q86UZ6 | ZBTB46 | S294 | ochoa | Zinc finger and BTB domain-containing protein 46 (BTB-ZF protein expressed in effector lymphocytes) (BZEL) (BTB/POZ domain-containing protein 4) (Zinc finger protein 340) | Functions as a transcriptional repressor for PRDM1. {ECO:0000250}. |
Q86V15 | CASZ1 | S57 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S356 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V15 | CASZ1 | S987 | ochoa | Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) | Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}. |
Q86V25 | VASH2 | S302 | ochoa | Tubulinyl-Tyr carboxypeptidase 2 (EC 3.4.17.17) (Vasohibin-2) (Vasohibin-like protein) | Tyrosine carboxypeptidase that removes the C-terminal tyrosine residue of alpha-tubulin, thereby regulating microtubule dynamics and function (PubMed:29146869). Critical for spindle function and accurate chromosome segregation during mitosis since microtubule detyronisation regulates mitotic spindle length and postioning (PubMed:31171830). Acts as an activator of angiogenesis: expressed in infiltrating mononuclear cells in the sprouting front to promote angiogenesis (PubMed:19204325). Plays a role in axon formation (PubMed:31235911). {ECO:0000269|PubMed:19204325, ECO:0000269|PubMed:29146869, ECO:0000269|PubMed:31235911}. |
Q86V48 | LUZP1 | S394 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86V48 | LUZP1 | S423 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VG3 | IFTAP | S193 | ochoa | Intraflagellar transport-associated protein (Protein HEPIS) | Seems to play a role in ciliary BBSome localization, maybe through interaction with IFT-A complex. {ECO:0000269|PubMed:30476139}. |
Q86VP1 | TAX1BP1 | S124 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86VP1 | TAX1BP1 | S609 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86VP6 | CAND1 | S638 | ochoa | Cullin-associated NEDD8-dissociated protein 1 (Cullin-associated and neddylation-dissociated protein 1) (TBP-interacting protein of 120 kDa A) (TBP-interacting protein 120A) (p120 CAND1) | Key assembly factor of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complexes that promotes the exchange of the substrate-recognition F-box subunit in SCF complexes, thereby playing a key role in the cellular repertoire of SCF complexes. Acts as a F-box protein exchange factor. The exchange activity of CAND1 is coupled with cycles of neddylation conjugation: in the deneddylated state, cullin-binding CAND1 binds CUL1-RBX1, increasing dissociation of the SCF complex and promoting exchange of the F-box protein. Probably plays a similar role in other cullin-RING E3 ubiquitin ligase complexes. {ECO:0000269|PubMed:12504025, ECO:0000269|PubMed:12504026, ECO:0000269|PubMed:12609982, ECO:0000269|PubMed:16449638, ECO:0000269|PubMed:21249194, ECO:0000269|PubMed:23453757}. |
Q86VQ1 | GLCCI1 | S480 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86VS8 | HOOK3 | S162 | ochoa | Protein Hook homolog 3 (h-hook3) (hHK3) | Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Predominantly recruits 2 dyneins, which increases both the force and speed of the microtubule motor (PubMed:25035494, PubMed:33734450). Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). May regulate clearance of endocytosed receptors such as MSR1. Participates in defining the architecture and localization of the Golgi complex. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000250|UniProtKB:Q8BUK6, ECO:0000269|PubMed:11238449, ECO:0000269|PubMed:17237231, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:32073997, ECO:0000269|PubMed:33734450}.; FUNCTION: (Microbial infection) May serve as a target for the spiC protein from Salmonella typhimurium, which inactivates it, leading to a strong alteration in cellular trafficking. {ECO:0000305}. |
Q86VW2 | ARHGEF25 | S477 | ochoa | Rho guanine nucleotide exchange factor 25 (Guanine nucleotide exchange factor GEFT) (Rac/Cdc42/Rho exchange factor GEFT) (RhoA/Rac/Cdc42 guanine nucleotide exchange factor GEFT) (p63RhoGEF) | May play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. It works as a guanine nucleotide exchange factor for Rho family of small GTPases. Links specifically G alpha q/11-coupled receptors to RHOA activation. May be an important regulator of processes involved in axon and dendrite formation. In neurons seems to be an exchange factor primarily for RAC1. Involved in skeletal myogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:11861769, ECO:0000269|PubMed:12547822, ECO:0000269|PubMed:15069594, ECO:0000269|PubMed:15632174, ECO:0000269|PubMed:16314529, ECO:0000269|PubMed:17606614}. |
Q86VY9 | TMEM200A | S29 | ochoa | Transmembrane protein 200A | None |
Q86W11 | ZSCAN30 | S162 | ochoa | Zinc finger and SCAN domain-containing protein 30 (ZNF-WYM) (Zinc finger protein 397 opposite strand) (Zinc finger protein 397OS) | May be involved in transcriptional regulation. |
Q86W50 | METTL16 | S498 | ochoa | RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) | RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}. |
Q86W56 | PARG | S137 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86W56 | PARG | S323 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86W56 | PARG | S448 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86W92 | PPFIBP1 | S37 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86WG5 | SBF2 | S1687 | ochoa | Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) | Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}. |
Q86WH2 | RASSF3 | S137 | ochoa | Ras association domain-containing protein 3 | None |
Q86WN1 | FCHSD1 | S435 | ochoa | F-BAR and double SH3 domains protein 1 (Protein nervous wreck 2) (NWK2) | Promotes actin polymerization mediated by SNX9 and WASL. {ECO:0000250|UniProtKB:Q6PFY1}. |
Q86WP2 | GPBP1 | S260 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86WP2 | GPBP1 | S276 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86WW8 | COA5 | S37 | ochoa | Cytochrome c oxidase assembly factor 5 | Involved in an early step of the mitochondrial complex IV assembly process. {ECO:0000269|PubMed:21457908}. |
Q86X02 | CDR2L | S167 | ochoa | Cerebellar degeneration-related protein 2-like (Paraneoplastic 62 kDa antigen) | None |
Q86X10 | RALGAPB | S1453 | ochoa | Ral GTPase-activating protein subunit beta (p170) | Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes which act as GTPase activators for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q86X24 | HORMAD1 | S307 | ochoa | HORMA domain-containing protein 1 (Cancer/testis antigen 46) (CT46) (Newborn ovary HORMA protein) | Plays a key role in meiotic progression. Regulates 3 different functions during meiosis: ensures that sufficient numbers of processed DNA double-strand breaks (DSBs) are available for successful homology search by increasing the steady-state numbers of single-stranded DSB ends. Promotes synaptonemal-complex formation independently of its role in homology search. Plays a key role in the male mid-pachytene checkpoint and the female meiotic prophase checkpoint: required for efficient build-up of ATR activity on unsynapsed chromosome regions, a process believed to form the basis of meiotic silencing of unsynapsed chromatin (MSUC) and meiotic prophase quality control in both sexes. {ECO:0000250|UniProtKB:Q9D5T7}. |
Q86XA9 | HEATR5A | S63 | ochoa | HEAT repeat-containing protein 5A | None |
Q86XA9 | HEATR5A | S1704 | ochoa | HEAT repeat-containing protein 5A | None |
Q86XI6 | PPP1R3B | S261 | ochoa | Protein phosphatase 1 regulatory subunit 3B (Hepatic glycogen-targeting protein phosphatase 1 regulatory subunit GL) (Protein phosphatase 1 regulatory subunit 4) (PP1 subunit R4) (Protein phosphatase 1 subunit GL) (PTG) | Acts as a glycogen-targeting subunit for phosphatase PP1. Facilitates interaction of the PP1 with enzymes of the glycogen metabolism and regulates its activity. Suppresses the rate at which PP1 dephosphorylates (inactivates) glycogen phosphorylase and enhances the rate at which it activates glycogen synthase and therefore limits glycogen breakdown. Its activity is inhibited by PYGL, resulting in inhibition of the glycogen synthase and glycogen phosphorylase phosphatase activities of PP1. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in hepatocytes (By similarity). {ECO:0000250}. |
Q86XJ1 | GAS2L3 | S607 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q86XK2 | FBXO11 | S97 | ochoa | F-box only protein 11 (Protein arginine N-methyltransferase 9) (Vitiligo-associated protein 1) (VIT-1) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, such as DTL/CDT2, BCL6, SNAI1 and PRDM1/BLIMP1 (PubMed:17098746, PubMed:22113614, PubMed:23478441, PubMed:23478445, PubMed:23892434, PubMed:24613396, PubMed:24968003, PubMed:25827072, PubMed:29059170). The SCF(FBXO11) complex mediates ubiquitination and degradation of BCL6, thereby playing a role in the germinal center B-cells terminal differentiation toward memory B-cells and plasma cells (PubMed:22113614). The SCF(FBXO11) complex also mediates ubiquitination and degradation of DTL, an important step for the regulation of TGF-beta signaling, cell migration and the timing of the cell-cycle progression and exit (PubMed:23478441, PubMed:23478445). The SCF(FBXO11) complex also catalyzes ubiquitination and degradation of GSK3B-phosphorylated SNAI1 (PubMed:25827072, PubMed:29059170). Binds to and neddylates phosphorylated p53/TP53, inhibiting its transcriptional activity (PubMed:17098746). Plays a role in the regulatiom of erythropoiesis but not myelopoiesis or megakaryopoiesis (PubMed:33156908). Mechanistically, activates erythroid genes by mediating the degradation of BAHD1, a heterochromatin-associated protein that recruits corepressors to H3K27me3 marks (PubMed:33156908). Participates in macrophage cell death and inflammation in response to bacterial toxins by regulating the expression of complement 5a receptor 1/C5AR1 and IL-1beta (PubMed:33156908). Acts as a critical regulator to determine the level of MHC-II by mediating the recognition of degron at the P/S/T domain of CIITA leading to its ubiquitination and subsequent degradation via the proteasome (PubMed:37279268). Participates in the antiviral repsonse by initiating the activation of TBK1-IRF3-IFN-I axis (PubMed:36897010). Mediates the 'Lys-63'-linked ubiquitination of TRAF3 to strengthen the interaction between TRAF3 and TBK1 (PubMed:36897010). {ECO:0000269|PubMed:17098746, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23892434, ECO:0000269|PubMed:24613396, ECO:0000269|PubMed:24968003, ECO:0000269|PubMed:25827072, ECO:0000269|PubMed:29059170, ECO:0000269|PubMed:33156908, ECO:0000269|PubMed:36897010, ECO:0000269|PubMed:37279268}. |
Q86XL3 | ANKLE2 | S488 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XL3 | ANKLE2 | S662 | ochoa|psp | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XL3 | ANKLE2 | S778 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XL3 | ANKLE2 | S875 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XP1 | DGKH | S1075 | ochoa | Diacylglycerol kinase eta (DAG kinase eta) (EC 2.7.1.107) (Diglyceride kinase eta) (DGK-eta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12810723, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable) (PubMed:12810723, PubMed:23949095). Plays a key role in promoting cell growth (PubMed:19710016). Activates the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway induced by EGF (PubMed:19710016). Regulates the recruitment of RAF1 and BRAF from cytoplasm to membranes and their heterodimerization (PubMed:19710016). {ECO:0000269|PubMed:12810723, ECO:0000269|PubMed:19710016, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q86XR8 | CEP57 | S388 | ochoa | Centrosomal protein of 57 kDa (Cep57) (FGF2-interacting protein) (Testis-specific protein 57) (Translokin) | Centrosomal protein which may be required for microtubule attachment to centrosomes. May act by forming ring-like structures around microtubules. Mediates nuclear translocation and mitogenic activity of the internalized growth factor FGF2, but that of FGF1. {ECO:0000269|PubMed:22321063}. |
Q86Y07 | VRK2 | S447 | ochoa | Serine/threonine-protein kinase VRK2 (EC 2.7.11.1) (Vaccinia-related kinase 2) | Serine/threonine kinase that regulates several signal transduction pathways (PubMed:14645249, PubMed:16495336, PubMed:16704422, PubMed:17709393, PubMed:18286207, PubMed:18617507, PubMed:20679487). Isoform 1 modulates the stress response to hypoxia and cytokines, such as interleukin-1 beta (IL1B) and this is dependent on its interaction with MAPK8IP1, which assembles mitogen-activated protein kinase (MAPK) complexes (PubMed:17709393). Inhibition of signal transmission mediated by the assembly of MAPK8IP1-MAPK complexes reduces JNK phosphorylation and JUN-dependent transcription (PubMed:18286207). Phosphorylates 'Thr-18' of p53/TP53, histone H3, and may also phosphorylate MAPK8IP1 (PubMed:16704422). Phosphorylates BANF1 and disrupts its ability to bind DNA and reduces its binding to LEM domain-containing proteins (PubMed:16495336). Down-regulates the transactivation of transcription induced by ERBB2, HRAS, BRAF, and MEK1 (PubMed:20679487). Blocks the phosphorylation of ERK in response to ERBB2 and HRAS (PubMed:20679487). Can also phosphorylate the following substrates that are commonly used to establish in vitro kinase activity: casein, MBP and histone H2B, but it is not sure that this is physiologically relevant (PubMed:14645249). {ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:16704422, ECO:0000269|PubMed:17709393, ECO:0000269|PubMed:18286207, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:20679487}.; FUNCTION: [Isoform 2]: Phosphorylates 'Thr-18' of p53/TP53, as well as histone H3. Reduces p53/TP53 ubiquitination by MDM2, promotes p53/TP53 acetylation by EP300 and thereby increases p53/TP53 stability and activity. {ECO:0000269|PubMed:16704422}. |
Q86YA3 | ZGRF1 | S793 | ochoa | 5'-3' DNA helicase ZGRF1 (EC 5.6.2.3) (GRF-type zinc finger domain-containing protein 1) | 5'-3' DNA helicase which is recruited to sites of DNA damage and promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination (HR) (PubMed:32640219, PubMed:34552057). Promotes HR by directly stimulating RAD51-mediated strand exchange activity (PubMed:32640219). Not required to load RAD51 at sites of DNA damage but promotes recombinational repair after RAD51 recruitment (PubMed:32640219). Also promotes HR by positively regulating EXO1-mediated DNA end resection of double-strand breaks (PubMed:34552057). Required for recruitment of replication protein RPA2 to DNA damage sites (PubMed:34552057). Promotes the initiation of the G2/M checkpoint but not its maintenance (PubMed:34552057). Catalyzes Holliday junction branch migration and dissociation of D-loops and DNA flaps (PubMed:32640219). {ECO:0000269|PubMed:32640219, ECO:0000269|PubMed:34552057}. |
Q86YC2 | PALB2 | S190 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YC2 | PALB2 | S285 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YC2 | PALB2 | S357 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YC2 | PALB2 | S387 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YC2 | PALB2 | S781 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YP4 | GATAD2A | S340 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YP4 | GATAD2A | S598 | ochoa | Transcriptional repressor p66-alpha (Hp66alpha) (GATA zinc finger domain-containing protein 2A) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2B (PubMed:16415179). {ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q86YR5 | GPSM1 | S387 | ochoa | G-protein-signaling modulator 1 (Activator of G-protein signaling 3) | Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}. |
Q86YR5 | GPSM1 | S545 | ochoa | G-protein-signaling modulator 1 (Activator of G-protein signaling 3) | Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}. |
Q86YS6 | RAB43 | S193 | ochoa | Ras-related protein Rab-43 (Ras-related protein Rab-41) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. The low intrinsic GTPase activity of RAB43 is activated by USP6NL. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for the structural integrity of the Golgi complex. Plays a role in the maturation of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis. {ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057, ECO:0000269|PubMed:18664496, ECO:0000269|PubMed:21255211}. |
Q86YS7 | C2CD5 | S250 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q86YS7 | C2CD5 | S260 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q86YT6 | MIB1 | S805 | ochoa | E3 ubiquitin-protein ligase MIB1 (EC 2.3.2.27) (DAPK-interacting protein 1) (DIP-1) (Mind bomb homolog 1) (RING-type E3 ubiquitin transferase MIB1) (Zinc finger ZZ type with ankyrin repeat domain protein 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of Delta receptors, which act as ligands of Notch proteins. Positively regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors. Probably mediates ubiquitination and subsequent proteasomal degradation of DAPK1, thereby antagonizing anti-apoptotic effects of DAPK1 to promote TNF-induced apoptosis (By similarity). Involved in ubiquitination of centriolar satellite CEP131, CEP290 and PCM1 proteins and hence inhibits primary cilium formation in proliferating cells. Mediates 'Lys-63'-linked polyubiquitination of TBK1, which probably participates in kinase activation. {ECO:0000250, ECO:0000269|PubMed:24121310}.; FUNCTION: (Microbial infection) During adenovirus infection, mediates ubiquitination of Core-capsid bridging protein. This allows viral genome delivery into nucleus for infection. {ECO:0000269|PubMed:31851912}. |
Q86YV5 | PRAG1 | S285 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8HWS3 | RFX6 | S21 | ochoa | DNA-binding protein RFX6 (Regulatory factor X 6) (Regulatory factor X domain-containing protein 1) | Transcription factor required to direct islet cell differentiation during endocrine pancreas development. Specifically required for the differentiation of 4 of the 5 islet cell types and for the production of insulin (PubMed:20148032, PubMed:25497100). Not required for pancreatic PP (polypeptide-producing) cells differentiation. Acts downstream of NEUROG3 and regulates the transcription factors involved in beta-cell maturation and function, thereby restricting the expression of the beta-cell differentiation and specification genes, and thus the beta-cell fate choice. Activates transcription by forming a heterodimer with RFX3 and binding to the X-box in the promoter of target genes (PubMed:20148032). Involved in glucose-stimulated insulin secretion by promoting insulin and L-type calcium channel gene transcription (PubMed:25497100). {ECO:0000269|PubMed:20148032, ECO:0000269|PubMed:25497100}. |
Q8IU60 | DCP2 | S284 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IU60 | DCP2 | S329 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IU81 | IRF2BP1 | S125 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IU81 | IRF2BP1 | S186 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IUD2 | ERC1 | S110 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IUD6 | RNF135 | S184 | ochoa | E3 ubiquitin-protein ligase RNF135 (EC 2.3.2.27) (RIG-I E3 ubiquitin ligase) (REUL) (RING finger protein 135) (RING finger protein leading to RIG-I activation) (Riplet) (RING-type E3 ubiquitin transferase RNF135) | E2-dependent E3 ubiquitin-protein ligase that functions as a RIGI coreceptor in the sensing of viral RNAs in cell cytoplasm and the activation of the antiviral innate immune response (PubMed:19017631, PubMed:19484123, PubMed:21147464, PubMed:23950712, PubMed:28469175, PubMed:31006531). Together with the UBE2D3, UBE2N and UB2V1 E2 ligases, catalyzes the 'Lys-63'-linked polyubiquitination of RIGI oligomerized on viral RNAs, an essential step in the activation of the RIG-I signaling pathway (PubMed:19017631, PubMed:21147464, PubMed:28469175, PubMed:31006531). Through a ubiquitin-independent parallel mechanism, which consists in bridging RIGI filaments forming on longer viral RNAs, further activates the RIG-I signaling pathway (PubMed:31006531). This second mechanism that synergizes with the ubiquitin-dependent one would thereby allow an RNA length-dependent regulation of the RIG-I signaling pathway (Probable). Associated with the E2 ligase UBE2N, also constitutively synthesizes unanchored 'Lys-63'-linked polyubiquitin chains that may also activate the RIG-I signaling pathway (PubMed:28469175, PubMed:31006531). {ECO:0000269|PubMed:19017631, ECO:0000269|PubMed:19484123, ECO:0000269|PubMed:21147464, ECO:0000269|PubMed:23950712, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:31006531, ECO:0000305|PubMed:31006531}. |
Q8IUG5 | MYO18B | S2226 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IUG5 | MYO18B | S2309 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IV32 | CCDC71 | S208 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IV45 | UNC5CL | S498 | ochoa | UNC5C-like protein (Protein unc-5 homolog C-like) (ZU5 and death domain-containing protein) | Inhibits NF-kappa-B-dependent transcription by impairing NF-kappa-B binding to its targets. {ECO:0000269|PubMed:14769797}. |
Q8IVD9 | NUDCD3 | S340 | ochoa | NudC domain-containing protein 3 | None |
Q8IVF2 | AHNAK2 | S1710 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S3408 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4185 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4477 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4785 | ochoa | Protein AHNAK2 | None |
Q8IVF5 | TIAM2 | S1583 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IVH2 | FOXP4 | S57 | ochoa | Forkhead box protein P4 (Fork head-related protein-like A) | Transcriptional repressor that represses lung-specific expression. {ECO:0000250}. |
Q8IVH2 | FOXP4 | S86 | ochoa | Forkhead box protein P4 (Fork head-related protein-like A) | Transcriptional repressor that represses lung-specific expression. {ECO:0000250}. |
Q8IVH2 | FOXP4 | S554 | ochoa | Forkhead box protein P4 (Fork head-related protein-like A) | Transcriptional repressor that represses lung-specific expression. {ECO:0000250}. |
Q8IVL0 | NAV3 | S654 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL1 | NAV2 | S481 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1549 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S1559 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVL1 | NAV2 | S2462 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IVT2 | MISP | S78 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IVT5 | KSR1 | S334 | ochoa | Kinase suppressor of Ras 1 (EC 2.7.11.1) | Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}. |
Q8IVW6 | ARID3B | S165 | ochoa | AT-rich interactive domain-containing protein 3B (ARID domain-containing protein 3B) (Bright and dead ringer protein) (Bright-like protein) | Transcription factor which may be involved in neuroblastoma growth and malignant transformation. Favors nuclear targeting of ARID3A. {ECO:0000269|PubMed:16951138, ECO:0000269|PubMed:17400556}. |
Q8IW35 | CEP97 | S314 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IW35 | CEP97 | S825 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IW50 | FAM219A | S47 | ochoa | Protein FAM219A | None |
Q8IW50 | FAM219A | S72 | ochoa | Protein FAM219A | None |
Q8IW50 | FAM219A | S102 | ochoa | Protein FAM219A | None |
Q8IW93 | ARHGEF19 | S336 | ochoa | Rho guanine nucleotide exchange factor 19 (Ephexin-2) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. {ECO:0000250}. |
Q8IWC1 | MAP7D3 | S322 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWC1 | MAP7D3 | S533 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWC1 | MAP7D3 | S770 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWE2 | FAM114A1 | S120 | ochoa | Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) | May play a role in neuronal cell development. {ECO:0000250}. |
Q8IWE5 | PLEKHM2 | S559 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWJ2 | GCC2 | S935 | ochoa | GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) | Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}. |
Q8IWJ2 | GCC2 | S1483 | ochoa | GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) | Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}. |
Q8IWQ3 | BRSK2 | S393 | ochoa | Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}. |
Q8IWQ3 | BRSK2 | S489 | ochoa | Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}. |
Q8IWT3 | CUL9 | S2436 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IWV8 | UBR2 | S1006 | ochoa | E3 ubiquitin-protein ligase UBR2 (EC 2.3.2.27) (N-recognin-2) (Ubiquitin-protein ligase E3-alpha-2) (Ubiquitin-protein ligase E3-alpha-II) | E3 ubiquitin-protein ligase which is a component of the N-end rule pathway (PubMed:15548684, PubMed:20835242, PubMed:28392261). Recognizes and binds to proteins bearing specific N-terminal residues (N-degrons) that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation (PubMed:20835242, PubMed:28392261). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:20835242, PubMed:28392261). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:20835242). In contrast, it strongly binds methylated N-degrons (PubMed:28392261). Plays a critical role in chromatin inactivation and chromosome-wide transcriptional silencing during meiosis via ubiquitination of histone H2A (By similarity). Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (PubMed:20298436). Required for spermatogenesis, promotes, with Tex19.1, SPO11-dependent recombination foci to accumulate and drive robust homologous chromosome synapsis (By similarity). Polyubiquitinates LINE-1 retrotransposon encoded, LIRE1, which induces degradation, inhibiting LINE-1 retrotransposon mobilization (By similarity). Catalyzes ubiquitination and degradation of the N-terminal part of NLRP1 following NLRP1 activation by pathogens and other damage-associated signals: ubiquitination promotes degradation of the N-terminal part and subsequent release of the cleaved C-terminal part of NLRP1, which polymerizes and forms the NLRP1 inflammasome followed by host cell pyroptosis (By similarity). Plays a role in T-cell receptor signaling by inducing 'Lys-63'-linked ubiquitination of lymphocyte cell-specific kinase LCK (PubMed:38225265). This activity is regulated by DUSP22, which induces 'Lys-48'-linked ubiquitination of UBR2, leading to its proteasomal degradation by SCF E3 ubiquitin-protein ligase complex (PubMed:38225265). {ECO:0000250|UniProtKB:Q6WKZ8, ECO:0000269|PubMed:15548684, ECO:0000269|PubMed:20298436, ECO:0000269|PubMed:20835242, ECO:0000269|PubMed:28392261, ECO:0000269|PubMed:38225265}. |
Q8IWX8 | CHERP | S186 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IWZ3 | ANKHD1 | S740 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ3 | ANKHD1 | S1679 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ8 | SUGP1 | S61 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IWZ8 | SUGP1 | S409 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX01 | SUGP2 | S277 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IX01 | SUGP2 | S603 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IX03 | WWC1 | S931 | ochoa|psp | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IX07 | ZFPM1 | S384 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IX15 | HOMEZ | S351 | ochoa | Homeobox and leucine zipper protein Homez (Homeodomain leucine zipper-containing factor) | May function as a transcriptional regulator. |
Q8IX18 | DHX40 | S197 | ochoa | Probable ATP-dependent RNA helicase DHX40 (EC 3.6.4.13) (DEAH box protein 40) (Protein PAD) | Probable ATP-dependent RNA helicase. {ECO:0000250}. |
Q8IX21 | SLF2 | S68 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IX90 | SKA3 | S152 | ochoa | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8IX90 | SKA3 | S267 | ochoa | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8IX90 | SKA3 | S283 | ochoa|psp | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8IXF0 | NPAS3 | S639 | ochoa | Neuronal PAS domain-containing protein 3 (Neuronal PAS3) (Basic-helix-loop-helix-PAS protein MOP6) (Class E basic helix-loop-helix protein 12) (bHLHe12) (Member of PAS protein 6) (PAS domain-containing protein 6) | May play a broad role in neurogenesis. May control regulatory pathways relevant to schizophrenia and to psychotic illness (By similarity). {ECO:0000250}. |
Q8IXI1 | RHOT2 | S325 | ochoa | Mitochondrial Rho GTPase 2 (MIRO-2) (hMiro-2) (EC 3.6.5.-) (Ras homolog gene family member T2) | Atypical mitochondrial nucleoside-triphosphatase (NTPase) involved in mitochondrial trafficking (PubMed:16630562, PubMed:22396657, PubMed:30513825). Probably involved in control of anterograde transport of mitochondria and their subcellular distribution (PubMed:22396657). Can hydrolyze GTP (By similarity). Can hydrolyze ATP and UTP (PubMed:30513825). {ECO:0000250|UniProtKB:Q8IXI2, ECO:0000269|PubMed:16630562, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:30513825}. |
Q8IXJ9 | ASXL1 | S51 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IXJ9 | ASXL1 | S503 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IXM2 | BACC1 | S36 | ochoa | BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) | Component of chromatin complexes such as the MLL1/MLL and NURF complexes. |
Q8IXM6 | NRM | S185 | ochoa | Nurim (Nuclear envelope membrane protein) (Nuclear rim protein) | None |
Q8IXS8 | HYCC2 | S398 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IXS8 | HYCC2 | S508 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IXT5 | RBM12B | S254 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8IXX5 | TMEM183A | S336 | ochoa | Transmembrane protein 183A | None |
Q8IXZ2 | ZC3H3 | S211 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8IXZ2 | ZC3H3 | S320 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8IY22 | CMIP | S349 | ochoa | C-Maf-inducing protein (c-Mip) (Truncated c-Maf-inducing protein) (Tc-Mip) | Plays a role in T-cell signaling pathway. Isoform 2 may play a role in T-helper 2 (Th2) signaling pathway and seems to represent the first proximal signaling protein that links T-cell receptor-mediated signal to the activation of c-Maf Th2 specific factor. {ECO:0000269|PubMed:12939343, ECO:0000269|PubMed:15128042}. |
Q8IY22 | CMIP | S377 | ochoa | C-Maf-inducing protein (c-Mip) (Truncated c-Maf-inducing protein) (Tc-Mip) | Plays a role in T-cell signaling pathway. Isoform 2 may play a role in T-helper 2 (Th2) signaling pathway and seems to represent the first proximal signaling protein that links T-cell receptor-mediated signal to the activation of c-Maf Th2 specific factor. {ECO:0000269|PubMed:12939343, ECO:0000269|PubMed:15128042}. |
Q8IY63 | AMOTL1 | S924 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IY63 | AMOTL1 | S930 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IY92 | SLX4 | S169 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S884 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1075 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1185 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1244 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1469 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYB4 | PEX5L | S447 | ochoa | PEX5-related protein (PEX2-related protein) (PEX5-like protein) (Peroxin-5-related protein) (Peroxisome biogenesis factor 5-like) (Tetratricopeptide repeat-containing Rab8b-interacting protein) (Pex5Rp) (TRIP8b) | Accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, regulating their cell-surface expression and cyclic nucleotide dependence. {ECO:0000250|UniProtKB:Q8C437}. |
Q8IYB5 | SMAP1 | S207 | ochoa | Stromal membrane-associated protein 1 | GTPase activating protein that acts on ARF6. Plays a role in clathrin-dependent endocytosis. May play a role in erythropoiesis (By similarity). {ECO:0000250}. |
Q8IYB7 | DIS3L2 | S31 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IYD8 | FANCM | S997 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYD8 | FANCM | S1322 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYD8 | FANCM | S1448 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYD8 | FANCM | S1571 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYH5 | ZZZ3 | S135 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYH5 | ZZZ3 | S391 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYH5 | ZZZ3 | S426 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYI6 | EXOC8 | S372 | ochoa | Exocyst complex component 8 (Exocyst complex 84 kDa subunit) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. |
Q8IYM9 | TRIM22 | S87 | ochoa | E3 ubiquitin-protein ligase TRIM22 (EC 2.3.2.27) (50 kDa-stimulated trans-acting factor) (RING finger protein 94) (RING-type E3 ubiquitin transferase TRIM22) (Staf-50) (Tripartite motif-containing protein 22) | Interferon-induced E3 ubiquitin ligase that plays important roles in innate and adaptive immunity (PubMed:25683609, PubMed:35777501). Restricts the replication of many viruses including HIV-1, encephalomyocarditis virus (EMCV), hepatitis B virus (HBV), hepatitis C virus (HCV) or Zika virus (ZIKV) (PubMed:25683609, PubMed:35777501, PubMed:36042495). Mechanistically, negatively regulates HCV replication by promoting ubiquitination and subsequent degradation of viral NS5A (PubMed:25683609). Also acts by promoting the degradation of Zika virus NS1 and NS3 proteins through proteasomal degradation (PubMed:36042495). Acts as a suppressor of basal HIV-1 LTR-driven transcription by preventing Sp1 binding to the HIV-1 promoter (PubMed:26683615). Also plays a role in antiviral immunity by co-regulating together with NT5C2 the RIGI/NF-kappa-B pathway by promoting 'Lys-63'-linked ubiquitination of RIGI, while NT5C2 is responsible for 'Lys-48'-linked ubiquitination of RIGI (PubMed:36159777). Participates in adaptive immunity by suppressing the amount of MHC class II protein in a negative feedback manner in order to limit the extent of MHC class II induction (PubMed:35777501). {ECO:0000269|PubMed:18389079, ECO:0000269|PubMed:18656448, ECO:0000269|PubMed:19218198, ECO:0000269|PubMed:19585648, ECO:0000269|PubMed:25683609, ECO:0000269|PubMed:26683615, ECO:0000269|PubMed:35777501, ECO:0000269|PubMed:36042495, ECO:0000269|PubMed:36159777}. |
Q8IYW5 | RNF168 | S470 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZ07 | ANKRD13A | S229 | ochoa | Ankyrin repeat domain-containing protein 13A (Protein KE03) | Ubiquitin-binding protein that specifically recognizes and binds 'Lys-63'-linked ubiquitin. Does not bind 'Lys-48'-linked ubiquitin. Positively regulates the internalization of ligand-activated EGFR by binding to the Ub moiety of ubiquitinated EGFR at the cell membrane. {ECO:0000269|PubMed:22298428}. |
Q8IZ26 | ZNF34 | S113 | ochoa | Zinc finger protein 34 (Zinc finger protein KOX32) | May be involved in transcriptional regulation. |
Q8IZ73 | RPUSD2 | S436 | ochoa | Pseudouridylate synthase RPUSD2 (EC 5.4.99.-) (RNA pseudouridylate synthase domain-containing protein 2) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs. {ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:35051350}. |
Q8IZC7 | ZNF101 | S152 | ochoa | Zinc finger protein 101 (Zinc finger protein HZF12) | May be involved in transcriptional regulation. |
Q8IZC7 | ZNF101 | S180 | ochoa | Zinc finger protein 101 (Zinc finger protein HZF12) | May be involved in transcriptional regulation. |
Q8IZD2 | KMT2E | S531 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD2 | KMT2E | S854 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD2 | KMT2E | S1002 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD4 | DCP1B | S67 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8IZD4 | DCP1B | S147 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8IZJ1 | UNC5B | S471 | ochoa | Netrin receptor UNC5B (Protein unc-5 homolog 2) (Protein unc-5 homolog B) (p53-regulated receptor for death and life protein 1) (p53RDL1) | Receptor for netrin required for axon guidance. Mediates axon repulsion of neuronal growth cones in the developing nervous system upon ligand binding. Axon repulsion in growth cones may be caused by its association with DCC that may trigger signaling for repulsion (By similarity). Functions as a netrin receptor that negatively regulates vascular branching during angiogenesis. Mediates retraction of tip cell filopodia on endothelial growth cones in response to netrin (By similarity). It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand (PubMed:12598906). Mediates apoptosis by activating DAPK1. In the absence of NTN1, activates DAPK1 by reducing its autoinhibitory phosphorylation at Ser-308 thereby increasing its catalytic activity (By similarity). {ECO:0000250|UniProtKB:O08722, ECO:0000250|UniProtKB:Q8K1S3, ECO:0000269|PubMed:12598906}. |
Q8IZQ1 | WDFY3 | S3501 | ochoa | WD repeat and FYVE domain-containing protein 3 (Autophagy-linked FYVE protein) (Alfy) | Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1 and LC3 (PubMed:20417604). Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Important for normal brain development. Essential for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Involved in the ability of neural cells to respond to guidance cues. Required for cortical neurons to respond to the trophic effects of netrin-1/NTN1 (By similarity). Regulates Wnt signaling through the removal of DVL3 aggregates, likely in an autophagy-dependent manner. This process may be important for the determination of brain size during embryonic development (PubMed:27008544). May regulate osteoclastogenesis by acting on the TNFSF11/RANKL - TRAF6 pathway (By similarity). After cytokinetic abscission, involved in midbody remnant degradation (PubMed:24128730). In vitro strongly binds to phosphatidylinositol 3-phosphate (PtdIns3P) (PubMed:15292400). {ECO:0000250|UniProtKB:Q6VNB8, ECO:0000269|PubMed:15292400, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20417604, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:27008544}. |
Q8IZT6 | ASPM | S190 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZT6 | ASPM | S367 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZT6 | ASPM | S392 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZT6 | ASPM | S446 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZU2 | WDR17 | S333 | ochoa | WD repeat-containing protein 17 | None |
Q8IZW8 | TNS4 | S82 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8IZW8 | TNS4 | S169 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8IZW8 | TNS4 | S571 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N0X7 | SPART | S470 | ochoa | Spartin (Spastic paraplegia 20 protein) (Trans-activated by hepatitis C virus core protein 1) | Lipophagy receptor that plays an important role in lipid droplet (LD) turnover in motor neurons (PubMed:37443287). Localizes to LDs and interacts with components of the autophagy machinery, such as MAP1LC3A/C proteins to deliver LDs to autophagosomes for degradation via lipophagy (PubMed:37443287). Lipid transfer protein required for lipid droplet degradation, including by lipophagy (PubMed:38190532). Can bind and transfer all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters but the direction of lipid transfer by spartin and its cargos are unknown (PubMed:38190532). May be implicated in endosomal trafficking, or microtubule dynamics, or both. Participates in cytokinesis (PubMed:20719964). {ECO:0000269|PubMed:20719964, ECO:0000269|PubMed:37443287, ECO:0000269|PubMed:38190532}. |
Q8N0Z3 | SPICE1 | S819 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N122 | RPTOR | S696 | ochoa|psp | Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) | Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}. |
Q8N137 | CNTROB | S62 | ochoa | Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) | Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}. |
Q8N157 | AHI1 | S331 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N157 | AHI1 | S1005 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N1F7 | NUP93 | S364 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N1F7 | NUP93 | S430 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N1F7 | NUP93 | S647 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N1F7 | NUP93 | S767 | ochoa | Nuclear pore complex protein Nup93 (93 kDa nucleoporin) (Nucleoporin Nup93) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor nucleoporins, but not NUP153 and TPR, to the NPC. During renal development, regulates podocyte migration and proliferation through SMAD4 signaling (PubMed:26878725). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:15703211, ECO:0000269|PubMed:26878725, ECO:0000269|PubMed:9348540}. |
Q8N1G0 | ZNF687 | S519 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G0 | ZNF687 | S1057 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G0 | ZNF687 | S1146 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G0 | ZNF687 | S1211 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G1 | REXO1 | S794 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N205 | SYNE4 | S331 | ochoa | Nesprin-4 (KASH domain-containing protein 4) (KASH4) (Nuclear envelope spectrin repeat protein 4) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (By similarity). Behaves as a kinesin cargo, providing a functional binding site for kinesin-1 at the nuclear envelope. Hence may contribute to the establishment of secretory epithelial morphology by promoting kinesin-dependent apical migration of the centrosome and Golgi apparatus and basal localization of the nucleus (By similarity). {ECO:0000250}. |
Q8N264 | ARHGAP24 | S415 | ochoa|psp | Rho GTPase-activating protein 24 (Filamin-A-associated RhoGAP) (FilGAP) (RAC1- and CDC42-specific GTPase-activating protein of 72 kDa) (RC-GAP72) (Rho-type GTPase-activating protein 24) (RhoGAP of 73 kDa) (Sarcoma antigen NY-SAR-88) (p73RhoGAP) | Rho GTPase-activating protein involved in cell polarity, cell morphology and cytoskeletal organization. Acts as a GTPase activator for the Rac-type GTPase by converting it to an inactive GDP-bound state. Controls actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity. Able to suppress RAC1 and CDC42 activity in vitro. Overexpression induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Isoform 2 is a vascular cell-specific GAP involved in modulation of angiogenesis. {ECO:0000269|PubMed:15302923, ECO:0000269|PubMed:15611138, ECO:0000269|PubMed:16862148}. |
Q8N2G6 | ZCCHC24 | S65 | ochoa | Zinc finger CCHC domain-containing protein 24 | None |
Q8N2G6 | ZCCHC24 | S93 | ochoa | Zinc finger CCHC domain-containing protein 24 | None |
Q8N2G8 | GHDC | S467 | ochoa | GH3 domain-containing protein | None |
Q8N2S1 | LTBP4 | S300 | ochoa | Latent-transforming growth factor beta-binding protein 4 (LTBP-4) | Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space. Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta. {ECO:0000250|UniProtKB:Q14766}. |
Q8N302 | AGGF1 | S329 | ochoa | Angiogenic factor with G patch and FHA domains 1 (Angiogenic factor VG5Q) (hVG5Q) (G patch domain-containing protein 7) (Vasculogenesis gene on 5q protein) | Promotes angiogenesis and the proliferation of endothelial cells. Able to bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. {ECO:0000269|PubMed:14961121}. |
Q8N350 | CBARP | S304 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N3K9 | CMYA5 | S142 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3K9 | CMYA5 | S168 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3K9 | CMYA5 | S2452 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N4C6 | NIN | S1970 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N4C8 | MINK1 | S927 | ochoa | Misshapen-like kinase 1 (EC 2.7.11.1) (GCK family kinase MiNK) (MAPK/ERK kinase kinase kinase 6) (MEK kinase kinase 6) (MEKKK 6) (Misshapen/NIK-related kinase) (Mitogen-activated protein kinase kinase kinase kinase 6) | Serine/threonine kinase which acts as a negative regulator of Ras-related Rap2-mediated signal transduction to control neuronal structure and AMPA receptor trafficking (PubMed:10708748, PubMed:16337592). Required for normal synaptic density, dendrite complexity, as well as surface AMPA receptor expression in hippocampal neurons (By similarity). Can activate the JNK and MAPK14/p38 pathways and mediates stimulation of the stress-activated protein kinase MAPK14/p38 MAPK downstream of the Raf/ERK pathway. Phosphorylates TANC1 upon stimulation by RAP2A, MBP and SMAD1 (PubMed:18930710, PubMed:21690388). Has an essential function in negative selection of thymocytes, perhaps by coupling NCK1 to activation of JNK1 (By similarity). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000250|UniProtKB:F1LP90, ECO:0000250|UniProtKB:Q9JM52, ECO:0000269|PubMed:10708748, ECO:0000269|PubMed:16337592, ECO:0000269|PubMed:18930710, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}.; FUNCTION: Isoform 4 can activate the JNK pathway. Involved in the regulation of actin cytoskeleton reorganization, cell-matrix adhesion, cell-cell adhesion and cell migration. |
Q8N4N8 | KIF2B | S147 | psp | Kinesin-like protein KIF2B | Plus end-directed microtubule-dependent motor required for spindle assembly and chromosome movement. Has microtubule depolymerization activity (PubMed:17538014). Plays a role in chromosome congression (PubMed:23891108). {ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:23891108}. |
Q8N4X5 | AFAP1L2 | S213 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N531 | FBXL6 | S431 | ochoa | F-box/LRR-repeat protein 6 (F-box and leucine-rich repeat protein 6) (F-box protein FBL6) (FBL6A) | Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. {ECO:0000250}. |
Q8N554 | ZNF276 | S160 | ochoa | Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) | May be involved in transcriptional regulation. |
Q8N594 | MPND | S123 | ochoa | MPN domain-containing protein (EC 3.4.-.-) | Probable protease (By similarity). Acts as a sensor of N(6)-methyladenosine methylation on DNA (m6A): recognizes and binds m6A DNA, leading to its degradation (PubMed:30982744). Binds only double strand DNA (dsDNA) in a sequence-independent manner (By similarity). {ECO:0000250|UniProtKB:Q3TV65, ECO:0000250|UniProtKB:Q5VVJ2, ECO:0000269|PubMed:30982744}. |
Q8N5C8 | TAB3 | S60 | ochoa|psp | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N5C8 | TAB3 | S80 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N5D0 | WDTC1 | S227 | ochoa | WD and tetratricopeptide repeats protein 1 | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16964240}. |
Q8N5D0 | WDTC1 | S353 | ochoa | WD and tetratricopeptide repeats protein 1 | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16964240}. |
Q8N5I9 | NOPCHAP1 | S66 | ochoa | NOP protein chaperone 1 | Client-loading PAQosome/R2TP complex cofactor that selects NOP58 to promote box C/D small nucleolar ribonucleoprotein (snoRNP) assembly. Acts as a bridge between NOP58 and the R2TP complex via RUVBL1:RUVBL2. {ECO:0000269|PubMed:33367824}. |
Q8N5U6 | RNF10 | S128 | ochoa | E3 ubiquitin-protein ligase RNF10 (EC 2.3.2.27) (RING finger protein 10) | E3 ubiquitin-protein ligase that catalyzes monoubiquitination of 40S ribosomal proteins RPS2/us5 and RPS3/us3 in response to ribosome stalling (PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): RNF10 acts by mediating monoubiquitination of RPS2/us5 and RPS3/us3, promoting their degradation by the proteasome (PubMed:34348161, PubMed:34469731). Also promotes ubiquitination of 40S ribosomal proteins in response to ribosome stalling during translation elongation (PubMed:34348161). The action of RNF10 in iRQC is counteracted by USP10 (PubMed:34469731). May also act as a transcriptional factor involved in the regulation of MAG (Myelin-associated glycoprotein) expression (By similarity). Acts as a regulator of Schwann cell differentiation and myelination (By similarity). {ECO:0000250|UniProtKB:Q5XI59, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731}. |
Q8N6Q8 | METTL25 | S357 | ochoa | Probable methyltransferase-like protein 25 (EC 2.1.1.-) | Probable methyltransferase. {ECO:0000305}. |
Q8N6R0 | METTL13 | S289 | ochoa | eEF1A lysine and N-terminal methyltransferase (eEF1A-KNMT) (Methyltransferase-like protein 13) [Includes: eEF1A lysine methyltransferase (EC 2.1.1.-); eEF1A N-terminal methyltransferase (EC 2.1.1.-)] | Dual methyltransferase that catalyzes methylation of elongation factor 1-alpha (EEF1A1 and EEF1A2) at two different positions, and is therefore involved in the regulation of mRNA translation (PubMed:30143613, PubMed:30612740). Via its C-terminus, methylates EEF1A1 and EEF1A2 at the N-terminal residue 'Gly-2' (PubMed:30143613). Via its N-terminus dimethylates EEF1A1 and EEF1A2 at residue 'Lys-55' (PubMed:30143613, PubMed:30612740). Has no activity towards core histones H2A, H2B, H3 and H4 (PubMed:30612740). {ECO:0000269|PubMed:30143613, ECO:0000269|PubMed:30612740}. |
Q8N6T3 | ARFGAP1 | S304 | ochoa | ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) | GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}. |
Q8N7R7 | CCNYL1 | S112 | ochoa | Cyclin-Y-like protein 1 | Key regulator of Wnt signaling implicated in various biological processes including male fertility, embryonic neurogenesis and cortex development. Activates the cyclin-dependent kinase CDK16, and promotes sperm maturation. {ECO:0000250|UniProtKB:D3YUJ3}. |
Q8N7X1 | RBMXL3 | S58 | ochoa | RNA-binding motif protein, X-linked-like-3 | None |
Q8N883 | ZNF614 | S92 | ochoa | Zinc finger protein 614 | May be involved in transcriptional regulation. |
Q8N884 | CGAS | S305 | ochoa|psp | Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) | Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}. |
Q8N8E3 | CEP112 | S195 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8N8S7 | ENAH | S508 | ochoa | Protein enabled homolog | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. ENAH induces the formation of F-actin rich outgrowths in fibroblasts. Acts synergistically with BAIAP2-alpha and downstream of NTN1 to promote filipodia formation (By similarity). {ECO:0000250, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:18158903}. |
Q8N8Z6 | DCBLD1 | S488 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 1 | None |
Q8N9B5 | JMY | S889 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8N9M1 | C19orf47 | S151 | ochoa | Uncharacterized protein C19orf47 | None |
Q8N9M1 | C19orf47 | S306 | ochoa | Uncharacterized protein C19orf47 | None |
Q8N9M5 | TMEM102 | S218 | ochoa | Transmembrane protein 102 (Common beta-chain associated protein) (CBAP) | Selectively involved in CSF2 deprivation-induced apoptosis via a mitochondria-dependent pathway. {ECO:0000269|PubMed:17828305}. |
Q8N9N5 | BANP | S100 | ochoa | Protein BANP (BEN domain-containing protein 1) (Btg3-associated nuclear protein) (Scaffold/matrix-associated region-1-binding protein) | Controls V(D)J recombination during T-cell development by repressing T-cell receptor (TCR) beta enhancer function (By similarity). Binds to scaffold/matrix attachment region beta (S/MARbeta), an ATC-rich DNA sequence located upstream of the TCR beta enhancer (By similarity). Represses cyclin D1 transcription by recruiting HDAC1 to its promoter, thereby diminishing H3K9ac, H3S10ph and H4K8ac levels (PubMed:16166625). Promotes TP53 activation, which causes cell cycle arrest (By similarity). Plays a role in the regulation of alternative splicing (PubMed:26080397). Binds to CD44 pre-mRNA and negatively regulates the inclusion of CD44 proximal variable exons v2-v6 but has no effect on distal variable exons v7-v10 (PubMed:26080397). {ECO:0000250|UniProtKB:Q8VBU8, ECO:0000269|PubMed:16166625, ECO:0000269|PubMed:26080397}. |
Q8N9U0 | TC2N | S137 | ochoa | Tandem C2 domains nuclear protein (Membrane targeting tandem C2 domain-containing protein 1) (Tandem C2 protein in nucleus) (Tac2-N) | None |
Q8NA03 | FSIP1 | S341 | ochoa | Fibrous sheath-interacting protein 1 | None |
Q8NAP3 | ZBTB38 | S309 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NAP3 | ZBTB38 | S1021 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NAP3 | ZBTB38 | S1151 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NB14 | USP38 | S680 | ochoa | Ubiquitin carboxyl-terminal hydrolase 38 (EC 3.4.19.12) (Deubiquitinating enzyme 38) (HP43.8KD) (Ubiquitin thioesterase 38) (Ubiquitin-specific-processing protease 38) | Deubiquitinating enzyme that plays a role in various cellular processes, including DNA repair, cell cycle regulation, and immune response (PubMed:22689415, PubMed:30497519, PubMed:31874856, PubMed:35238669). Plays a role in the inhibition of type I interferon signaling by mediating the 'Lys-33' to 'Lys-48' ubiquitination transition of TBK1 leading to its degradation (PubMed:27692986). Cleaves the ubiquitin chain from the histone demethylase LSD1/KDM1A and prevents it from degradation by the 26S proteasome, thus maintaining LSD1 protein level in cells (PubMed:30497519). Plays a role in the DNA damage response by regulating the deacetylase activity of HDAC1 (PubMed:31874856). Mechanistically, removes the 'Lys-63'-linked ubiquitin chain promoting the deacetylase activity of HDAC1 in response to DNA damage (PubMed:31874856). Also acts as a specific deubiquitinase of histone deacetylase 3/HDAC3 and cleaves its 'Lys-63'-linked ubiquitin chains to lower its histone deacetylase activity (PubMed:32404892). Regulates MYC levels and cell proliferation via antagonizing ubiquitin E3 ligase FBXW7 thereby preventing MYC 'Lys-48'-linked ubiquitination and degradation (PubMed:34102342). Participates in antiviral response by removing both 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of Zika virus envelope protein E (PubMed:34696459). Constitutively associated with IL-33R/IL1RL1, deconjugates its 'Lys-27'-linked polyubiquitination resulting in its autophagic degradation (PubMed:35238669). {ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:27692986, ECO:0000269|PubMed:30497519, ECO:0000269|PubMed:31874856, ECO:0000269|PubMed:32404892, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34696459, ECO:0000269|PubMed:35238669}. |
Q8NB46 | ANKRD52 | S1028 | ochoa | Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit C (PP6-ARS-C) (Serine/threonine-protein phosphatase 6 regulatory subunit ARS-C) (Ankyrin repeat domain-containing protein 52) | Putative regulatory subunit of protein phosphatase 6 (PP6) that may be involved in the recognition of phosphoprotein substrates. |
Q8NB50 | ZFP62 | S97 | ochoa | Zinc finger protein 62 homolog (Zfp-62) | May play a role in differentiating skeletal muscle. {ECO:0000250}. |
Q8NB90 | AFG2A | S274 | ochoa | ATPase family gene 2 protein homolog A (EC 3.6.4.10) (AFG2 AAA ATPase homolog A) (Ribosome biogenesis protein SPATA5) (Spermatogenesis-associated factor protein) (Spermatogenesis-associated protein 5) | ATP-dependent chaperone part of the 55LCC heterohexameric ATPase complex which is chromatin-associated and promotes replisome proteostasis to maintain replication fork progression and genome stability. Required for replication fork progression, sister chromatid cohesion, and chromosome stability. The ATPase activity is specifically enhanced by replication fork DNA and is coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. Uses ATPase activity to process replisome substrates in S-phase, facilitating their proteolytic turnover from chromatin to ensure DNA replication and mitotic fidelity (PubMed:38554706). Plays an essential role in the cytoplasmic maturation steps of pre-60S ribosomal particles by promoting the release of shuttling protein RSL24D1/RLP24 from the pre-ribosomal particles (PubMed:35354024, PubMed:38554706). May be involved in morphological and functional mitochondrial transformations during spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q3UMC0, ECO:0000269|PubMed:35354024, ECO:0000269|PubMed:38554706}. |
Q8NBR9 | NDUFV1-DT | S42 | ochoa | Uncharacterized protein NDUFV1-DT (NDUFV1 divergent transcript) | None |
Q8NBT0 | POC1A | S70 | ochoa | POC1 centriolar protein homolog A (Pix2) (Proteome of centriole protein 1A) (WD repeat-containing protein 51A) | Plays an important role in centriole assembly and/or stability and ciliogenesis. Involved in early steps of centriole duplication, as well as in the later steps of centriole length control. Acts in concert with POC1B to ensure centriole integrity and proper mitotic spindle formation. {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:23015594}. |
Q8NBW4 | SLC38A9 | S99 | ochoa | Neutral amino acid transporter 9 (Solute carrier family 38 member 9) (Up-regulated in lung cancer 11) | Lysosomal amino acid transporter involved in the activation of mTORC1 in response to amino acid levels (PubMed:25561175, PubMed:25567906, PubMed:29053970). Probably acts as an amino acid sensor of the Rag GTPases and Ragulator complexes, 2 complexes involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids (PubMed:25567906, PubMed:29053970). Following activation by amino acids, the Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated (PubMed:25561175, PubMed:25567906). SLC38A9 mediates transport of amino acids with low capacity and specificity with a slight preference for polar amino acids (PubMed:25561175, PubMed:25567906). Acts as an arginine sensor (PubMed:25567906, PubMed:29053970, PubMed:31295473). Following activation by arginine binding, mediates transport of L-glutamine, leucine and tyrosine with high efficiency, and is required for the efficient utilization of these amino acids after lysosomal protein degradation (PubMed:29053970, PubMed:31295473). However, the transport mechanism is not well defined and the role of sodium is not clear (PubMed:25561175, PubMed:31295473). Can disassemble the lysosomal folliculin complex (LFC), and thereby triggers GAP activity of FLCN:FNIP2 toward RRAGC (PubMed:32868926). Acts as an cholesterol sensor that conveys increases in lysosomal cholesterol, leading to lysosomal recruitment and activation of mTORC1 via the Rag GTPases (PubMed:28336668). Guanine exchange factor (GEF) that, upon arginine binding, stimulates GDP release from RRAGA and therefore activates the Rag GTPase heterodimer and the mTORC1 pathway in response to nutrient sufficiency (PubMed:30181260). {ECO:0000269|PubMed:25561175, ECO:0000269|PubMed:25567906, ECO:0000269|PubMed:28336668, ECO:0000269|PubMed:29053970, ECO:0000269|PubMed:30181260, ECO:0000269|PubMed:31295473, ECO:0000269|PubMed:32868926, ECO:0000305|PubMed:31295473}. |
Q8NC24 | RELL2 | S187 | ochoa | RELT-like protein 2 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8NC26 | ZNF114 | S118 | ochoa | Zinc finger protein 114 | May be involved in transcriptional regulation. |
Q8NC51 | SERBP1 | S234 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NCD3 | HJURP | S412 | ochoa|psp | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCD3 | HJURP | S448 | ochoa|psp | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCD3 | HJURP | S595 | ochoa|psp | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCE0 | TSEN2 | S21 | ochoa | tRNA-splicing endonuclease subunit Sen2 (EC 4.6.1.16) (tRNA-intron endonuclease Sen2) (HsSen2) | Constitutes one of the two catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5'- and 3'-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3'-cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. Isoform 1 probably carries the active site for 5'-splice site cleavage. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. Isoform 2 is responsible for processing a yet unknown RNA substrate. The complex containing isoform 2 is not able to cleave pre-tRNAs properly, although it retains endonucleolytic activity. {ECO:0000269|PubMed:15109492}. |
Q8NCE0 | TSEN2 | S215 | ochoa | tRNA-splicing endonuclease subunit Sen2 (EC 4.6.1.16) (tRNA-intron endonuclease Sen2) (HsSen2) | Constitutes one of the two catalytic subunit of the tRNA-splicing endonuclease complex, a complex responsible for identification and cleavage of the splice sites in pre-tRNA. It cleaves pre-tRNA at the 5'- and 3'-splice sites to release the intron. The products are an intron and two tRNA half-molecules bearing 2',3'-cyclic phosphate and 5'-OH termini. There are no conserved sequences at the splice sites, but the intron is invariably located at the same site in the gene, placing the splice sites an invariant distance from the constant structural features of the tRNA body. Isoform 1 probably carries the active site for 5'-splice site cleavage. The tRNA splicing endonuclease is also involved in mRNA processing via its association with pre-mRNA 3'-end processing factors, establishing a link between pre-tRNA splicing and pre-mRNA 3'-end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events. Isoform 2 is responsible for processing a yet unknown RNA substrate. The complex containing isoform 2 is not able to cleave pre-tRNAs properly, although it retains endonucleolytic activity. {ECO:0000269|PubMed:15109492}. |
Q8NCF5 | NFATC2IP | S234 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCF5 | NFATC2IP | S300 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCF5 | NFATC2IP | S369 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCN4 | RNF169 | S427 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8NCP5 | ZBTB44 | S204 | ochoa | Zinc finger and BTB domain-containing protein 44 (BTB/POZ domain-containing protein 15) (Zinc finger protein 851) | May be involved in transcriptional regulation. {ECO:0000250}. |
Q8ND24 | RNF214 | S47 | ochoa | RING finger protein 214 | None |
Q8ND24 | RNF214 | S154 | ochoa | RING finger protein 214 | None |
Q8ND24 | RNF214 | S176 | ochoa | RING finger protein 214 | None |
Q8ND30 | PPFIBP2 | S40 | ochoa | Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q8ND82 | ZNF280C | S105 | ochoa | Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) | May function as a transcription factor. |
Q8NDB2 | BANK1 | S663 | ochoa | B-cell scaffold protein with ankyrin repeats | Involved in B-cell receptor (BCR)-induced Ca(2+) mobilization from intracellular stores. Promotes Lyn-mediated phosphorylation of IP3 receptors 1 and 2. {ECO:0000269|PubMed:11782428}. |
Q8NDI1 | EHBP1 | S408 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDI1 | EHBP1 | S710 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDI1 | EHBP1 | S759 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDI1 | EHBP1 | S964 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDT2 | RBM15B | S504 | ochoa | Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}. |
Q8NDT2 | RBM15B | S552 | ochoa | Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}. |
Q8NDV7 | TNRC6A | S739 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDX6 | ZNF740 | S44 | ochoa | Zinc finger protein 740 (OriLyt TD-element-binding protein 7) | May be involved in transcriptional regulation. |
Q8NE79 | POPDC1 | S323 | ochoa | Popeye domain-containing protein 1 (Popeye protein 1) | Cell adhesion molecule involved in the establishment and/or maintenance of cell integrity. Involved in the formation and regulation of the tight junction (TJ) paracellular permeability barrier in epithelial cells (PubMed:16188940). Plays a role in VAMP3-mediated vesicular transport and recycling of different receptor molecules through its interaction with VAMP3. Plays a role in the regulation of cell shape and movement by modulating the Rho-family GTPase activity through its interaction with ARHGEF25/GEFT. Induces primordial adhesive contact and aggregation of epithelial cells in a Ca(2+)-independent manner. Also involved in striated muscle regeneration and repair and in the regulation of cell spreading (By similarity). Important for the maintenance of cardiac function. Plays a regulatory function in heart rate dynamics mediated, at least in part, through cAMP-binding and, probably, by increasing cell surface expression of the potassium channel KCNK2 and enhancing current density (PubMed:26642364). Is also a caveolae-associated protein important for the preservation of caveolae structural and functional integrity as well as for heart protection against ischemia injury. {ECO:0000250|UniProtKB:Q5PQZ7, ECO:0000250|UniProtKB:Q9ES83, ECO:0000269|PubMed:16188940, ECO:0000269|PubMed:26642364}. |
Q8NEB9 | PIK3C3 | S244 | ochoa | Phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3-kinase type 3) (PI3K type 3) (PtdIns-3-kinase type 3) (EC 2.7.1.137) (Phosphatidylinositol 3-kinase p100 subunit) (Phosphoinositide-3-kinase class 3) (hVps34) | Catalytic subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis (PubMed:14617358, PubMed:33637724, PubMed:7628435). As part of PI3KC3-C1, promotes endoplasmic reticulum membrane curvature formation prior to vesicle budding (PubMed:32690950). Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123). Involved in the transport of lysosomal enzyme precursors to lysosomes (By similarity). Required for transport from early to late endosomes (By similarity). {ECO:0000250|UniProtKB:O88763, ECO:0000269|PubMed:14617358, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:32690950, ECO:0000269|PubMed:33637724, ECO:0000269|PubMed:7628435}.; FUNCTION: (Microbial infection) Kinase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
Q8NEM0 | MCPH1 | S191 | ochoa | Microcephalin | Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}. |
Q8NEM0 | MCPH1 | S287 | ochoa | Microcephalin | Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}. |
Q8NEM7 | SUPT20H | S296 | ochoa | Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) | Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}. |
Q8NEM7 | SUPT20H | S524 | ochoa | Transcription factor SPT20 homolog (p38-interacting protein) (p38IP) | Required for MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) activation during gastrulation. Required for down-regulation of E-cadherin during gastrulation by regulating E-cadherin protein level downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by FGF signaling and Snail (By similarity). Required for starvation-induced ATG9A trafficking during autophagy. {ECO:0000250, ECO:0000269|PubMed:19893488}. |
Q8NEN9 | PDZD8 | S967 | ochoa | PDZ domain-containing protein 8 (Sarcoma antigen NY-SAR-84/NY-SAR-104) | Molecular tethering protein that connects endoplasmic reticulum and mitochondria membranes (PubMed:29097544). PDZD8-dependent endoplasmic reticulum-mitochondria membrane tethering is essential for endoplasmic reticulum-mitochondria Ca(2+) transfer (PubMed:29097544). In neurons, involved in the regulation of dendritic Ca(2+) dynamics by regulating mitochondrial Ca(2+) uptake in neurons (PubMed:29097544). Plays an indirect role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). May inhibit herpes simplex virus 1 infection at an early stage (PubMed:21549406). {ECO:0000269|PubMed:21549406, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29097544}. |
Q8NEV8 | EXPH5 | S948 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEV8 | EXPH5 | S1733 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEY1 | NAV1 | S362 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY1 | NAV1 | S981 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY1 | NAV1 | S1405 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEZ4 | KMT2C | S200 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S1987 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S2811 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S4071 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NF64 | ZMIZ2 | S411 | ochoa | Zinc finger MIZ domain-containing protein 2 (PIAS-like protein Zimp7) | Increases ligand-dependent transcriptional activity of AR and other nuclear hormone receptors. {ECO:0000269|PubMed:16051670}. |
Q8NF91 | SYNE1 | S8250 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8NFC6 | BOD1L1 | S1281 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S1531 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S2905 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFF5 | FLAD1 | S106 | ochoa | FAD synthase (EC 2.7.7.2) (FAD pyrophosphorylase) (FMN adenylyltransferase) (Flavin adenine dinucleotide synthase) [Includes: Molybdenum cofactor biosynthesis protein-like region; FAD synthase region] | Catalyzes the adenylation of flavin mononucleotide (FMN) to form flavin adenine dinucleotide (FAD) coenzyme. {ECO:0000269|PubMed:16643857, ECO:0000269|PubMed:27259049}. |
Q8NFI3 | ENGASE | S673 | ochoa | Cytosolic endo-beta-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) | Endoglycosidase that releases N-glycans from glycoproteins by cleaving the beta-1,4-glycosidic bond in the N,N'-diacetylchitobiose core. Involved in the processing of free oligosaccharides in the cytosol. {ECO:0000269|PubMed:12114544}. |
Q8NFM4 | ADCY4 | S499 | ochoa | Adenylate cyclase type 4 (EC 4.6.1.1) (ATP pyrophosphate-lyase 4) (Adenylate cyclase type IV) (Adenylyl cyclase 4) | Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. {ECO:0000250|UniProtKB:P26770}. |
Q8NFP9 | NBEA | S1321 | ochoa | Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}. |
Q8NFP9 | NBEA | S1529 | ochoa | Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}. |
Q8NFQ8 | TOR1AIP2 | S163 | ochoa | Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) | Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}. |
Q8NFT8 | DNER | S714 | ochoa | Delta and Notch-like epidermal growth factor-related receptor | Activator of the NOTCH1 pathway. May mediate neuron-glia interaction during astrocytogenesis (By similarity). {ECO:0000250}. |
Q8NFU7 | TET1 | S322 | ochoa | Methylcytosine dioxygenase TET1 (EC 1.14.11.80) (CXXC-type zinc finger protein 6) (Leukemia-associated protein with a CXXC domain) (Ten-eleven translocation 1 gene protein) | Dioxygenase that plays a key role in active DNA demethylation, by catalyzing the sequential oxidation of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (PubMed:19372391, PubMed:21496894, PubMed:21778364, PubMed:35798741). In addition to its role in DNA demethylation, plays a more general role in chromatin regulation by recruiting histone modifying protein complexes to alter histone marks and chromatin accessibility, leading to both activation and repression of gene expression (PubMed:33833093). Plays therefore a role in many biological processes, including stem cell maintenance, T- and B-cell development, inflammation regulation, genomic imprinting, neural activity or DNA repair (PubMed:31278917). Involved in the balance between pluripotency and lineage commitment of cells and plays a role in embryonic stem cells maintenance and inner cell mass cell specification. Together with QSER1, plays an essential role in the protection and maintenance of transcriptional and developmental programs to inhibit the binding of DNMT3A/3B and therefore de novo methylation (PubMed:33833093). May play a role in pancreatic beta-cell specification during development. In this context, may function as an upstream epigenetic regulator of PAX4 presumably through direct recruitment by FOXA2 to a PAX4 enhancer to preserve its unmethylated status, thereby potentiating PAX4 expression to adopt beta-cell fate during endocrine lineage commitment (PubMed:35798741). Under DNA hypomethylation conditions, such as in female meiotic germ cells, may induce epigenetic reprogramming of pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions. PCH forms chromocenters in the interphase nucleus and chromocenters cluster at the prophase of meiosis. In this context, may also be essential for chromocenter clustering in a catalytic activity-independent manner, possibly through the recruitment polycomb repressive complex 1 (PRC1) to the chromocenters (By similarity). During embryonic development, may be required for normal meiotic progression in oocytes and meiotic gene activation (By similarity). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:12124344, ECO:0000269|PubMed:19372391, ECO:0000269|PubMed:19372393, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21778364, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:29276034, ECO:0000269|PubMed:31278917, ECO:0000269|PubMed:33833093, ECO:0000269|PubMed:35798741}.; FUNCTION: [Isoform 1]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). Binds to promoters, particularly to those with high CG content (By similarity). In hippocampal neurons, isoform 1 regulates the expression of a unique subset of genes compared to isoform 2, although some overlap exists between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 1 controls both miniature excitatory postsynaptic current amplitude and frequency (By similarity). Isoform 1 may regulate genes involved in hippocampal-dependent memory, leading to positive regulation of memory, contrary to isoform 2 that may decrease memory (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.; FUNCTION: [Isoform 2]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). As isoform 1, binds to promoters, particularly to those with high CG content, however displays reduced global chromatin affinity compared with isoform 1, leading to decreased global DNA demethylation compared with isoform 1 (By similarity). Contrary to isoform 1, isoform 2 localizes during S phase to sites of ongoing DNA replication in heterochromatin, causing a significant de novo 5hmC formation, globally, and more so in heterochromatin, including LINE 1 interspersed DNA repeats leading to their activation (By similarity). In hippocampal neurons, isoform 2 regulates the expression of a unique subset of genes compared to isoform 1, although some overlap between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 2 controls miniature excitatory postsynaptic current frequency, but not amplitude (By similarity). Isoform 2 may regulate genes involved in hippocampal-dependent memory, leading to negative regulation of memory, contrary to isoform 1 that may improve memory (By similarity). In immature and partially differentiated gonadotrope cells, directly represses luteinizing hormone gene LHB expression and does not catalyze 5hmC at the gene promoter (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}. |
Q8NFU7 | TET1 | S871 | ochoa | Methylcytosine dioxygenase TET1 (EC 1.14.11.80) (CXXC-type zinc finger protein 6) (Leukemia-associated protein with a CXXC domain) (Ten-eleven translocation 1 gene protein) | Dioxygenase that plays a key role in active DNA demethylation, by catalyzing the sequential oxidation of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (PubMed:19372391, PubMed:21496894, PubMed:21778364, PubMed:35798741). In addition to its role in DNA demethylation, plays a more general role in chromatin regulation by recruiting histone modifying protein complexes to alter histone marks and chromatin accessibility, leading to both activation and repression of gene expression (PubMed:33833093). Plays therefore a role in many biological processes, including stem cell maintenance, T- and B-cell development, inflammation regulation, genomic imprinting, neural activity or DNA repair (PubMed:31278917). Involved in the balance between pluripotency and lineage commitment of cells and plays a role in embryonic stem cells maintenance and inner cell mass cell specification. Together with QSER1, plays an essential role in the protection and maintenance of transcriptional and developmental programs to inhibit the binding of DNMT3A/3B and therefore de novo methylation (PubMed:33833093). May play a role in pancreatic beta-cell specification during development. In this context, may function as an upstream epigenetic regulator of PAX4 presumably through direct recruitment by FOXA2 to a PAX4 enhancer to preserve its unmethylated status, thereby potentiating PAX4 expression to adopt beta-cell fate during endocrine lineage commitment (PubMed:35798741). Under DNA hypomethylation conditions, such as in female meiotic germ cells, may induce epigenetic reprogramming of pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions. PCH forms chromocenters in the interphase nucleus and chromocenters cluster at the prophase of meiosis. In this context, may also be essential for chromocenter clustering in a catalytic activity-independent manner, possibly through the recruitment polycomb repressive complex 1 (PRC1) to the chromocenters (By similarity). During embryonic development, may be required for normal meiotic progression in oocytes and meiotic gene activation (By similarity). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:12124344, ECO:0000269|PubMed:19372391, ECO:0000269|PubMed:19372393, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21778364, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:29276034, ECO:0000269|PubMed:31278917, ECO:0000269|PubMed:33833093, ECO:0000269|PubMed:35798741}.; FUNCTION: [Isoform 1]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). Binds to promoters, particularly to those with high CG content (By similarity). In hippocampal neurons, isoform 1 regulates the expression of a unique subset of genes compared to isoform 2, although some overlap exists between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 1 controls both miniature excitatory postsynaptic current amplitude and frequency (By similarity). Isoform 1 may regulate genes involved in hippocampal-dependent memory, leading to positive regulation of memory, contrary to isoform 2 that may decrease memory (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.; FUNCTION: [Isoform 2]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). As isoform 1, binds to promoters, particularly to those with high CG content, however displays reduced global chromatin affinity compared with isoform 1, leading to decreased global DNA demethylation compared with isoform 1 (By similarity). Contrary to isoform 1, isoform 2 localizes during S phase to sites of ongoing DNA replication in heterochromatin, causing a significant de novo 5hmC formation, globally, and more so in heterochromatin, including LINE 1 interspersed DNA repeats leading to their activation (By similarity). In hippocampal neurons, isoform 2 regulates the expression of a unique subset of genes compared to isoform 1, although some overlap between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 2 controls miniature excitatory postsynaptic current frequency, but not amplitude (By similarity). Isoform 2 may regulate genes involved in hippocampal-dependent memory, leading to negative regulation of memory, contrary to isoform 1 that may improve memory (By similarity). In immature and partially differentiated gonadotrope cells, directly represses luteinizing hormone gene LHB expression and does not catalyze 5hmC at the gene promoter (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}. |
Q8NFY4 | SEMA6D | S723 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8NFY4 | SEMA6D | S734 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8NFZ5 | TNIP2 | S186 | ochoa | TNFAIP3-interacting protein 2 (A20-binding inhibitor of NF-kappa-B activation 2) (ABIN-2) (Fetal liver LKB1-interacting protein) | Inhibits NF-kappa-B activation by blocking the interaction of RIPK1 with its downstream effector NEMO/IKBKG. Forms a ternary complex with NFKB1 and MAP3K8 but appears to function upstream of MAP3K8 in the TLR4 signaling pathway that regulates MAP3K8 activation. Involved in activation of the MEK/ERK signaling pathway during innate immune response; this function seems to be stimulus- and cell type specific. Required for stability of MAP3K8. Involved in regulation of apoptosis in endothelial cells; promotes TEK agonist-stimulated endothelial survival. May act as transcriptional coactivator when translocated to the nucleus. Enhances CHUK-mediated NF-kappa-B activation involving NF-kappa-B p50-p65 and p50-c-Rel complexes. {ECO:0000269|PubMed:11389905, ECO:0000269|PubMed:12595760, ECO:0000269|PubMed:12753905, ECO:0000269|PubMed:12933576, ECO:0000269|PubMed:14653779, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:21784860}. |
Q8NG08 | HELB | S1048 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8NG08 | HELB | S1058 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8NG27 | PJA1 | S265 | ochoa | E3 ubiquitin-protein ligase Praja-1 (Praja1) (EC 2.3.2.27) (RING finger protein 70) (RING-type E3 ubiquitin transferase Praja-1) | Has E2-dependent E3 ubiquitin-protein ligase activity. Ubiquitinates MAGED1 antigen leading to its subsequent degradation by proteasome (By similarity). May be involved in protein sorting. {ECO:0000250, ECO:0000269|PubMed:12036302}. |
Q8NG31 | KNL1 | S682 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NHU0 | CT45A3 | S24 | ochoa | Cancer/testis antigen family 45 member A3 (Cancer/testis antigen 45-3) (Cancer/testis antigen 45-4) (Cancer/testis antigen 45A3) (Cancer/testis antigen 45A4) (Cancer/testis antigen family 45 member A4) | None |
Q8NHU0 | CT45A3 | S115 | ochoa | Cancer/testis antigen family 45 member A3 (Cancer/testis antigen 45-3) (Cancer/testis antigen 45-4) (Cancer/testis antigen 45A3) (Cancer/testis antigen 45A4) (Cancer/testis antigen family 45 member A4) | None |
Q8NHU6 | TDRD7 | S159 | ochoa | Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) | Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}. |
Q8NHU6 | TDRD7 | S190 | ochoa | Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) | Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}. |
Q8NHU6 | TDRD7 | S859 | ochoa | Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) | Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}. |
Q8NHV4 | NEDD1 | S215 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8NHV4 | NEDD1 | S282 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8NI27 | THOC2 | S407 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8NI27 | THOC2 | S1393 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8NI36 | WDR36 | S863 | ochoa | WD repeat-containing protein 36 (T-cell activation WD repeat-containing protein) (TA-WDRP) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in the nucleolar processing of SSU 18S rRNA (PubMed:21051332, PubMed:34516797). Involved in T-cell activation and highly coregulated with IL2 (PubMed:15177553). {ECO:0000269|PubMed:15177553, ECO:0000269|PubMed:21051332, ECO:0000269|PubMed:34516797}. |
Q8NI77 | KIF18A | S674 | ochoa | Kinesin-like protein KIF18A (Marrow stromal KIF18A) (MS-KIF18A) | Microtubule-depolymerizing kinesin which plays a role in chromosome congression by reducing the amplitude of preanaphase oscillations and slowing poleward movement during anaphase, thus suppressing chromosome movements. May stabilize the CENPE-BUB1B complex at the kinetochores during early mitosis and maintains CENPE levels at kinetochores during chromosome congression. {ECO:0000269|PubMed:17346968, ECO:0000269|PubMed:18267093, ECO:0000269|PubMed:18513970, ECO:0000269|PubMed:19625775}. |
Q8NI77 | KIF18A | S684 | ochoa | Kinesin-like protein KIF18A (Marrow stromal KIF18A) (MS-KIF18A) | Microtubule-depolymerizing kinesin which plays a role in chromosome congression by reducing the amplitude of preanaphase oscillations and slowing poleward movement during anaphase, thus suppressing chromosome movements. May stabilize the CENPE-BUB1B complex at the kinetochores during early mitosis and maintains CENPE levels at kinetochores during chromosome congression. {ECO:0000269|PubMed:17346968, ECO:0000269|PubMed:18267093, ECO:0000269|PubMed:18513970, ECO:0000269|PubMed:19625775}. |
Q8TAQ2 | SMARCC2 | S347 | ochoa | SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q8TB72 | PUM2 | S82 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TBB5 | KLHDC4 | S114 | ochoa | Kelch domain-containing protein 4 | None |
Q8TBB5 | KLHDC4 | S222 | ochoa | Kelch domain-containing protein 4 | None |
Q8TBC4 | UBA3 | S377 | ochoa | NEDD8-activating enzyme E1 catalytic subunit (EC 6.2.1.64) (NEDD8-activating enzyme E1C) (Ubiquitin-activating enzyme E1C) (Ubiquitin-like modifier-activating enzyme 3) (Ubiquitin-activating enzyme 3) | Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression. {ECO:0000269|PubMed:10207026, ECO:0000269|PubMed:12740388, ECO:0000269|PubMed:9694792}. |
Q8TBC4 | UBA3 | S399 | ochoa | NEDD8-activating enzyme E1 catalytic subunit (EC 6.2.1.64) (NEDD8-activating enzyme E1C) (Ubiquitin-activating enzyme E1C) (Ubiquitin-like modifier-activating enzyme 3) (Ubiquitin-activating enzyme 3) | Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression. {ECO:0000269|PubMed:10207026, ECO:0000269|PubMed:12740388, ECO:0000269|PubMed:9694792}. |
Q8TBC5 | ZSCAN18 | S140 | ochoa | Zinc finger and SCAN domain-containing protein 18 (Zinc finger protein 447) | May be involved in transcriptional regulation. |
Q8TBE0 | BAHD1 | S679 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TBM8 | DNAJB14 | S60 | ochoa | DnaJ homolog subfamily B member 14 | Acts as a co-chaperone with HSPA8/Hsc70; required to promote protein folding and trafficking, prevent aggregation of client proteins, and promote unfolded proteins to endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:24732912). Acts by determining HSPA8/Hsc70's ATPase and polypeptide-binding activities (PubMed:24732912). Can also act independently of HSPA8/Hsc70: together with DNAJB12, acts as a chaperone that promotes maturation of potassium channels KCND2 and KCNH2 by stabilizing nascent channel subunits and assembling them into tetramers (PubMed:27916661). While stabilization of nascent channel proteins is dependent on HSPA8/Hsc70, the process of oligomerization of channel subunits is independent of HSPA8/Hsc70 (PubMed:27916661). When overexpressed, forms membranous structures together with DNAJB12 and HSPA8/Hsc70 within the nucleus; the role of these structures, named DJANGOs, is still unclear (PubMed:24732912). {ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27916661}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection (PubMed:21673190, PubMed:24675744). {ECO:0000269|PubMed:21673190, ECO:0000269|PubMed:24675744}. |
Q8TBP0 | TBC1D16 | S155 | ochoa | TBC1 domain family member 16 | May act as a GTPase-activating protein for Rab family protein(s). |
Q8TC05 | MDM1 | S242 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC05 | MDM1 | S314 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC05 | MDM1 | S543 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC05 | MDM1 | S584 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC07 | TBC1D15 | S186 | ochoa | TBC1 domain family member 15 (GTPase-activating protein RAB7) (GAP for RAB7) (Rab7-GAP) | Acts as a GTPase activating protein for RAB7A. Does not act on RAB4, RAB5 or RAB6 (By similarity). {ECO:0000250}. |
Q8TC44 | POC1B | S27 | ochoa | POC1 centriolar protein homolog B (Pix1) (Proteome of centriole protein 1B) (WD repeat-containing protein 51B) | Plays an important role in centriole assembly and/or stability and ciliogenesis (PubMed:20008567, PubMed:32060285). Involved in early steps of centriole duplication, as well as in the later steps of centriole length control (PubMed:19109428). Acts in concert with POC1A to ensure centriole integrity and proper mitotic spindle formation (PubMed:32060285). Required for primary cilia formation, ciliary length and also cell proliferation (PubMed:23015594). Required for retinal integrity (PubMed:25044745). Acts as a positive regulator of centriole elongation (PubMed:37934472). {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:20008567, ECO:0000269|PubMed:23015594, ECO:0000269|PubMed:25044745, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:37934472}. |
Q8TC44 | POC1B | S321 | ochoa | POC1 centriolar protein homolog B (Pix1) (Proteome of centriole protein 1B) (WD repeat-containing protein 51B) | Plays an important role in centriole assembly and/or stability and ciliogenesis (PubMed:20008567, PubMed:32060285). Involved in early steps of centriole duplication, as well as in the later steps of centriole length control (PubMed:19109428). Acts in concert with POC1A to ensure centriole integrity and proper mitotic spindle formation (PubMed:32060285). Required for primary cilia formation, ciliary length and also cell proliferation (PubMed:23015594). Required for retinal integrity (PubMed:25044745). Acts as a positive regulator of centriole elongation (PubMed:37934472). {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:20008567, ECO:0000269|PubMed:23015594, ECO:0000269|PubMed:25044745, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:37934472}. |
Q8TC76 | FAM110B | S95 | ochoa | Protein FAM110B | May be involved in tumor progression. |
Q8TCD5 | NT5C | S100 | ochoa | 5'(3')-deoxyribonucleotidase, cytosolic type (EC 3.1.3.-) (Cytosolic 5',3'-pyrimidine nucleotidase) (Deoxy-5'-nucleotidase 1) (dNT-1) | Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP. |
Q8TCN5 | ZNF507 | S95 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TCN5 | ZNF507 | S195 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TCN5 | ZNF507 | S388 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TCP9 | FAM200A | S46 | ochoa | Protein FAM200A | None |
Q8TCS8 | PNPT1 | S754 | ochoa | Polyribonucleotide nucleotidyltransferase 1, mitochondrial (EC 2.7.7.8) (3'-5' RNA exonuclease OLD35) (PNPase old-35) (Polynucleotide phosphorylase 1) (PNPase 1) (Polynucleotide phosphorylase-like protein) | RNA-binding protein implicated in numerous RNA metabolic processes (PubMed:29967381, PubMed:39019044). Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction (PubMed:29967381, PubMed:39019044). Mitochondrial intermembrane factor with RNA-processing exoribonulease activity (PubMed:29967381, PubMed:39019044). Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner (PubMed:29967381, PubMed:39019044). Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381, PubMed:39019044). Required for correct processing and polyadenylation of mitochondrial mRNAs. Plays a role as a cytoplasmic RNA import factor that mediates the translocation of small RNA components, like the 5S RNA, the RNA subunit of ribonuclease P and the mitochondrial RNA-processing (MRP) RNA, into the mitochondrial matrix. Plays a role in mitochondrial morphogenesis and respiration; regulates the expression of the electron transport chain (ETC) components at the mRNA and protein levels. In the cytoplasm, shows a 3'-to-5' exoribonuclease mediating mRNA degradation activity; degrades c-myc mRNA upon treatment with IFNB1/IFN-beta, resulting in a growth arrest in melanoma cells. Regulates the stability of specific mature miRNAs in melanoma cells; specifically and selectively degrades miR-221, preferentially. Also plays a role in RNA cell surveillance by cleaning up oxidized RNAs. Binds to the RNA subunit of ribonuclease P, MRP RNA and miR-221 microRNA. {ECO:0000269|PubMed:12473748, ECO:0000269|PubMed:12721301, ECO:0000269|PubMed:12798676, ECO:0000269|PubMed:16055741, ECO:0000269|PubMed:16410805, ECO:0000269|PubMed:16934922, ECO:0000269|PubMed:18083836, ECO:0000269|PubMed:18083837, ECO:0000269|PubMed:18501193, ECO:0000269|PubMed:19509288, ECO:0000269|PubMed:20547861, ECO:0000269|PubMed:20691904, ECO:0000269|PubMed:29967381, ECO:0000269|PubMed:39019044}. |
Q8TCT0 | CERK | S340 | ochoa|psp | Ceramide kinase (hCERK) (EC 2.7.1.138) (Acylsphingosine kinase) (Lipid kinase 4) (LK4) | Catalyzes specifically the phosphorylation of ceramide to form ceramide 1-phosphate (PubMed:11956206, PubMed:16269826, PubMed:19168031). Acts efficiently on natural and analog ceramides (C6, C8, C16 ceramides, and C8-dihydroceramide), to a lesser extent on C2-ceramide and C6-dihydroceramide, but not on other lipids, such as various sphingosines (PubMed:11956206, PubMed:16269826, PubMed:19168031). Shows a greater preference for D-erythro isomer of ceramides (PubMed:16269826). Binds phosphoinositides (PubMed:19168031). {ECO:0000269|PubMed:11956206, ECO:0000269|PubMed:16269826, ECO:0000269|PubMed:19168031}. |
Q8TCU6 | PREX1 | S839 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) | Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils. |
Q8TD19 | NEK9 | S793 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TD26 | CHD6 | S1723 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TD55 | PLEKHO2 | S89 | ochoa | Pleckstrin homology domain-containing family O member 2 (PH domain-containing family O member 2) (Pleckstrin homology domain-containing family Q member 1) (PH domain-containing family Q member 1) | None |
Q8TDB6 | DTX3L | S202 | ochoa | E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) | E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}. |
Q8TDC3 | BRSK1 | S413 | ochoa | Serine/threonine-protein kinase BRSK1 (EC 2.7.11.1) (Brain-selective kinase 1) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 1) (BR serine/threonine-protein kinase 1) (Serine/threonine-protein kinase SAD-B) (Synapses of Amphids Defective homolog 1) (SAD1 homolog) (hSAD1) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. In neurons, localizes to synaptic vesicles and plays a role in neurotransmitter release, possibly by phosphorylating RIMS1. Also acts as a positive regulator of centrosome duplication by mediating phosphorylation of gamma-tubulin (TUBG1 and TUBG2) at 'Ser-131', leading to translocation of gamma-tubulin and its associated proteins to the centrosome. Involved in the UV-induced DNA damage checkpoint response, probably by inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15150265, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311}. |
Q8TDD1 | DDX54 | S173 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TDJ6 | DMXL2 | S473 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDJ6 | DMXL2 | S588 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDJ6 | DMXL2 | S2197 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDN4 | CABLES1 | S313 | ochoa|psp | CDK5 and ABL1 enzyme substrate 1 (Interactor with CDK3 1) (Ik3-1) | Cyclin-dependent kinase binding protein. Enhances cyclin-dependent kinase tyrosine phosphorylation by nonreceptor tyrosine kinases, such as that of CDK5 by activated ABL1, which leads to increased CDK5 activity and is critical for neuronal development, and that of CDK2 by WEE1, which leads to decreased CDK2 activity and growth inhibition. Positively affects neuronal outgrowth. Plays a role as a regulator for p53/p73-induced cell death (By similarity). {ECO:0000250}. |
Q8TDN6 | BRIX1 | S261 | ochoa | Ribosome biogenesis protein BRX1 homolog (Brix domain-containing protein 2) | Required for biogenesis of the 60S ribosomal subunit. |
Q8TDQ1 | CD300LF | S216 | psp | CMRF35-like molecule 1 (CLM-1) (CD300 antigen-like family member F) (Immune receptor expressed on myeloid cells 1) (IREM-1) (Immunoglobulin superfamily member 13) (IgSF13) (NK inhibitory receptor) (CD antigen CD300f) | Acts as an inhibitory receptor for myeloid cells and mast cells (PubMed:15549731). Positively regulates the phagocytosis of apoptotic cells (efferocytosis) via phosphatidylserine (PS) recognition; recognizes and binds PS as a ligand which is expressed on the surface of apoptotic cells. Plays an important role in the maintenance of immune homeostasis, by promoting macrophage-mediated efferocytosis and by inhibiting dendritic cell-mediated efferocytosis (By similarity). Negatively regulates Fc epsilon receptor-dependent mast cell activation and allergic responses via binding to ceramide and sphingomyelin which act as ligands (PubMed:24035150). May act as a coreceptor for interleukin 4 (IL-4). Associates with and regulates IL-4 receptor alpha-mediated responses by augmenting IL-4- and IL-13-induced signaling (By similarity). Negatively regulates the Toll-like receptor (TLR) signaling mediated by MYD88 and TRIF through activation of PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:22043923). Inhibits osteoclast formation. Induces macrophage cell death upon engagement (By similarity). {ECO:0000250|UniProtKB:Q6SJQ7, ECO:0000269|PubMed:15549731, ECO:0000269|PubMed:22043923, ECO:0000269|PubMed:24035150}. |
Q8TDW5 | SYTL5 | S147 | ochoa | Synaptotagmin-like protein 5 | May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids. |
Q8TDY2 | RB1CC1 | S243 | ochoa | RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) | Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}. |
Q8TDY2 | RB1CC1 | S266 | ochoa | RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) | Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}. |
Q8TDZ2 | MICAL1 | S625 | ochoa | [F-actin]-monooxygenase MICAL1 (EC 1.14.13.225) (EC 1.6.3.1) (Molecule interacting with CasL protein 1) (MICAL-1) (NEDD9-interacting protein with calponin homology and LIM domains) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization (PubMed:29343822). In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (PubMed:21864500, PubMed:26845023, PubMed:29343822). Acts as a cytoskeletal regulator that connects NEDD9 to intermediate filaments. Also acts as a negative regulator of apoptosis via its interaction with STK38 and STK38L; acts by antagonizing STK38 and STK38L activation by MST1/STK4. Involved in regulation of lamina-specific connectivity in the nervous system such as the development of lamina-restricted hippocampal connections. Through redox regulation of the actin cytoskeleton controls the intracellular distribution of secretory vesicles containing L1/neurofascin/NgCAM family proteins in neurons, thereby regulating their cell surface levels (By similarity). May act as Rab effector protein and play a role in vesicle trafficking. Promotes endosomal tubule extension by associating with RAB8 (RAB8A or RAB8B), RAB10 and GRAF (GRAF1/ARHGAP26 or GRAF2/ARHGAP10) on the endosomal membrane which may connect GRAFs to Rabs, thereby participating in neosynthesized Rab8-Rab10-Rab11-dependent protein export (PubMed:32344433). {ECO:0000250|UniProtKB:Q8VDP3, ECO:0000269|PubMed:18305261, ECO:0000269|PubMed:21864500, ECO:0000269|PubMed:26845023, ECO:0000269|PubMed:28230050, ECO:0000269|PubMed:29343822, ECO:0000269|PubMed:32344433, ECO:0000305|PubMed:27552051}. |
Q8TE76 | MORC4 | S532 | ochoa | MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) | Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}. |
Q8TE76 | MORC4 | S545 | ochoa | MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) | Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}. |
Q8TE99 | PXYLP1 | S383 | ochoa | 2-phosphoxylose phosphatase 1 (EC 3.1.3.-) (Acid phosphatase-like protein 2) (Xylosyl phosphatase) (epididymis luminal protein 124) | Responsible for the 2-O-dephosphorylation of xylose in the glycosaminoglycan-protein linkage region of proteoglycans thereby regulating the amount of mature glycosaminoglycan (GAG) chains. Sulfated glycosaminoglycans (GAGs), including heparan sulfate and chondroitin sulfate, are synthesized on the so-called common GAG-protein linkage region (GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser) of core proteins, which is formed by the stepwise addition of monosaccharide residues by the respective specific glycosyltransferases. Xylose 2-O-dephosphorylation during completion of linkage region formation is a prerequisite for the initiation and efficient elongation of the repeating disaccharide region of GAG chains. {ECO:0000269|PubMed:24425863}. |
Q8TEC5 | SH3RF2 | S112 | ochoa | E3 ubiquitin-protein ligase SH3RF2 (EC 2.3.2.27) (Heart protein phosphatase 1-binding protein) (HEPP1) (POSH-eliminating RING protein) (Protein phosphatase 1 regulatory subunit 39) (RING finger protein 158) (RING-type E3 ubiquitin transferase SH3RF2) (SH3 domain-containing RING finger protein 2) | Has E3 ubiquitin-protein ligase activity (PubMed:24130170). Acts as an anti-apoptotic regulator of the JNK pathway by ubiquitinating and promoting the degradation of SH3RF1, a scaffold protein that is required for pro-apoptotic JNK activation (PubMed:22128169). Facilitates TNF-alpha-mediated recruitment of adapter proteins TRADD and RIPK1 to TNFRSF1A and regulates PAK4 protein stability via inhibition of its ubiquitin-mediated proteasomal degradation (PubMed:24130170). Inhibits PPP1CA phosphatase activity (PubMed:19389623, PubMed:19945436). {ECO:0000269|PubMed:19389623, ECO:0000269|PubMed:19945436, ECO:0000269|PubMed:22128169, ECO:0000269|PubMed:24130170}. |
Q8TEC5 | SH3RF2 | S649 | ochoa | E3 ubiquitin-protein ligase SH3RF2 (EC 2.3.2.27) (Heart protein phosphatase 1-binding protein) (HEPP1) (POSH-eliminating RING protein) (Protein phosphatase 1 regulatory subunit 39) (RING finger protein 158) (RING-type E3 ubiquitin transferase SH3RF2) (SH3 domain-containing RING finger protein 2) | Has E3 ubiquitin-protein ligase activity (PubMed:24130170). Acts as an anti-apoptotic regulator of the JNK pathway by ubiquitinating and promoting the degradation of SH3RF1, a scaffold protein that is required for pro-apoptotic JNK activation (PubMed:22128169). Facilitates TNF-alpha-mediated recruitment of adapter proteins TRADD and RIPK1 to TNFRSF1A and regulates PAK4 protein stability via inhibition of its ubiquitin-mediated proteasomal degradation (PubMed:24130170). Inhibits PPP1CA phosphatase activity (PubMed:19389623, PubMed:19945436). {ECO:0000269|PubMed:19389623, ECO:0000269|PubMed:19945436, ECO:0000269|PubMed:22128169, ECO:0000269|PubMed:24130170}. |
Q8TEK3 | DOT1L | S297 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S775 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1059 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1153 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1213 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1259 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEQ6 | GEMIN5 | S48 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TEQ6 | GEMIN5 | S1267 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TER5 | ARHGEF40 | S262 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TER5 | ARHGEF40 | S931 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TER5 | ARHGEF40 | S961 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TER5 | ARHGEF40 | S1187 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TER5 | ARHGEF40 | S1438 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TEW0 | PARD3 | S383 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW0 | PARD3 | S873 | ochoa|psp | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW0 | PARD3 | S1139 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S90 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TEW8 | PARD3B | S635 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TEX9 | IPO4 | S972 | ochoa | Importin-4 (Imp4) (Importin-4b) (Imp4b) (Ran-binding protein 4) (RanBP4) | Nuclear transport receptor that mediates nuclear import of proteins, such as histones, RPS3A, TNP2 and VDR (PubMed:11823430, PubMed:16207705, PubMed:17682055, PubMed:21454524). Serves as receptor for nuclear localization signals (NLS) in cargo substrates (PubMed:11823430, PubMed:16207705). Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:11823430, PubMed:16207705). At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran (PubMed:11823430). The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:11823430). Mediates the nuclear import of the histone H3-H4 dimer when in complex with ASF1 (ASF1A or ASF1B) (PubMed:21454524, PubMed:29408485). Mediates the ligand-independent nuclear import of vitamin D receptor (VDR) (PubMed:16207705). In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS (PubMed:12610148). {ECO:0000269|PubMed:11823430, ECO:0000269|PubMed:12610148, ECO:0000269|PubMed:16207705, ECO:0000269|PubMed:17682055, ECO:0000269|PubMed:21454524, ECO:0000269|PubMed:29408485}. |
Q8TF40 | FNIP1 | S214 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF40 | FNIP1 | S272 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF40 | FNIP1 | S760 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF44 | C2CD4C | S156 | ochoa | C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) | None |
Q8TF44 | C2CD4C | S178 | ochoa | C2 calcium-dependent domain-containing protein 4C (Nuclear-localized factor 3) (Protein FAM148C) | None |
Q8TF72 | SHROOM3 | S425 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WTW3 | COG1 | S548 | ochoa | Conserved oligomeric Golgi complex subunit 1 (COG complex subunit 1) (Component of oligomeric Golgi complex 1) | Required for normal Golgi function. {ECO:0000250}. |
Q8WU58 | FAM222B | S296 | ochoa | Protein FAM222B | None |
Q8WUA4 | GTF3C2 | S25 | ochoa | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
Q8WUA4 | GTF3C2 | S167 | ochoa | General transcription factor 3C polypeptide 2 (TF3C-beta) (Transcription factor IIIC 110 kDa subunit) (TFIIIC 110 kDa subunit) (TFIIIC110) (Transcription factor IIIC subunit beta) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. May play a direct role in stabilizing interactions of TFIIIC2 with TFIIIC1. |
Q8WUF5 | PPP1R13L | S316 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUJ0 | STYX | S184 | ochoa | Serine/threonine/tyrosine-interacting protein (Inactive tyrosine-protein phosphatase STYX) (Phosphoserine/threonine/tyrosine interaction protein) | Catalytically inactive phosphatase (PubMed:23847209). Acts as a nuclear anchor for MAPK1/MAPK3 (ERK1/ERK2) (PubMed:23847209). Modulates cell-fate decisions and cell migration by spatiotemporal regulation of MAPK1/MAPK3 (ERK1/ERK2) (PubMed:23847209). By binding to the F-box of FBXW7, prevents the assembly of FBXW7 into the SCF E3 ubiquitin-protein ligase complex, and thereby inhibits degradation of its substrates (PubMed:28007894). Plays a role in spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q60969, ECO:0000269|PubMed:23847209, ECO:0000269|PubMed:28007894}. |
Q8WUM0 | NUP133 | S131 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WUM0 | NUP133 | S267 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WUU5 | GATAD1 | S194 | ochoa | GATA zinc finger domain-containing protein 1 (Ocular development-associated gene protein) | Component of some chromatin complex recruited to chromatin sites methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3). {ECO:0000269|PubMed:20850016}. |
Q8WUX9 | CHMP7 | S232 | ochoa | Charged multivesicular body protein 7 (Chromatin-modifying protein 7) | ESCRT-III-like protein required to recruit the ESCRT-III complex to the nuclear envelope (NE) during late anaphase (PubMed:26040712). Together with SPAST, the ESCRT-III complex promotes NE sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712, PubMed:28242692). Recruited to the reforming NE during anaphase by LEMD2 (PubMed:28242692). Plays a role in the endosomal sorting pathway (PubMed:16856878). {ECO:0000269|PubMed:16856878, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
Q8WUY3 | PRUNE2 | S576 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S620 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S754 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S2211 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S2727 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WV28 | BLNK | S432 | ochoa | B-cell linker protein (B-cell adapter containing a SH2 domain protein) (B-cell adapter containing a Src homology 2 domain protein) (Cytoplasmic adapter protein) (Src homology 2 domain-containing leukocyte protein of 65 kDa) (SLP-65) | Functions as a central linker protein, downstream of the B-cell receptor (BCR), bridging the SYK kinase to a multitude of signaling pathways and regulating biological outcomes of B-cell function and development. Plays a role in the activation of ERK/EPHB2, MAP kinase p38 and JNK. Modulates AP1 activation. Important for the activation of NF-kappa-B and NFAT. Plays an important role in BCR-mediated PLCG1 and PLCG2 activation and Ca(2+) mobilization and is required for trafficking of the BCR to late endosomes. However, does not seem to be required for pre-BCR-mediated activation of MAP kinase and phosphatidyl-inositol 3 (PI3) kinase signaling. May be required for the RAC1-JNK pathway. Plays a critical role in orchestrating the pro-B cell to pre-B cell transition. May play an important role in BCR-induced B-cell apoptosis. {ECO:0000269|PubMed:10583958, ECO:0000269|PubMed:15270728, ECO:0000269|PubMed:16912232, ECO:0000269|PubMed:9697839}. |
Q8WV44 | TRIM41 | S401 | ochoa | E3 ubiquitin-protein ligase TRIM41 (EC 2.3.2.27) (RING finger-interacting protein with C kinase) (RINCK) (Tripartite motif-containing protein 41) | E3 ligase that plays essential roles in innate antiviral response (PubMed:28169297, PubMed:29760876, PubMed:29899090, PubMed:31979016). Directly binds to influenza A virus or vesicular stomatitis virus nucleoproteins and targets them for ubiquitination and proteasomal degradation, thereby limiting viral infections (PubMed:28169297, PubMed:29899090, PubMed:31979016). Activates the innate antiviral response by catalyzing monoubiquitination of CGAS, thereby activating CGAS (PubMed:29760876). Also involved in innate antiviral response by mediating 'Lys-63'-linked polyubiquitylation of BCL10 which in turn hubs NEMO for activation of NF-kappa-B and IRF3 pathways (By similarity). Catalyzes the ubiquitin-mediated degradation of other substrates including protein kinase C, ZSCAN21 or TOP3B suggesting additional roles besides its function in immune response (PubMed:17893151, PubMed:33378676). {ECO:0000250|UniProtKB:Q5NCC3, ECO:0000269|PubMed:17893151, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:29760876, ECO:0000269|PubMed:29899090, ECO:0000269|PubMed:31979016, ECO:0000269|PubMed:33378676}. |
Q8WV44 | TRIM41 | S447 | ochoa | E3 ubiquitin-protein ligase TRIM41 (EC 2.3.2.27) (RING finger-interacting protein with C kinase) (RINCK) (Tripartite motif-containing protein 41) | E3 ligase that plays essential roles in innate antiviral response (PubMed:28169297, PubMed:29760876, PubMed:29899090, PubMed:31979016). Directly binds to influenza A virus or vesicular stomatitis virus nucleoproteins and targets them for ubiquitination and proteasomal degradation, thereby limiting viral infections (PubMed:28169297, PubMed:29899090, PubMed:31979016). Activates the innate antiviral response by catalyzing monoubiquitination of CGAS, thereby activating CGAS (PubMed:29760876). Also involved in innate antiviral response by mediating 'Lys-63'-linked polyubiquitylation of BCL10 which in turn hubs NEMO for activation of NF-kappa-B and IRF3 pathways (By similarity). Catalyzes the ubiquitin-mediated degradation of other substrates including protein kinase C, ZSCAN21 or TOP3B suggesting additional roles besides its function in immune response (PubMed:17893151, PubMed:33378676). {ECO:0000250|UniProtKB:Q5NCC3, ECO:0000269|PubMed:17893151, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:29760876, ECO:0000269|PubMed:29899090, ECO:0000269|PubMed:31979016, ECO:0000269|PubMed:33378676}. |
Q8WV44 | TRIM41 | S571 | ochoa | E3 ubiquitin-protein ligase TRIM41 (EC 2.3.2.27) (RING finger-interacting protein with C kinase) (RINCK) (Tripartite motif-containing protein 41) | E3 ligase that plays essential roles in innate antiviral response (PubMed:28169297, PubMed:29760876, PubMed:29899090, PubMed:31979016). Directly binds to influenza A virus or vesicular stomatitis virus nucleoproteins and targets them for ubiquitination and proteasomal degradation, thereby limiting viral infections (PubMed:28169297, PubMed:29899090, PubMed:31979016). Activates the innate antiviral response by catalyzing monoubiquitination of CGAS, thereby activating CGAS (PubMed:29760876). Also involved in innate antiviral response by mediating 'Lys-63'-linked polyubiquitylation of BCL10 which in turn hubs NEMO for activation of NF-kappa-B and IRF3 pathways (By similarity). Catalyzes the ubiquitin-mediated degradation of other substrates including protein kinase C, ZSCAN21 or TOP3B suggesting additional roles besides its function in immune response (PubMed:17893151, PubMed:33378676). {ECO:0000250|UniProtKB:Q5NCC3, ECO:0000269|PubMed:17893151, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:29760876, ECO:0000269|PubMed:29899090, ECO:0000269|PubMed:31979016, ECO:0000269|PubMed:33378676}. |
Q8WVB6 | CHTF18 | S865 | ochoa | Chromosome transmission fidelity protein 18 homolog (hCTF18) (CHL12) | Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated by the presence of primed DNA, replication protein A (RPA) and by proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. Interacts with and stimulates DNA polymerase POLH. During DNA repair synthesis, involved in loading DNA polymerase POLE at the sites of local damage (PubMed:20227374). {ECO:0000269|PubMed:12766176, ECO:0000269|PubMed:12930902, ECO:0000269|PubMed:17545166, ECO:0000269|PubMed:20227374}. |
Q8WVI7 | PPP1R1C | S65 | ochoa | Protein phosphatase 1 regulatory subunit 1C (Inhibitor-5 of protein phosphatase 1) (IPP5) | May increase cell susceptibility to TNF-induced apoptosis. {ECO:0000269|PubMed:19874272}. |
Q8WVK7 | SKA2 | S101 | ochoa | Spindle and kinetochore-associated protein 2 (Protein FAM33A) | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:17093495, PubMed:19289083, PubMed:23085020). Required for timely anaphase onset during mitosis, when chromosomes undergo bipolar attachment on spindle microtubules leading to silencing of the spindle checkpoint (PubMed:17093495). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:17093495, PubMed:19289083). In the complex, it is required for SKA1 localization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:17093495, ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:23085020}. |
Q8WVS4 | DYNC2I1 | S457 | ochoa | Cytoplasmic dynein 2 intermediate chain 1 (Dynein 2 intermediate chain 1) (WD repeat-containing protein 60) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 2 complex (dynein-2 complex), a motor protein complex that drives the movement of cargos along microtubules within cilia and flagella in concert with the intraflagellar transport (IFT) system (PubMed:23910462, PubMed:25205765, PubMed:29742051, PubMed:31451806). DYNC2I1 plays a major role in retrograde ciliary protein trafficking in cilia and flagella (PubMed:29742051, PubMed:30320547, PubMed:30649997). Also requires to maintain a functional transition zone (PubMed:30320547). {ECO:0000269|PubMed:23910462, ECO:0000269|PubMed:25205765, ECO:0000269|PubMed:29742051, ECO:0000269|PubMed:30320547, ECO:0000269|PubMed:30649997, ECO:0000269|PubMed:31451806}. |
Q8WVV4 | POF1B | S76 | ochoa | Protein POF1B (Premature ovarian failure protein 1B) | Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}. |
Q8WVV4 | POF1B | S98 | ochoa | Protein POF1B (Premature ovarian failure protein 1B) | Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}. |
Q8WVV4 | POF1B | S123 | ochoa | Protein POF1B (Premature ovarian failure protein 1B) | Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}. |
Q8WVV9 | HNRNPLL | S75 | ochoa | Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) (Stromal RNA-regulating factor) | RNA-binding protein that functions as a regulator of alternative splicing for multiple target mRNAs, including PTPRC/CD45 and STAT5A. Required for alternative splicing of PTPRC. {ECO:0000269|PubMed:18669861}. |
Q8WWI1 | LMO7 | S867 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWI5 | SLC44A1 | S611 | ochoa | Choline transporter-like protein 1 (CDw92) (Solute carrier family 44 member 1) (CD antigen CD92) | Choline/H+ antiporter (PubMed:19357133, PubMed:23651124, PubMed:31855247, PubMed:33789160). Also acts as a high-affinity ethanolamine/H+ antiporter, regulating the supply of extracellular ethanolamine (Etn) for the CDP-Etn pathway, redistribute intracellular Etn and balance the CDP-Cho and CDP-Etn arms of the Kennedy pathway (PubMed:33789160). Involved in membrane synthesis and myelin production (PubMed:31855247). {ECO:0000269|PubMed:19357133, ECO:0000269|PubMed:23651124, ECO:0000269|PubMed:31855247, ECO:0000269|PubMed:33789160}. |
Q8WWL2 | SPIRE2 | S622 | ochoa | Protein spire homolog 2 (Spir-2) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). {ECO:0000250|UniProtKB:Q8K1S6, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480}. |
Q8WWM7 | ATXN2L | S594 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q8WWN9 | IPCEF1 | S411 | ochoa | Interactor protein for cytohesin exchange factors 1 (Phosphoinositide-binding protein PIP3-E) | Enhances the promotion of guanine-nucleotide exchange by PSCD2 on ARF6 in a concentration-dependent manner. {ECO:0000250}. |
Q8WWQ0 | PHIP | S1377 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WWW8 | GAB3 | S273 | ochoa | GRB2-associated-binding protein 3 (GRB2-associated binder 3) (Growth factor receptor bound protein 2-associated protein 3) | None |
Q8WX92 | NELFB | S189 | ochoa | Negative elongation factor B (NELF-B) (Cofactor of BRCA1) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:12612062). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:10199401). May be able to induce chromatin unfolding (PubMed:11739404). Essential for early embryogenesis; plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) by preventing unscheduled expression of developmental genes (By similarity). Plays a key role in establishing the responsiveness of stem cells to developmental cues; facilitates plasticity and cell fate commitment in ESCs by establishing the appropriate expression level of signaling molecules (By similarity). Supports the transcription of genes involved in energy metabolism in cardiomyocytes; facilitates the association of transcription initiation factors with the promoters of the metabolism-related genes (By similarity). {ECO:0000250|UniProtKB:Q8C4Y3, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11739404, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II (PubMed:23884411). In vitro, binds weakly to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1 (PubMed:23884411). {ECO:0000269|PubMed:23884411}. |
Q8WX93 | PALLD | S115 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WX93 | PALLD | S192 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WX93 | PALLD | S401 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXE1 | ATRIP | S224 | ochoa|psp | ATR-interacting protein (ATM and Rad3-related-interacting protein) | Required for checkpoint signaling after DNA damage. Required for ATR expression, possibly by stabilizing the protein. {ECO:0000269|PubMed:12791985}. |
Q8WXE9 | STON2 | S307 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q8WXE9 | STON2 | S326 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q8WXF1 | PSPC1 | S164 | ochoa | Paraspeckle component 1 (Paraspeckle protein 1) | RNA-binding protein required for the formation of nuclear paraspeckles (PubMed:22416126). Binds to poly(A), poly(G) and poly(U) RNA homopolymers (PubMed:22416126). Regulates, cooperatively with NONO and SFPQ, androgen receptor-mediated gene transcription activity in Sertoli cell line (By similarity). Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8R326, ECO:0000269|PubMed:22416126, ECO:0000269|PubMed:28712728}. |
Q8WXH0 | SYNE2 | S841 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S873 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S1772 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S3145 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S4025 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S5087 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXI2 | CNKSR2 | S248 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WXI9 | GATAD2B | S486 | ochoa | Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}. |
Q8WXX5 | DNAJC9 | S88 | ochoa | DnaJ homolog subfamily C member 9 (HDJC9) (DnaJ protein SB73) | Acts as a dual histone chaperone and heat shock co-chaperone (PubMed:33857403). As a histone chaperone, forms a co-chaperone complex with MCM2 and histone H3-H4 heterodimers; and may thereby assist MCM2 in histone H3-H4 heterodimer recognition and facilitate the assembly of histones into nucleosomes (PubMed:33857403). May also act as a histone co-chaperone together with TONSL (PubMed:33857403). May recruit histone chaperones ASF1A, NASP and SPT2 to histone H3-H4 heterodimers (PubMed:33857403). Also plays a role as co-chaperone of the HSP70 family of molecular chaperone proteins, such as HSPA1A, HSPA1B and HSPA8 (PubMed:17182002, PubMed:33857403). As a co-chaperone, may play a role in the recruitment of HSP70-type molecular chaperone machinery to histone H3-H4 substrates, thereby maintaining the histone structural integrity (PubMed:33857403). Exhibits activity to assemble histones onto DNA in vitro (PubMed:33857403). {ECO:0000269|PubMed:17182002, ECO:0000269|PubMed:33857403}. |
Q8WY36 | BBX | S704 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WY91 | THAP4 | S410 | ochoa | Peroxynitrite isomerase THAP4 (EC 5.99.-.-) (Ferric Homo sapiens nitrobindin) (Hs-Nb(III)) (THAP domain-containing protein 4) | Heme-binding protein able to scavenge peroxynitrite and to protect free L-tyrosine against peroxynitrite-mediated nitration, by acting as a peroxynitrite isomerase that converts peroxynitrite to nitrate. Therefore, this protein likely plays a role in peroxynitrite sensing and in the detoxification of reactive nitrogen and oxygen species (RNS and ROS, respectively). Is able to bind nitric oxide (NO) in vitro, but may act as a sensor of peroxynitrite levels in vivo, possibly modulating the transcriptional activity residing in the N-terminal region. {ECO:0000269|PubMed:30524950, ECO:0000269|PubMed:32295384}. |
Q8WYA1 | BMAL2 | S540 | ochoa | Basic helix-loop-helix ARNT-like protein 2 (Aryl hydrocarbon receptor nuclear translocator-like protein 2) (Basic-helix-loop-helix-PAS protein MOP9) (Brain and muscle ARNT-like 2) (CYCLE-like factor) (CLIF) (Class E basic helix-loop-helix protein 6) (bHLHe6) (Member of PAS protein 9) (PAS domain-containing protein 9) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. The CLOCK-BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1. {ECO:0000269|PubMed:11018023, ECO:0000269|PubMed:12738229, ECO:0000269|PubMed:14672706}. |
Q8WYA6 | CTNNBL1 | S389 | ochoa | Beta-catenin-like protein 1 (Nuclear-associated protein) (NAP) (Testis development protein NYD-SP19) | Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. Participates in AID/AICDA-mediated somatic hypermutation (SHM) and class-switch recombination (CSR), 2 processes resulting in the production of high-affinity, mutated isotype-switched antibodies (PubMed:32484799). {ECO:0000269|PubMed:32484799}. |
Q8WYB5 | KAT6B | S445 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYB5 | KAT6B | S647 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYB5 | KAT6B | S1581 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYL5 | SSH1 | S57 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYL5 | SSH1 | S778 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYL5 | SSH1 | S897 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYL5 | SSH1 | S971 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYP5 | AHCTF1 | S1402 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S1513 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S1898 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S1944 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S2120 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S2154 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYQ5 | DGCR8 | S153 | ochoa|psp | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q8WYQ5 | DGCR8 | S619 | psp | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q8WZ64 | ARAP2 | S493 | ochoa | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 2 (Centaurin-delta-1) (Cnt-d1) (Protein PARX) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency (By similarity). {ECO:0000250}. |
Q8WZ74 | CTTNBP2 | S475 | ochoa | Cortactin-binding protein 2 (CortBP2) | Regulates the dendritic spine distribution of CTTN/cortactin in hippocampal neurons, and thus controls dendritic spinogenesis and dendritic spine maintenance. Associates with the striatin-interacting phosphatase and kinase (STRIPAK) core complex to regulate dendritic spine distribution of the STRIPAK complex in hippocampal neurons. {ECO:0000250|UniProtKB:Q2IBD4}. |
Q8WZ75 | ROBO4 | S657 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q8WZ75 | ROBO4 | S684 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q92466 | DDB2 | S297 | ochoa | DNA damage-binding protein 2 (DDB p48 subunit) (DDBb) (Damage-specific DNA-binding protein 2) (UV-damaged DNA-binding protein 2) (UV-DDB 2) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12732143, PubMed:15882621, PubMed:16473935, PubMed:18593899, PubMed:32789493, PubMed:9892649). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12944386, PubMed:14751237, PubMed:16260596, PubMed:32789493). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:10882109, PubMed:11278856, PubMed:11705987, PubMed:12944386, PubMed:16260596). Also functions as the substrate recognition module for the DCX (DDB2-CUL4-X-box) E3 ubiquitin-protein ligase complex DDB2-CUL4-ROC1 (also known as CUL4-DDB-ROC1 and CUL4-DDB-RBX1) (PubMed:12732143, PubMed:15882621, PubMed:16473935, PubMed:18593899, PubMed:26572825). The DDB2-CUL4-ROC1 complex may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110). The DDB2-CUL4-ROC1 complex also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). The DDB2-CUL4-ROC1 complex also ubiquitinates KAT7/HBO1 in response to DNA damage, leading to its degradation: recognizes KAT7/HBO1 following phosphorylation by ATR (PubMed:26572825). {ECO:0000269|PubMed:10882109, ECO:0000269|PubMed:11278856, ECO:0000269|PubMed:11705987, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:12944386, ECO:0000269|PubMed:14751237, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:26572825, ECO:0000269|PubMed:32789493, ECO:0000269|PubMed:9892649}.; FUNCTION: [Isoform D1]: Inhibits UV-damaged DNA repair. {ECO:0000269|PubMed:14751237}.; FUNCTION: [Isoform D2]: Inhibits UV-damaged DNA repair. {ECO:0000269|PubMed:14751237}. |
Q92503 | SEC14L1 | S224 | ochoa | SEC14-like protein 1 | May play a role in innate immunity by inhibiting the antiviral RIG-I signaling pathway. In this pathway, functions as a negative regulator of RIGI, the cytoplasmic sensor of viral nucleic acids. Prevents the interaction of RIGI with MAVS/IPS1, an important step in signal propagation (PubMed:23843640). May also regulate the SLC18A3 and SLC5A7 cholinergic transporters (PubMed:17092608). {ECO:0000269|PubMed:17092608, ECO:0000269|PubMed:23843640}. |
Q92508 | PIEZO1 | S544 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92529 | SHC3 | S479 | ochoa | SHC-transforming protein 3 (Neuronal Shc) (N-Shc) (Protein Rai) (SHC-transforming protein C) (Src homology 2 domain-containing-transforming protein C3) (SH2 domain protein C3) | Signaling adapter that couples activated growth factor receptors to signaling pathway in neurons. Involved in the signal transduction pathways of neurotrophin-activated Trk receptors in cortical neurons. |
Q92539 | LPIN2 | S229 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92540 | SMG7 | S520 | ochoa | Nonsense-mediated mRNA decay factor SMG7 (SMG-7 homolog) (hSMG-7) | Plays a role in nonsense-mediated mRNA decay. Recruits UPF1 to cytoplasmic mRNA decay bodies. Together with SMG5 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. {ECO:0000269|PubMed:15546618, ECO:0000269|PubMed:15721257}. |
Q92540 | SMG7 | S781 | ochoa | Nonsense-mediated mRNA decay factor SMG7 (SMG-7 homolog) (hSMG-7) | Plays a role in nonsense-mediated mRNA decay. Recruits UPF1 to cytoplasmic mRNA decay bodies. Together with SMG5 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. {ECO:0000269|PubMed:15546618, ECO:0000269|PubMed:15721257}. |
Q92543 | SNX19 | S375 | ochoa | Sorting nexin-19 | Plays a role in intracellular vesicle trafficking and exocytosis (PubMed:24843546). May play a role in maintaining insulin-containing dense core vesicles in pancreatic beta-cells and in preventing their degradation. May play a role in insulin secretion (PubMed:24843546). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (By similarity). {ECO:0000250|UniProtKB:Q6P4T1, ECO:0000269|PubMed:24843546}. |
Q92547 | TOPBP1 | S888 | ochoa | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92556 | ELMO1 | S80 | ochoa | Engulfment and cell motility protein 1 (Protein ced-12 homolog) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}. |
Q92556 | ELMO1 | S580 | ochoa | Engulfment and cell motility protein 1 (Protein ced-12 homolog) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}. |
Q92560 | BAP1 | S292 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92560 | BAP1 | S369 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92560 | BAP1 | S571 | psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92565 | RAPGEF5 | S212 | ochoa | Rap guanine nucleotide exchange factor 5 (Guanine nucleotide exchange factor for Rap1) (M-Ras-regulated Rap GEF) (MR-GEF) (Related to Epac) (Repac) | Guanine nucleotide exchange factor (GEF) for RAP1A, RAP2A and MRAS/M-Ras-GTP. Its association with MRAS inhibits Rap1 activation. {ECO:0000269|PubMed:10777494, ECO:0000269|PubMed:10934204}. |
Q92574 | TSC1 | S295 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S332 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S505 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S644 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S682 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S1141 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92576 | PHF3 | S283 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S1133 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S1614 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S1642 | ochoa | PHD finger protein 3 | None |
Q92576 | PHF3 | S1722 | ochoa | PHD finger protein 3 | None |
Q92585 | MAML1 | S120 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92585 | MAML1 | S303 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92585 | MAML1 | S360 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92598 | HSPH1 | S384 | ochoa | Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) | Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}. |
Q92598 | HSPH1 | S809 | ochoa | Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) | Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}. |
Q92608 | DOCK2 | S218 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92608 | DOCK2 | S1780 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92610 | ZNF592 | S573 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92610 | ZNF592 | S766 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92610 | ZNF592 | S1052 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92613 | JADE3 | S741 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92615 | LARP4B | S434 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92615 | LARP4B | S451 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92618 | ZNF516 | S116 | ochoa | Zinc finger protein 516 | Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}. |
Q92618 | ZNF516 | S852 | ochoa | Zinc finger protein 516 | Transcriptional regulator that binds to the promoter and activates the transcription of genes promoting brown adipose tissue (BAT) differentiation. Among brown adipose tissue-specific genes, binds the proximal region of the promoter of the UCP1 gene to activate its transcription and thereby regulate thermogenesis (By similarity). May also play a role in the cellular response to replication stress (PubMed:23446422). {ECO:0000250|UniProtKB:Q7TSH3, ECO:0000269|PubMed:23446422}. |
Q92620 | DHX38 | S1194 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) | Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}. |
Q92622 | RUBCN | S44 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92622 | RUBCN | S92 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92622 | RUBCN | S197 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92625 | ANKS1A | S771 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92625 | ANKS1A | S858 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92628 | KIAA0232 | S814 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92628 | KIAA0232 | S1294 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92664 | GTF3A | S347 | ochoa | Transcription factor IIIA (TFIIIA) | Involved in ribosomal large subunit biogenesis. Binds the approximately 50 base pairs internal control region (ICR) of 5S ribosomal RNA genes. It is required for their RNA polymerase III-dependent transcription and may also maintain the transcription of other genes (PubMed:24120868). Also binds the transcribed 5S RNA's (By similarity). {ECO:0000250|UniProtKB:P17842, ECO:0000269|PubMed:24120868}. |
Q92667 | AKAP1 | S151 | ochoa|psp | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92667 | AKAP1 | S169 | ochoa | A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) | Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}. |
Q92674 | CENPI | S520 | ochoa | Centromere protein I (CENP-I) (FSH primary response protein 1) (Follicle-stimulating hormone primary response protein) (Interphase centromere complex protein 19) (Leucine-rich primary response protein 1) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Required for the localization of CENPF, MAD1L1 and MAD2 (MAD2L1 or MAD2L2) to kinetochores. Involved in the response of gonadal tissues to follicle-stimulating hormone. {ECO:0000269|PubMed:12640463, ECO:0000269|PubMed:16622420}. |
Q92692 | NECTIN2 | S433 | ochoa | Nectin-2 (Herpes virus entry mediator B) (Herpesvirus entry mediator B) (HveB) (Nectin cell adhesion molecule 2) (Poliovirus receptor-related protein 2) (CD antigen CD112) | Modulator of T-cell signaling. Can be either a costimulator of T-cell function, or a coinhibitor, depending on the receptor it binds to. Upon binding to CD226, stimulates T-cell proliferation and cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG. Upon interaction with PVRIG, inhibits T-cell proliferation. These interactions are competitive (PubMed:26755705). Probable cell adhesion protein (PubMed:9657005). {ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:9657005}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1 (HHV-1) mutant Rid1, herpes simplex virus 1 (HHV-2) and pseudorabies virus (PRV). {ECO:0000269|PubMed:11602758, ECO:0000269|PubMed:9657005}. |
Q92692 | NECTIN2 | S520 | ochoa | Nectin-2 (Herpes virus entry mediator B) (Herpesvirus entry mediator B) (HveB) (Nectin cell adhesion molecule 2) (Poliovirus receptor-related protein 2) (CD antigen CD112) | Modulator of T-cell signaling. Can be either a costimulator of T-cell function, or a coinhibitor, depending on the receptor it binds to. Upon binding to CD226, stimulates T-cell proliferation and cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG. Upon interaction with PVRIG, inhibits T-cell proliferation. These interactions are competitive (PubMed:26755705). Probable cell adhesion protein (PubMed:9657005). {ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:9657005}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1 (HHV-1) mutant Rid1, herpes simplex virus 1 (HHV-2) and pseudorabies virus (PRV). {ECO:0000269|PubMed:11602758, ECO:0000269|PubMed:9657005}. |
Q92698 | RAD54L | S49 | ochoa|psp | DNA repair and recombination protein RAD54-like (EC 3.6.4.12) (RAD54 homolog) (hHR54) (hRAD54) | Plays an essential role in homologous recombination (HR) which is a major pathway for repairing DNA double-strand breaks (DSBs), single-stranded DNA (ssDNA) gaps, and stalled or collapsed replication forks (PubMed:11459989, PubMed:12205100, PubMed:24798879, PubMed:27264870, PubMed:32457312, PubMed:9774452). Acts as a molecular motor during the homology search and guides RAD51 ssDNA along a donor dsDNA thereby changing the homology search from the diffusion-based mechanism to a motor-guided mechanism. Also plays an essential role in RAD51-mediated synaptic complex formation which consists of three strands encased in a protein filament formed once homology is recognized. Once DNA strand exchange occured, dissociates RAD51 from nucleoprotein filaments formed on dsDNA (By similarity). {ECO:0000250|UniProtKB:P32863, ECO:0000269|PubMed:11459989, ECO:0000269|PubMed:12205100, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:27264870, ECO:0000269|PubMed:32457312, ECO:0000269|PubMed:9774452}. |
Q92729 | PTPRU | S863 | ochoa | Receptor-type tyrosine-protein phosphatase U (R-PTP-U) (EC 3.1.3.48) (Pancreatic carcinoma phosphatase 2) (PCP-2) (Protein-tyrosine phosphatase J) (PTP-J) (hPTP-J) (Protein-tyrosine phosphatase pi) (PTP pi) (Protein-tyrosine phosphatase receptor omicron) (PTP-RO) (Receptor-type protein-tyrosine phosphatase psi) (R-PTP-psi) | Tyrosine-protein phosphatase which dephosphorylates CTNNB1. Regulates CTNNB1 function both in cell adhesion and signaling. May function in cell proliferation and migration and play a role in the maintenance of epithelial integrity. May play a role in megakaryocytopoiesis. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12501215, ECO:0000269|PubMed:16574648}. |
Q92731 | ESR2 | S105 | psp | Estrogen receptor beta (ER-beta) (Nuclear receptor subfamily 3 group A member 2) | Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1/ER-alpha, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). {ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:29261182, ECO:0000269|PubMed:30113650, ECO:0000269|PubMed:9325313}.; FUNCTION: [Isoform 2]: Lacks ligand binding ability and has no or only very low ERE binding activity resulting in the loss of ligand-dependent transactivation ability. {ECO:0000269|PubMed:9671811}. |
Q92750 | TAF4B | S595 | ochoa | Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) | Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}. |
Q92753 | RORB | S175 | ochoa | Nuclear receptor ROR-beta (Nuclear receptor RZR-beta) (Nuclear receptor subfamily 1 group F member 2) (Retinoid-related orphan receptor-beta) | Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Considered to have intrinsic transcriptional activity, have some natural ligands such as all-trans retinoic acid (ATRA) and other retinoids which act as inverse agonists repressing the transcriptional activity. Required for normal postnatal development of rod and cone photoreceptor cells. Modulates rod photoreceptors differentiation at least by inducing the transcription factor NRL-mediated pathway. In cone photoreceptor cells, regulates transcription of OPN1SW. Involved in the regulation of the period length and stability of the circadian rhythm. May control cytoarchitectural patterning of neocortical neurons during development. May act in a dose-dependent manner to regulate barrel formation upon innervation of layer IV neurons by thalamocortical axons. May play a role in the suppression of osteoblastic differentiation through the inhibition of RUNX2 transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P45446}.; FUNCTION: Isoform 1 is critical for hindlimb motor control and for the differentiation of amacrine and horizontal cells in the retina. Regulates the expression of PTF1A synergistically with FOXN4 (By similarity). {ECO:0000250|UniProtKB:Q8R1B8}. |
Q92769 | HDAC2 | S347 | ochoa | Histone deacetylase 2 (HD2) (EC 3.5.1.98) (Protein deacylase HDAC2) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:35044827). {ECO:0000250|UniProtKB:P70288, ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:37137925}. |
Q92771 | DDX12P | S63 | ochoa | Putative ATP-dependent DNA helicase DDX12 (EC 5.6.2.-) (CHL1-related protein 2) (hCHLR2) (DEAD/H box protein 12) | DNA helicase involved in cellular proliferation. Probably required for maintaining the chromosome segregation (By similarity). {ECO:0000250}. |
Q92777 | SYN2 | S425 | ochoa | Synapsin-2 (Synapsin II) | Neuronal phosphoprotein that coats synaptic vesicles, binds to the cytoskeleton, and is believed to function in the regulation of neurotransmitter release. May play a role in noradrenaline secretion by sympathetic neurons (By similarity). {ECO:0000250}. |
Q92786 | PROX1 | S179 | ochoa | Prospero homeobox protein 1 (Homeobox prospero-like protein PROX1) (PROX-1) | Transcription factor involved in developmental processes such as cell fate determination, gene transcriptional regulation and progenitor cell regulation in a number of organs. Plays a critical role in embryonic development and functions as a key regulatory protein in neurogenesis and the development of the heart, eye lens, liver, pancreas and the lymphatic system. Involved in the regulation of the circadian rhythm. Represses: transcription of the retinoid-related orphan receptor RORG, transcriptional activator activity of RORA and RORG and the expression of RORA/G-target genes including core clock components: BMAL1, NPAS2 and CRY1 and metabolic genes: AVPR1A and ELOVL3. {ECO:0000269|PubMed:23723244, ECO:0000303|PubMed:22733308}. |
Q92793 | CREBBP | S1763 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92793 | CREBBP | S2076 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92794 | KAT6A | S420 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92797 | SYMPK | S938 | ochoa | Symplekin | Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity. {ECO:0000269|PubMed:16230528, ECO:0000269|PubMed:20861839}. |
Q92817 | EVPL | S1698 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92830 | KAT2A | S372 | psp | Histone acetyltransferase KAT2A (EC 2.3.1.48) (General control of amino acid synthesis protein 5-like 2) (Histone acetyltransferase GCN5) (hGCN5) (Histone glutaryltransferase KAT2A) (EC 2.3.1.-) (Histone succinyltransferase KAT2A) (EC 2.3.1.-) (Lysine acetyltransferase 2A) (STAF97) | Protein lysine acyltransferase that can act as a acetyltransferase, glutaryltransferase, succinyltransferase or malonyltransferase, depending on the context (PubMed:29211711, PubMed:35995428). Acts as a histone lysine succinyltransferase: catalyzes succinylation of histone H3 on 'Lys-79' (H3K79succ), with a maximum frequency around the transcription start sites of genes (PubMed:29211711). Succinylation of histones gives a specific tag for epigenetic transcription activation (PubMed:29211711). Association with the 2-oxoglutarate dehydrogenase complex, which provides succinyl-CoA, is required for histone succinylation (PubMed:29211711). In different complexes, functions either as an acetyltransferase (HAT) or as a succinyltransferase: in the SAGA and ATAC complexes, acts as a histone acetyltransferase (PubMed:17301242, PubMed:19103755, PubMed:29211711). Has significant histone acetyltransferase activity with core histones, but not with nucleosome core particles (PubMed:17301242, PubMed:19103755, PubMed:21131905). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Acetylation of histones gives a specific tag for epigenetic transcription activation (PubMed:17301242, PubMed:19103755, PubMed:29211711). Recruited by the XPC complex at promoters, where it specifically mediates acetylation of histone variant H2A.Z.1/H2A.Z, thereby promoting expression of target genes (PubMed:29973595, PubMed:31527837). Involved in long-term memory consolidation and synaptic plasticity: acts by promoting expression of a hippocampal gene expression network linked to neuroactive receptor signaling (By similarity). Acts as a positive regulator of T-cell activation: upon TCR stimulation, recruited to the IL2 promoter following interaction with NFATC2 and catalyzes acetylation of histone H3 at 'Lys-9' (H3K9ac), leading to promote IL2 expression (By similarity). Required for growth and differentiation of craniofacial cartilage and bone by regulating acetylation of histone H3 at 'Lys-9' (H3K9ac) (By similarity). Regulates embryonic stem cell (ESC) pluripotency and differentiation (By similarity). Also acetylates non-histone proteins, such as CEBPB, MRE11, PPARGC1A, PLK4 and TBX5 (PubMed:16753578, PubMed:17301242, PubMed:27796307, PubMed:29174768, PubMed:38128537). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acts as a negative regulator of gluconeogenesis by mediating acetylation and subsequent inactivation of PPARGC1A (PubMed:16753578, PubMed:23142079). Also acts as a histone glutaryltransferase: catalyzes glutarylation of histone H4 on 'Lys-91' (H4K91glu), a mark that destabilizes nucleosomes by promoting dissociation of the H2A-H2B dimers from nucleosomes (PubMed:31542297). {ECO:0000250|UniProtKB:Q9JHD2, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:17301242, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:29211711, ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837, ECO:0000269|PubMed:31542297, ECO:0000269|PubMed:35995428, ECO:0000269|PubMed:38128537}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:11384967}. |
Q92831 | KAT2B | S117 | ochoa | Histone acetyltransferase KAT2B (EC 2.3.1.48) (Histone acetyltransferase PCAF) (Histone acetylase PCAF) (Lysine acetyltransferase 2B) (P300/CBP-associated factor) (P/CAF) (Spermidine acetyltransferase KAT2B) (EC 2.3.1.57) | Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:10675335, PubMed:23001180, PubMed:23932781, PubMed:26867678, PubMed:27796307, PubMed:29174768, PubMed:9707565). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23001180, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:27389534, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:8684459, ECO:0000269|PubMed:8945521, ECO:0000269|PubMed:9707565}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:12486002}. |
Q92834 | RPGR | S518 | ochoa | X-linked retinitis pigmentosa GTPase regulator | Acts as a guanine-nucleotide releasing factor (GEF) for RAB8A and RAB37 by promoting the conversion of inactive RAB-GDP to the active form RAB-GTP (PubMed:20631154). GEF activity towards RAB8A may facilitate ciliary trafficking by modulating ciliary intracellular localization of RAB8A (PubMed:20631154). GEF activity towards RAB37 maintains autophagic homeostasis and retinal function (By similarity). Involved in photoreceptor integrity (By similarity). May control cilia formation by regulating actin stress filaments and cell contractility. May be involved in microtubule organization and regulation of transport in primary cilia (PubMed:21933838). May play a critical role in spermatogenesis and in intraflagellar transport processes (By similarity). {ECO:0000250|UniProtKB:Q9R0X5, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:21933838}. |
Q92835 | INPP5D | S243 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92844 | TANK | S117 | ochoa | TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) | Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}. |
Q92844 | TANK | S257 | ochoa | TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) | Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}. |
Q92871 | PMM1 | S242 | ochoa | Phosphomannomutase 1 (PMM 1) (EC 5.4.2.8) (PMMH-22) | Involved in the synthesis of the GDP-mannose and dolichol-phosphate-mannose required for a number of critical mannosyl transfer reactions. In addition, may be responsible for the degradation of glucose-1,6-bisphosphate in ischemic brain. {ECO:0000269|PubMed:16540464}. |
Q92917 | GPKOW | S388 | ochoa | G-patch domain and KOW motifs-containing protein (G-patch domain-containing protein 5) (Protein MOS2 homolog) (Protein T54) | RNA-binding protein involved in pre-mRNA splicing. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:25296192, ECO:0000305|PubMed:33509932}. |
Q92918 | MAP4K1 | S586 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q92918 | MAP4K1 | S737 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q92922 | SMARCC1 | S573 | ochoa | SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q92925 | SMARCD2 | S203 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 (60 kDa BRG-1/Brm-associated factor subunit B) (BRG1-associated factor 60B) (BAF60B) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:22952240, PubMed:26601204). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (PubMed:28369036). {ECO:0000269|PubMed:28369036, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q92945 | KHSRP | S181 | ochoa | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
Q92953 | KCNB2 | S488 | ochoa | Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}. |
Q92953 | KCNB2 | S531 | ochoa | Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}. |
Q92973 | TNPO1 | S32 | ochoa | Transportin-1 (Importin beta-2) (Karyopherin beta-2) (M9 region interaction protein) (MIP) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates (PubMed:24753571). May mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones (By similarity). In vitro, mediates nuclear import of SRP19 (PubMed:11682607). Mediates nuclear import of ADAR/ADAR1 isoform 1 and isoform 5 in a RanGTP-dependent manner (PubMed:19124606, PubMed:24753571). Main mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with the karyopherins KPNA1 and KPNA2 (PubMed:35446349). {ECO:0000250|UniProtKB:Q8BFY9, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:19124606, ECO:0000269|PubMed:24753571, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:8986607, ECO:0000269|PubMed:9687515}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000269|PubMed:16704975}. |
Q93009 | USP7 | S963 | ochoa | Ubiquitin carboxyl-terminal hydrolase 7 (EC 3.4.19.12) (Deubiquitinating enzyme 7) (Herpesvirus-associated ubiquitin-specific protease) (Ubiquitin thioesterase 7) (Ubiquitin-specific-processing protease 7) | Hydrolase that deubiquitinates target proteins such as ARMC5, FOXO4, DEPTOR, KAT5, p53/TP53, MDM2, ERCC6, DNMT1, UHRF1, PTEN, KMT2E/MLL5 and DAXX (PubMed:11923872, PubMed:15053880, PubMed:16964248, PubMed:18716620, PubMed:25283148, PubMed:25865756, PubMed:26678539, PubMed:28655758, PubMed:33544460, PubMed:35216969). Together with DAXX, prevents MDM2 self-ubiquitination and enhances the E3 ligase activity of MDM2 towards p53/TP53, thereby promoting p53/TP53 ubiquitination and proteasomal degradation (PubMed:15053880, PubMed:16845383, PubMed:18566590, PubMed:20153724). Deubiquitinates p53/TP53, preventing degradation of p53/TP53, and enhances p53/TP53-dependent transcription regulation, cell growth repression and apoptosis (PubMed:25283148). Deubiquitinates p53/TP53 and MDM2 and strongly stabilizes p53/TP53 even in the presence of excess MDM2, and also induces p53/TP53-dependent cell growth repression and apoptosis (PubMed:11923872, PubMed:26786098). Deubiquitination of FOXO4 in presence of hydrogen peroxide is not dependent on p53/TP53 and inhibits FOXO4-induced transcriptional activity (PubMed:16964248). In association with DAXX, is involved in the deubiquitination and translocation of PTEN from the nucleus to the cytoplasm, both processes that are counteracted by PML (PubMed:18716620). Deubiquitinates KMT2E/MLL5 preventing KMT2E/MLL5 proteasomal-mediated degradation (PubMed:26678539). Involved in cell proliferation during early embryonic development. Involved in transcription-coupled nucleotide excision repair (TC-NER) in response to UV damage: recruited to DNA damage sites following interaction with KIAA1530/UVSSA and promotes deubiquitination of ERCC6, preventing UV-induced degradation of ERCC6 (PubMed:22466611, PubMed:22466612). Involved in maintenance of DNA methylation via its interaction with UHRF1 and DNMT1: acts by mediating deubiquitination of UHRF1 and DNMT1, preventing their degradation and promoting DNA methylation by DNMT1 (PubMed:21745816, PubMed:22411829). Deubiquitinates alkylation repair enzyme ALKBH3. OTUD4 recruits USP7 and USP9X to stabilize ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). Acts as a chromatin regulator via its association with the Polycomb group (PcG) multiprotein PRC1-like complex; may act by deubiquitinating components of the PRC1-like complex (PubMed:20601937). Able to mediate deubiquitination of histone H2B; it is however unsure whether this activity takes place in vivo (PubMed:20601937). Exhibits a preference towards 'Lys-48'-linked ubiquitin chains (PubMed:22689415). Increases regulatory T-cells (Treg) suppressive capacity by deubiquitinating and stabilizing the transcription factor FOXP3 which is crucial for Treg cell function (PubMed:23973222). Plays a role in the maintenance of the circadian clock periodicity via deubiquitination and stabilization of the CRY1 and CRY2 proteins (PubMed:27123980). Deubiquitinates REST, thereby stabilizing REST and promoting the maintenance of neural progenitor cells (PubMed:21258371). Deubiquitinates SIRT7, inhibiting SIRT7 histone deacetylase activity and regulating gluconeogenesis (PubMed:28655758). Involved in the regulation of WASH-dependent actin polymerization at the surface of endosomes and the regulation of endosomal protein recycling (PubMed:26365382). It maintains optimal WASH complex activity and precise F-actin levels via deubiquitination of TRIM27 and WASHC1 (PubMed:26365382). Mediates the deubiquitination of phosphorylated DEPTOR, promoting its stability and leading to decreased mTORC1 signaling (PubMed:35216969). {ECO:0000269|PubMed:11923872, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:16964248, ECO:0000269|PubMed:18566590, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:20153724, ECO:0000269|PubMed:20601937, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:22411829, ECO:0000269|PubMed:22466611, ECO:0000269|PubMed:22466612, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:23973222, ECO:0000269|PubMed:25283148, ECO:0000269|PubMed:25865756, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:26365382, ECO:0000269|PubMed:26678539, ECO:0000269|PubMed:26786098, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28655758, ECO:0000269|PubMed:33544460, ECO:0000269|PubMed:35216969}.; FUNCTION: (Microbial infection) Contributes to the overall stabilization and trans-activation capability of the herpesvirus 1 trans-acting transcriptional protein ICP0/VMW110 during HSV-1 infection. {ECO:0000269|PubMed:14506283, ECO:0000269|PubMed:16160161, ECO:0000269|PubMed:18590780}.; FUNCTION: (Microbial infection) Upon infection with Epstein-Barr virus, the interaction with viral EBNA1 increases the association of USP7 with PML proteins, which is required for the polyubiquitylation and degradation of PML. {ECO:0000269|PubMed:20719947, ECO:0000269|PubMed:24216761}. |
Q93073 | SECISBP2L | S425 | ochoa | Selenocysteine insertion sequence-binding protein 2-like (SECIS-binding protein 2-like) | Binds SECIS (Sec insertion sequence) elements present on selenocysteine (Sec) protein mRNAs, but does not promote Sec incorporation into selenoproteins in vitro. |
Q93075 | TATDN2 | S299 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q969E4 | TCEAL3 | S121 | ochoa | Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) | May be involved in transcriptional regulation. |
Q969F9 | HPS3 | S462 | ochoa | BLOC-2 complex member HPS3 (Hermansky-Pudlak syndrome 3 protein) | Involved in early stages of melanosome biogenesis and maturation. {ECO:0000250|UniProtKB:Q91VB4}. |
Q969F9 | HPS3 | S648 | ochoa | BLOC-2 complex member HPS3 (Hermansky-Pudlak syndrome 3 protein) | Involved in early stages of melanosome biogenesis and maturation. {ECO:0000250|UniProtKB:Q91VB4}. |
Q969H0 | FBXW7 | S349 | psp | F-box/WD repeat-containing protein 7 (Archipelago homolog) (hAgo) (F-box and WD-40 domain-containing protein 7) (F-box protein FBX30) (SEL-10) (hCdc4) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:17434132, PubMed:22748924, PubMed:26976582, PubMed:28727686, PubMed:34741373, PubMed:35395208). Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter brings them to the SCF complex for ubiquitination (PubMed:17434132, PubMed:22748924, PubMed:26774286, PubMed:26976582, PubMed:28727686, PubMed:34741373). Identified substrates include cyclin-E (CCNE1 or CCNE2), DISC1, JUN, MYC, NOTCH1 released notch intracellular domain (NICD), NFE2L1, NOTCH2, MCL1, MLST8, RICTOR, and probably PSEN1 (PubMed:11565034, PubMed:11585921, PubMed:12354302, PubMed:14739463, PubMed:15103331, PubMed:17558397, PubMed:17873522, PubMed:22608923, PubMed:22748924, PubMed:25775507, PubMed:25897075, PubMed:26976582, PubMed:28007894, PubMed:28727686, PubMed:29149593, PubMed:34102342). Acts as a negative regulator of JNK signaling by binding to phosphorylated JUN and promoting its ubiquitination and subsequent degradation (PubMed:14739463). Involved in bone homeostasis and negative regulation of osteoclast differentiation (PubMed:29149593). Regulates the amplitude of the cyclic expression of hepatic core clock genes and genes involved in lipid and glucose metabolism via ubiquitination and proteasomal degradation of their transcriptional repressor NR1D1; CDK1-dependent phosphorylation of NR1D1 is necessary for SCF(FBXW7)-mediated ubiquitination (PubMed:27238018). Also able to promote 'Lys-63'-linked ubiquitination in response to DNA damage (PubMed:26774286). The SCF(FBXW7) complex facilitates double-strand break repair following phosphorylation by ATM: phosphorylation promotes localization to sites of double-strand breaks and 'Lys-63'-linked ubiquitination of phosphorylated XRCC4, enhancing DNA non-homologous end joining (PubMed:26774286). {ECO:0000269|PubMed:11565034, ECO:0000269|PubMed:11585921, ECO:0000269|PubMed:14739463, ECO:0000269|PubMed:15103331, ECO:0000269|PubMed:17434132, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:22748924, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:26976582, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:28007894, ECO:0000269|PubMed:28727686, ECO:0000269|PubMed:29149593, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:35395208, ECO:0000305|PubMed:12354302}. |
Q969J3 | BORCS5 | S75 | ochoa | BLOC-1-related complex subunit 5 (Loss of heterozygosity 12 chromosomal region 1) (Myristoylated lysosomal protein) (Myrlysin) | As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. Thereby, it may indirectly play a role in cell spreading and motility. {ECO:0000269|PubMed:25898167}. |
Q969R8 | ITFG2 | S220 | ochoa | KICSTOR complex protein ITFG2 (Integrin-alpha FG-GAP repeat-containing protein 2) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose. {ECO:0000269|PubMed:28199306}. |
Q969V6 | MRTFA | S385 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q969V6 | MRTFA | S482 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q969V6 | MRTFA | S511 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96A00 | PPP1R14A | S26 | ochoa | Protein phosphatase 1 regulatory subunit 14A (17 kDa PKC-potentiated inhibitory protein of PP1) (Protein kinase C-potentiated inhibitor protein of 17 kDa) (CPI-17) | Inhibitor of PPP1CA. Has over 1000-fold higher inhibitory activity when phosphorylated, creating a molecular switch for regulating the phosphorylation status of PPP1CA substrates and smooth muscle contraction. |
Q96A26 | FAM162A | S47 | ochoa | Protein FAM162A (E2-induced gene 5 protein) (Growth and transformation-dependent protein) (HGTD-P) | Proposed to be involved in regulation of apoptosis; the exact mechanism may differ between cell types/tissues (PubMed:15082785). May be involved in hypoxia-induced cell death of transformed cells implicating cytochrome C release and caspase activation (such as CASP9) and inducing mitochondrial permeability transition (PubMed:15082785). May be involved in hypoxia-induced cell death of neuronal cells probably by promoting release of AIFM1 from mitochondria to cytoplasm and its translocation to the nucleus; however, the involvement of caspases has been reported conflictingly (By similarity). {ECO:0000250|UniProtKB:Q9D6U8, ECO:0000269|PubMed:15082785}. |
Q96A47 | ISL2 | S279 | ochoa | Insulin gene enhancer protein ISL-2 (Islet-2) | Transcriptional factor that defines subclasses of motoneurons that segregate into columns in the spinal cord and select distinct axon pathways. {ECO:0000250}. |
Q96A73 | KIAA1191 | S251 | ochoa | Putative monooxygenase p33MONOX (EC 1.-.-.-) (Brain-derived rescue factor p60MONOX) (Flavin monooxygenase motif-containing protein of 33 kDa) | Potential NADPH-dependent oxidoreductase. May be involved in the regulation of neuronal survival, differentiation and axonal outgrowth. |
Q96AB6 | NTAN1 | S280 | ochoa | Protein N-terminal asparagine amidohydrolase (EC 3.5.1.121) (Protein NH2-terminal asparagine amidohydrolase) (PNAA) (Protein NH2-terminal asparagine deamidase) (PNAD) (Protein N-terminal Asn amidase) (Protein N-terminal asparagine amidase) (Protein NTN-amidase) | N-terminal asparagine deamidase that mediates deamidation of N-terminal asparagine residues to aspartate. Required for the ubiquitin-dependent turnover of intracellular proteins that initiate with Met-Asn. These proteins are acetylated on the retained initiator methionine and can subsequently be modified by the removal of N-acetyl methionine by acylaminoacid hydrolase (AAH). Conversion of the resulting N-terminal asparagine to aspartate by NTAN1/PNAD renders the protein susceptible to arginylation, polyubiquitination and degradation as specified by the N-end rule. This enzyme does not act on substrates with internal or C-terminal asparagines and does not act on glutamine residues in any position, nor on acetylated N-terminal peptidyl Asn. {ECO:0000269|PubMed:21375249}. |
Q96AC1 | FERMT2 | S523 | ochoa | Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) | Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}. |
Q96AE7 | TTC17 | S56 | ochoa | Tetratricopeptide repeat protein 17 (TPR repeat protein 17) | Plays a role in primary ciliogenesis by modulating actin polymerization. {ECO:0000269|PubMed:24475127}. |
Q96AV8 | E2F7 | S638 | ochoa | Transcription factor E2F7 (E2F-7) | Atypical E2F transcription factor that participates in various processes such as angiogenesis, polyploidization of specialized cells and DNA damage response. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1. Acts as a regulator of S-phase by recognizing and binding the E2-related site 5'-TTCCCGCC-3' and mediating repression of G1/S-regulated genes. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Also involved in DNA damage response: up-regulated by p53/TP53 following genotoxic stress and acts as a downstream effector of p53/TP53-dependent repression by mediating repression of indirect p53/TP53 target genes involved in DNA replication. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. Acts as a negative regulator of keratinocyte differentiation. {ECO:0000269|PubMed:14633988, ECO:0000269|PubMed:15133492, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:19223542, ECO:0000269|PubMed:21248772, ECO:0000269|PubMed:22802528, ECO:0000269|PubMed:22802529, ECO:0000269|PubMed:22903062}. |
Q96AV8 | E2F7 | S856 | ochoa | Transcription factor E2F7 (E2F-7) | Atypical E2F transcription factor that participates in various processes such as angiogenesis, polyploidization of specialized cells and DNA damage response. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1. Acts as a regulator of S-phase by recognizing and binding the E2-related site 5'-TTCCCGCC-3' and mediating repression of G1/S-regulated genes. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Also involved in DNA damage response: up-regulated by p53/TP53 following genotoxic stress and acts as a downstream effector of p53/TP53-dependent repression by mediating repression of indirect p53/TP53 target genes involved in DNA replication. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. Acts as a negative regulator of keratinocyte differentiation. {ECO:0000269|PubMed:14633988, ECO:0000269|PubMed:15133492, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:19223542, ECO:0000269|PubMed:21248772, ECO:0000269|PubMed:22802528, ECO:0000269|PubMed:22802529, ECO:0000269|PubMed:22903062}. |
Q96AY4 | TTC28 | S2117 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96AY4 | TTC28 | S2398 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96B70 | LENG9 | S440 | ochoa | Leukocyte receptor cluster member 9 | None |
Q96BD5 | PHF21A | S113 | ochoa | PHD finger protein 21A (BHC80a) (BRAF35-HDAC complex protein BHC80) | Component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it may act as a scaffold. Inhibits KDM1A-mediated demethylation of 'Lys-4' of histone H3 in vitro, suggesting a role in demethylation regulation. {ECO:0000269|PubMed:16140033}. |
Q96BD5 | PHF21A | S478 | ochoa | PHD finger protein 21A (BHC80a) (BRAF35-HDAC complex protein BHC80) | Component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it may act as a scaffold. Inhibits KDM1A-mediated demethylation of 'Lys-4' of histone H3 in vitro, suggesting a role in demethylation regulation. {ECO:0000269|PubMed:16140033}. |
Q96BF3 | TMIGD2 | S186 | psp | Transmembrane and immunoglobulin domain-containing protein 2 (CD28 homolog) (Immunoglobulin and proline-rich receptor 1) (IGPR-1) | Plays a role in cell-cell interaction, cell migration, and angiogenesis. Through interaction with HHLA2, costimulates T-cells in the context of TCR-mediated activation. Enhances T-cell proliferation and cytokine production via an AKT-dependent signaling cascade. {ECO:0000269|PubMed:22419821, ECO:0000269|PubMed:23784006}. |
Q96BI3 | APH1A | S110 | psp | Gamma-secretase subunit APH-1A (APH-1a) (Aph-1alpha) (Presenilin-stabilization factor) | Non-catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:12297508, PubMed:12522139, PubMed:12679784, PubMed:12763021, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Required for normal gamma-secretase assembly (PubMed:12471034, PubMed:12522139, PubMed:12763021, PubMed:19369254). The gamma-secretase complex plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (Probable). {ECO:0000269|PubMed:12297508, ECO:0000269|PubMed:12471034, ECO:0000269|PubMed:12522139, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12763021, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000305}. |
Q96BP3 | PPWD1 | S289 | ochoa | Peptidylprolyl isomerase domain and WD repeat-containing protein 1 (EC 5.2.1.8) (Spliceosome-associated cyclophilin) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be involved in pre-mRNA splicing (PubMed:11991638). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:20676357}. |
Q96BR1 | SGK3 | S121 | ochoa | Serine/threonine-protein kinase Sgk3 (EC 2.7.11.1) (Cytokine-independent survival kinase) (Serum/glucocorticoid-regulated kinase 3) (Serum/glucocorticoid-regulated kinase-like) | Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cell growth, proliferation, survival and migration. Up-regulates Na(+) channels: SCNN1A/ENAC and SCN5A, K(+) channels: KCNA3/KV1.3, KCNE1, KCNQ1 and KCNH2/HERG, epithelial Ca(2+) channels: TRPV5 and TRPV6, chloride channel: BSND, creatine transporter: SLC6A8, Na(+)/dicarboxylate cotransporter: SLC13A2/NADC1, Na(+)-dependent phosphate cotransporter: SLC34A2/NAPI-2B, amino acid transporters: SLC1A5/ASCT2 and SLC6A19, glutamate transporters: SLC1A3/EAAT1, SLC1A6/EAAT4 and SLC1A7/EAAT5, glutamate receptors: GRIA1/GLUR1 and GRIK2/GLUR6, Na(+)/H(+) exchanger: SLC9A3/NHE3, and the Na(+)/K(+) ATPase. Plays a role in the regulation of renal tubular phosphate transport and bone density. Phosphorylates NEDD4L and GSK3B. Positively regulates ER transcription activity through phosphorylation of FLII. Negatively regulates the function of ITCH/AIP4 via its phosphorylation and thereby prevents CXCR4 from being efficiently sorted to lysosomes. {ECO:0000269|PubMed:12054501, ECO:0000269|PubMed:12397388, ECO:0000269|PubMed:12590200, ECO:0000269|PubMed:12632189, ECO:0000269|PubMed:12634932, ECO:0000269|PubMed:12650886, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:14706641, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15044175, ECO:0000269|PubMed:15319523, ECO:0000269|PubMed:15496163, ECO:0000269|PubMed:15737648, ECO:0000269|PubMed:15845389, ECO:0000269|PubMed:16036218, ECO:0000269|PubMed:16888620, ECO:0000269|PubMed:17167223, ECO:0000269|PubMed:18005662, ECO:0000269|PubMed:19293151, ECO:0000269|PubMed:20511718, ECO:0000269|PubMed:21865597}. |
Q96BY6 | DOCK10 | S877 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96BY7 | ATG2B | S735 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96BY7 | ATG2B | S899 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96BY7 | ATG2B | S1743 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96C12 | ARMC5 | S341 | ochoa | Armadillo repeat-containing protein 5 | Substrate-recognition component of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the BCR(ARMC5) complex acts by mediating ubiquitination of Pol II subunit POLR2A phosphorylated at 'Ser-5' of the C-terminal domain (CTD), leading to POLR2A degradation (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex acts in parallel of the integrator complex and is specific for RNA Pol II originating from the promoter-proximal zone: it does not ubiquitinate elongation-stalled RNA Pol II (PubMed:39667934). The BCR(ARMC5) complex also acts as a regulator of fatty acid desaturation by mediating ubiquitination and degradation of SCAP-free SREBF1 and SREBF2 (PubMed:35862218). Involved in fetal development, T-cell function and adrenal gland growth homeostasis (PubMed:24283224, PubMed:28676429). Plays a role in steroidogenesis, modulates steroidogenic enzymes expression and cortisol production (PubMed:24283224, PubMed:28676429). {ECO:0000269|PubMed:24283224, ECO:0000269|PubMed:28676429, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:35862218, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}. |
Q96C24 | SYTL4 | S488 | ochoa | Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) | Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}. |
Q96C34 | RUNDC1 | S290 | ochoa | RUN domain-containing protein 1 | May play a role as p53/TP53 inhibitor and thus may have oncogenic activity. {ECO:0000269|PubMed:16929179}. |
Q96C34 | RUNDC1 | S491 | ochoa | RUN domain-containing protein 1 | May play a role as p53/TP53 inhibitor and thus may have oncogenic activity. {ECO:0000269|PubMed:16929179}. |
Q96C36 | PYCR2 | S294 | ochoa | Pyrroline-5-carboxylate reductase 2 (P5C reductase 2) (P5CR 2) (EC 1.5.1.2) | Oxidoreductase that catalyzes the last step in proline biosynthesis, which corresponds to the reduction of pyrroline-5-carboxylate to L-proline using NAD(P)H (PubMed:23024808, PubMed:2722838, PubMed:6894153). At physiologic concentrations, has higher specific activity in the presence of NADH (PubMed:23024808, PubMed:2722838, PubMed:6894153). Involved in cellular response to oxidative stress (PubMed:25865492). In some cell types, such as erythrocytes, its primary function may be the generation of NADP(+) (PubMed:2722838, PubMed:6894153). {ECO:0000269|PubMed:23024808, ECO:0000269|PubMed:25865492, ECO:0000269|PubMed:2722838, ECO:0000269|PubMed:6894153}. |
Q96CA5 | BIRC7 | S37 | ochoa | Baculoviral IAP repeat-containing protein 7 (EC 2.3.2.27) (Kidney inhibitor of apoptosis protein) (KIAP) (Livin) (Melanoma inhibitor of apoptosis protein) (ML-IAP) (RING finger protein 50) (RING-type E3 ubiquitin transferase BIRC7) [Cleaved into: Baculoviral IAP repeat-containing protein 7 30kDa subunit (Truncated livin) (p30-Livin) (tLivin)] | Apoptotic regulator capable of exerting proapoptotic and anti-apoptotic activities and plays crucial roles in apoptosis, cell proliferation, and cell cycle control (PubMed:11024045, PubMed:11084335, PubMed:11162435, PubMed:16729033, PubMed:17294084). Its anti-apoptotic activity is mediated through the inhibition of CASP3, CASP7 and CASP9, as well as by its E3 ubiquitin-protein ligase activity (PubMed:11024045, PubMed:16729033). As it is a weak caspase inhibitor, its anti-apoptotic activity is thought to be due to its ability to ubiquitinate DIABLO/SMAC targeting it for degradation thereby promoting cell survival (PubMed:16729033). May contribute to caspase inhibition, by blocking the ability of DIABLO/SMAC to disrupt XIAP/BIRC4-caspase interactions (PubMed:16729033). Protects against apoptosis induced by TNF or by chemical agents such as adriamycin, etoposide or staurosporine (PubMed:11084335, PubMed:11162435, PubMed:11865055). Suppression of apoptosis is mediated by activation of MAPK8/JNK1, and possibly also of MAPK9/JNK2 (PubMed:11865055). This activation depends on TAB1 and MAP3K7/TAK1 (PubMed:11865055). In vitro, inhibits CASP3 and proteolytic activation of pro-CASP9 (PubMed:11024045). {ECO:0000269|PubMed:11024045, ECO:0000269|PubMed:11084335, ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11865055, ECO:0000269|PubMed:16729033, ECO:0000269|PubMed:17294084}.; FUNCTION: [Isoform 1]: Blocks staurosporine-induced apoptosis (PubMed:11322947). Promotes natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}.; FUNCTION: [Isoform 2]: Blocks etoposide-induced apoptosis (PubMed:11162435, PubMed:11322947). Protects against natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}. |
Q96CB9 | NSUN4 | S206 | ochoa | 5-cytosine rRNA methyltransferase NSUN4 (EC 2.1.1.-) (5-cytosine tRNA methyltransferase NSUN4) (EC 2.1.1.-) (NOL1/NOP2/Sun domain family member 4) (mRNA cytosine C(5)-methyltransferase NSUN4) (EC 2.1.1.-) | Mitochondrial RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as rRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:21531335, PubMed:23022348, PubMed:39019044). Involved in mitochondrial ribosome small subunit (SSU) maturation by catalyzing methylation of mitochondrial 12S rRNA; the function is independent of MTERFD2/MTERF4 and assembled mitochondrial ribosome large subunit (LSU) (PubMed:21531335, PubMed:23022348). Targeted to LSU by MTERFD2/MTERF4 and probably is involved in a final step in ribosome biogenesis to ensure that SSU and LSU are assembled (PubMed:21531335, PubMed:23022348). In vitro can methylate 16S rRNA of the LSU; the methylation is enhanced by MTERFD/MTERF4 (PubMed:23022348). Also acts as a regulator of innate immunity by marking double-stranded mitochondrial RNAs(mt-dsRNAs) generated in response to stress: catalyzes m5C modification on mitochondrial RNAs, such as a mRNAs and lncRNAs, with a preference for the termini of light-strand lncRNAs, promoting their degradation and cytosolic release (PubMed:39019044). Modified light-strand lncRNAs are then recognized by C1QBP reader and recruited to the mitochondrial degradosome complex, which promotes their degradation (PubMed:39019044). {ECO:0000269|PubMed:21531335, ECO:0000269|PubMed:23022348, ECO:0000269|PubMed:39019044}. |
Q96CC6 | RHBDF1 | S61 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96CF2 | CHMP4C | S21 | ochoa | Charged multivesicular body protein 4c (Chromatin-modifying protein 4c) (CHMP4c) (SNF7 homolog associated with Alix 3) (SNF7-3) (hSnf7-3) (Vacuolar protein sorting-associated protein 32-3) (Vps32-3) (hVps32-3) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). Key component of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage: upon phosphorylation by AURKB, together with ZFYVE19/ANCHR, retains abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ANCHR and VPS4 and subsequent abscission (PubMed:22422861, PubMed:24814515). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release. CHMP4A/B/C are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:22422861, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515}. |
Q96CM3 | RPUSD4 | S221 | ochoa | Pseudouridylate synthase RPUSD4, mitochondrial (EC 5.4.99.-) (RNA pseudouridylate synthase domain-containing protein 4) | Catalyzes uridine to pseudouridine isomerization (pseudouridylation) of different mitochondrial RNA substrates (PubMed:27974379, PubMed:28082677). Acts on position 1397 in 16S mitochondrial ribosomal RNA (16S mt-rRNA) (PubMed:27974379). This modification is required for the assembly of 16S mt-rRNA into a functional mitochondrial ribosome (PubMed:27974379). As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mt-rRNA, controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation (PubMed:27667664). Acts on position 39 in mitochondrial tRNA(Phe) (PubMed:28082677). Also catalyzes pseudouridylation of mRNAs in nucleus: acts as a regulator of pre-mRNA splicing by mediating pseudouridylation of pre-mRNAs at locations associated with alternatively spliced regions (PubMed:35051350). Pseudouridylation of pre-mRNAs near splice sites directly regulates mRNA splicing and mRNA 3'-end processing (PubMed:35051350). {ECO:0000269|PubMed:27667664, ECO:0000269|PubMed:27974379, ECO:0000269|PubMed:28082677, ECO:0000269|PubMed:35051350}. |
Q96CN9 | GCC1 | S416 | ochoa | GRIP and coiled-coil domain-containing protein 1 (Golgi coiled-coil protein 1) | Probably involved in maintaining Golgi structure. |
Q96CU9 | FOXRED1 | S189 | ochoa | FAD-dependent oxidoreductase domain-containing protein 1 (EC 1.-.-.-) | Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) (PubMed:20858599, PubMed:25678554). Involved in mid-late stages of complex I assembly (PubMed:25678554). {ECO:0000269|PubMed:20858599, ECO:0000269|PubMed:25678554}. |
Q96CV9 | OPTN | S198 | ochoa | Optineurin (E3-14.7K-interacting protein) (FIP-2) (Huntingtin yeast partner L) (Huntingtin-interacting protein 7) (HIP-7) (Huntingtin-interacting protein L) (NEMO-related protein) (Optic neuropathy-inducing protein) (Transcription factor IIIA-interacting protein) (TFIIIA-IntP) | Plays an important role in the maintenance of the Golgi complex, in membrane trafficking, in exocytosis, through its interaction with myosin VI and Rab8 (PubMed:27534431). Links myosin VI to the Golgi complex and plays an important role in Golgi ribbon formation (PubMed:27534431). Plays a role in the activation of innate immune response during viral infection. Mechanistically, recruits TBK1 at the Golgi apparatus, promoting its trans-phosphorylation after RLR or TLR3 stimulation (PubMed:27538435). In turn, activated TBK1 phosphorylates its downstream partner IRF3 to produce IFN-beta/IFNB1. Plays a neuroprotective role in the eye and optic nerve. May act by regulating membrane trafficking and cellular morphogenesis via a complex that contains Rab8 and huntingtin (HD). Mediates the interaction of Rab8 with the probable GTPase-activating protein TBC1D17 during Rab8-mediated endocytic trafficking, such as that of transferrin receptor (TFRC/TfR); regulates Rab8 recruitment to tubules emanating from the endocytic recycling compartment (PubMed:22854040). Autophagy receptor that interacts directly with both the cargo to become degraded and an autophagy modifier of the MAP1 LC3 family; targets ubiquitin-coated bacteria (xenophagy), such as cytoplasmic Salmonella enterica, and appears to function in the same pathway as SQSTM1 and CALCOCO2/NDP52. {ECO:0000269|PubMed:11834836, ECO:0000269|PubMed:15837803, ECO:0000269|PubMed:20085643, ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:22854040, ECO:0000269|PubMed:27534431, ECO:0000269|PubMed:27538435}.; FUNCTION: (Microbial infection) May constitute a cellular target for various viruses, such as adenovirus E3 14.7 or Bluetongue virus, to inhibit innate immune response (PubMed:27538435, PubMed:9488477). During RNA virus infection, such as that of Sendai virus, negatively regulates the induction of IFNB1 (PubMed:20174559). {ECO:0000269|PubMed:20174559, ECO:0000269|PubMed:27538435, ECO:0000269|PubMed:9488477}. |
Q96D46 | NMD3 | S258 | ochoa | 60S ribosomal export protein NMD3 (hNMD3) | Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. {ECO:0000269|PubMed:12724356, ECO:0000269|PubMed:12773398}. |
Q96DA6 | DNAJC19 | S70 | ochoa | Mitochondrial import inner membrane translocase subunit TIM14 (DnaJ homolog subfamily C member 19) | Mitochondrial co-chaperone which forms a complex with prohibitins to regulate cardiolipin remodeling (By similarity). May be a component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. May act as a co-chaperone that stimulate the ATP-dependent activity (By similarity). {ECO:0000250|UniProtKB:Q07914, ECO:0000250|UniProtKB:Q9CQV7}. |
Q96DG6 | CMBL | S223 | ochoa | Carboxymethylenebutenolidase homolog (EC 3.1.-.-) | Cysteine hydrolase. Can convert the prodrug olmesartan medoxomil into its pharmacologically active metabolite olmerstatan, an angiotensin receptor blocker, in liver and intestine. May also activate beta-lactam antibiotics faropenem medoxomil and lenampicillin. {ECO:0000269|PubMed:20177059}. |
Q96DR7 | ARHGEF26 | S725 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96DT6 | ATG4C | S369 | ochoa | Cysteine protease ATG4C (EC 3.4.22.-) (AUT-like 3 cysteine endopeptidase) (Autophagy-related cysteine endopeptidase 3) (Autophagin-3) (Autophagy-related protein 4 homolog C) (HsAPG4C) | Cysteine protease that plays a key role in autophagy by mediating both proteolytic activation and delipidation of ATG8 family proteins (PubMed:21177865, PubMed:29458288, PubMed:30661429). The protease activity is required for proteolytic activation of ATG8 family proteins: cleaves the C-terminal amino acid of ATG8 proteins MAP1LC3 and GABARAPL2, to reveal a C-terminal glycine (PubMed:21177865). Exposure of the glycine at the C-terminus is essential for ATG8 proteins conjugation to phosphatidylethanolamine (PE) and insertion to membranes, which is necessary for autophagy (By similarity). In addition to the protease activity, also mediates delipidation of ATG8 family proteins (PubMed:29458288, PubMed:33909989). Catalyzes delipidation of PE-conjugated forms of ATG8 proteins during macroautophagy (PubMed:29458288, PubMed:33909989). Compared to ATG4B, the major protein for proteolytic activation of ATG8 proteins, shows weaker ability to cleave the C-terminal amino acid of ATG8 proteins, while it displays stronger delipidation activity (PubMed:29458288). In contrast to other members of the family, weakly or not involved in phagophore growth during mitophagy (PubMed:33773106). {ECO:0000250|UniProtKB:Q9Y4P1, ECO:0000269|PubMed:21177865, ECO:0000269|PubMed:29458288, ECO:0000269|PubMed:30661429, ECO:0000269|PubMed:33773106, ECO:0000269|PubMed:33909989}. |
Q96DX5 | ASB9 | S201 | ochoa | Ankyrin repeat and SOCS box protein 9 (ASB-9) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:25654263, PubMed:33268465). The ECS(ASB9) complex catalyzes ubiquitination of creatine kinases CKB and CKMT1A (PubMed:20302626, PubMed:22418839, PubMed:25654263, PubMed:33268465). {ECO:0000269|PubMed:20302626, ECO:0000269|PubMed:22418839, ECO:0000269|PubMed:25654263, ECO:0000269|PubMed:33268465}.; FUNCTION: [Isoform 2]: Does not interact with the Elongin BC complex, likely to be a negative regulator of isoform 1. {ECO:0000269|PubMed:20302626}. |
Q96DY7 | MTBP | S539 | ochoa | Mdm2-binding protein (hMTBP) | Inhibits cell migration in vitro and suppresses the invasive behavior of tumor cells (By similarity). May play a role in MDM2-dependent p53/TP53 homeostasis in unstressed cells. Inhibits autoubiquitination of MDM2, thereby enhancing MDM2 stability. This promotes MDM2-mediated ubiquitination of p53/TP53 and its subsequent degradation. {ECO:0000250, ECO:0000269|PubMed:15632057}. |
Q96DY7 | MTBP | S639 | ochoa | Mdm2-binding protein (hMTBP) | Inhibits cell migration in vitro and suppresses the invasive behavior of tumor cells (By similarity). May play a role in MDM2-dependent p53/TP53 homeostasis in unstressed cells. Inhibits autoubiquitination of MDM2, thereby enhancing MDM2 stability. This promotes MDM2-mediated ubiquitination of p53/TP53 and its subsequent degradation. {ECO:0000250, ECO:0000269|PubMed:15632057}. |
Q96E39 | RBMXL1 | S58 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EA4 | SPDL1 | S515 | ochoa | Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) | Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}. |
Q96ER9 | CCDC51 | S288 | ochoa | Mitochondrial potassium channel (MITOK) (Coiled-coil domain-containing protein 51) | Pore-forming subunit of the mitochondrial ATP-gated potassium channel (mitoK(ATP)) (PubMed:31435016). Together with ATP-binding subunit ABCB8/MITOSUR of the mitoK(ATP) channel, mediates ATP-dependent K(+) currents across the mitochondrial inner membrane (PubMed:31435016). An increase in ATP intracellular levels closes the channel, inhibiting K(+) transport, whereas a decrease in ATP levels enhances K(+) uptake in the mitochondrial matrix. May contribute to the homeostatic control of cellular metabolism under stress conditions by regulating the mitochondrial matrix volume (PubMed:31435016). {ECO:0000269|PubMed:31435016}. |
Q96ES7 | SGF29 | S52 | ochoa | SAGA-associated factor 29 (Coiled-coil domain-containing protein 101) (SAGA complex-associated factor 29) | Chromatin reader component of some histone acetyltransferase (HAT) SAGA-type complexes like the TFTC-HAT, ATAC or STAGA complexes (PubMed:19103755, PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). SGF29 specifically recognizes and binds methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3) (PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). In the SAGA-type complexes, SGF29 is required to recruit complexes to H3K4me (PubMed:20850016). Involved in the response to endoplasmic reticulum (ER) stress by recruiting the SAGA complex to H3K4me, thereby promoting histone H3 acetylation and cell survival (PubMed:23894581). Also binds non-histone proteins that are methylated on Lys residues: specifically recognizes and binds CGAS monomethylated on 'Lys-506' (By similarity). {ECO:0000250|UniProtKB:Q9DA08, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:21685874, ECO:0000269|PubMed:23894581, ECO:0000269|PubMed:26421618, ECO:0000269|PubMed:26578293}. |
Q96EU6 | RRP36 | S73 | ochoa | Ribosomal RNA processing protein 36 homolog | Involved in the early processing steps of the pre-rRNA in the maturation pathway leading to the 18S rRNA. {ECO:0000269|PubMed:20038530}. |
Q96EY5 | MVB12A | S80 | ochoa | Multivesicular body subunit 12A (CIN85/CD2AP family-binding protein) (ESCRT-I complex subunit MVB12A) (Protein FAM125A) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in the ligand-mediated internalization and down-regulation of EGF receptor. {ECO:0000269|PubMed:16895919}. |
Q96EY5 | MVB12A | S87 | ochoa | Multivesicular body subunit 12A (CIN85/CD2AP family-binding protein) (ESCRT-I complex subunit MVB12A) (Protein FAM125A) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in the ligand-mediated internalization and down-regulation of EGF receptor. {ECO:0000269|PubMed:16895919}. |
Q96F05 | C11orf24 | S61 | ochoa | Uncharacterized protein C11orf24 (Protein DM4E3) | None |
Q96F24 | NRBF2 | S113 | ochoa|psp | Nuclear receptor-binding factor 2 (NRBF-2) (Comodulator of PPAR and RXR) | May modulate transcriptional activation by target nuclear receptors. Can act as transcriptional activator (in vitro). {ECO:0000269|PubMed:15610520}.; FUNCTION: Involved in starvation-induced autophagy probably by its association with PI3K complex I (PI3KC3-C1). However, effects has been described variably. Involved in the induction of starvation-induced autophagy (PubMed:24785657). Stabilizes PI3KC3-C1 assembly and enhances ATG14-linked lipid kinase activity of PIK3C3 (By similarity). Proposed to negatively regulate basal and starvation-induced autophagy and to inhibit PIK3C3 activity by modulating interactions in PI3KC3-C1 (PubMed:25086043). May be involved in autophagosome biogenesis (PubMed:25086043). May play a role in neural progenitor cell survival during differentiation (By similarity). {ECO:0000250|UniProtKB:Q8VCQ3, ECO:0000269|PubMed:24785657, ECO:0000269|PubMed:25086043}. |
Q96F45 | ZNF503 | S129 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96F46 | IL17RA | S801 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96F81 | DISP1 | S51 | ochoa | Protein dispatched homolog 1 | Functions in hedgehog (Hh) signaling. Regulates the release and extracellular accumulation of cholesterol-modified hedgehog proteins and is hence required for effective production of the Hh signal (By similarity). Synergizes with SCUBE2 to cause an increase in SHH secretion (PubMed:22902404). {ECO:0000250|UniProtKB:Q3TDN0, ECO:0000269|PubMed:22902404}. |
Q96F81 | DISP1 | S1161 | ochoa | Protein dispatched homolog 1 | Functions in hedgehog (Hh) signaling. Regulates the release and extracellular accumulation of cholesterol-modified hedgehog proteins and is hence required for effective production of the Hh signal (By similarity). Synergizes with SCUBE2 to cause an increase in SHH secretion (PubMed:22902404). {ECO:0000250|UniProtKB:Q3TDN0, ECO:0000269|PubMed:22902404}. |
Q96FC9 | DDX11 | S44 | ochoa | ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) | DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}. |
Q96FF9 | CDCA5 | S181 | ochoa|psp | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96FG2 | ELMOD3 | S27 | ochoa | ELMO domain-containing protein 3 (RNA-binding motif and ELMO domain-containing protein 1) (RNA-binding motif protein 29) (RNA-binding protein 29) | Acts as a GTPase-activating protein (GAP) for ARL2 with low specific activity. {ECO:0000269|PubMed:24039609}. |
Q96FJ0 | STAMBPL1 | S242 | ochoa | AMSH-like protease (AMSH-LP) (EC 3.4.19.-) (STAM-binding protein-like 1) | Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:18758443, PubMed:35114100). Acts as a positive regulator of the TORC1 signaling pathway by mediating 'Lys-63'-linked deubiquitination of SESN2, thereby inhibiting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:18758443). {ECO:0000269|PubMed:18758443, ECO:0000269|PubMed:35114100}. |
Q96FS4 | SIPA1 | S817 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96FZ2 | HMCES | S322 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96G01 | BICD1 | S570 | ochoa | Protein bicaudal D homolog 1 (Bic-D 1) | Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport by recruiting the dynein-dynactin motor complex. |
Q96G28 | CFAP36 | S85 | ochoa | Cilia- and flagella-associated protein 36 (Coiled-coil domain-containing protein 104) | May act as an effector for ARL3. |
Q96G74 | OTUD5 | S527 | ochoa | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96GE4 | CEP95 | S353 | ochoa | Centrosomal protein of 95 kDa (Cep95) (Coiled-coil domain-containing protein 45) | None |
Q96GX5 | MASTL | S453 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96GX5 | MASTL | S619 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96GX9 | APIP | S87 | ochoa|psp | Methylthioribulose-1-phosphate dehydratase (MTRu-1-P dehydratase) (EC 4.2.1.109) (APAF1-interacting protein) (hAPIP) | Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Functions in the methionine salvage pathway, which plays a key role in cancer, apoptosis, microbial proliferation and inflammation. May inhibit the CASP1-related inflammatory response (pyroptosis), the CASP9-dependent apoptotic pathway and the cytochrome c-dependent and APAF1-mediated cell death. {ECO:0000255|HAMAP-Rule:MF_03116, ECO:0000269|PubMed:15262985, ECO:0000269|PubMed:22837397, ECO:0000269|PubMed:23285211, ECO:0000269|PubMed:24367089}. |
Q96GY0 | ZC2HC1A | S179 | ochoa | Zinc finger C2HC domain-containing protein 1A | None |
Q96GY0 | ZC2HC1A | S292 | ochoa | Zinc finger C2HC domain-containing protein 1A | None |
Q96H12 | MSANTD3 | S98 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 3 | None |
Q96HA1 | POM121 | S108 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HA1 | POM121 | S269 | ochoa | Nuclear envelope pore membrane protein POM 121 (Nuclear envelope pore membrane protein POM 121A) (Nucleoporin Nup121) (Pore membrane protein of 121 kDa) | Essential component of the nuclear pore complex (NPC). The repeat-containing domain may be involved in anchoring components of the pore complex to the pore membrane. When overexpressed in cells induces the formation of cytoplasmic annulate lamellae (AL). {ECO:0000269|PubMed:17900573}. |
Q96HA9 | PEX11G | S164 | ochoa | Peroxisomal membrane protein 11C (Peroxin-11C) (Peroxisomal biogenesis factor 11C) (Protein PEX11 homolog gamma) (PEX11-gamma) | Promotes membrane protrusion and elongation on the peroxisomal surface. {ECO:0000269|PubMed:20826455}. |
Q96HC4 | PDLIM5 | S111 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HC4 | PDLIM5 | S313 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HC4 | PDLIM5 | S360 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HE9 | PRR11 | S307 | ochoa | Proline-rich protein 11 | Plays a critical role in cell cycle progression. {ECO:0000269|PubMed:23246489}. |
Q96HH9 | GRAMD2B | S225 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96HU1 | SGSM3 | S65 | ochoa | Small G protein signaling modulator 3 (Merlin-associated protein) (RUN and TBC1 domain-containing protein 3) (Rab-GTPase-activating protein-like protein) (RabGAPLP) | May play a cooperative role in NF2-mediated growth suppression of cells. {ECO:0000269|PubMed:15541357}. |
Q96I15 | SCLY | S129 | ochoa | Selenocysteine lyase (hSCL) (EC 4.4.1.16) | Catalyzes the decomposition of L-selenocysteine to L-alanine and elemental selenium. {ECO:0000250|UniProtKB:Q68FT9}. |
Q96I34 | PPP1R16A | S437 | ochoa | Protein phosphatase 1 regulatory subunit 16A (Myosin phosphatase-targeting subunit 3) | Inhibits protein phosphatase 1 activity toward phosphorylase, myosin light chain and myosin substrates. {ECO:0000250}. |
Q96II8 | LRCH3 | S419 | ochoa|psp | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96II8 | LRCH3 | S516 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96II8 | LRCH3 | S707 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96IT1 | ZNF496 | S221 | ochoa | Zinc finger protein 496 (Zinc finger protein with KRAB and SCAN domains 17) | DNA-binding transcription factor that can both act as an activator and a repressor. {ECO:0000250}. |
Q96IT1 | ZNF496 | S299 | ochoa | Zinc finger protein 496 (Zinc finger protein with KRAB and SCAN domains 17) | DNA-binding transcription factor that can both act as an activator and a repressor. {ECO:0000250}. |
Q96J01 | THOC3 | S308 | ochoa | THO complex subunit 3 (Tho3) (TEX1 homolog) (hTREX45) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q96J02 | ITCH | S188 | ochoa | E3 ubiquitin-protein ligase Itchy homolog (Itch) (EC 2.3.2.26) (Atrophin-1-interacting protein 4) (AIP4) (HECT-type E3 ubiquitin transferase Itchy homolog) (NFE2-associated polypeptide 1) (NAPP1) | Acts as an Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11046148, PubMed:14602072, PubMed:15051726, PubMed:16387660, PubMed:17028573, PubMed:18718448, PubMed:18718449, PubMed:19116316, PubMed:19592251, PubMed:19881509, PubMed:20068034, PubMed:20392206, PubMed:20491914, PubMed:23146885, PubMed:24790097, PubMed:25631046). Catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation (PubMed:17028573, PubMed:18718448, PubMed:19131965, PubMed:19881509). Involved in the control of inflammatory signaling pathways (PubMed:19131965). Essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways (PubMed:19131965). Promotes the association of the complex after TNF stimulation (PubMed:19131965). Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:19131965). This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1 (PubMed:19131965). Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways (PubMed:19592251). Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response (PubMed:18718448, PubMed:20491914). Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages (PubMed:18718448). Mediates JUN ubiquitination and degradation (By similarity). Mediates JUNB ubiquitination and degradation (PubMed:16387660). Critical regulator of type 2 helper T (Th2) cell cytokine production by inducing JUNB ubiquitination and degradation (By similarity). Involved in the negative regulation of MAVS-dependent cellular antiviral responses (PubMed:19881509). Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation (PubMed:19881509). Following ligand stimulation, regulates sorting of Wnt receptor FZD4 to the degradative endocytic pathway probably by modulating PI42KA activity (PubMed:23146885). Ubiquitinates PI4K2A and negatively regulates its catalytic activity (PubMed:23146885). Ubiquitinates chemokine receptor CXCR4 and regulates sorting of CXCR4 to the degradative endocytic pathway following ligand stimulation by ubiquitinating endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:14602072, PubMed:23146885, PubMed:34927784). Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination (PubMed:17028573, PubMed:18628966, PubMed:23886940). Ubiquitinates SNX9 (PubMed:20491914). Ubiquitinates MAP3K7 through 'Lys-48'-linked conjugation (By similarity). Together with UBR5, involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP: catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP (PubMed:20068034, PubMed:29378950). ITCH synthesizes 'Lys-63'-linked chains, while UBR5 is branching multiple 'Lys-48'-linked chains of substrate initially modified (PubMed:29378950). Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID (PubMed:20392206). Ubiquitinates BRAT1 and this ubiquitination is enhanced in the presence of NDFIP1 (PubMed:25631046). Inhibits the replication of influenza A virus (IAV) via ubiquitination of IAV matrix protein 1 (M1) through 'Lys-48'-linked conjugation resulting in M1 proteasomal degradation (PubMed:30328013). Ubiquitinates NEDD9/HEF1, resulting in proteasomal degradation of NEDD9/HEF1 (PubMed:15051726). {ECO:0000250|UniProtKB:Q8C863, ECO:0000269|PubMed:14602072, ECO:0000269|PubMed:15051726, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:17028573, ECO:0000269|PubMed:18628966, ECO:0000269|PubMed:18718448, ECO:0000269|PubMed:18718449, ECO:0000269|PubMed:19116316, ECO:0000269|PubMed:19131965, ECO:0000269|PubMed:19592251, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:20068034, ECO:0000269|PubMed:20392206, ECO:0000269|PubMed:20491914, ECO:0000269|PubMed:23146885, ECO:0000269|PubMed:23886940, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:25631046, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:30328013}. |
Q96JB2 | COG3 | S212 | ochoa | Conserved oligomeric Golgi complex subunit 3 (COG complex subunit 3) (Component of oligomeric Golgi complex 3) (Vesicle-docking protein SEC34 homolog) (p94) | Involved in ER-Golgi transport (PubMed:11929878). Also involved in retrograde (Golgi to ER) transport (PubMed:37711075). {ECO:0000269|PubMed:11929878, ECO:0000269|PubMed:37711075}. |
Q96JC1 | VPS39 | S441 | ochoa | Vam6/Vps39-like protein (TRAP1-like protein) (hVam6p) | Regulator of TGF-beta/activin signaling, inhibiting SMAD3- and activating SMAD2-dependent transcription. Acts by interfering with SMAD3/SMAD4 complex formation, this would lead to inhibition of SMAD3-dependent transcription and relieve SMAD3 inhibition of SMAD2-dependent promoters, thus increasing SMAD2-dependent transcription. Does not affect TGF-beta-induced SMAD2 or SMAD3 phosphorylation, nor SMAD2/SMAD4 complex formation. {ECO:0000269|PubMed:12941698}.; FUNCTION: Plays a role in vesicle-mediated protein trafficking to lysosomal compartments including the endocytic membrane transport and autophagic pathways. Acts as a component of the HOPS endosomal tethering complex. This complex is proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The HOPS complex is proposed to be recruited to Rab7 on the late endosomal membrane and to regulate late endocytic, phagocytic and autophagic traffic towards lysosomes (PubMed:23351085). Involved in homotypic vesicle fusions between late endosomes and in heterotypic fusions between late endosomes and lysosomes (PubMed:11448994, PubMed:23167963, PubMed:23351085). Required for fusion of endosomes and autophagosomes with lysosomes (PubMed:25783203, PubMed:37821429). {ECO:0000269|PubMed:11448994, ECO:0000269|PubMed:23167963, ECO:0000269|PubMed:25783203, ECO:0000269|PubMed:33422265, ECO:0000269|PubMed:37821429, ECO:0000305|PubMed:23351085}. |
Q96JE7 | SEC16B | S167 | ochoa | Protein transport protein Sec16B (Leucine zipper transcription regulator 2) (Regucalcin gene promoter region-related protein p117) (RGPR-p117) (SEC16 homolog B) | Plays a role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17192411, PubMed:21768384, PubMed:22355596). Involved in peroxisome biogenesis. Regulates the transport of peroxisomal biogenesis factors PEX3 and PEX16 from the ER to peroxisomes (PubMed:21768384). {ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:21768384, ECO:0000303|PubMed:22355596}. |
Q96JH7 | VCPIP1 | S131 | ochoa | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96JH7 | VCPIP1 | S998 | ochoa|psp | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96JH8 | RADIL | S957 | ochoa | Ras-associating and dilute domain-containing protein | Downstream effector of Rap required for cell adhesion and migration of neural crest precursors during development. {ECO:0000269|PubMed:17704304}. |
Q96JK9 | MAML3 | S170 | ochoa | Mastermind-like protein 3 (Mam-3) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. {ECO:0000269|PubMed:12370315, ECO:0000269|PubMed:12386158}. |
Q96JM2 | ZNF462 | S295 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM2 | ZNF462 | S688 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM2 | ZNF462 | S1747 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM2 | ZNF462 | S2172 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM3 | CHAMP1 | S736 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM7 | L3MBTL3 | S678 | ochoa | Lethal(3)malignant brain tumor-like protein 3 (H-l(3)mbt-like protein 3) (L(3)mbt-like protein 3) (L3mbt-like 3) (MBT-1) | Is a negative regulator of Notch target genes expression, required for RBPJ-mediated transcriptional repression (PubMed:29030483). It recruits KDM1A to Notch-responsive elements and promotes KDM1A-mediated H3K4me demethylation (PubMed:29030483). Involved in the regulation of ubiquitin-dependent degradation of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1. It acts as an adapter recruiting the CRL4-DCAF5 E3 ubiquitin ligase complex to methylated target proteins (PubMed:29691401, PubMed:30442713). Required for normal maturation of myeloid progenitor cells (By similarity). {ECO:0000250|UniProtKB:Q8BLB7, ECO:0000269|PubMed:29030483, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96JN0 | LCOR | S63 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JN0 | LCOR | S101 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JQ2 | CLMN | S841 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96JY6 | PDLIM2 | S87 | ochoa | PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) | Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}. |
Q96K21 | ZFYVE19 | S144 | ochoa | Abscission/NoCut checkpoint regulator (ANCHR) (MLL partner containing FYVE domain) (Zinc finger FYVE domain-containing protein 19) | Key regulator of abscission step in cytokinesis: part of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. Together with CHMP4C, required to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ZFYVE19/ANCHR and VPS4 and subsequent abscission. {ECO:0000269|PubMed:24814515}. |
Q96K37 | SLC35E1 | S363 | ochoa | Solute carrier family 35 member E1 | Putative transporter. {ECO:0000250}. |
Q96K76 | USP47 | S832 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96K76 | USP47 | S910 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96K76 | USP47 | S1353 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96K83 | ZNF521 | S90 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96K83 | ZNF521 | S273 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96K83 | ZNF521 | S546 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96K83 | ZNF521 | S605 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96K83 | ZNF521 | S1104 | ochoa | Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) | Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}. |
Q96KB5 | PBK | S59 | ochoa | Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) | Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}. |
Q96KC8 | DNAJC1 | S381 | ochoa | DnaJ homolog subfamily C member 1 (DnaJ protein homolog MTJ1) | May modulate protein synthesis. {ECO:0000250}. |
Q96KP1 | EXOC2 | S404 | ochoa | Exocyst complex component 2 (Exocyst complex component Sec5) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000269|PubMed:12459492, ECO:0000269|PubMed:32639540}. |
Q96KQ4 | PPP1R13B | S332 | ochoa | Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) | Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}. |
Q96KQ4 | PPP1R13B | S681 | ochoa | Apoptosis-stimulating of p53 protein 1 (Protein phosphatase 1 regulatory subunit 13B) | Regulator that plays a central role in regulation of apoptosis via its interaction with p53/TP53 (PubMed:11684014, PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540}. |
Q96KR7 | PHACTR3 | S318 | psp | Phosphatase and actin regulator 3 (Scaffold-associated PP1-inhibiting protein) (Scapinin) | None |
Q96L42 | KCNH8 | S810 | ochoa | Voltage-gated delayed rectifier potassium channel KCNH8 (ELK1) (hElk-1) (Ether-a-go-go-like potassium channel 3) (ELK channel 3) (ELK3) (Potassium voltage-gated channel subfamily H member 8) (Voltage-gated potassium channel subunit Kv12.1) | Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel that mediates outward-rectifying potassium currents (PubMed:11897058). Elicits a slowly activating, non-inactivating and slowly deactivation outwards potassium current at depolarizating voltages from -30 mV to +50mV (PubMed:11897058). Shows no obvious change in the activation rate from different holding potentials. Activation is strongly dependent on the pH of the external solution (By similarity). {ECO:0000250|UniProtKB:Q9QWS8, ECO:0000269|PubMed:11897058}. |
Q96L73 | NSD1 | S224 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S752 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S822 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S938 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S948 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S979 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S2623 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L91 | EP400 | S2476 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96L93 | KIF16B | S398 | ochoa | Kinesin-like protein KIF16B (Sorting nexin-23) | Plus end-directed microtubule-dependent motor protein involved in endosome transport and receptor recycling and degradation. Regulates the plus end motility of early endosomes and the balance between recycling and degradation of receptors such as EGF receptor (EGFR) and FGF receptor (FGFR). Regulates the Golgi to endosome transport of FGFR-containing vesicles during early development, a key process for developing basement membrane and epiblast and primitive endoderm lineages during early postimplantation development. {ECO:0000269|PubMed:15882625}. |
Q96LW4 | PRIMPOL | S499 | ochoa | DNA-directed primase/polymerase protein (hPrimpol1) (EC 2.7.7.102) (EC 2.7.7.7) (Coiled-coil domain-containing protein 111) | DNA primase and DNA polymerase required to tolerate replication-stalling lesions by bypassing them (PubMed:24126761, PubMed:24207056, PubMed:24240614, PubMed:24267451, PubMed:24682820, PubMed:25255211, PubMed:25262353, PubMed:25550423, PubMed:25746449, PubMed:27989484, PubMed:28534480, PubMed:29608762, PubMed:30889508, PubMed:31676232). Required to facilitate mitochondrial and nuclear replication fork progression by initiating de novo DNA synthesis using dNTPs and acting as an error-prone DNA polymerase able to bypass certain DNA lesions (PubMed:24126761, PubMed:24207056, PubMed:24240614, PubMed:24267451, PubMed:24682820, PubMed:25255211, PubMed:25262353, PubMed:25550423, PubMed:25746449, PubMed:27989484, PubMed:28534480, PubMed:29608762, PubMed:30633872, PubMed:30889508). Shows a high capacity to tolerate DNA damage lesions such as 8oxoG and abasic sites in DNA (PubMed:24126761, PubMed:24207056, PubMed:24240614, PubMed:24267451, PubMed:25746449). Provides different translesion synthesis alternatives when DNA replication is stalled: able to synthesize DNA primers downstream of lesions, such as ultraviolet (UV) lesions, R-loops and G-quadruplexes, to allow DNA replication to continue (PubMed:24240614, PubMed:26626482, PubMed:28534480, PubMed:30478192). Can also realign primers ahead of 'unreadable lesions' such as abasic sites and 6-4 photoproduct (6-4 pyrimidine-pyrimidinone), thereby skipping the lesion. Repriming avoids fork degradation while leading to accumulation of internal ssDNA gaps behind the forks (PubMed:24240614, PubMed:25746449, PubMed:31676232). Also able to incorporate nucleotides opposite DNA lesions such as 8oxoG, like a regular translesion synthesis DNA polymerase (PubMed:24207056, PubMed:25255211, PubMed:25746449). Also required for reinitiating stalled forks after UV damage during nuclear DNA replication (PubMed:24240614). Required for mitochondrial DNA (mtDNA) synthesis and replication, by reinitiating synthesis after UV damage or in the presence of chain-terminating nucleotides (PubMed:24207056). Prevents APOBEC family-mediated DNA mutagenesis by repriming downstream of abasic site to prohibit error-prone translesion synthesis (By similarity). Has non-overlapping function with POLH (PubMed:24240614). In addition to its role in DNA damage response, also required to maintain efficient nuclear and mitochondrial DNA replication in unperturbed cells (PubMed:30715459). {ECO:0000250|UniProtKB:Q6P1E7, ECO:0000269|PubMed:24126761, ECO:0000269|PubMed:24207056, ECO:0000269|PubMed:24240614, ECO:0000269|PubMed:24267451, ECO:0000269|PubMed:24682820, ECO:0000269|PubMed:25255211, ECO:0000269|PubMed:25262353, ECO:0000269|PubMed:25550423, ECO:0000269|PubMed:25746449, ECO:0000269|PubMed:26626482, ECO:0000269|PubMed:27989484, ECO:0000269|PubMed:28534480, ECO:0000269|PubMed:29608762, ECO:0000269|PubMed:30478192, ECO:0000269|PubMed:30633872, ECO:0000269|PubMed:30715459, ECO:0000269|PubMed:30889508, ECO:0000269|PubMed:31676232}. |
Q96LZ7 | RMDN2 | S121 | ochoa | Regulator of microtubule dynamics protein 2 (RMD-2) (hRMD-2) (Protein FAM82A1) | None |
Q96M89 | CCDC138 | S469 | ochoa | Coiled-coil domain-containing protein 138 | None |
Q96MT3 | PRICKLE1 | S62 | ochoa | Prickle-like protein 1 (REST/NRSF-interacting LIM domain protein 1) | Involved in the planar cell polarity pathway that controls convergent extension during gastrulation and neural tube closure. Convergent extension is a complex morphogenetic process during which cells elongate, move mediolaterally, and intercalate between neighboring cells, leading to convergence toward the mediolateral axis and extension along the anteroposterior axis. Necessary for nuclear localization of REST. May serve as nuclear receptor. {ECO:0000269|PubMed:21901791}. |
Q96MU7 | YTHDC1 | S146 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96MU7 | YTHDC1 | S424 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96N21 | TEPSIN | S333 | ochoa | AP-4 complex accessory subunit Tepsin (ENTH domain-containing protein 2) (Epsin for AP-4) (Tetra-epsin) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network. {ECO:0000305|PubMed:22472443, ECO:0000305|PubMed:26542808}. |
Q96N21 | TEPSIN | S455 | ochoa | AP-4 complex accessory subunit Tepsin (ENTH domain-containing protein 2) (Epsin for AP-4) (Tetra-epsin) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network. {ECO:0000305|PubMed:22472443, ECO:0000305|PubMed:26542808}. |
Q96N46 | TTC14 | S671 | ochoa | Tetratricopeptide repeat protein 14 (TPR repeat protein 14) | None |
Q96N67 | DOCK7 | S30 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96NA8 | TSNARE1 | S378 | ochoa | t-SNARE domain-containing protein 1 | None |
Q96NB3 | ZNF830 | S40 | ochoa | Zinc finger protein 830 (Coiled-coil domain-containing protein 16) | May play a role in pre-mRNA splicing as component of the spliceosome (PubMed:25599396). Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth, plays a role in oocyte survival by preventing chromosomal breaks formation, activation of TP63 and reduction of transcription (By similarity). {ECO:0000250|UniProtKB:Q8R1N0, ECO:0000305|PubMed:25599396}. |
Q96P16 | RPRD1A | S156 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 1A (Cyclin-dependent kinase inhibitor 2B-related protein) (p15INK4B-related protein) | Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. May act as a negative regulator of cyclin-D1 (CCND1) and cyclin-E (CCNE1) in the cell cycle. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}. |
Q96P20 | NLRP3 | S198 | psp | NACHT, LRR and PYD domains-containing protein 3 (EC 3.6.4.-) (Angiotensin/vasopressin receptor AII/AVP-like) (Caterpiller protein 1.1) (CLR1.1) (Cold-induced autoinflammatory syndrome 1 protein) (Cryopyrin) (PYRIN-containing APAF1-like protein 1) | Sensor component of the NLRP3 inflammasome, which mediates inflammasome activation in response to defects in membrane integrity, leading to secretion of inflammatory cytokines IL1B and IL18 and pyroptosis (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:23582325, PubMed:25686105, PubMed:27929086, PubMed:28656979, PubMed:28847925, PubMed:30487600, PubMed:30612879, PubMed:31086327, PubMed:31086329, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:34512673, PubMed:36442502). In response to pathogens and other damage-associated signals that affect the integrity of membranes, initiates the formation of the inflammasome polymeric complex composed of NLRP3, CASP1 and PYCARD/ASC (PubMed:16407889, PubMed:18403674, PubMed:27432880, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353, PubMed:36142182, PubMed:36442502). Recruitment of pro-caspase-1 (proCASP1) to the NLRP3 inflammasome promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), promoting cytokine secretion and pyroptosis (PubMed:23582325, PubMed:28847925, PubMed:31189953, PubMed:33231615, PubMed:34133077, PubMed:34341353). Activation of NLRP3 inflammasome is also required for HMGB1 secretion; stimulating inflammatory responses (PubMed:22801494). Under resting conditions, ADP-bound NLRP3 is autoinhibited (PubMed:35114687). NLRP3 activation stimuli include extracellular ATP, nigericin, reactive oxygen species, crystals of monosodium urate or cholesterol, amyloid-beta fibers, environmental or industrial particles and nanoparticles, such as asbestos, silica, aluminum salts, cytosolic dsRNA, etc (PubMed:16407889, PubMed:18403674, PubMed:18604214, PubMed:19414800, PubMed:23871209). Almost all stimuli trigger intracellular K(+) efflux (By similarity). These stimuli lead to membrane perturbation and activation of NLRP3 (By similarity). Upon activation, NLRP3 is transported to microtubule organizing center (MTOC), where it is unlocked by NEK7, leading to its relocalization to dispersed trans-Golgi network (dTGN) vesicle membranes and formation of an active inflammasome complex (PubMed:36442502, PubMed:39173637). Associates with dTGN vesicle membranes by binding to phosphatidylinositol 4-phosphate (PtdIns4P) (PubMed:30487600, PubMed:34554188). Shows ATPase activity (PubMed:17483456). {ECO:0000250|UniProtKB:Q8R4B8, ECO:0000269|PubMed:16407889, ECO:0000269|PubMed:17483456, ECO:0000269|PubMed:18403674, ECO:0000269|PubMed:18604214, ECO:0000269|PubMed:19414800, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:23871209, ECO:0000269|PubMed:25686105, ECO:0000269|PubMed:27432880, ECO:0000269|PubMed:27929086, ECO:0000269|PubMed:28656979, ECO:0000269|PubMed:28847925, ECO:0000269|PubMed:30487600, ECO:0000269|PubMed:30612879, ECO:0000269|PubMed:31086327, ECO:0000269|PubMed:31086329, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:33231615, ECO:0000269|PubMed:34133077, ECO:0000269|PubMed:34341353, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:35114687, ECO:0000269|PubMed:36142182, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}.; FUNCTION: Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription (By similarity). Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3' (By similarity). May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity). {ECO:0000250|UniProtKB:Q8R4B8}. |
Q96PD5 | PGLYRP2 | S170 | ochoa | N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) (Peptidoglycan recognition protein 2) (Peptidoglycan recognition protein long) (PGRP-L) | May play a scavenger role by digesting biologically active peptidoglycan (PGN) into biologically inactive fragments. Has no direct bacteriolytic activity. {ECO:0000269|PubMed:14506276}. |
Q96PE2 | ARHGEF17 | S914 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PE5 | OPALIN | S88 | ochoa | Opalin (Oligodendrocytic myelin paranodal and inner loop protein) (Transmembrane protein 10) | Central nervous system-specific myelin protein that increase myelin genes expression during oligodendrocyte differentiation. Promotes oligodendrocyte terminal differentiation. {ECO:0000250|UniProtKB:Q7M750}. |
Q96PP8 | GBP5 | S157 | ochoa | Guanylate-binding protein 5 (EC 3.6.5.-) (GBP-TA antigen) (GTP-binding protein 5) (GBP-5) (Guanine nucleotide-binding protein 5) | Interferon (IFN)-inducible GTPase that plays important roles in innate immunity against a diverse range of bacterial, viral and protozoan pathogens (By similarity). Hydrolyzes GTP, but in contrast to other family members, does not produce GMP (PubMed:20180847). Following infection, recruited to the pathogen-containing vacuoles or vacuole-escaped bacteria and acts as a positive regulator of inflammasome assembly by promoting the release of inflammasome ligands from bacteria (By similarity). Acts by promoting lysis of pathogen-containing vacuoles, releasing pathogens into the cytosol (By similarity). Following pathogen release in the cytosol, promotes recruitment of proteins that mediate bacterial cytolysis: this liberates ligands that are detected by inflammasomes, such as lipopolysaccharide (LPS) that activates the non-canonical CASP4/CASP11 inflammasome or double-stranded DNA (dsDNA) that activates the AIM2 inflammasome (By similarity). As an activator of NLRP3 inflammasome assembly: promotes selective NLRP3 inflammasome assembly in response to microbial and soluble, but not crystalline, agents (PubMed:22461501). Independently of its GTPase activity, acts as an inhibitor of various viruses infectivity, such as HIV-1, Zika and influenza A viruses, by inhibiting FURIN-mediated maturation of viral envelope proteins (PubMed:26996307, PubMed:31091448). {ECO:0000250|UniProtKB:Q8CFB4, ECO:0000269|PubMed:20180847, ECO:0000269|PubMed:22461501, ECO:0000269|PubMed:26996307, ECO:0000269|PubMed:31091448}.; FUNCTION: Antigenic tumor-specific truncated splice form. {ECO:0000269|PubMed:15175044}. |
Q96PY5 | FMNL2 | S183 | ochoa | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96PY6 | NEK1 | S653 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PY6 | NEK1 | S664 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PY6 | NEK1 | S798 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PY6 | NEK1 | S806 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PZ2 | FAM111A | S26 | ochoa | Serine protease FAM111A (EC 3.4.21.-) | Single-stranded DNA-binding serine protease that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (PubMed:32165630). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde (PubMed:32165630). Protects replication fork from stalling by removing DPCs, such as covalently trapped topoisomerase 1 (TOP1) adducts on DNA lesion, or poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors (PubMed:32165630). Required for PCNA loading on replication sites (PubMed:24561620). Promotes S-phase entry and DNA synthesis (PubMed:24561620). Also acts as a restriction factor for some viruses including SV40 polyomavirus and vaccinia virus (PubMed:23093934, PubMed:37607234). Mechanistically, affects nuclear barrier function during viral replication by mediating the disruption of the nuclear pore complex (NPC) via its protease activity (PubMed:33369867, PubMed:37607234). In turn, interacts with vaccinia virus DNA-binding protein OPG079 in the cytoplasm and promotes its degradation without the need of its protease activity but through autophagy (PubMed:37607234). {ECO:0000269|PubMed:24561620, ECO:0000269|PubMed:32165630, ECO:0000269|PubMed:37607234}. |
Q96Q05 | TRAPPC9 | S574 | ochoa | Trafficking protein particle complex subunit 9 (NIK- and IKBKB-binding protein) (Tularik gene 1 protein) | Functions as an activator of NF-kappa-B through increased phosphorylation of the IKK complex. May function in neuronal cells differentiation. May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000269|PubMed:15951441}. |
Q96Q11 | TRNT1 | S289 | ochoa | CCA tRNA nucleotidyltransferase 1, mitochondrial (EC 2.7.7.72) (Mitochondrial tRNA nucleotidyl transferase, CCA-adding) (mt CCA-adding enzyme) (mt tRNA CCA-diphosphorylase) (mt tRNA CCA-pyrophosphorylase) (mt tRNA adenylyltransferase) | Nucleotidyltransferase that catalyzes the addition and repair of the essential 3'-terminal CCA sequence in tRNAs, which is necessary for the attachment of amino acids to the 3' terminus of tRNA molecules, using CTP and ATP as substrates (PubMed:11504732, PubMed:25193871, PubMed:25640237, PubMed:25652405, PubMed:29454993, PubMed:30959222, PubMed:31011209, PubMed:34023389). tRNA 3'-terminal CCA addition is required both for tRNA processing and repair (PubMed:22076379, PubMed:25640237). Promotes tRNA repair and recycling downstream of the ribosome-associated quality control (RQC) pathway by mediating addition of the tRNA 3'-terminal CCA following cleavage by ANKZF1 and repair by ELAC1 (PubMed:31011209). Also involved in tRNA surveillance by mediating tandem CCA addition to generate a CCACCA at the 3' terminus of unstable tRNAs and tRNA-like transcripts (PubMed:22076379, PubMed:25640237). While stable tRNAs receive only 3'-terminal CCA, unstable tRNAs beginning with GG are marked with CCACCA and rapidly degraded (PubMed:22076379, PubMed:25640237). The structural flexibility of RNA controls the choice between CCA versus CCACCA addition: following the first CCA addition cycle, nucleotide-binding to the active site triggers a clockwise screw motion, producing torque on the RNA (PubMed:25640237). This ejects stable RNAs, whereas unstable RNAs are refolded while bound to the enzyme and subjected to a second CCA catalytic cycle (PubMed:25640237). {ECO:0000269|PubMed:11504732, ECO:0000269|PubMed:22076379, ECO:0000269|PubMed:25193871, ECO:0000269|PubMed:25640237, ECO:0000269|PubMed:25652405, ECO:0000269|PubMed:29454993, ECO:0000269|PubMed:30959222, ECO:0000269|PubMed:31011209, ECO:0000269|PubMed:34023389}.; FUNCTION: [Isoform 2]: Adds 2 C residues (CC-) to the 3' terminus of tRNA molecules instead of a complete CCA end as isoform 1 does (in vitro). {ECO:0000269|PubMed:17204286}. |
Q96Q42 | ALS2 | S492 | ochoa|psp | Alsin (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 6 protein) (Amyotrophic lateral sclerosis 2 protein) | May act as a GTPase regulator. Controls survival and growth of spinal motoneurons (By similarity). {ECO:0000250}. |
Q96QC0 | PPP1R10 | S382 | ochoa | Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) | Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}. |
Q96QC0 | PPP1R10 | S471 | ochoa | Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) | Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}. |
Q96QD5 | DEPDC7 | S185 | ochoa | DEP domain-containing protein 7 (Protein TR2/D15) | None |
Q96QD9 | FYTTD1 | S118 | ochoa | UAP56-interacting factor (Forty-two-three domain-containing protein 1) (Protein 40-2-3) | Required for mRNA export from the nucleus to the cytoplasm. Acts as an adapter that uses the DDX39B/UAP56-NFX1 pathway to ensure efficient mRNA export and delivering to the nuclear pore. Associates with spliced and unspliced mRNAs simultaneously with ALYREF/THOC4. {ECO:0000269|PubMed:19836239}. |
Q96QE3 | ATAD5 | S653 | ochoa|psp | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96QE3 | ATAD5 | S756 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96QE3 | ATAD5 | S1244 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96QP1 | ALPK1 | S781 | ochoa | Alpha-protein kinase 1 (EC 2.7.11.1) (Chromosome 4 kinase) (Lymphocyte alpha-protein kinase) | Serine/threonine-protein kinase that detects bacterial pathogen-associated molecular pattern metabolites (PAMPs) and initiates an innate immune response, a critical step for pathogen elimination and engagement of adaptive immunity (PubMed:28222186, PubMed:28877472, PubMed:30111836). Specifically recognizes and binds ADP-D-glycero-beta-D-manno-heptose (ADP-Heptose), a potent PAMP present in all Gram-negative and some Gram-positive bacteria (PubMed:30111836). ADP-Heptose-binding stimulates its kinase activity to phosphorylate and activate TIFA, triggering pro-inflammatory NF-kappa-B signaling (PubMed:30111836). May be involved in monosodium urate monohydrate (MSU)-induced inflammation by mediating phosphorylation of unconventional myosin MYO9A (PubMed:27169898). May also play a role in apical protein transport by mediating phosphorylation of unconventional myosin MYO1A (PubMed:15883161). May play a role in ciliogenesis (PubMed:30967659). {ECO:0000269|PubMed:15883161, ECO:0000269|PubMed:27169898, ECO:0000269|PubMed:28222186, ECO:0000269|PubMed:28877472, ECO:0000269|PubMed:30111836, ECO:0000269|PubMed:30967659}. |
Q96QS3 | ARX | S20 | ochoa | Homeobox protein ARX (Aristaless-related homeobox) | Transcription factor (PubMed:22194193, PubMed:31691806). Binds to specific sequence motif 5'-TAATTA-3' in regulatory elements of target genes, such as histone demethylase KDM5C (PubMed:22194193, PubMed:31691806). Positively modulates transcription of KDM5C (PubMed:31691806). Activates expression of KDM5C synergistically with histone lysine demethylase PHF8 and perhaps in competition with transcription regulator ZNF711; synergy may be related to enrichment of histone H3K4me3 in regulatory elements (PubMed:31691806). Required for normal brain development (PubMed:11889467, PubMed:12379852, PubMed:14722918). Plays a role in neuronal proliferation, interneuronal migration and differentiation in the embryonic forebrain (By similarity). May also be involved in axonal guidance in the floor plate (By similarity). {ECO:0000250|UniProtKB:O35085, ECO:0000269|PubMed:11889467, ECO:0000269|PubMed:12379852, ECO:0000269|PubMed:14722918, ECO:0000269|PubMed:22194193, ECO:0000269|PubMed:31691806}. |
Q96QT4 | TRPM7 | S1361 | ochoa | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96QT4 | TRPM7 | S1543 | ochoa|psp | Transient receptor potential cation channel subfamily M member 7 (EC 2.7.11.1) (Channel-kinase 1) (Long transient receptor potential channel 7) (LTrpC-7) (LTrpC7) [Cleaved into: TRPM7 kinase, cleaved form (M7CK); TRPM7 channel, cleaved form] | Bifunctional protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. The channel is highly permeable to divalent cations, specifically calcium (Ca2+), magnesium (Mg2+) and zinc (Zn2+) and mediates their influx (PubMed:11385574, PubMed:12887921, PubMed:15485879, PubMed:24316671, PubMed:35561741, PubMed:36027648). Controls a wide range of biological processes such as Ca2(+), Mg(2+) and Zn(2+) homeostasis, vesicular Zn(2+) release channel and intracellular Ca(2+) signaling, embryonic development, immune responses, cell motility, proliferation and differentiation (By similarity). The C-terminal alpha-kinase domain autophosphorylates cytoplasmic residues of TRPM7 (PubMed:18365021). In vivo, TRPM7 phosphorylates SMAD2, suggesting that TRPM7 kinase may play a role in activating SMAD signaling pathways. In vitro, TRPM7 kinase phosphorylates ANXA1 (annexin A1), myosin II isoforms and a variety of proteins with diverse cellular functions (PubMed:15485879, PubMed:18394644). {ECO:0000250|UniProtKB:Q923J1, ECO:0000269|PubMed:11385574, ECO:0000269|PubMed:12887921, ECO:0000269|PubMed:15485879, ECO:0000269|PubMed:18365021, ECO:0000269|PubMed:18394644, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:35561741, ECO:0000269|PubMed:36027648}.; FUNCTION: [TRPM7 channel, cleaved form]: The cleaved channel exhibits substantially higher current and potentiates Fas receptor signaling. {ECO:0000250|UniProtKB:Q923J1}.; FUNCTION: [TRPM7 kinase, cleaved form]: The C-terminal kinase domain can be cleaved from the channel segment in a cell-type-specific fashion. In immune cells, the TRPM7 kinase domain is clipped from the channel domain by caspases in response to Fas-receptor stimulation. The cleaved kinase fragments can translocate to the nucleus, and bind chromatin-remodeling complex proteins in a Zn(2+)-dependent manner to ultimately phosphorylate specific Ser/Thr residues of histones known to be functionally important for cell differentiation and embryonic development. {ECO:0000250|UniProtKB:Q923J1}. |
Q96QT6 | PHF12 | S769 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96QZ7 | MAGI1 | S730 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96QZ7 | MAGI1 | S938 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96R06 | SPAG5 | S43 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96R06 | SPAG5 | S66 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96R06 | SPAG5 | S135 | ochoa|psp | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96R06 | SPAG5 | S341 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RG2 | PASK | S524 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RI0 | F2RL3 | S359 | ochoa | Proteinase-activated receptor 4 (PAR-4) (Coagulation factor II receptor-like 3) (Thrombin receptor-like 3) | Receptor for activated thrombin or trypsin coupled to G proteins that stimulate phosphoinositide hydrolysis (PubMed:10079109). May play a role in platelets activation (PubMed:10079109). {ECO:0000269|PubMed:10079109}. |
Q96RL1 | UIMC1 | S677 | ochoa|psp | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL7 | VPS13A | S1348 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q96RT1 | ERBIN | S660 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | S682 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | S857 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | S1060 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | S1168 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RT1 | ERBIN | S1310 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RU2 | USP28 | S113 | ochoa | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96RU2 | USP28 | S279 | ochoa | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96RY5 | CRAMP1 | S848 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q96RY7 | IFT140 | S360 | ochoa | Intraflagellar transport protein 140 homolog (WD and tetratricopeptide repeats protein 2) | Component of the IFT complex A (IFT-A), a complex required for retrograde ciliary transport and entry into cilia of G protein-coupled receptors (GPCRs) (PubMed:20889716, PubMed:22503633). Plays a pivotal role in proper development and function of ciliated cells through its role in ciliogenesis and/or cilium maintenance (PubMed:22503633). Required for the development and maintenance of the outer segments of rod and cone photoreceptor cells. Plays a role in maintenance and the delivery of opsin to the outer segment of photoreceptor cells (By similarity). {ECO:0000250|UniProtKB:E9PY46, ECO:0000269|PubMed:20889716, ECO:0000269|PubMed:22503633, ECO:0000269|PubMed:28724397}. |
Q96S19 | METTL26 | S149 | ochoa | Methyltransferase-like 26 | None |
Q96S38 | RPS6KC1 | S282 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96S38 | RPS6KC1 | S583 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96S38 | RPS6KC1 | S596 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96S59 | RANBP9 | S170 | ochoa | Ran-binding protein 9 (RanBP9) (BPM-L) (BPM90) (Ran-binding protein M) (RanBPM) (RanBP7) | May act as scaffolding protein, and as adapter protein to couple membrane receptors to intracellular signaling pathways (Probable). Acts as a mediator of cell spreading and actin cytoskeleton rearrangement (PubMed:18710924). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). May be involved in signaling of ITGB2/LFA-1 and other integrins (PubMed:14722085). Enhances HGF-MET signaling by recruiting Sos and activating the Ras pathway (PubMed:12147692). Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but not affect estrogen-induced transactivation (PubMed:12361945, PubMed:18222118). Stabilizes TP73 isoform Alpha, probably by inhibiting its ubiquitination, and increases its proapoptotic activity (PubMed:15558019). Inhibits the kinase activity of DYRK1A and DYRK1B. Inhibits FMR1 binding to RNA. {ECO:0000269|PubMed:12147692, ECO:0000269|PubMed:12361945, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:14722085, ECO:0000269|PubMed:15381419, ECO:0000269|PubMed:15558019, ECO:0000269|PubMed:18222118, ECO:0000269|PubMed:18710924, ECO:0000269|PubMed:29911972, ECO:0000305}. |
Q96S90 | LYSMD1 | S33 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 1 | None |
Q96S90 | LYSMD1 | S194 | ochoa | LysM and putative peptidoglycan-binding domain-containing protein 1 | None |
Q96S94 | CCNL2 | S348 | ochoa | Cyclin-L2 (Paneth cell-enhanced expression protein) | Involved in pre-mRNA splicing. May induce cell death, possibly by acting on the transcription and RNA processing of apoptosis-related factors. {ECO:0000269|PubMed:14684736, ECO:0000269|PubMed:18216018}. |
Q96S94 | CCNL2 | S369 | ochoa | Cyclin-L2 (Paneth cell-enhanced expression protein) | Involved in pre-mRNA splicing. May induce cell death, possibly by acting on the transcription and RNA processing of apoptosis-related factors. {ECO:0000269|PubMed:14684736, ECO:0000269|PubMed:18216018}. |
Q96S99 | PLEKHF1 | S197 | ochoa | Pleckstrin homology domain-containing family F member 1 (PH domain-containing family F member 1) (Lysosome-associated apoptosis-inducing protein containing PH and FYVE domains) (Apoptosis-inducing protein) (PH and FYVE domain-containing protein 1) (Phafin-1) (Zinc finger FYVE domain-containing protein 15) | May induce apoptosis through the lysosomal-mitochondrial pathway. Translocates to the lysosome initiating the permeabilization of lysosomal membrane (LMP) and resulting in the release of CTSD and CTSL to the cytoplasm. Triggers the caspase-independent apoptosis by altering mitochondrial membrane permeabilization (MMP) resulting in the release of PDCD8. {ECO:0000269|PubMed:16188880}. |
Q96SD1 | DCLRE1C | S518 | ochoa | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96SF7 | TBX15 | S256 | ochoa | T-box transcription factor TBX15 (T-box protein 15) (T-box transcription factor TBX14) (T-box protein 14) | Probable transcriptional regulator involved in the development of the skeleton of the limb, vertebral column and head. Acts by controlling the number of mesenchymal precursor cells and chondrocytes (By similarity). {ECO:0000250}. |
Q96SK2 | TMEM209 | S98 | ochoa | Transmembrane protein 209 | Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}. |
Q96SN8 | CDK5RAP2 | S1020 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96SN8 | CDK5RAP2 | S1238 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96ST2 | IWS1 | S621 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST3 | SIN3A | S860 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q96SU4 | OSBPL9 | S611 | ochoa | Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) | Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}. |
Q96SY0 | INTS14 | S387 | ochoa | Integrator complex subunit 14 (von Willebrand factor A domain-containing protein 9) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:32647223). Within the integrator complex, INTS14 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386, PubMed:38906142). {ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386, ECO:0000269|PubMed:38906142}. |
Q96T17 | MAP7D2 | S273 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T21 | SECISBP2 | S288 | ochoa | Selenocysteine insertion sequence-binding protein 2 (SECIS-binding protein 2) | mRNA-binding protein that binds to the SECIS (selenocysteine insertion sequence) element present in the 3'-UTR of mRNAs encoding selenoproteins and facilitates the incorporation of the rare amino acid selenocysteine (PubMed:35709277). Insertion of selenocysteine at UGA codons is mediated by SECISBP2 and EEFSEC: SECISBP2 (1) specifically binds the SECIS sequence once the 80S ribosome encounters an in-frame UGA codon and (2) contacts the RPS27A/eS31 of the 40S ribosome before ribosome stalling (PubMed:35709277). (3) GTP-bound EEFSEC then delivers selenocysteinyl-tRNA(Sec) to the 80S ribosome and adopts a preaccommodated state conformation (PubMed:35709277). (4) After GTP hydrolysis, EEFSEC dissociates from the assembly, selenocysteinyl-tRNA(Sec) accommodates, and peptide bond synthesis and selenoprotein elongation occur (PubMed:35709277). {ECO:0000269|PubMed:35709277}. |
Q96T37 | RBM15 | S781 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T37 | RBM15 | S935 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T58 | SPEN | S1062 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1222 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1918 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1983 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2101 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2896 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T68 | SETDB2 | S318 | ochoa | Histone-lysine N-methyltransferase SETDB2 (EC 2.1.1.366) (Chronic lymphocytic leukemia deletion region gene 8 protein) (Lysine N-methyltransferase 1F) (SET domain bifurcated 2) | Histone methyltransferase involved in left-right axis specification in early development and mitosis. Specifically trimethylates 'Lys-9' of histone H3 (H3K9me3). H3K9me3 is a specific tag for epigenetic transcriptional repression that recruits HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Contributes to H3K9me3 in both the interspersed repetitive elements and centromere-associated repeats. Plays a role in chromosome condensation and segregation during mitosis. {ECO:0000269|PubMed:20404330}. |
Q96T88 | UHRF1 | S661 | psp | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q96TC7 | RMDN3 | S393 | ochoa | Regulator of microtubule dynamics protein 3 (RMD-3) (hRMD-3) (Cerebral protein 10) (Protein FAM82A2) (Protein FAM82C) (Protein tyrosine phosphatase-interacting protein 51) (TCPTP-interacting protein 51) | Involved in cellular calcium homeostasis regulation. May participate in differentiation and apoptosis of keratinocytes. Overexpression induces apoptosis. {ECO:0000269|PubMed:16820967, ECO:0000269|PubMed:22131369}. |
Q99081 | TCF12 | S98 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99081 | TCF12 | S142 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99502 | EYA1 | S314 | ochoa | Protein phosphatase EYA1 (EC 3.1.3.16) (EC 3.1.3.48) (Eyes absent homolog 1) | Functions both as protein phosphatase and as transcriptional coactivator for SIX1, and probably also for SIX2, SIX4 and SIX5 (By similarity). Tyrosine phosphatase that dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph) and promotes efficient DNA repair via the recruitment of DNA repair complexes containing MDC1. 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19234442). Its function as histone phosphatase may contribute to its function in transcription regulation during organogenesis (By similarity). Also has phosphatase activity with proteins phosphorylated on Ser and Thr residues (in vitro) (By similarity). Required for normal embryonic development of the craniofacial and trunk skeleton, kidneys and ears (By similarity). Together with SIX1, it plays an important role in hypaxial muscle development; in this it is functionally redundant with EYA2 (By similarity). {ECO:0000250|UniProtKB:P97767, ECO:0000269|PubMed:19234442}. |
Q99504 | EYA3 | S438 | ochoa | Protein phosphatase EYA3 (EC 3.1.3.48) (Eyes absent homolog 3) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1 (PubMed:19234442, PubMed:19351884). Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. Coactivates SIX1, and seems to coactivate SIX2, SIX4 and SIX5. The repression of precursor cell proliferation in myoblasts by SIX1 is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex and seems to be dependent on EYA3 phosphatase activity (By similarity). May be involved in development of the eye. {ECO:0000250|UniProtKB:P97480, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19351884}. |
Q99549 | MPHOSPH8 | S149 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99550 | MPHOSPH9 | S984 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99550 | MPHOSPH9 | S994 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99550 | MPHOSPH9 | S1007 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99550 | MPHOSPH9 | S1137 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99569 | PKP4 | S776 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99569 | PKP4 | S814 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99569 | PKP4 | S1100 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99569 | PKP4 | S1135 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99575 | POP1 | S730 | ochoa | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
Q99598 | TSNAX | S33 | ochoa | Translin-associated protein X (Translin-associated factor X) | Acts in combination with TSN as an endonuclease involved in the activation of the RNA-induced silencing complex (RISC). Possible role in spermatogenesis. {ECO:0000269|PubMed:12036294, ECO:0000269|PubMed:21552258}. |
Q99611 | SEPHS2 | S46 | ochoa | Selenide, water dikinase 2 (EC 2.7.9.3) (Selenium donor protein 2) (Selenophosphate synthase 2) | Synthesizes selenophosphate from selenide and ATP. {ECO:0000250|UniProtKB:P49903}. |
Q99612 | KLF6 | S192 | ochoa | Krueppel-like factor 6 (B-cell-derived protein 1) (Core promoter element-binding protein) (GC-rich sites-binding factor GBF) (Proto-oncogene BCD1) (Suppressor of tumorigenicity 12 protein) (Transcription factor Zf9) | Transcriptional activator (By similarity). Binds a GC box motif. Could play a role in B-cell growth and development. {ECO:0000250}. |
Q99618 | CDCA3 | S209 | ochoa | Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) | F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}. |
Q99623 | PHB2 | S92 | ochoa | Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}. |
Q99624 | SLC38A3 | S52 | ochoa | Sodium-coupled neutral amino acid transporter 3 (N-system amino acid transporter 1) (Na(+)-coupled neutral amino acid transporter 3) (Solute carrier family 38 member 3) (System N amino acid transporter 1) | Symporter that cotransports specific neutral amino acids and sodium ions, coupled to an H(+) antiporter activity (PubMed:10823827). Mainly participates in the glutamate-GABA-glutamine cycle in brain where it transports L-glutamine from astrocytes in the intercellular space for the replenishment of both neurotransmitters glutamate and gamma-aminobutyric acid (GABA) in neurons and also functions as the major influx transporter in ganglion cells mediating the uptake of glutamine (By similarity). The transport activity is specific for L-glutamine, L-histidine and L-asparagine (PubMed:10823827). The transport is electroneutral coupled to the cotransport of 1 Na(+) and the antiport of 1 H(+) (By similarity). The transport is pH dependent, saturable, Li(+) tolerant and functions in both direction depending on the concentration gradients of its substrates and cotransported ions (PubMed:10823827). Also mediates an amino acid-gated H(+) conductance that is not stoichiometrically coupled to the amino acid transport but which influences the ionic gradients that drive the amino acid transport (By similarity). In addition, may play a role in nitrogen metabolism, amino acid homeostasis, glucose metabolism and renal ammoniagenesis (By similarity). {ECO:0000250|UniProtKB:Q9DCP2, ECO:0000250|UniProtKB:Q9JHZ9, ECO:0000269|PubMed:10823827}. |
Q99640 | PKMYT1 | S94 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99666 | RGPD5 | S21 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99666 | RGPD5 | S788 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99698 | LYST | S2217 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99707 | MTR | S156 | ochoa | Methionine synthase (MS) (EC 2.1.1.13) (5-methyltetrahydrofolate--homocysteine methyltransferase) (Cobalamin-dependent methionine synthase) (Vitamin-B12 dependent methionine synthase) | Catalyzes the transfer of a methyl group from methylcob(III)alamin (MeCbl) to homocysteine, yielding enzyme-bound cob(I)alamin and methionine in the cytosol (PubMed:16769880, PubMed:17288554, PubMed:27771510). MeCbl is an active form of cobalamin (vitamin B12) used as a cofactor for methionine biosynthesis. Cob(I)alamin form is regenerated to MeCbl by a transfer of a methyl group from 5-methyltetrahydrofolate (PubMed:16769880, PubMed:17288554, PubMed:27771510). The processing of cobalamin in the cytosol occurs in a multiprotein complex composed of at least MMACHC, MMADHC, MTRR (methionine synthase reductase) and MTR which may contribute to shuttle safely and efficiently cobalamin towards MTR in order to produce methionine (PubMed:16769880, PubMed:27771510). {ECO:0000269|PubMed:16769880, ECO:0000269|PubMed:17288554, ECO:0000269|PubMed:27771510}. |
Q99708 | RBBP8 | S233 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99708 | RBBP8 | S327 | ochoa|psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99708 | RBBP8 | S568 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99728 | BARD1 | S148 | psp | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99728 | BARD1 | S288 | psp | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99728 | BARD1 | S330 | ochoa | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99728 | BARD1 | S364 | ochoa | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99728 | BARD1 | S496 | ochoa | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99741 | CDC6 | S45 | ochoa | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q99741 | CDC6 | S106 | ochoa|psp | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q99755 | PIP5K1A | S458 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1-alpha) (PtdIns(4)P-5-kinase 1 alpha) (EC 2.7.1.68) (68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha) (Phosphatidylinositol 4-phosphate 5-kinase type I alpha) (PIP5KIalpha) | Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:21477596, PubMed:22942276, PubMed:8955136). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (PubMed:19158393, PubMed:20660631). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Can also use phosphatidylinositol (PtdIns) as substrate in vitro (PubMed:22942276). Together with PIP5K1C, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle ingestion by activating the WAS GTPase-binding protein that induces Arp2/3 dependent actin polymerization at the nascent phagocytic cup (By similarity). Together with PIP5K1B, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). Recruited to the plasma membrane by the E-cadherin/beta-catenin complex where it provides the substrate PtdIns(4,5)P2 for the production of PtdIns(3,4,5)P3, IP3 and DAG, that will mobilize internal calcium and drive keratinocyte differentiation (PubMed:19158393). Positively regulates insulin-induced translocation of SLC2A4 to the cell membrane in adipocytes (By similarity). Together with PIP5K1C has a role during embryogenesis (By similarity). Independently of its catalytic activity, is required for membrane ruffling formation, actin organization and focal adhesion formation during directional cell migration by controlling integrin-induced translocation of the small GTPase RAC1 to the plasma membrane (PubMed:20660631). Also functions in the nucleus where it acts as an activator of TUT1 adenylyltransferase activity in nuclear speckles, thereby regulating mRNA polyadenylation of a select set of mRNAs (PubMed:18288197). {ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:19158393, ECO:0000269|PubMed:20660631, ECO:0000269|PubMed:21477596, ECO:0000269|PubMed:22942276, ECO:0000269|PubMed:8955136}. |
Q99798 | ACO2 | S559 | ochoa | Aconitate hydratase, mitochondrial (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) | Catalyzes the isomerization of citrate to isocitrate via cis-aconitate. {ECO:0000250|UniProtKB:P16276}. |
Q99836 | MYD88 | S244 | ochoa | Myeloid differentiation primary response protein MyD88 | Adapter protein involved in the Toll-like receptor and IL-1 receptor signaling pathway in the innate immune response (PubMed:15361868, PubMed:18292575, PubMed:33718825, PubMed:37971847). Acts via IRAK1, IRAK2, IRF7 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed:15361868, PubMed:19506249, PubMed:24316379). Increases IL-8 transcription (PubMed:9013863). Involved in IL-18-mediated signaling pathway. Activates IRF1 resulting in its rapid migration into the nucleus to mediate an efficient induction of IFN-beta, NOS2/INOS, and IL12A genes. Upon TLR8 activation by GU-rich single-stranded RNA (GU-rich RNA) derived from viruses such as SARS-CoV-2, SARS-CoV and HIV-1, induces IL1B release through NLRP3 inflammasome activation (PubMed:33718825). MyD88-mediated signaling in intestinal epithelial cells is crucial for maintenance of gut homeostasis and controls the expression of the antimicrobial lectin REG3G in the small intestine (By similarity). {ECO:0000250|UniProtKB:P22366, ECO:0000269|PubMed:15361868, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:19506249, ECO:0000269|PubMed:20855887, ECO:0000269|PubMed:24316379, ECO:0000269|PubMed:33718825, ECO:0000269|PubMed:37971847, ECO:0000269|PubMed:9013863}. |
Q99856 | ARID3A | S362 | ochoa | AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) | Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}. |
Q99865 | SPIN2A | S195 | ochoa | Spindlin-2A (Protein DXF34) (Spindlin-like protein 2A) (SPIN-2) (SPIN-2A) | May be involved in the regulation of cell cycle progression (By similarity). Exhibits H3K4me3-binding activity (PubMed:29061846). {ECO:0000250|UniProtKB:Q9BPZ2, ECO:0000269|PubMed:29061846}. |
Q99956 | DUSP9 | S328 | ochoa | Dual specificity protein phosphatase 9 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 4) (MAP kinase phosphatase 4) (MKP-4) | Inactivates MAP kinases. Has a specificity for the ERK family. |
Q99959 | PKP2 | S102 | ochoa | Plakophilin-2 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}. |
Q99973 | TEP1 | S1344 | ochoa | Telomerase protein component 1 (Telomerase-associated protein 1) (Telomerase protein 1) (p240) (p80 telomerase homolog) | Component of the telomerase ribonucleoprotein complex that is essential for the replication of chromosome termini (PubMed:19179534). Also a component of the ribonucleoprotein vaults particle, a multi-subunit structure involved in nucleo-cytoplasmic transport (By similarity). Responsible for the localizing and stabilizing vault RNA (vRNA) association in the vault ribonucleoprotein particle. Binds to TERC (By similarity). {ECO:0000250|UniProtKB:P97499, ECO:0000269|PubMed:19179534}. |
Q99990 | VGLL1 | S116 | ochoa | Transcription cofactor vestigial-like protein 1 (Vgl-1) (Protein TONDU) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000269|PubMed:10518497}. |
Q9BPX3 | NCAPG | S841 | ochoa | Condensin complex subunit 3 (Chromosome-associated protein G) (Condensin subunit CAP-G) (hCAP-G) (Melanoma antigen NY-MEL-3) (Non-SMC condensin I complex subunit G) (XCAP-G homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9BPX5 | ARPC5L | S64 | ochoa | Actin-related protein 2/3 complex subunit 5-like protein (Arp2/3 complex 16 kDa subunit 2) (ARC16-2) | May function as component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. |
Q9BPZ2 | SPIN2B | S195 | ochoa | Spindlin-2B (Spindlin-like protein 2B) (SPIN-2) (SPIN-2B) | Involved in the regulation of cell cycle progression, this activity is related to the inhibition of apoptosis following the removal of essential growth factors (PubMed:12145692). Exhibits H3K4me3-binding activity (PubMed:29061846). {ECO:0000269|PubMed:12145692, ECO:0000269|PubMed:29061846}. |
Q9BPZ7 | MAPKAP1 | S270 | ochoa | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BPZ7 | MAPKAP1 | S447 | ochoa | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BQ39 | DDX50 | S464 | ochoa | ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) | ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}. |
Q9BQ52 | ELAC2 | S618 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BQ52 | ELAC2 | S736 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BQ67 | GRWD1 | S344 | ochoa | Glutamate-rich WD repeat-containing protein 1 | Histone binding-protein that regulates chromatin dynamics and minichromosome maintenance (MCM) loading at replication origins, possibly by promoting chromatin openness (PubMed:25990725). {ECO:0000269|PubMed:25990725}. |
Q9BQ75 | CMSS1 | S228 | ochoa | Protein CMSS1 (Cms1 ribosomal small subunit homolog) | None |
Q9BQA1 | WDR77 | S176 | ochoa | Methylosome protein WDR77 (Androgen receptor cofactor p44) (Methylosome protein 50) (MEP-50) (WD repeat-containing protein 77) (p44/Mep50) | Non-catalytic component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A, which modifies specific arginines to dimethylarginines in several spliceosomal Sm proteins and histones (PubMed:11756452). This modification targets Sm proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein core particles. Might play a role in transcription regulation. The methylosome complex also methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (PubMed:23071334). {ECO:0000269|PubMed:11756452, ECO:0000269|PubMed:23071334}. |
Q9BQA1 | WDR77 | S306 | psp | Methylosome protein WDR77 (Androgen receptor cofactor p44) (Methylosome protein 50) (MEP-50) (WD repeat-containing protein 77) (p44/Mep50) | Non-catalytic component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A, which modifies specific arginines to dimethylarginines in several spliceosomal Sm proteins and histones (PubMed:11756452). This modification targets Sm proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein core particles. Might play a role in transcription regulation. The methylosome complex also methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (PubMed:23071334). {ECO:0000269|PubMed:11756452, ECO:0000269|PubMed:23071334}. |
Q9BQA9 | CYBC1 | S168 | ochoa | Cytochrome b-245 chaperone 1 (Essential for reactive oxygen species protein) (Eros) | Functions as a chaperone necessary for a stable expression of the CYBA and CYBB subunits of the cytochrome b-245 heterodimer (PubMed:30361506). Controls the phagocyte respiratory burst and is essential for innate immunity (By similarity). {ECO:0000250|UniProtKB:Q3TYS2, ECO:0000269|PubMed:30361506}. |
Q9BQC3 | DPH2 | S446 | ochoa | 2-(3-amino-3-carboxypropyl)histidine synthase subunit 2 (Diphthamide biosynthesis protein 2) (Diphtheria toxin resistance protein 2) (S-adenosyl-L-methionine:L-histidine 3-amino-3-carboxypropyltransferase 2) | Required for the first step of diphthamide biosynthesis, a post-translational modification of histidine which occurs in elongation factor 2 (PubMed:32576952). DPH1 and DPH2 transfer a 3-amino-3-carboxypropyl (ACP) group from S-adenosyl-L-methionine (SAM) to a histidine residue, the reaction is assisted by a reduction system comprising DPH3 and a NADH-dependent reductase (By similarity). Facilitates the reduction of the catalytic iron-sulfur cluster found in the DPH1 subunit (By similarity). {ECO:0000250|UniProtKB:P32461, ECO:0000269|PubMed:32576952}. |
Q9BQF6 | SENP7 | S46 | ochoa | Sentrin-specific protease 7 (EC 3.4.22.-) (SUMO-1-specific protease 2) (Sentrin/SUMO-specific protease SENP7) | Protease that acts as a positive regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS. Desumoylation of CGAS promotes DNA-binding activity of CGAS, subsequent oligomerization and activation (By similarity). Deconjugates SUMO2 and SUMO3 from targeted proteins, but not SUMO1 (PubMed:18799455). Catalyzes the deconjugation of poly-SUMO2 and poly-SUMO3 chains (PubMed:18799455). Has very low efficiency in processing full-length SUMO proteins to their mature forms (PubMed:18799455). {ECO:0000250|UniProtKB:Q8BUH8, ECO:0000269|PubMed:18799455}. |
Q9BQG0 | MYBBP1A | S1290 | ochoa | Myb-binding protein 1A | May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}. |
Q9BQI6 | SLF1 | S159 | ochoa | SMC5-SMC6 complex localization factor protein 1 (Ankyrin repeat domain-containing protein 32) (BRCT domain-containing protein 1) (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of SLF2 and the SMC5-SMC6 complex to DNA lesions (PubMed:25931565, PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q9BQI7 | PSD2 | S749 | ochoa | PH and SEC7 domain-containing protein 2 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 C) (Exchange factor for ARF6 C) (Pleckstrin homology and SEC7 domain-containing protein 2) | None |
Q9BR11 | ZSWIM1 | S44 | ochoa | Zinc finger SWIM domain-containing protein 1 | None |
Q9BR61 | ACBD6 | S106 | ochoa | Acyl-CoA-binding domain-containing protein 6 | Binds long-chain acyl-coenzyme A molecules with a strong preference for unsaturated C18:1-CoA, lower affinity for unsaturated C20:4-CoA, and very weak affinity for saturated C16:0-CoA. Does not bind fatty acids. Plays a role in protein N-myristoylation (PubMed:37951597). {ECO:0000269|PubMed:18268358, ECO:0000269|PubMed:37951597}. |
Q9BRD0 | BUD13 | S325 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRH9 | ZNF251 | S576 | ochoa | Zinc finger protein 251 | May be involved in transcriptional regulation. |
Q9BRL6 | SRSF8 | S26 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BS31 | ZNF649 | S474 | ochoa | Zinc finger protein 649 | Transcriptional repressor. Regulator of transcriptional factor complexes and may suppress SRE and AP-1 transcription activities mediated by growth factor signaling pathways. {ECO:0000269|PubMed:15950191}. |
Q9BSI4 | TINF2 | S295 | ochoa|psp | TERF1-interacting nuclear factor 2 (TRF1-interacting nuclear protein 2) | Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Plays a role in shelterin complex assembly. Isoform 1 may have additional role in tethering telomeres to the nuclear matrix. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:16880378}. |
Q9BSI4 | TINF2 | S330 | ochoa|psp | TERF1-interacting nuclear factor 2 (TRF1-interacting nuclear protein 2) | Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Plays a role in shelterin complex assembly. Isoform 1 may have additional role in tethering telomeres to the nuclear matrix. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:16880378}. |
Q9BSJ5 | MTNAP1 | S231 | ochoa | Mitochondrial nucleoid-associated protein 1 (Cell migration-inducing gene 3 protein) (Human lung cancer oncogene 8 protein) (HLC-8) (Protein C17orf80) | Critical regulator of mitochondrial DNA (mtDNA) abundance (PubMed:37676315). Binds dsDNA throughout the mitochondrial genome without sequence specificity and controls mtDNA copy number by promoting its replication (PubMed:37676315). Also plays important roles in mitochondrial metabolism and cell proliferation (PubMed:37676315). {ECO:0000269|PubMed:37676315}. |
Q9BSJ8 | ESYT1 | S820 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BSL1 | UBAC1 | S98 | ochoa | Ubiquitin-associated domain-containing protein 1 (UBA domain-containing protein 1) (Glialblastoma cell differentiation-related protein 1) (Kip1 ubiquitination-promoting complex protein 2) | Non-catalytic component of the KPC complex, a E3 ubiquitin-protein ligase complex that mediates polyubiquitination of target proteins, such as CDKN1B and NFKB1 (PubMed:15531880, PubMed:15746103, PubMed:16227581, PubMed:25860612). The KPC complex catalyzes polyubiquitination and proteasome-mediated degradation of CDKN1B during G1 phase of the cell cycle (PubMed:15531880, PubMed:15746103). The KPC complex also acts as a key regulator of the NF-kappa-B signaling by promoting maturation of the NFKB1 component of NF-kappa-B by catalyzing ubiquitination of the NFKB1 p105 precursor (PubMed:25860612). Within the KPC complex, UBAC1 acts as an adapter that promotes the transfer of target proteins that have been polyubiquitinated by RNF123/KPC1 to the 26S proteasome (PubMed:16227581). {ECO:0000269|PubMed:15531880, ECO:0000269|PubMed:15746103, ECO:0000269|PubMed:16227581, ECO:0000269|PubMed:25860612}. |
Q9BSQ5 | CCM2 | S164 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BST9 | RTKN | S115 | ochoa | Rhotekin | Mediates Rho signaling to activate NF-kappa-B and may confer increased resistance to apoptosis to cells in gastric tumorigenesis. May play a novel role in the organization of septin structures. {ECO:0000269|PubMed:10940294, ECO:0000269|PubMed:15480428, ECO:0000269|PubMed:16007136}. |
Q9BT22 | ALG1 | S242 | ochoa | Chitobiosyldiphosphodolichol beta-mannosyltransferase (EC 2.4.1.142) (Asparagine-linked glycosylation protein 1 homolog) (Beta-1,4-mannosyltransferase) (GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase) (GDP-mannose-dolichol diphosphochitobiose mannosyltransferase) (Mannosyltransferase-1) (MT-1) (hMat-1) | Mannosyltransferase that operates in the biosynthetic pathway of dolichol-linked oligosaccharides, the glycan precursors employed in protein asparagine (N)-glycosylation. The assembly of dolichol-linked oligosaccharides begins on the cytosolic side of the endoplasmic reticulum membrane and finishes in its lumen. The sequential addition of sugars to dolichol pyrophosphate produces dolichol-linked oligosaccharides containing fourteen sugars, including two GlcNAcs, nine mannoses and three glucoses. Once assembled, the oligosaccharide is transferred from the lipid to nascent proteins by oligosaccharyltransferases. Catalyzes, on the cytoplasmic face of the endoplasmic reticulum, the addition of the first mannose residues to the dolichol-linked oligosaccharide chain, to produce Man1GlcNAc(2)-PP-dolichol core oligosaccharide. Man1GlcNAc(2)-PP-dolichol is a substrate for ALG2, the following enzyme in the biosynthetic pathway. {ECO:0000269|PubMed:10704531, ECO:0000269|PubMed:14973778, ECO:0000269|PubMed:26931382}. |
Q9BT25 | HAUS8 | S220 | psp | HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q9BTC0 | DIDO1 | S523 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTC8 | MTA3 | S457 | ochoa | Metastasis-associated protein MTA3 | Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12705869, PubMed:16428440, PubMed:28977666). Plays a role in maintenance of the normal epithelial architecture through the repression of SNAI1 transcription in a histone deacetylase-dependent manner, and thus the regulation of E-cadherin levels (PubMed:12705869). Contributes to transcriptional repression by BCL6 (PubMed:15454082). {ECO:0000269|PubMed:12705869, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q9BTC8 | MTA3 | S519 | ochoa | Metastasis-associated protein MTA3 | Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12705869, PubMed:16428440, PubMed:28977666). Plays a role in maintenance of the normal epithelial architecture through the repression of SNAI1 transcription in a histone deacetylase-dependent manner, and thus the regulation of E-cadherin levels (PubMed:12705869). Contributes to transcriptional repression by BCL6 (PubMed:15454082). {ECO:0000269|PubMed:12705869, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q9BTE3 | MCMBP | S118 | ochoa | Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) | Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}. |
Q9BTE3 | MCMBP | S223 | ochoa | Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) | Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}. |
Q9BTX1 | NDC1 | S342 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BTX1 | NDC1 | S471 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BTX1 | NDC1 | S500 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BU70 | TRMO | S118 | ochoa | tRNA (adenine(37)-N6)-methyltransferase (EC 2.1.1.-) (tRNA methyltransferase O) | S-adenosyl-L-methionine-dependent methyltransferase responsible for the addition of the methyl group in the formation of N6-methyl-N6-threonylcarbamoyladenosine at position 37 (m(6)t(6)A37) of the tRNA anticodon loop of tRNA(Ser)(GCU) (PubMed:25063302). The methyl group of m(6)t(6)A37 may improve the efficiency of the tRNA decoding ability (By similarity). {ECO:0000250|UniProtKB:P28634, ECO:0000269|PubMed:25063302}. |
Q9BUA3 | SPINDOC | S82 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUA3 | SPINDOC | S121 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BUB5 | MKNK1 | S226 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) | May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}. |
Q9BUE0 | MED18 | S66 | ochoa | Mediator of RNA polymerase II transcription subunit 18 (Mediator complex subunit 18) (p28b) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. |
Q9BUF5 | TUBB6 | S172 | ochoa | Tubulin beta-6 chain (Tubulin beta class V) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. {ECO:0000250|UniProtKB:P02557}. |
Q9BUG6 | ZSCAN5A | S296 | ochoa | Zinc finger and SCAN domain-containing protein 5A (Zinc finger protein 495) | May be involved in transcriptional regulation. |
Q9BUJ2 | HNRNPUL1 | S194 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 1 (Adenovirus early region 1B-associated protein 5) (E1B-55 kDa-associated protein 5) (E1B-AP5) | Acts as a basic transcriptional regulator. Represses basic transcription driven by several virus and cellular promoters. When associated with BRD7, activates transcription of glucocorticoid-responsive promoter in the absence of ligand-stimulation. Also plays a role in mRNA processing and transport. Binds avidly to poly(G) and poly(C) RNA homopolymers in vitro. {ECO:0000269|PubMed:12489984, ECO:0000269|PubMed:9733834}. |
Q9BV19 | C1orf50 | S43 | ochoa | Uncharacterized protein C1orf50 | None |
Q9BV36 | MLPH | S444 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BV73 | CEP250 | S2259 | ochoa | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BV73 | CEP250 | S2332 | ochoa | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BVA1 | TUBB2B | S172 | ochoa | Tubulin beta-2B chain | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers (PubMed:23001566, PubMed:26732629, PubMed:28013290). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. Plays a critical role in proper axon guidance in both central and peripheral axon tracts (PubMed:23001566). Implicated in neuronal migration (PubMed:19465910). {ECO:0000269|PubMed:19465910, ECO:0000269|PubMed:23001566, ECO:0000269|PubMed:26732629, ECO:0000269|PubMed:28013290}. |
Q9BVI0 | PHF20 | S159 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVI0 | PHF20 | S488 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVI0 | PHF20 | S519 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVI0 | PHF20 | S880 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVR0 | HERC2P3 | S328 | ochoa | Putative HERC2-like protein 3 | None |
Q9BVV6 | KIAA0586 | S321 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BVV6 | KIAA0586 | S713 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BW04 | SARG | S519 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BW04 | SARG | S580 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BW27 | NUP85 | S223 | ochoa | Nuclear pore complex protein Nup85 (85 kDa nucleoporin) (FROUNT) (Nucleoporin Nup75) (Nucleoporin Nup85) (Pericentrin-1) | Essential component of the nuclear pore complex (NPC) that seems to be required for NPC assembly and maintenance (PubMed:12718872). As part of the NPC Nup107-160 subcomplex plays a role in RNA export and in tethering NUP96/Nup98 and NUP153 to the nucleus (PubMed:12718872). The Nup107-160 complex seems to be required for spindle assembly during mitosis (PubMed:16807356). NUP85 is required for membrane clustering of CCL2-activated CCR2 (PubMed:15995708). Seems to be involved in CCR2-mediated chemotaxis of monocytes and may link activated CCR2 to the phosphatidyl-inositol 3-kinase-Rac-lammellipodium protrusion cascade (PubMed:15995708). Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:12718872, ECO:0000269|PubMed:15995708, ECO:0000269|PubMed:16807356, ECO:0000269|PubMed:30179222}. |
Q9BWH6 | RPAP1 | S603 | ochoa | RNA polymerase II-associated protein 1 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3. {ECO:0000269|PubMed:17643375}. |
Q9BWH6 | RPAP1 | S1121 | ochoa | RNA polymerase II-associated protein 1 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3. {ECO:0000269|PubMed:17643375}. |
Q9BWN1 | PRR14 | S42 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BWN1 | PRR14 | S488 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BWT3 | PAPOLG | S23 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BWT3 | PAPOLG | S599 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BWT7 | CARD10 | S606 | ochoa | Caspase recruitment domain-containing protein 10 (CARD-containing MAGUK protein 3) (Carma 3) | Scaffold protein that plays an important role in mediating the activation of NF-kappa-B via BCL10 or EGFR. {ECO:0000269|PubMed:27991920}. |
Q9BX40 | LSM14B | S154 | ochoa | Protein LSM14 homolog B (RNA-associated protein 55B) (hRAP55B) | mRNA-binding protein essential for female fertility, oocyte meiotic maturation and the assembly of MARDO (mitochondria-associated ribonucleoprotein domain), a membraneless compartment that stores maternal mRNAs in oocytes. Ensures the proper accumulation and clearance of mRNAs essential for oocyte meiotic maturation and the normal progression from Meiosis I to Meiosis II in oocytes. Promotes the translation of some oogenesis-related mRNAs. Regulates the expression and/or localization of some key P-body proteins in oocytes. Essential for the assembly of the primordial follicle in the ovary. {ECO:0000250|UniProtKB:Q8CGC4}. |
Q9BX63 | BRIP1 | S206 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX63 | BRIP1 | S505 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX63 | BRIP1 | S956 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX63 | BRIP1 | S1032 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX66 | SORBS1 | S273 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BX66 | SORBS1 | S472 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BX66 | SORBS1 | S640 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BX79 | STRA6 | S404 | ochoa | Receptor for retinol uptake STRA6 (Retinol-binding protein receptor STRA6) (Stimulated by retinoic acid gene 6 protein homolog) | Functions as a retinol transporter. Accepts all-trans retinol from the extracellular retinol-binding protein RBP4, facilitates retinol transport across the cell membrane, and then transfers retinol to the cytoplasmic retinol-binding protein RBP1 (PubMed:18316031, PubMed:22665496, PubMed:9452451). Retinol uptake is enhanced by LRAT, an enzyme that converts retinol to all-trans retinyl esters, the storage forms of vitamin A (PubMed:18316031, PubMed:22665496). Contributes to the activation of a signaling cascade that depends on retinol transport and LRAT-dependent generation of retinol metabolites that then trigger activation of JAK2 and its target STAT5, and ultimately increase the expression of SOCS3 and inhibit cellular responses to insulin (PubMed:21368206, PubMed:22665496). Important for the homeostasis of vitamin A and its derivatives, such as retinoic acid (PubMed:18316031). STRA6-mediated transport is particularly important in the eye, and under conditions of dietary vitamin A deficiency (Probable). Does not transport retinoic acid (PubMed:18316031). {ECO:0000269|PubMed:18316031, ECO:0000269|PubMed:21901792, ECO:0000269|PubMed:22665496, ECO:0000269|PubMed:9452451, ECO:0000305}. |
Q9BXB5 | OSBPL10 | S223 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BXC9 | BBS2 | S365 | ochoa | BBSome complex member BBS2 (Bardet-Biedl syndrome 2 protein) | The BBSome complex is thought to function as a coat complex required for sorting of specific membrane proteins to the primary cilia. The BBSome complex is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Firstly the BBSome associates with the ciliary membrane and binds to RAB3IP/Rabin8, the guanosyl exchange factor (GEF) for Rab8 and then the Rab8-GTP localizes to the cilium and promotes docking and fusion of carrier vesicles to the base of the ciliary membrane. The BBSome complex, together with the LTZL1, controls SMO ciliary trafficking and contributes to the sonic hedgehog (SHH) pathway regulation. Required for proper BBSome complex assembly and its ciliary localization. {ECO:0000269|PubMed:17574030, ECO:0000269|PubMed:22072986}. |
Q9BXF6 | RAB11FIP5 | S494 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXI6 | TBC1D10A | S383 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BXK5 | BCL2L13 | S38 | ochoa | Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) | May promote the activation of caspase-3 and apoptosis. |
Q9BXL5 | HEMGN | S201 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BXL6 | CARD14 | S60 | ochoa | Caspase recruitment domain-containing protein 14 (CARD-containing MAGUK protein 2) (Carma 2) | Acts as a scaffolding protein that can activate the inflammatory transcription factor NF-kappa-B and p38/JNK MAP kinase signaling pathways. Forms a signaling complex with BCL10 and MALT1, and activates MALT1 proteolytic activity and inflammatory gene expression. MALT1 is indispensable for CARD14-induced activation of NF-kappa-B and p38/JNK MAP kinases (PubMed:11278692, PubMed:21302310, PubMed:27071417, PubMed:27113748). May play a role in signaling mediated by TRAF2, TRAF3 and TRAF6 and protects cells against apoptosis. {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:27071417, ECO:0000269|PubMed:27113748}.; FUNCTION: [Isoform 3]: Not able to activate the inflammatory transcription factor NF-kappa-B and may function as a dominant negative regulator (PubMed:21302310, PubMed:26358359). {ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:26358359}. |
Q9BXL7 | CARD11 | S466 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXL7 | CARD11 | S886 | ochoa|psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXL7 | CARD11 | S925 | ochoa|psp | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXP5 | SRRT | S493 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BXW9 | FANCD2 | S592 | ochoa|psp | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BXW9 | FANCD2 | S1214 | ochoa | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BY77 | POLDIP3 | S368 | ochoa | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BY84 | DUSP16 | S446 | ochoa|psp | Dual specificity protein phosphatase 16 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 7) (MAP kinase phosphatase 7) (MKP-7) | Dual specificity protein phosphatase involved in the inactivation of MAP kinases. Dephosphorylates MAPK10 bound to ARRB2. {ECO:0000269|PubMed:11489891, ECO:0000269|PubMed:15888437}. |
Q9BY89 | KIAA1671 | S128 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S366 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S749 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S969 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S981 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S1012 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S1019 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BY89 | KIAA1671 | S1488 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYB0 | SHANK3 | S483 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BYB0 | SHANK3 | S1529 | ochoa | SH3 and multiple ankyrin repeat domains protein 3 (Shank3) (Proline-rich synapse-associated protein 2) (ProSAP2) | Major scaffold postsynaptic density protein which interacts with multiple proteins and complexes to orchestrate the dendritic spine and synapse formation, maturation and maintenance. Interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and HOMER, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction through the interaction with Arp2/3 and WAVE1 complex as well as the promotion of the F-actin clusters. By way of this control of actin dynamics, participates in the regulation of developing neurons growth cone motility and the NMDA receptor-signaling. Also modulates GRIA1 exocytosis and GRM5/MGLUR5 expression and signaling to control the AMPA and metabotropic glutamate receptor-mediated synaptic transmission and plasticity. May be required at an early stage of synapse formation and be inhibited by IGF1 to promote synapse maturation. {ECO:0000269|PubMed:24132240}. |
Q9BYJ4 | TRIM34 | S87 | ochoa | E3 ubiquitin-protein ligase TRIM34 (EC 2.3.2.27) (Interferon-responsive finger protein 1) (RING finger protein 21) | Functions as antiviral protein and contributes to the defense against retroviral infections (PubMed:17156811, PubMed:32282853). Acts as a capsid-specific restriction factor with the help of TRIM5 and prevents infection from non-host-adapted retroviruses (PubMed:32282853). During influenza A virus infection, promotes programmed cell death by targeting ZBP1 for 'Lys-63'-linked polyubiquitination (PubMed:35065966). In turn, promotes ZBP1 recruitment of RIPK3 to mediate virus-induced programmed necrosis (PubMed:35065966). Negatively regulates the function of mitochondria by enhancing mitochondrial depolarization leading to cytochrome c release and mitochondria-dependent apoptosis (PubMed:31956709). Also promotes the formation of multinucleated giant cells by means of cell fusion and phagocytosis in epithelial cells (PubMed:31487507). {ECO:0000269|PubMed:17156811, ECO:0000269|PubMed:31487507, ECO:0000269|PubMed:31956709, ECO:0000269|PubMed:32282853, ECO:0000269|PubMed:35065966}. |
Q9BYM8 | RBCK1 | S50 | ochoa | RanBP-type and C3HC4-type zinc finger-containing protein 1 (EC 2.3.2.31) (HBV-associated factor 4) (Heme-oxidized IRP2 ubiquitin ligase 1) (HOIL-1) (Hepatitis B virus X-associated protein 4) (RING finger protein 54) (RING-type E3 ubiquitin transferase HOIL-1) (Ubiquitin-conjugating enzyme 7-interacting protein 3) | E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, such as UBE2L3/UBCM4, and then transfers it to substrates (PubMed:12629548, PubMed:17449468, PubMed:18711448). Functions as an E3 ligase for oxidized IREB2 and both heme and oxygen are necessary for IREB2 ubiquitination (PubMed:12629548). Promotes ubiquitination of TAB2 and IRF3 and their degradation by the proteasome (PubMed:17449468, PubMed:18711448). Component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:17006537, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). Binds polyubiquitin of different linkage types (PubMed:20005846, PubMed:21455181). {ECO:0000269|PubMed:12629548, ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:17449468, ECO:0000269|PubMed:18711448, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:28481331}. |
Q9BYT8 | NLN | S32 | ochoa | Neurolysin, mitochondrial (EC 3.4.24.16) (Angiotensin-binding protein) (Microsomal endopeptidase) (MEP) (Mitochondrial oligopeptidase M) (Neurotensin endopeptidase) | Hydrolyzes oligopeptides such as neurotensin, bradykinin and dynorphin A (By similarity). Acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P42676}. |
Q9BYV9 | BACH2 | S337 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYV9 | BACH2 | S409 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYW2 | SETD2 | S131 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S614 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S624 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S676 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S744 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S754 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYW2 | SETD2 | S1084 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYX2 | TBC1D2 | S436 | ochoa | TBC1 domain family member 2A (Armus) (Prostate antigen recognized and identified by SEREX 1) (PARIS-1) | Acts as a GTPase-activating protein for RAB7A. Signal effector acting as a linker between RAC1 and RAB7A, leading to RAB7A inactivation and subsequent inhibition of cadherin degradation and reduced cell-cell adhesion. {ECO:0000269|PubMed:20116244}. |
Q9BYX4 | IFIH1 | S88 | ochoa|psp | Interferon-induced helicase C domain-containing protein 1 (EC 3.6.4.13) (Clinically amyopathic dermatomyositis autoantigen 140 kDa) (CADM-140 autoantigen) (Helicase with 2 CARD domains) (Helicard) (Interferon-induced with helicase C domain protein 1) (Melanoma differentiation-associated protein 5) (MDA-5) (Murabutide down-regulated protein) (RIG-I-like receptor 2) (RLR-2) (RNA helicase-DEAD box protein 116) | Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines (PubMed:28594402, PubMed:32169843, PubMed:33727702). Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length) (PubMed:22160685). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Responsible for detecting the Picornaviridae family members such as encephalomyocarditis virus (EMCV), mengo encephalomyocarditis virus (ENMG), and rhinovirus (PubMed:28606988). Detects coronavirus SARS-CoV-2 (PubMed:33440148, PubMed:33514628). Can also detect other viruses such as dengue virus (DENV), west Nile virus (WNV), and reovirus. Also involved in antiviral signaling in response to viruses containing a dsDNA genome, such as vaccinia virus. Plays an important role in amplifying innate immune signaling through recognition of RNA metabolites that are produced during virus infection by ribonuclease L (RNase L). May play an important role in enhancing natural killer cell function and may be involved in growth inhibition and apoptosis in several tumor cell lines. {ECO:0000269|PubMed:14645903, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19656871, ECO:0000269|PubMed:21217758, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:22160685, ECO:0000269|PubMed:28594402, ECO:0000269|PubMed:28606988, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:33514628, ECO:0000269|PubMed:33727702}. |
Q9BYX4 | IFIH1 | S104 | ochoa|psp | Interferon-induced helicase C domain-containing protein 1 (EC 3.6.4.13) (Clinically amyopathic dermatomyositis autoantigen 140 kDa) (CADM-140 autoantigen) (Helicase with 2 CARD domains) (Helicard) (Interferon-induced with helicase C domain protein 1) (Melanoma differentiation-associated protein 5) (MDA-5) (Murabutide down-regulated protein) (RIG-I-like receptor 2) (RLR-2) (RNA helicase-DEAD box protein 116) | Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines (PubMed:28594402, PubMed:32169843, PubMed:33727702). Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length) (PubMed:22160685). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Responsible for detecting the Picornaviridae family members such as encephalomyocarditis virus (EMCV), mengo encephalomyocarditis virus (ENMG), and rhinovirus (PubMed:28606988). Detects coronavirus SARS-CoV-2 (PubMed:33440148, PubMed:33514628). Can also detect other viruses such as dengue virus (DENV), west Nile virus (WNV), and reovirus. Also involved in antiviral signaling in response to viruses containing a dsDNA genome, such as vaccinia virus. Plays an important role in amplifying innate immune signaling through recognition of RNA metabolites that are produced during virus infection by ribonuclease L (RNase L). May play an important role in enhancing natural killer cell function and may be involved in growth inhibition and apoptosis in several tumor cell lines. {ECO:0000269|PubMed:14645903, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19656871, ECO:0000269|PubMed:21217758, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:22160685, ECO:0000269|PubMed:28594402, ECO:0000269|PubMed:28606988, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:33514628, ECO:0000269|PubMed:33727702}. |
Q9BZ29 | DOCK9 | S443 | ochoa | Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}. |
Q9BZ29 | DOCK9 | S1235 | ochoa | Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}. |
Q9BZ95 | NSD3 | S107 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZ95 | NSD3 | S498 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZC7 | ABCA2 | S2381 | ochoa | ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) | Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}. |
Q9BZF3 | OSBPL6 | S190 | ochoa | Oxysterol-binding protein-related protein 6 (ORP-6) (OSBP-related protein 6) | Regulates cellular transport and efflux of cholesterol (PubMed:26941018). Plays a role in phosphatidylinositol-4-phophate (PI4P) turnover at the neuronal membrane (By similarity). Binds via its PH domain PI4P, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and phosphatidic acid (By similarity). Weakly binds 25-hydroxycholesterol (PubMed:17428193). {ECO:0000250|UniProtKB:Q8BXR9, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:26941018}. |
Q9BZF3 | OSBPL6 | S337 | ochoa | Oxysterol-binding protein-related protein 6 (ORP-6) (OSBP-related protein 6) | Regulates cellular transport and efflux of cholesterol (PubMed:26941018). Plays a role in phosphatidylinositol-4-phophate (PI4P) turnover at the neuronal membrane (By similarity). Binds via its PH domain PI4P, phosphatidylinositol-4,5-diphosphate, phosphatidylinositol-3,4,5-triphosphate, and phosphatidic acid (By similarity). Weakly binds 25-hydroxycholesterol (PubMed:17428193). {ECO:0000250|UniProtKB:Q8BXR9, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:26941018}. |
Q9BZF9 | UACA | S410 | ochoa | Uveal autoantigen with coiled-coil domains and ankyrin repeats | Regulates APAF1 expression and plays an important role in the regulation of stress-induced apoptosis. Promotes apoptosis by regulating three pathways, apoptosome up-regulation, LGALS3/galectin-3 down-regulation and NF-kappa-B inactivation. Regulates the redistribution of APAF1 into the nucleus after proapoptotic stress. Down-regulates the expression of LGALS3 by inhibiting NFKB1 (By similarity). {ECO:0000250}.; FUNCTION: Modulates isoactin dynamics to regulate the morphological alterations required for cell growth and motility. Interaction with ARF6 may modulate cell shape and motility after injury. May be involved in multiple neurite formation (By similarity). {ECO:0000250|UniProtKB:Q8CGB3, ECO:0000250|UniProtKB:Q8HYY4}. |
Q9BZK3 | NACA4P | S113 | ochoa | Putative nascent polypeptide-associated complex subunit alpha-like protein (Alpha-NAC pseudogene 1) (NAC-alpha pseudogene 1) (NACA family member 4, pseudogene) | None |
Q9BZR8 | BCL2L14 | S44 | ochoa | Apoptosis facilitator Bcl-2-like protein 14 (Bcl2-L-14) (Apoptosis regulator Bcl-G) | Plays a role in apoptosis. |
Q9BZR9 | TRIM8 | S321 | ochoa | E3 ubiquitin-protein ligase TRIM8 (EC 2.3.2.27) (Glioblastoma-expressed RING finger protein) (RING finger protein 27) (RING-type E3 ubiquitin transferase TRIM8) (Tripartite motif-containing protein 8) | E3 ubiquitin-protein ligase that participates in multiple biological processes including cell survival, differentiation, apoptosis, and in particular, the innate immune response (PubMed:27981609, PubMed:28747347). Participates in the activation of interferon-gamma signaling by promoting proteasomal degradation of the repressor SOCS1 (PubMed:12163497). Plays a positive role in the TNFalpha and IL-1beta signaling pathways. Mechanistically, induces the 'Lys-63'-linked polyubiquitination of MAP3K7/TAK1 component leading to the activation of NF-kappa-B (PubMed:22084099, PubMed:23152791, PubMed:27981609, PubMed:34871740). Also modulates STAT3 activity through negative regulation of PIAS3, either by degradation of PIAS3 through the ubiquitin-proteasome pathway or exclusion of PIAS3 from the nucleus (PubMed:20516148). Negatively regulates TLR3/4-mediated innate immune response by catalyzing 'Lys-6'- and 'Lys-33'-linked polyubiquitination of TICAM1 and thereby disrupting the TICAM1-TBK1 interaction (PubMed:28747347). {ECO:0000269|PubMed:12163497, ECO:0000269|PubMed:20516148, ECO:0000269|PubMed:22084099, ECO:0000269|PubMed:23152791, ECO:0000269|PubMed:28747347, ECO:0000269|PubMed:34871740}. |
Q9C000 | NLRP1 | S1371 | psp | NACHT, LRR and PYD domains-containing protein 1 (EC 3.4.-.-) (EC 3.6.4.-) (Caspase recruitment domain-containing protein 7) (Death effector filament-forming ced-4-like apoptosis protein) (Nucleotide-binding domain and caspase recruitment domain) [Cleaved into: NACHT, LRR and PYD domains-containing protein 1, C-terminus (NLRP1-CT); NACHT, LRR and PYD domains-containing protein 1, N-terminus (NLRP1-NT)] | Acts as the sensor component of the NLRP1 inflammasome, which mediates inflammasome activation in response to various pathogen-associated signals, leading to subsequent pyroptosis (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:27662089, PubMed:31484767, PubMed:33093214, PubMed:33410748, PubMed:33731929, PubMed:33731932, PubMed:35857590). Inflammasomes are supramolecular complexes that assemble in the cytosol in response to pathogens and other damage-associated signals and play critical roles in innate immunity and inflammation (PubMed:12191486, PubMed:17349957, PubMed:22665479). Acts as a recognition receptor (PRR): recognizes specific pathogens and other damage-associated signals, such as cleavage by some human enteroviruses and rhinoviruses, double-stranded RNA, UV-B irradiation, or Val-boroPro inhibitor, and mediates the formation of the inflammasome polymeric complex composed of NLRP1, CASP1 and PYCARD/ASC (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:25562666, PubMed:30096351, PubMed:30291141, PubMed:33093214, PubMed:33243852, PubMed:33410748, PubMed:35857590). In response to pathogen-associated signals, the N-terminal part of NLRP1 is degraded by the proteasome, releasing the cleaved C-terminal part of the protein (NACHT, LRR and PYD domains-containing protein 1, C-terminus), which polymerizes and associates with PYCARD/ASC to initiate the formation of the inflammasome complex: the NLRP1 inflammasome recruits pro-caspase-1 (proCASP1) and promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), leading to pyroptosis (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:32051255, PubMed:33093214). In the absence of GSDMD expression, the NLRP1 inflammasome is able to recruit and activate CASP8, leading to activation of gasdermin-E (GSDME) (PubMed:33852854, PubMed:35594856). Activation of NLRP1 inflammasome is also required for HMGB1 secretion; the active cytokines and HMGB1 stimulate inflammatory responses (PubMed:22801494). Binds ATP and shows ATPase activity (PubMed:11113115, PubMed:15212762, PubMed:33243852). Plays an important role in antiviral immunity and inflammation in the human airway epithelium (PubMed:33093214). Specifically recognizes a number of pathogen-associated signals: upon infection by human rhinoviruses 14 and 16 (HRV-14 and HRV-16), NLRP1 is cleaved and activated which triggers NLRP1-dependent inflammasome activation and IL18 secretion (PubMed:33093214). Positive-strand RNA viruses, such as Semliki forest virus and long dsRNA activate the NLRP1 inflammasome, triggering IL1B release in a NLRP1-dependent fashion (PubMed:33243852). Acts as a direct sensor for long dsRNA and thus RNA virus infection (PubMed:33243852). May also be activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, in a NOD2-dependent manner (PubMed:18511561). The NLRP1 inflammasome is also activated in response to UV-B irradiation causing ribosome collisions: ribosome collisions cause phosphorylation and activation of NLRP1 in a MAP3K20-dependent manner, leading to pyroptosis (PubMed:35857590). {ECO:0000269|PubMed:11113115, ECO:0000269|PubMed:12191486, ECO:0000269|PubMed:15212762, ECO:0000269|PubMed:17349957, ECO:0000269|PubMed:18511561, ECO:0000269|PubMed:22665479, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:25562666, ECO:0000269|PubMed:27662089, ECO:0000269|PubMed:30096351, ECO:0000269|PubMed:30291141, ECO:0000269|PubMed:31484767, ECO:0000269|PubMed:32051255, ECO:0000269|PubMed:33093214, ECO:0000269|PubMed:33243852, ECO:0000269|PubMed:33410748, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932, ECO:0000269|PubMed:33852854, ECO:0000269|PubMed:35594856, ECO:0000269|PubMed:35857590}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1]: Constitutes the precursor of the NLRP1 inflammasome, which mediates autoproteolytic processing within the FIIND domain to generate the N-terminal and C-terminal parts, which are associated non-covalently in absence of pathogens and other damage-associated signals. {ECO:0000269|PubMed:22087307}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1, N-terminus]: Regulatory part that prevents formation of the NLRP1 inflammasome: in absence of pathogens and other damage-associated signals, interacts with the C-terminal part of NLRP1 (NACHT, LRR and PYD domains-containing protein 1, C-terminus), preventing activation of the NLRP1 inflammasome (PubMed:33093214). In response to pathogen-associated signals, this part is ubiquitinated and degraded by the proteasome, releasing the cleaved C-terminal part of the protein, which polymerizes and forms the NLRP1 inflammasome (PubMed:33093214). {ECO:0000269|PubMed:33093214}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1, C-terminus]: Constitutes the active part of the NLRP1 inflammasome (PubMed:33093214, PubMed:33731929, PubMed:33731932). In absence of pathogens and other damage-associated signals, interacts with the N-terminal part of NLRP1 (NACHT, LRR and PYD domains-containing protein 1, N-terminus), preventing activation of the NLRP1 inflammasome (PubMed:33093214). In response to pathogen-associated signals, the N-terminal part of NLRP1 is degraded by the proteasome, releasing this form, which polymerizes and associates with PYCARD/ASC to form of the NLRP1 inflammasome complex: the NLRP1 inflammasome complex then directly recruits pro-caspase-1 (proCASP1) and promotes caspase-1 (CASP1) activation, leading to gasdermin-D (GSDMD) cleavage and subsequent pyroptosis (PubMed:33093214). {ECO:0000269|PubMed:33093214, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932}.; FUNCTION: [Isoform 2]: It is unclear whether is involved in inflammasome formation. It is not cleaved within the FIIND domain, does not assemble into specks, nor promote IL1B release (PubMed:22665479). However, in an vitro cell-free system, it has been shown to be activated by MDP (PubMed:17349957). {ECO:0000269|PubMed:17349957, ECO:0000269|PubMed:22665479}. |
Q9C026 | TRIM9 | S46 | ochoa | E3 ubiquitin-protein ligase TRIM9 (EC 2.3.2.27) (RING finger protein 91) (RING-type E3 ubiquitin transferase TRIM9) (Tripartite motif-containing protein 9) | E3 ubiquitin-protein ligase which ubiquitinates itself in cooperation with an E2 enzyme UBE2D2/UBC4 and serves as a targeting signal for proteasomal degradation. May play a role in regulation of neuronal functions and may also participate in the formation or breakdown of abnormal inclusions in neurodegenerative disorders. May act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP25 for the SNARE complex formation. {ECO:0000269|PubMed:20085810}. |
Q9C073 | FAM117A | S355 | ochoa | Protein FAM117A (C/EBP-induced protein) | None |
Q9C0A6 | SETD5 | S1020 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0B0 | UNK | S85 | psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0C2 | TNKS1BP1 | S228 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1103 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1297 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1385 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S1652 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C9 | UBE2O | S322 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0C9 | UBE2O | S836 | ochoa|psp | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0D2 | CEP295 | S2098 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9C0D5 | TANC1 | S29 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D5 | TANC1 | S40 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D5 | TANC1 | S132 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D5 | TANC1 | S174 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D5 | TANC1 | S270 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0E2 | XPO4 | S521 | ochoa | Exportin-4 (Exp4) | Mediates the nuclear export of proteins (cargos), such as EIF5A, SMAD3 and isoform M2 of PKM (PKM2) (PubMed:10944119, PubMed:16449645, PubMed:26787900). In the nucleus binds cooperatively to its cargo and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins (PubMed:10944119, PubMed:16449645). Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the cargo from the export receptor (PubMed:10944119, PubMed:16449645). XPO4 then return to the nuclear compartment and mediate another round of transport (PubMed:10944119, PubMed:16449645). The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:10944119, PubMed:16449645). Catalyzes the nuclear export of hypusinated EIF5A; a small cytoplasmic protein that enters nucleus and accumulates within nucleolus if not exported back by XPO4 (PubMed:10944119). Specifically mediates nuclear export of isoform M2 of PKM (PKM2) following PKM2 deacetylation by SIRT6 (PubMed:26787900). Also mediates the nuclear import of SOX transcription factors SRY and SOX2 (By similarity). {ECO:0000250|UniProtKB:Q9ESJ0, ECO:0000269|PubMed:10944119, ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:26787900}. |
Q9C0E2 | XPO4 | S587 | ochoa | Exportin-4 (Exp4) | Mediates the nuclear export of proteins (cargos), such as EIF5A, SMAD3 and isoform M2 of PKM (PKM2) (PubMed:10944119, PubMed:16449645, PubMed:26787900). In the nucleus binds cooperatively to its cargo and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins (PubMed:10944119, PubMed:16449645). Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the cargo from the export receptor (PubMed:10944119, PubMed:16449645). XPO4 then return to the nuclear compartment and mediate another round of transport (PubMed:10944119, PubMed:16449645). The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:10944119, PubMed:16449645). Catalyzes the nuclear export of hypusinated EIF5A; a small cytoplasmic protein that enters nucleus and accumulates within nucleolus if not exported back by XPO4 (PubMed:10944119). Specifically mediates nuclear export of isoform M2 of PKM (PKM2) following PKM2 deacetylation by SIRT6 (PubMed:26787900). Also mediates the nuclear import of SOX transcription factors SRY and SOX2 (By similarity). {ECO:0000250|UniProtKB:Q9ESJ0, ECO:0000269|PubMed:10944119, ECO:0000269|PubMed:16449645, ECO:0000269|PubMed:26787900}. |
Q9C0G0 | ZNF407 | S952 | ochoa | Zinc finger protein 407 | May be involved in transcriptional regulation. |
Q9C0G0 | ZNF407 | S1262 | ochoa | Zinc finger protein 407 | May be involved in transcriptional regulation. |
Q9C0H5 | ARHGAP39 | S123 | ochoa | Rho GTPase-activating protein 39 | None |
Q9C0H5 | ARHGAP39 | S388 | ochoa | Rho GTPase-activating protein 39 | None |
Q9C0H5 | ARHGAP39 | S432 | ochoa | Rho GTPase-activating protein 39 | None |
Q9C0I3 | CCSER1 | S649 | ochoa | Serine-rich coiled-coil domain-containing protein 1 (Coiled-coil serine-rich protein 1) | None |
Q9C0J9 | BHLHE41 | S122 | ochoa | Class E basic helix-loop-helix protein 41 (bHLHe41) (Class B basic helix-loop-helix protein 3) (bHLHb3) (Differentially expressed in chondrocytes protein 2) (hDEC2) (Enhancer-of-split and hairy-related protein 1) (SHARP-1) | Transcriptional repressor involved in the regulation of the circadian rhythm by negatively regulating the activity of the clock genes and clock-controlled genes (PubMed:11278948, PubMed:14672706, PubMed:15193144, PubMed:15560782, PubMed:18411297, PubMed:19786558, PubMed:25083013). Acts as the negative limb of a novel autoregulatory feedback loop (DEC loop) which differs from the one formed by the PER and CRY transcriptional repressors (PER/CRY loop). Both these loops are interlocked as it represses the expression of PER1 and in turn is repressed by PER1/2 and CRY1/2. Represses the activity of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer by competing for the binding to E-box elements (5'-CACGTG-3') found within the promoters of its target genes (PubMed:25083013). Negatively regulates its own expression and the expression of DBP and BHLHE41/DEC2. Acts as a corepressor of RXR and the RXR-LXR heterodimers and represses the ligand-induced RXRA/B/G, NR1H3/LXRA, NR1H4 and VDR transactivation activity. Inhibits HNF1A-mediated transactivation of CYP1A2, CYP2E1 AND CYP3A11 (By similarity). {ECO:0000250|UniProtKB:Q99PV5, ECO:0000269|PubMed:11278948, ECO:0000269|PubMed:14672706, ECO:0000269|PubMed:15193144, ECO:0000269|PubMed:15560782, ECO:0000269|PubMed:18411297, ECO:0000269|PubMed:19786558, ECO:0000269|PubMed:25083013}. |
Q9C0K0 | BCL11B | S129 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K0 | BCL11B | S358 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9GZM8 | NDEL1 | S242 | ochoa|psp | Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) | Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}. |
Q9GZN7 | ROGDI | S227 | ochoa | Protein rogdi homolog | None |
Q9GZU1 | MCOLN1 | S547 | ochoa | Mucolipin-1 (ML1) (MG-2) (Mucolipidin) (Transient receptor potential channel mucolipin 1) (TRPML1) | Nonselective cation channel probably playing a role in the regulation of membrane trafficking events and of metal homeostasis (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:18794901, PubMed:25720963, PubMed:27623384, PubMed:29019983). Acts as a Ca(2+)-permeable cation channel with inwardly rectifying activity (PubMed:25720963, PubMed:29019983). Proposed to play a major role in Ca(2+) release from late endosome and lysosome vesicles to the cytoplasm, which is important for many lysosome-dependent cellular events, including the fusion and trafficking of these organelles, exocytosis and autophagy (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:25720963, PubMed:27623384, PubMed:29019983). Required for efficient uptake of large particles in macrophages in which Ca(2+) release from the lysosomes triggers lysosomal exocytosis. May also play a role in phagosome-lysosome fusion (By similarity). Involved in lactosylceramide trafficking indicative for a role in the regulation of late endocytic membrane fusion/fission events (PubMed:16978393). By mediating lysosomal Ca(2+) release is involved in regulation of mTORC1 signaling and in mTOR/TFEB-dependent lysosomal adaptation to environmental cues such as nutrient levels (PubMed:25720963, PubMed:25733853, PubMed:27787197). Seems to act as lysosomal active oxygen species (ROS) sensor involved in ROS-induced TFEB activation and autophagy (PubMed:27357649). Also functions as a Fe(2+) permeable channel in late endosomes and lysosomes (PubMed:18794901). Also permeable to Mg(2+), Na(+). K(+) and Cs(+) (By similarity). Proposed to play a role in zinc homeostasis probably implicating its association with TMEM163 (PubMed:25130899) In adaptive immunity, TRPML2 and TRPML1 may play redundant roles in the function of the specialized lysosomes of B cells (By similarity). {ECO:0000250|UniProtKB:Q99J21, ECO:0000269|PubMed:12459486, ECO:0000269|PubMed:14749347, ECO:0000269|PubMed:15336987, ECO:0000269|PubMed:16978393, ECO:0000269|PubMed:18794901, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:25733853, ECO:0000269|PubMed:27357649, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:27787197, ECO:0000269|PubMed:29019983, ECO:0000305|PubMed:11013137}.; FUNCTION: May contribute to cellular lipase activity within the late endosomal pathway or at the cell surface which may be involved in processes of membrane reshaping and vesiculation, especially the growth of tubular structures. However, it is not known, whether it conveys the enzymatic activity directly, or merely facilitates the activity of an associated phospholipase. {ECO:0000305|PubMed:21256127}. |
Q9H040 | SPRTN | S268 | ochoa | DNA-dependent metalloprotease SPRTN (EC 3.4.24.-) (DNA damage protein targeting VCP) (DVC1) (Protein with SprT-like domain at the N terminus) (Spartan) | DNA-dependent metalloendopeptidase that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (PubMed:27852435, PubMed:27871365, PubMed:27871366, PubMed:30893605, PubMed:32649882, PubMed:36608669). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde (PubMed:27852435, PubMed:27871365, PubMed:27871366, PubMed:32649882, PubMed:36608669). Associates with the DNA replication machinery and specifically removes DPCs during DNA synthesis (PubMed:27852435, PubMed:27871365, PubMed:27871366, PubMed:32649882). Catalyzes proteolytic cleavage of the HMCES DNA-protein cross-link following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Acts as a pleiotropic protease for DNA-binding proteins cross-linked with DNA, such as TOP1, TOP2A, histones H3 and H4 (PubMed:27871366). Mediates degradation of DPCs that are not ubiquitinated, while it is not able to degrade ubiquitinated DPCs (By similarity). SPRTN activation requires polymerase collision with DPCs followed by helicase bypass of DPCs (By similarity). Involved in recruitment of VCP/p97 to sites of DNA damage (PubMed:22902628, PubMed:23042605, PubMed:23042607, PubMed:32152270). Also acts as an activator of CHEK1 during normal DNA replication by mediating proteolytic cleavage of CHEK1, thereby promoting CHEK1 removal from chromatin and subsequent activation (PubMed:31316063). Does not activate CHEK1 in response to DNA damage (PubMed:31316063). May also act as a 'reader' of ubiquitinated PCNA: recruited to sites of UV damage and interacts with ubiquitinated PCNA and RAD18, the E3 ubiquitin ligase that monoubiquitinates PCNA (PubMed:22681887, PubMed:22894931, PubMed:22902628, PubMed:22987070). Facilitates chromatin association of RAD18 and is required for efficient PCNA monoubiquitination, promoting a feed-forward loop to enhance PCNA ubiquitination and translesion DNA synthesis (PubMed:22681887). {ECO:0000250|UniProtKB:A0A1L8G2K9, ECO:0000269|PubMed:22681887, ECO:0000269|PubMed:22894931, ECO:0000269|PubMed:22902628, ECO:0000269|PubMed:22987070, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:27852435, ECO:0000269|PubMed:27871365, ECO:0000269|PubMed:27871366, ECO:0000269|PubMed:30893605, ECO:0000269|PubMed:31316063, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:32649882, ECO:0000269|PubMed:36608669}. |
Q9H063 | MAF1 | S60 | ochoa|psp | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H063 | MAF1 | S68 | ochoa|psp | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H078 | CLPB | S426 | ochoa | Mitochondrial disaggregase (EC 3.6.1.-) (Suppressor of potassium transport defect 3) [Cleaved into: Mitochondrial disaggregase, cleaved form] | Functions as a regulatory ATPase and participates in secretion/protein trafficking process. Has ATP-dependent protein disaggregase activity and is required to maintain the solubility of key mitochondrial proteins (PubMed:32573439, PubMed:34115842, PubMed:35247700, PubMed:36170828, PubMed:36745679). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). Plays a role in granulocyte differentiation (PubMed:34115842). {ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:32573439, ECO:0000269|PubMed:34115842, ECO:0000269|PubMed:35247700, ECO:0000269|PubMed:36170828, ECO:0000269|PubMed:36745679}. |
Q9H078 | CLPB | S668 | ochoa | Mitochondrial disaggregase (EC 3.6.1.-) (Suppressor of potassium transport defect 3) [Cleaved into: Mitochondrial disaggregase, cleaved form] | Functions as a regulatory ATPase and participates in secretion/protein trafficking process. Has ATP-dependent protein disaggregase activity and is required to maintain the solubility of key mitochondrial proteins (PubMed:32573439, PubMed:34115842, PubMed:35247700, PubMed:36170828, PubMed:36745679). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). Plays a role in granulocyte differentiation (PubMed:34115842). {ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:32573439, ECO:0000269|PubMed:34115842, ECO:0000269|PubMed:35247700, ECO:0000269|PubMed:36170828, ECO:0000269|PubMed:36745679}. |
Q9H079 | KATNBL1 | S61 | ochoa | KATNB1-like protein 1 (Katanin p80 subunit B-like 1) | Regulates microtubule-severing activity of KATNAL1 in a concentration-dependent manner in vitro. {ECO:0000269|PubMed:26929214}. |
Q9H079 | KATNBL1 | S89 | ochoa | KATNB1-like protein 1 (Katanin p80 subunit B-like 1) | Regulates microtubule-severing activity of KATNAL1 in a concentration-dependent manner in vitro. {ECO:0000269|PubMed:26929214}. |
Q9H0A8 | COMMD4 | S115 | ochoa | COMM domain-containing protein 4 | Scaffold protein in the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). May modulate activity of cullin-RING E3 ubiquitin ligase (CRL) complexes (PubMed:21778237). Down-regulates activation of NF-kappa-B (PubMed:23637203). {ECO:0000269|PubMed:15799966, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129, ECO:0000305|PubMed:21778237}. |
Q9H0B6 | KLC2 | S445 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H0F5 | RNF38 | S60 | ochoa | E3 ubiquitin-protein ligase RNF38 (EC 2.3.2.27) (RING finger protein 38) (RING-type E3 ubiquitin transferase RNF38) | Acts as an E3 ubiquitin-protein ligase able to ubiquitinate p53/TP53 which promotes its relocalization to discrete foci associated with PML nuclear bodies. Exhibits preference for UBE2D2 as a E2 enzyme. {ECO:0000269|PubMed:23973461}. |
Q9H0G5 | NSRP1 | S457 | ochoa | Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. {ECO:0000269|PubMed:21296756}. |
Q9H0H3 | KLHL25 | S285 | ochoa | Kelch-like protein 25 (Ectoderm-neural cortex protein 2) (ENC-2) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex involved in various processes, such as translation homeostasis and lipid synthesis (PubMed:22578813, PubMed:27664236, PubMed:34491895). The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1): ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) probably serves as a homeostatic mechanism to maintain translation and prevent eIF4E inhibition when eIF4E levels are low (PubMed:22578813). The BCR(KLHL25) complex does not target EIF4EBP1 (4E-BP1) when it is hyperphosphorylated or associated with eIF4E (PubMed:22578813). The BCR(KLHL25) complex also acts as a regulator of lipid synthesis by mediating ubiquitination and degradation of ACLY, thereby inhibiting lipid synthesis (PubMed:27664236, PubMed:34491895). BCR(KLHL25)-mediated degradation of ACLY promotes fatty acid oxidation and is required for differentiation of inducible regulatory T (iTreg) cells (PubMed:34491895). {ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:27664236, ECO:0000269|PubMed:34491895}. |
Q9H0H5 | RACGAP1 | S359 | ochoa | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9H0K1 | SIK2 | S379 | ochoa | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H0K1 | SIK2 | S545 | ochoa | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H0K1 | SIK2 | S576 | ochoa|psp | Serine/threonine-protein kinase SIK2 (EC 2.7.11.1) (Qin-induced kinase) (Salt-inducible kinase 2) (SIK-2) (Serine/threonine-protein kinase SNF1-like kinase 2) | Serine/threonine-protein kinase that plays a role in many biological processes such as fatty acid oxidation, autophagy, immune response or glucose metabolism (PubMed:23322770, PubMed:26983400). Phosphorylates 'Ser-794' of IRS1 in insulin-stimulated adipocytes, potentially modulating the efficiency of insulin signal transduction. Inhibits CREB activity by phosphorylating and repressing TORCs, the CREB-specific coactivators (PubMed:15454081). Phosphorylates EP300 and thus inhibits its histone acetyltransferase activity (PubMed:21084751, PubMed:26983400). In turn, regulates the DNA-binding ability of several transcription factors such as PPARA or MLXIPL (PubMed:21084751, PubMed:26983400). Also plays a role in thymic T-cell development (By similarity). {ECO:0000250|UniProtKB:Q8CFH6, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:21084751, ECO:0000269|PubMed:23322770, ECO:0000269|PubMed:26983400}. |
Q9H0W5 | CCDC8 | S261 | ochoa|psp | Coiled-coil domain-containing protein 8 | Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity. It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695, PubMed:24793696). Required for localization of CUL7 to the centrosome (PubMed:24793695). {ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696}. |
Q9H0X9 | OSBPL5 | S747 | ochoa | Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}. |
Q9H116 | GZF1 | S265 | ochoa | GDNF-inducible zinc finger protein 1 (Zinc finger and BTB domain-containing protein 23) (Zinc finger protein 336) | Transcriptional repressor that binds the GZF1 responsive element (GRE) (consensus: 5'-TGCGCN[TG][CA]TATA-3'). May be regulating VSX2/HOX10 expression. {ECO:0000269|PubMed:14522971, ECO:0000269|PubMed:16049025}. |
Q9H116 | GZF1 | S613 | ochoa | GDNF-inducible zinc finger protein 1 (Zinc finger and BTB domain-containing protein 23) (Zinc finger protein 336) | Transcriptional repressor that binds the GZF1 responsive element (GRE) (consensus: 5'-TGCGCN[TG][CA]TATA-3'). May be regulating VSX2/HOX10 expression. {ECO:0000269|PubMed:14522971, ECO:0000269|PubMed:16049025}. |
Q9H165 | BCL11A | S205 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H171 | ZBP1 | S27 | ochoa | Z-DNA-binding protein 1 (DNA-dependent activator of IFN-regulatory factors) (DAI) (Tumor stroma and activated macrophage protein DLM-1) | Key innate sensor that recognizes and binds Z-RNA structures, which are produced by a number of viruses, such as herpesvirus, orthomyxovirus or flavivirus, and triggers different forms of cell death (PubMed:32200799). ZBP1 acts as an essential mediator of pyroptosis, necroptosis and apoptosis (PANoptosis), an integral part of host defense against pathogens, by activating RIPK3, caspase-8 (CASP8), and the NLRP3 inflammasome (By similarity). Key activator of necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, via its ability to bind Z-RNA: once activated upon Z-RNA-binding, ZBP1 interacts and stimulates RIPK3 kinase, which phosphorylates and activates MLKL, triggering execution of programmed necrosis (By similarity). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: ZBP1 recognizes and binds Z-RNA structures that are produced in infected nuclei by orthomyxoviruses, such as the influenza A virus (IAV), leading to ZBP1 activation, RIPK3 stimulation and subsequent MLKL phosphorylation, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (PubMed:32200799). ZBP1-dependent cell death in response to IAV infection promotes interleukin-1 alpha (IL1A) induction in an NLRP3-inflammasome-independent manner: IL1A expression is required for the optimal interleukin-1 beta (IL1B) production, and together, these cytokines promote infiltration of inflammatory neutrophils to the lung, leading to the formation of neutrophil extracellular traps (By similarity). In addition to its direct role in driving necroptosis via its ability to sense Z-RNAs, also involved in PANoptosis triggered in response to bacterial infection: component of the AIM2 PANoptosome complex, a multiprotein complex that triggers PANoptosis (By similarity). Also acts as the apical sensor of fungal infection responsible for activating PANoptosis (By similarity). Involved in CASP8-mediated cell death via its interaction with RIPK1 but independently of its ability to sense Z-RNAs (By similarity). In some cell types, also able to restrict viral replication by promoting cell death-independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with RIPK3, promotes a death-independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). {ECO:0000250|UniProtKB:Q9QY24, ECO:0000269|PubMed:32200799}.; FUNCTION: (Microbial infection) In case of herpes simplex virus 1/HHV-1 infection, forms hetero-amyloid structures with HHV-1 protein RIR1/ICP6 which may inhibit ZBP1-mediated necroptosis, thereby preventing host cell death pathway and allowing viral evasion. {ECO:0000269|PubMed:33348174}. |
Q9H1A4 | ANAPC1 | S555 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1A4 | ANAPC1 | S688 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1A4 | ANAPC1 | S731 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1A4 | ANAPC1 | S1347 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1B7 | IRF2BPL | S639 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H1H9 | KIF13A | S636 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H1H9 | KIF13A | S1679 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H1V8 | SLC6A17 | S686 | ochoa | Sodium-dependent neutral amino acid transporter SLC6A17 (Sodium-dependent neurotransmitter transporter NTT4) (Solute carrier family 6 member 17) | Synaptic vesicle transporter with apparent selectivity for neutral amino acids. The transport is sodium-coupled but chloride-independent, likely driven by the proton electrochemical gradient generated by vacuolar H(+)-ATPase in an overall electrogenic mechanism. May contribute to the synaptic uptake of neurotransmitter precursors in a process coupled in part to vesicle exocytosis. {ECO:0000250|UniProtKB:P31662}. |
Q9H211 | CDT1 | S318 | ochoa|psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H211 | CDT1 | S372 | psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H223 | EHD4 | S157 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H223 | EHD4 | S459 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H257 | CARD9 | S431 | ochoa | Caspase recruitment domain-containing protein 9 (hCARD9) | Adapter protein that plays a key role in innate immune response against fungi by forming signaling complexes downstream of C-type lectin receptors (PubMed:26961233, PubMed:33558980). CARD9-mediated signals are essential for antifungal immunity against a subset of fungi from the phylum Ascomycota (PubMed:24231284, PubMed:25057046, PubMed:25702837, PubMed:26521038, PubMed:26679537, PubMed:26961233, PubMed:27777981, PubMed:29080677, PubMed:33558980). Transduces signals in myeloid cells downstream of C-type lectin receptors CLEC7A (dectin-1), CLEC6A (dectin-2) and CLEC4E (Mincle), which detect pathogen-associated molecular pattern metabolites (PAMPs), such as fungal carbohydrates, and trigger CARD9 activation (By similarity). Upon activation, CARD9 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11053425, PubMed:26488816, PubMed:26961233, PubMed:31296852, PubMed:33558980). CARD9 signaling in antigen-presenting cells links innate sensing of fungi to the activation of adaptive immunity and provides a cytokine milieu that induces the development and subsequent of interleukin 17-producing T helper (Th17) cells (PubMed:24231284). Also involved in activation of myeloid cells via classical ITAM-associated receptors and TLR: required for TLR-mediated activation of MAPK, while it is not required for TLR-induced activation of NF-kappa-B (By similarity). CARD9 can also be engaged independently of BCL10: forms a complex with RASGRF1 downstream of C-type lectin receptors, which recruits and activates HRAS, leading to ERK activation and the production of cytokines (By similarity). Acts as an important regulator of the intestinal commensal fungi (mycobiota) component of the gut microbiota (PubMed:33548172). Plays an essential role in antifungal immunity against dissemination of gut fungi: acts by promoting induction of antifungal IgG antibodies response in CX3CR1(+) macrophages to confer protection against disseminated C.albicans or C.auris infection (PubMed:33548172). Also mediates immunity against other pathogens, such as certain bacteria, viruses and parasites; CARD9 signaling is however redundant with other innate immune responses (By similarity). In response to L.monocytogenes infection, required for the production of inflammatory cytokines activated by intracellular peptidoglycan: acts by connecting NOD2 recognition of peptidoglycan to downstream activation of MAP kinases (MAPK) without activating NF-kappa-B (By similarity). {ECO:0000250|UniProtKB:A2AIV8, ECO:0000269|PubMed:11053425, ECO:0000269|PubMed:24231284, ECO:0000269|PubMed:25057046, ECO:0000269|PubMed:25702837, ECO:0000269|PubMed:26488816, ECO:0000269|PubMed:26521038, ECO:0000269|PubMed:26679537, ECO:0000269|PubMed:26961233, ECO:0000269|PubMed:27777981, ECO:0000269|PubMed:29080677, ECO:0000269|PubMed:31296852, ECO:0000269|PubMed:33548172, ECO:0000269|PubMed:33558980}. |
Q9H270 | VPS11 | S813 | ochoa | Vacuolar protein sorting-associated protein 11 homolog (hVPS11) (RING finger protein 108) | Plays a role in vesicle-mediated protein trafficking to lysosomal compartments including the endocytic membrane transport and autophagic pathways. Believed to act as a core component of the putative HOPS and CORVET endosomal tethering complexes which are proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The HOPS complex is proposed to be recruited to Rab7 on the late endosomal membrane and to regulate late endocytic, phagocytic and autophagic traffic towards lysosomes. The CORVET complex is proposed to function as a Rab5 effector to mediate early endosome fusion probably in specific endosome subpopulations (PubMed:11382755, PubMed:23351085, PubMed:24554770, PubMed:25266290, PubMed:25783203). Required for fusion of endosomes and autophagosomes with lysosomes (PubMed:25783203). Involved in cargo transport from early to late endosomes and required for the transition from early to late endosomes (PubMed:21148287). Involved in the retrograde Shiga toxin transport (PubMed:23593995). {ECO:0000269|PubMed:21148287, ECO:0000269|PubMed:23593995, ECO:0000269|PubMed:25783203, ECO:0000305|PubMed:11382755, ECO:0000305|PubMed:23351085, ECO:0000305|PubMed:24554770, ECO:0000305|PubMed:25266290, ECO:0000305|PubMed:25783203}. |
Q9H2C0 | GAN | S174 | ochoa | Gigaxonin (Kelch-like protein 16) | Probable cytoskeletal component that directly or indirectly plays an important role in neurofilament architecture. May act as a substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Controls degradation of TBCB. Controls degradation of MAP1B and MAP1S, and is critical for neuronal maintenance and survival. {ECO:0000269|PubMed:12147674, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16227972, ECO:0000269|PubMed:16303566}. |
Q9H2D6 | TRIOBP | S710 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2D6 | TRIOBP | S758 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2D6 | TRIOBP | S805 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2F5 | EPC1 | S357 | ochoa | Enhancer of polycomb homolog 1 | Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}. |
Q9H2F5 | EPC1 | S427 | ochoa | Enhancer of polycomb homolog 1 | Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}. |
Q9H2G9 | BLZF1 | S284 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2G9 | BLZF1 | S362 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2J7 | SLC6A15 | S687 | ochoa | Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) | Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}. |
Q9H2K2 | TNKS2 | S666 | ochoa | Poly [ADP-ribose] polymerase tankyrase-2 (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 6) (ARTD6) (Poly [ADP-ribose] polymerase 5B) (Protein poly-ADP-ribosyltransferase tankyrase-2) (EC 2.4.2.-) (TNKS-2) (TRF1-interacting ankyrin-related ADP-ribose polymerase 2) (Tankyrase II) (Tankyrase-2) (TANK2) (Tankyrase-like protein) (Tankyrase-related protein) | Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking (PubMed:11739745, PubMed:11802774, PubMed:19759537, PubMed:21478859, PubMed:23622245, PubMed:25043379). Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex: poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation (PubMed:19759537, PubMed:21478859). Also mediates poly-ADP-ribosylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination (PubMed:21478859). Mediates poly-ADP-ribosylation of TERF1, thereby contributing to the regulation of telomere length (PubMed:11739745). Stimulates 26S proteasome activity (PubMed:23622245). {ECO:0000269|PubMed:11739745, ECO:0000269|PubMed:11802774, ECO:0000269|PubMed:19759537, ECO:0000269|PubMed:21478859, ECO:0000269|PubMed:23622245, ECO:0000269|PubMed:25043379}. |
Q9H2M9 | RAB3GAP2 | S450 | ochoa | Rab3 GTPase-activating protein non-catalytic subunit (RGAP-iso) (Rab3 GTPase-activating protein 150 kDa subunit) (Rab3-GAP p150) (Rab3-GAP150) (Rab3-GAP regulatory subunit) | Regulatory subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:24891604, PubMed:9733780). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (By similarity). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (By similarity). The Rab3GAP complex acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in human fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (By similarity). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (By similarity). {ECO:0000250|UniProtKB:Q15042, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9733780}. |
Q9H2P0 | ADNP | S709 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2P0 | ADNP | S970 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2U1 | DHX36 | S963 | ochoa | ATP-dependent DNA/RNA helicase DHX36 (EC 3.6.4.12) (EC 3.6.4.13) (DEAD/H box polypeptide 36) (DEAH-box protein 36) (G4-resolvase-1) (G4R1) (MLE-like protein 1) (RNA helicase associated with AU-rich element protein) | Multifunctional ATP-dependent helicase that unwinds G-quadruplex (G4) structures (PubMed:16150737, PubMed:18854321, PubMed:20472641, PubMed:21586581). Plays a role in many biological processes such as genomic integrity, gene expression regulations and as a sensor to initiate antiviral responses (PubMed:14731398, PubMed:18279852, PubMed:21993297, PubMed:22238380, PubMed:25579584). G4 structures correspond to helical structures containing guanine tetrads (By similarity). Binds with high affinity to and unwinds G4 structures that are formed in nucleic acids (G4-DNA and G4-RNA) (PubMed:16150737, PubMed:18842585, PubMed:20472641, PubMed:21586581, PubMed:24369427, PubMed:26195789). Plays a role in genomic integrity (PubMed:22238380). Converts the G4-RNA structure present in telomerase RNA template component (TREC) into a double-stranded RNA to promote P1 helix formation that acts as a template boundary ensuring accurate reverse transcription (PubMed:20472641, PubMed:21149580, PubMed:21846770, PubMed:22238380, PubMed:24151078, PubMed:25579584). Plays a role in transcriptional regulation (PubMed:21586581, PubMed:21993297). Resolves G4-DNA structures in promoters of genes, such as YY1, KIT/c-kit and ALPL and positively regulates their expression (PubMed:21993297). Plays a role in post-transcriptional regulation (PubMed:27940037). Unwinds a G4-RNA structure located in the 3'-UTR polyadenylation site of the pre-mRNA TP53 and stimulates TP53 pre-mRNA 3'-end processing in response to ultraviolet (UV)-induced DNA damage (PubMed:27940037). Binds to the precursor-microRNA-134 (pre-miR-134) terminal loop and regulates its transport into the synapto-dendritic compartment (By similarity). Involved in the pre-miR-134-dependent inhibition of target gene expression and the control of dendritic spine size (By similarity). Plays a role in the regulation of cytoplasmic mRNA translation and mRNA stability (PubMed:24369427, PubMed:26489465). Binds to both G4-RNA structures and alternative non-quadruplex-forming sequence within the 3'-UTR of the PITX1 mRNA regulating negatively PITX1 protein expression (PubMed:24369427). Binds to both G4-RNA structure in the 5'-UTR and AU-rich elements (AREs) localized in the 3'-UTR of NKX2-5 mRNA to either stimulate protein translation or induce mRNA decay in an ELAVL1-dependent manner, respectively (PubMed:26489465). Also binds to ARE sequences present in several mRNAs mediating exosome-mediated 3'-5' mRNA degradation (PubMed:14731398, PubMed:18279852). Involved in cytoplasmic urokinase-type plasminogen activator (uPA) mRNA decay (PubMed:14731398). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). Required for early embryonic development and hematopoiesis. Involved in the regulation of cardioblast differentiation and proliferation during heart development. Involved in spermatogonia differentiation. May play a role in ossification (By similarity). {ECO:0000250|UniProtKB:D4A2Z8, ECO:0000250|UniProtKB:Q05B79, ECO:0000250|UniProtKB:Q8VHK9, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:16150737, ECO:0000269|PubMed:18279852, ECO:0000269|PubMed:18842585, ECO:0000269|PubMed:18854321, ECO:0000269|PubMed:20472641, ECO:0000269|PubMed:21149580, ECO:0000269|PubMed:21586581, ECO:0000269|PubMed:21846770, ECO:0000269|PubMed:21993297, ECO:0000269|PubMed:22238380, ECO:0000269|PubMed:24151078, ECO:0000269|PubMed:24369427, ECO:0000269|PubMed:25579584, ECO:0000269|PubMed:26195789, ECO:0000269|PubMed:26489465, ECO:0000269|PubMed:27940037}. |
Q9H2X6 | HIPK2 | S441 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2X6 | HIPK2 | S668 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2X6 | HIPK2 | S848 | ochoa|psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2X6 | HIPK2 | S882 | psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H2Y7 | ZNF106 | S400 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S452 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S661 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S893 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H334 | FOXP1 | S83 | ochoa | Forkhead box protein P1 (Mac-1-regulated forkhead) (MFH) | Transcriptional repressor (PubMed:18347093, PubMed:26647308). Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential (By similarity). Plays an important role in the specification and differentiation of lung epithelium. Acts cooperatively with FOXP4 to regulate lung secretory epithelial cell fate and regeneration by restricting the goblet cell lineage program; the function may involve regulation of AGR2. Essential transcriptional regulator of B-cell development. Involved in regulation of cardiac muscle cell proliferation. Involved in the columnar organization of spinal motor neurons. Promotes the formation of the lateral motor neuron column (LMC) and the preganglionic motor column (PGC) and is required for respective appropriate motor axon projections. The segment-appropriate generation of spinal cord motor columns requires cooperation with other Hox proteins. Can regulate PITX3 promoter activity; may promote midbrain identity in embryonic stem cell-derived dopamine neurons by regulating PITX3. Negatively regulates the differentiation of T follicular helper cells T(FH)s. Involved in maintenance of hair follicle stem cell quiescence; the function probably involves regulation of FGF18 (By similarity). Represses transcription of various pro-apoptotic genes and cooperates with NF-kappa B-signaling in promoting B-cell expansion by inhibition of caspase-dependent apoptosis (PubMed:25267198). Binds to CSF1R promoter elements and is involved in regulation of monocyte differentiation and macrophage functions; repression of CSF1R in monocytes seems to involve NCOR2 as corepressor (PubMed:15286807, PubMed:18347093, PubMed:18799727). Involved in endothelial cell proliferation, tube formation and migration indicative for a role in angiogenesis; the role in neovascularization seems to implicate suppression of SEMA5B (PubMed:24023716). Can negatively regulate androgen receptor signaling (PubMed:18640093). Acts as a transcriptional activator of the FBXL7 promoter; this activity is regulated by AURKA (PubMed:28218735). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:15286807, ECO:0000269|PubMed:18640093, ECO:0000269|PubMed:18799727, ECO:0000269|PubMed:24023716, ECO:0000269|PubMed:25267198, ECO:0000269|PubMed:26647308, ECO:0000269|PubMed:28218735, ECO:0000305|PubMed:18347093, ECO:0000305|PubMed:24023716}.; FUNCTION: [Isoform 8]: Involved in transcriptional regulation in embryonic stem cells (ESCs). Stimulates expression of transcription factors that are required for pluripotency and decreases expression of differentiation-associated genes. Has distinct DNA-binding specifities as compared to the canonical form and preferentially binds DNA with the sequence 5'-CGATACAA-3' (or closely related sequences) (PubMed:21924763). Promotes ESC self-renewal and pluripotency (By similarity). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:21924763}. |
Q9H3D4 | TP63 | S612 | ochoa | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H3Q1 | CDC42EP4 | S322 | ochoa | Cdc42 effector protein 4 (Binder of Rho GTPases 4) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation, when overexpressed in fibroblasts. |
Q9H410 | DSN1 | S58 | ochoa | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H410 | DSN1 | S81 | ochoa | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H410 | DSN1 | S331 | ochoa|psp | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H425 | C1orf198 | S37 | ochoa|psp | Uncharacterized protein C1orf198 | None |
Q9H425 | C1orf198 | S289 | ochoa | Uncharacterized protein C1orf198 | None |
Q9H4A4 | RNPEP | S528 | ochoa | Aminopeptidase B (AP-B) (EC 3.4.11.6) (Arginine aminopeptidase) (Arginyl aminopeptidase) | Exopeptidase which selectively removes arginine and/or lysine residues from the N-terminus of several peptide substrates including Arg(0)-Leu-enkephalin, Arg(0)-Met-enkephalin and Arg(-1)-Lys(0)-somatostatin-14. Can hydrolyze leukotriene A4 (LTA-4) into leukotriene B4 (LTB-4) (By similarity). {ECO:0000250}. |
Q9H4B6 | SAV1 | S56 | ochoa | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H4D5 | NXF3 | S283 | ochoa | Nuclear RNA export factor 3 (TAP-like protein 3) (TAPL-3) | May function as a tissue-specific nuclear mRNA export factor. |
Q9H4D5 | NXF3 | S314 | ochoa | Nuclear RNA export factor 3 (TAP-like protein 3) (TAPL-3) | May function as a tissue-specific nuclear mRNA export factor. |
Q9H4H8 | FAM83D | S17 | ochoa | Protein FAM83D (Spindle protein CHICA) | Through the degradation of FBXW7, may act indirectly on the expression and downstream signaling of MTOR, JUN and MYC (PubMed:24344117). May play also a role in cell proliferation through activation of the ERK1/ERK2 signaling cascade (PubMed:25646692). May also be important for proper chromosome congression and alignment during mitosis through its interaction with KIF22 (PubMed:18485706). {ECO:0000269|PubMed:18485706, ECO:0000269|PubMed:24344117, ECO:0000269|PubMed:25646692}. |
Q9H4I2 | ZHX3 | S723 | ochoa | Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) | Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}. |
Q9H4L4 | SENP3 | S307 | ochoa | Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) | Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}. |
Q9H4L5 | OSBPL3 | S265 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H4L7 | SMARCAD1 | S103 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H4M9 | EHD1 | S349 | ochoa | EH domain-containing protein 1 (PAST homolog 1) (hPAST1) (Testilin) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis. In vitro causes vesiculation of endocytic membranes (PubMed:24019528). Acts in early endocytic membrane fusion and membrane trafficking of recycling endosomes (PubMed:15020713, PubMed:17233914, PubMed:20801876). Recruited to endosomal membranes upon nerve growth factor stimulation, indirectly regulates neurite outgrowth (By similarity). Plays a role in myoblast fusion (By similarity). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle (CV), an early step in cilium biogenesis (PubMed:31615969). Proposed to be required for the fusion of distal appendage vesicles (DAVs) to form the CV by recruiting SNARE complex component SNAP29. Is required for recruitment of transition zone proteins CEP290, RPGRIP1L, TMEM67 and B9D2, and of IFT20 following DAV reorganization before Rab8-dependent ciliary membrane extension. Required for the loss of CCP110 form the mother centriole essential for the maturation of the basal body during ciliogenesis (PubMed:25686250). {ECO:0000250|UniProtKB:Q641Z6, ECO:0000250|UniProtKB:Q9WVK4, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:31615969}. |
Q9H4M9 | EHD1 | S456 | ochoa | EH domain-containing protein 1 (PAST homolog 1) (hPAST1) (Testilin) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis. In vitro causes vesiculation of endocytic membranes (PubMed:24019528). Acts in early endocytic membrane fusion and membrane trafficking of recycling endosomes (PubMed:15020713, PubMed:17233914, PubMed:20801876). Recruited to endosomal membranes upon nerve growth factor stimulation, indirectly regulates neurite outgrowth (By similarity). Plays a role in myoblast fusion (By similarity). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle (CV), an early step in cilium biogenesis (PubMed:31615969). Proposed to be required for the fusion of distal appendage vesicles (DAVs) to form the CV by recruiting SNARE complex component SNAP29. Is required for recruitment of transition zone proteins CEP290, RPGRIP1L, TMEM67 and B9D2, and of IFT20 following DAV reorganization before Rab8-dependent ciliary membrane extension. Required for the loss of CCP110 form the mother centriole essential for the maturation of the basal body during ciliogenesis (PubMed:25686250). {ECO:0000250|UniProtKB:Q641Z6, ECO:0000250|UniProtKB:Q9WVK4, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:31615969}. |
Q9H582 | ZNF644 | S375 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H582 | ZNF644 | S1074 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H582 | ZNF644 | S1214 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H5I5 | PIEZO2 | S376 | ochoa | Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}. |
Q9H5I5 | PIEZO2 | S1857 | ochoa | Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}. |
Q9H5U6 | ZCCHC4 | S381 | ochoa | rRNA N(6)-adenosine-methyltransferase ZCCHC4 (EC 2.1.1.-) (Zinc finger CCHC domain-containing protein 4) | rRNA N6-methyltransferase that specifically methylates the adenine in position 4220 of 28S rRNA (PubMed:30531910, PubMed:31328227, PubMed:31695039, PubMed:31799605). N6-methylation of adenine(4220) in 28S rRNA is required for translation (PubMed:30531910, PubMed:31799605). {ECO:0000269|PubMed:30531910, ECO:0000269|PubMed:31328227, ECO:0000269|PubMed:31695039, ECO:0000269|PubMed:31799605}. |
Q9H5V7 | IKZF5 | S200 | ochoa | Zinc finger protein Pegasus (Ikaros family zinc finger protein 5) | Transcriptional repressor that binds the core 5'GNNTGTNG-3' DNA consensus sequence (PubMed:10978333, PubMed:31217188). Involved in megakaryocyte differentiation. {ECO:0000269|PubMed:10978333, ECO:0000269|PubMed:31217188}. |
Q9H5Y7 | SLITRK6 | S652 | ochoa | SLIT and NTRK-like protein 6 | Regulator of neurite outgrowth required for normal hearing and vision. {ECO:0000269|PubMed:23543054}. |
Q9H5Y7 | SLITRK6 | S728 | ochoa | SLIT and NTRK-like protein 6 | Regulator of neurite outgrowth required for normal hearing and vision. {ECO:0000269|PubMed:23543054}. |
Q9H5Z6 | FAM124B | S303 | ochoa | Protein FAM124B | None |
Q9H609 | ZNF576 | S20 | ochoa | Zinc finger protein 576 | May be involved in transcriptional regulation. |
Q9H611 | PIF1 | S27 | ochoa | ATP-dependent DNA helicase PIF1 (EC 5.6.2.3) (DNA 5'-3' helicase PIF1) (DNA repair and recombination helicase PIF1) (PIF1/RRM3 DNA helicase-like protein) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of both mitochondrial and nuclear genome stability. Efficiently unwinds G-quadruplex (G4) DNA structures and forked RNA-DNA hybrids. Resolves G4 structures, preventing replication pausing and double-strand breaks (DSBs) at G4 motifs. Involved in the maintenance of telomeric DNA. Inhibits telomere elongation, de novo telomere formation and telomere addition to DSBs via catalytic inhibition of telomerase. Reduces the processivity of telomerase by displacing active telomerase from DNA ends. Releases telomerase by unwinding the short telomerase RNA/telomeric DNA hybrid that is the intermediate in the telomerase reaction. Possesses an intrinsic strand annealing activity. {ECO:0000255|HAMAP-Rule:MF_03176, ECO:0000269|PubMed:16522649, ECO:0000269|PubMed:17172855, ECO:0000269|PubMed:17827721, ECO:0000269|PubMed:18835853, ECO:0000269|PubMed:19700773, ECO:0000269|PubMed:20524933, ECO:0000269|PubMed:23657261}. |
Q9H694 | BICC1 | S576 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H694 | BICC1 | S688 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H694 | BICC1 | S836 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H6K1 | ILRUN | S272 | ochoa | Protein ILRUN (Inflammation and lipid regulator with UBA-like and NBR1-like domains protein) | Negative regulator of innate antiviral response. Blocks IRF3-dependent cytokine production such as IFNA, IFNB and TNF (PubMed:29802199). Interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing nuclear levels of the coactivators EP300 and CREBBP (PubMed:29802199). {ECO:0000269|PubMed:29802199}. |
Q9H6K5 | PRR36 | S1310 | ochoa | Proline-rich protein 36 | None |
Q9H6Q4 | CIAO3 | S214 | ochoa | Cytosolic iron-sulfur assembly component 3 (Cytosolic Fe-S cluster assembly factor NARFL) (Iron-only hydrogenase-like protein 1) (IOP1) (Nuclear prelamin A recognition factor-like protein) (Protein related to Narf) | Component of the cytosolic iron-sulfur protein assembly (CIA) complex, a multiprotein complex that mediates the incorporation of iron-sulfur cluster into extramitochondrial Fe/S proteins. Seems to negatively regulate the level of HIF1A expression, although this effect could be indirect. {ECO:0000269|PubMed:16956324, ECO:0000269|PubMed:18270200}. |
Q9H6R7 | WDCP | S501 | ochoa | WD repeat and coiled-coil-containing protein | None |
Q9H6S1 | AZI2 | S301 | ochoa | 5-azacytidine-induced protein 2 (NF-kappa-B-activating kinase-associated protein 1) (Nak-associated protein 1) (Nap1) (TILP) | Adapter protein which binds TBK1 and IKBKE playing a role in antiviral innate immunity (PubMed:14560022, PubMed:21931631). Activates serine/threonine-protein kinase TBK1 and facilitates its oligomerization (PubMed:14560022, PubMed:21931631). Enhances the phosphorylation of NF-kappa-B p65 subunit RELA by TBK1 (PubMed:14560022, PubMed:21931631). Promotes TBK1-induced as well as TNF-alpha or PMA-induced activation of NF-kappa-B (PubMed:14560022, PubMed:21931631). Participates in IFNB promoter activation via TICAM1 (PubMed:15611223). {ECO:0000269|PubMed:14560022, ECO:0000269|PubMed:15611223, ECO:0000269|PubMed:21931631}. |
Q9H6S1 | AZI2 | S353 | ochoa | 5-azacytidine-induced protein 2 (NF-kappa-B-activating kinase-associated protein 1) (Nak-associated protein 1) (Nap1) (TILP) | Adapter protein which binds TBK1 and IKBKE playing a role in antiviral innate immunity (PubMed:14560022, PubMed:21931631). Activates serine/threonine-protein kinase TBK1 and facilitates its oligomerization (PubMed:14560022, PubMed:21931631). Enhances the phosphorylation of NF-kappa-B p65 subunit RELA by TBK1 (PubMed:14560022, PubMed:21931631). Promotes TBK1-induced as well as TNF-alpha or PMA-induced activation of NF-kappa-B (PubMed:14560022, PubMed:21931631). Participates in IFNB promoter activation via TICAM1 (PubMed:15611223). {ECO:0000269|PubMed:14560022, ECO:0000269|PubMed:15611223, ECO:0000269|PubMed:21931631}. |
Q9H6S3 | EPS8L2 | S28 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}. |
Q9H6U6 | BCAS3 | S161 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H6U6 | BCAS3 | S570 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H6U6 | BCAS3 | S869 | ochoa | BCAS3 microtubule associated cell migration factor (Breast carcinoma-amplified sequence 3) (GAOB1) | Plays a role in angiogenesis. Participates in the regulation of cell polarity and directional endothelial cell migration by mediating both the activation and recruitment of CDC42 and the reorganization of the actin cytoskeleton at the cell leading edge. Promotes filipodia formation (By similarity). Functions synergistically with PELP1 as a transcriptional coactivator of estrogen receptor-responsive genes. Stimulates histone acetyltransferase activity. Binds to chromatin. Plays a regulatory role in autophagic activity. In complex with PHAF1, associates with the preautophagosomal structure during both non-selective and selective autophagy (PubMed:33499712). Probably binds phosphatidylinositol 3-phosphate (PtdIns3P) which would mediate the recruitment preautophagosomal structures (PubMed:33499712). {ECO:0000250|UniProtKB:Q8CCN5, ECO:0000269|PubMed:17505058, ECO:0000269|PubMed:33499712}. |
Q9H6Z4 | RANBP3 | S333 | ochoa | Ran-binding protein 3 (RanBP3) | Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran-dependent manner. Negative regulator of TGF-beta signaling through interaction with the R-SMAD proteins, SMAD2 and SMAD3, and mediating their nuclear export. {ECO:0000269|PubMed:11425870, ECO:0000269|PubMed:11571268, ECO:0000269|PubMed:11932251, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:9637251}. |
Q9H706 | GAREM1 | S356 | ochoa | GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) | [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}. |
Q9H706 | GAREM1 | S492 | ochoa | GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) | [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}. |
Q9H707 | ZNF552 | S86 | ochoa | Zinc finger protein 552 | May be involved in transcriptional regulation. |
Q9H714 | RUBCNL | S29 | ochoa | Protein associated with UVRAG as autophagy enhancer (Pacer) (Protein Rubicon-like) | Regulator of autophagy that promotes autophagosome maturation by facilitating the biogenesis of phosphatidylinositol 3-phosphate (PtdIns(3)P) in late steps of autophagy (PubMed:28306502, PubMed:30704899). Acts by antagonizing RUBCN, thereby stimulating phosphatidylinositol 3-kinase activity of the PI3K/PI3KC3 complex (PubMed:28306502). Following anchorage to the autophagosomal SNARE STX17, promotes the recruitment of PI3K/PI3KC3 and HOPS complexes to the autophagosome to regulate the fusion specificity of autophagosomes with late endosomes/lysosomes (PubMed:28306502). Binds phosphoinositides phosphatidylinositol 3-phosphate (PtdIns(3)P), 4-phosphate (PtdIns(4)P) and 5-phosphate (PtdIns(5)P) (PubMed:28306502). In addition to its role in autophagy, acts as a regulator of lipid and glycogen homeostasis (By similarity). May act as a tumor suppressor (Probable). {ECO:0000250|UniProtKB:Q3TD16, ECO:0000269|PubMed:28306502, ECO:0000269|PubMed:30704899, ECO:0000305|PubMed:23522960}. |
Q9H777 | ELAC1 | S146 | ochoa | Zinc phosphodiesterase ELAC protein 1 (EC 3.1.26.11) (Deleted in Ma29) (ElaC homolog protein 1) (Ribonuclease Z 1) (RNase Z 1) (tRNA 3 endonuclease 1) (tRNase Z 1) | Zinc phosphodiesterase, which displays some tRNA 3'-processing endonuclease activity (PubMed:12711671, PubMed:32075755). Specifically involved in tRNA repair: acts downstream of the ribosome-associated quality control (RQC) pathway by removing a 2',3'-cyclic phosphate from tRNAs following cleavage by ANKZF1 (PubMed:32075755). tRNAs are then processed by TRNT1 (PubMed:32075755). {ECO:0000269|PubMed:12711671, ECO:0000269|PubMed:32075755}. |
Q9H792 | PEAK1 | S281 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S389 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S540 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S587 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S719 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H792 | PEAK1 | S730 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H799 | CPLANE1 | S3073 | ochoa | Ciliogenesis and planar polarity effector 1 (Protein JBTS17) | Involved in ciliogenesis (PubMed:25877302, PubMed:35582950). Involved in the establishment of cell polarity required for directional cell migration. Proposed to act in association with the CPLANE (ciliogenesis and planar polarity effectors) complex. Involved in recruitment of peripheral IFT-A proteins to basal bodies (By similarity). {ECO:0000250|UniProtKB:Q8CE72, ECO:0000269|PubMed:35582950, ECO:0000305|PubMed:25877302}. |
Q9H7C9 | AAMDC | S46 | ochoa | Mth938 domain-containing protein (Adipogenesis associated Mth938 domain-containing protein) | May play a role in preadipocyte differentiation and adipogenesis. {ECO:0000250}. |
Q9H7D0 | DOCK5 | S365 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H7D0 | DOCK5 | S1756 | ochoa | Dedicator of cytokinesis protein 5 | Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}. |
Q9H7F0 | ATP13A3 | S98 | ochoa | Polyamine-transporting ATPase 13A3 (ATPase family homolog up-regulated in senescence cells 1) (Putrescine transporting ATPase) (EC 7.6.2.16) | ATP-driven pump involved in endocytosis-dependent polyamine transport. Uses ATP as an energy source to transfer polyamine precursor putrescine from the endosomal compartment to the cytosol. {ECO:0000269|PubMed:27429841, ECO:0000269|PubMed:33310703}. |
Q9H7M9 | VSIR | S248 | ochoa | V-type immunoglobulin domain-containing suppressor of T-cell activation (Platelet receptor Gi24) (Stress-induced secreted protein-1) (Sisp-1) (V-set domain-containing immunoregulatory receptor) (V-set immunoregulatory receptor) | Immunoregulatory receptor which inhibits the T-cell response (PubMed:24691993). May promote differentiation of embryonic stem cells, by inhibiting BMP4 signaling (By similarity). May stimulate MMP14-mediated MMP2 activation (PubMed:20666777). {ECO:0000250|UniProtKB:Q9D659, ECO:0000269|PubMed:20666777, ECO:0000269|PubMed:24691993}. |
Q9H7N4 | SCAF1 | S30 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7N4 | SCAF1 | S161 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7P9 | PLEKHG2 | S1049 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H7U1 | CCSER2 | S630 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H7X3 | ZNF696 | S86 | ochoa | Zinc finger protein 696 | May be involved in transcriptional regulation. |
Q9H869 | YY1AP1 | S252 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H869 | YY1AP1 | S724 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H8G2 | CAAP1 | S312 | ochoa | Caspase activity and apoptosis inhibitor 1 (Conserved anti-apoptotic protein) (CAAP) | Anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. {ECO:0000269|PubMed:21980415}. |
Q9H8K7 | PAAT | S201 | ochoa | ATPase PAAT (EC 3.6.1.-) (Protein associated with ABC transporters) (PAAT) | ATPase that regulates mitochondrial ABC transporters ABCB7, ABCB8/MITOSUR and ABCB10 (PubMed:25063848). Regulates mitochondrial ferric concentration and heme biosynthesis and plays a role in the maintenance of mitochondrial homeostasis and cell survival (PubMed:25063848). {ECO:0000269|PubMed:25063848}. |
Q9H8M7 | MINDY3 | S18 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-3 (EC 3.4.19.12) (Dermal papilla-derived protein 5) (Deubiquitinating enzyme MINDY-3) (Protein CARP) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000269|PubMed:27292798}. |
Q9H8N7 | ZNF395 | S468 | ochoa | Zinc finger protein 395 (HD-regulating factor 2) (HDRF-2) (Huntington disease gene regulatory region-binding protein 2) (HD gene regulatory region-binding protein 2) (HDBP-2) (Papillomavirus regulatory factor 1) (PRF-1) (Papillomavirus-binding factor) | Plays a role in papillomavirus genes transcription. |
Q9H8U3 | ZFAND3 | S129 | ochoa | AN1-type zinc finger protein 3 (Testis-expressed protein 27) | None |
Q9H8V3 | ECT2 | S397 | ochoa|psp | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9H8V3 | ECT2 | S716 | ochoa | Protein ECT2 (Epithelial cell-transforming sequence 2 oncogene) | Guanine nucleotide exchange factor (GEF) that catalyzes the exchange of GDP for GTP. Promotes guanine nucleotide exchange on the Rho family members of small GTPases, like RHOA, RHOC, RAC1 and CDC42. Required for signal transduction pathways involved in the regulation of cytokinesis. Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Regulates the translocation of RHOA from the central spindle to the equatorial region. Plays a role in the control of mitotic spindle assembly; regulates the activation of CDC42 in metaphase for the process of spindle fibers attachment to kinetochores before chromosome congression. Involved in the regulation of epithelial cell polarity; participates in the formation of epithelial tight junctions in a polarity complex PARD3-PARD6-protein kinase PRKCQ-dependent manner. Plays a role in the regulation of neurite outgrowth. Inhibits phenobarbital (PB)-induced NR1I3 nuclear translocation. Stimulates the activity of RAC1 through its association with the oncogenic PARD6A-PRKCI complex in cancer cells, thereby acting to coordinately drive tumor cell proliferation and invasion. Also stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:10579713, ECO:0000269|PubMed:14645260, ECO:0000269|PubMed:15254234, ECO:0000269|PubMed:15545273, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16170345, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16495035, ECO:0000269|PubMed:19129481, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19617897, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21373644, ECO:0000269|PubMed:25068414, ECO:0000269|PubMed:31888991}. |
Q9H910 | JPT2 | S97 | ochoa|psp | Jupiter microtubule associated homolog 2 (Hematological and neurological expressed 1-like protein) (HN1-like protein) | Nicotinic acid adenine dinucleotide phosphate (NAADP) binding protein required for NAADP-evoked intracellular calcium release (PubMed:33758061, PubMed:33758062). Confers NAADP-sensitivity to the two pore channels (TPCs) complex (PubMed:33758061). Enables NAADP to activate Ca(2+) release from the endoplasmic reticulum through ryanodine receptors (PubMed:33758062). {ECO:0000269|PubMed:33758061, ECO:0000269|PubMed:33758062}.; FUNCTION: (Microbial infection) Involved in the endolysosomal trafficking of human coronavirus SARS-CoV-2. {ECO:0000269|PubMed:33758061}. |
Q9H972 | C14orf93 | S224 | ochoa | Uncharacterized protein C14orf93 | None |
Q9H972 | C14orf93 | S285 | ochoa | Uncharacterized protein C14orf93 | None |
Q9H9B1 | EHMT1 | S1004 | ochoa | Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}. |
Q9H9C1 | VIPAS39 | S156 | ochoa | Spermatogenesis-defective protein 39 homolog (hSPE-39) (VPS33B-interacting protein in apical-basolateral polarity regulator) (VPS33B-interacting protein in polarity and apical restriction) | Proposed to be involved in endosomal maturation implicating in part VPS33B. In epithelial cells, the VPS33B:VIPAS39 complex may play a role in the apical RAB11A-dependent recycling pathway and in the maintenance of the apical-basolateral polarity (PubMed:20190753). May play a role in lysosomal trafficking, probably via association with the core HOPS complex in a discrete population of endosomes; the functions seems to be independent of VPS33B (PubMed:19109425). May play a role in vesicular trafficking during spermatogenesis (By similarity). May be involved in direct or indirect transcriptional regulation of E-cadherin (By similarity). {ECO:0000250|UniProtKB:Q23288, ECO:0000269|PubMed:19109425, ECO:0000269|PubMed:20190753}. |
Q9H9H5 | MAP6D1 | S167 | ochoa | MAP6 domain-containing protein 1 (21 kDa STOP-like protein) (SL21) | May have microtubule-stabilizing activity. {ECO:0000250}. |
Q9H9J4 | USP42 | S483 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9H9J4 | USP42 | S1007 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9H9P5 | UNKL | S327 | ochoa | Putative E3 ubiquitin-protein ligase UNKL (EC 2.3.2.-) (RING finger protein unkempt-like) (Zinc finger CCCH domain-containing protein 5-like) | May participate in a protein complex showing an E3 ligase activity regulated by RAC1. Ubiquitination is directed towards itself and possibly other substrates, such as SMARCD2/BAF60b. Intrinsic E3 ligase activity has not been proven. {ECO:0000269|PubMed:20148946}. |
Q9H9R9 | DBNDD1 | S119 | ochoa | Dysbindin domain-containing protein 1 | None |
Q9HAD4 | WDR41 | S19 | ochoa | WD repeat-containing protein 41 | Non-catalytic component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:27103069, PubMed:27193190, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:27103069). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro, however WDR42 is shown not be an essential complex component for this function (PubMed:32303654). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27103069, PubMed:27617292). {ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q9HAU0 | PLEKHA5 | S526 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAU0 | PLEKHA5 | S568 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAU0 | PLEKHA5 | S607 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAV4 | XPO5 | S416 | ochoa | Exportin-5 (Exp5) (Ran-binding protein 21) | Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos). XPO5 in the nucleus binds cooperatively to the RNA and to the GTPase Ran in its active GTP-bound form. Proteins containing dsRBDs can associate with this trimeric complex through the RNA. Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause disassembly of the complex and release of the cargo from the export receptor. XPO5 then returns to the nuclear compartment by diffusion through the nuclear pore complex, to mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Overexpression may in some circumstances enhance RNA-mediated gene silencing (RNAi). Mediates nuclear export of isoform 5 of ADAR/ADAR1 in a RanGTP-dependent manner.; FUNCTION: Mediates the nuclear export of micro-RNA precursors, which form short hairpins (PubMed:14631048, PubMed:14681208, PubMed:15613540). Also mediates the nuclear export of synthetic short hairpin RNAs used for RNA interference. In some circumstances can also mediate the nuclear export of deacylated and aminoacylated tRNAs. Specifically recognizes dsRNAs that lack a 5'-overhang in a sequence-independent manner, have only a short 3'-overhang, and that have a double-stranded length of at least 15 base-pairs (PubMed:19965479). Binding is dependent on Ran-GTP (PubMed:19965479). {ECO:0000269|PubMed:14631048, ECO:0000269|PubMed:14681208, ECO:0000269|PubMed:15613540, ECO:0000269|PubMed:19965479}.; FUNCTION: (Microbial infection) Mediates the nuclear export of adenovirus VA1 dsRNA. {ECO:0000269|PubMed:12509441}. |
Q9HAV4 | XPO5 | S826 | ochoa | Exportin-5 (Exp5) (Ran-binding protein 21) | Mediates the nuclear export of proteins bearing a double-stranded RNA binding domain (dsRBD) and double-stranded RNAs (cargos). XPO5 in the nucleus binds cooperatively to the RNA and to the GTPase Ran in its active GTP-bound form. Proteins containing dsRBDs can associate with this trimeric complex through the RNA. Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause disassembly of the complex and release of the cargo from the export receptor. XPO5 then returns to the nuclear compartment by diffusion through the nuclear pore complex, to mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Overexpression may in some circumstances enhance RNA-mediated gene silencing (RNAi). Mediates nuclear export of isoform 5 of ADAR/ADAR1 in a RanGTP-dependent manner.; FUNCTION: Mediates the nuclear export of micro-RNA precursors, which form short hairpins (PubMed:14631048, PubMed:14681208, PubMed:15613540). Also mediates the nuclear export of synthetic short hairpin RNAs used for RNA interference. In some circumstances can also mediate the nuclear export of deacylated and aminoacylated tRNAs. Specifically recognizes dsRNAs that lack a 5'-overhang in a sequence-independent manner, have only a short 3'-overhang, and that have a double-stranded length of at least 15 base-pairs (PubMed:19965479). Binding is dependent on Ran-GTP (PubMed:19965479). {ECO:0000269|PubMed:14631048, ECO:0000269|PubMed:14681208, ECO:0000269|PubMed:15613540, ECO:0000269|PubMed:19965479}.; FUNCTION: (Microbial infection) Mediates the nuclear export of adenovirus VA1 dsRNA. {ECO:0000269|PubMed:12509441}. |
Q9HAW4 | CLSPN | S1289 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HB07 | MYG1 | S120 | ochoa | MYG1 exonuclease (EC 3.1.-.-) | 3'-5' RNA exonuclease which cleaves in situ on specific transcripts in both nucleus and mitochondrion. Involved in regulating spatially segregated organellar RNA processing, acts as a coordinator of nucleo-mitochondrial crosstalk (PubMed:31081026). In nucleolus, processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins (Probable). {ECO:0000269|PubMed:31081026, ECO:0000305|PubMed:31081026}. |
Q9HB21 | PLEKHA1 | S362 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HB58 | SP110 | S380 | ochoa | Sp110 nuclear body protein (Interferon-induced protein 41/75) (Speckled 110 kDa) (Transcriptional coactivator Sp110) | Transcription factor. May be a nuclear hormone receptor coactivator. Enhances transcription of genes with retinoic acid response elements (RARE). |
Q9HBE1 | PATZ1 | S282 | ochoa | POZ-, AT hook-, and zinc finger-containing protein 1 (BTB/POZ domain zinc finger transcription factor) (Protein kinase A RI subunit alpha-associated protein) (Zinc finger and BTB domain-containing protein 19) (Zinc finger protein 278) (Zinc finger sarcoma gene protein) | Transcriptional regulator that plays a role in many biological processes such as embryogenesis, senescence, T-cell development or neurogenesis (PubMed:10713105, PubMed:25755280, PubMed:31875552). Interacts with the TP53 protein to control genes that are important in proliferation and in the DNA-damage response. Mechanistically, the interaction inhibits the DNA binding and transcriptional activity of TP53/p53 (PubMed:25755280). Part of the transcriptional network modulating regulatory T-cell development and controls the generation of the regulatory T-cell pool under homeostatic conditions (PubMed:31875552). {ECO:0000269|PubMed:10713105, ECO:0000269|PubMed:25755280, ECO:0000269|PubMed:31875552}.; FUNCTION: (Microbial infection) Plays a positive role in viral cDNA synthesis. {ECO:0000269|PubMed:31060775}. |
Q9HBM0 | VEZT | S617 | ochoa | Vezatin | Plays a pivotal role in the establishment of adherens junctions and their maintenance in adult life. Required for morphogenesis of the preimplantation embryo, and for the implantation process. {ECO:0000250|UniProtKB:Q3ZK22}.; FUNCTION: (Microbial infection) In case of Listeria infection, promotes bacterial internalization by participating in myosin VIIa recruitment to the entry site. {ECO:0000269|PubMed:15090598}. |
Q9HBM6 | TAF9B | S85 | ochoa | Transcription initiation factor TFIID subunit 9B (Neuronal cell death-related protein 7) (DN-7) (Transcription initiation factor TFIID subunit 9-like) (Transcription-associated factor TAFII31L) | Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription. {ECO:0000269|PubMed:15899866}. |
Q9HBT8 | ZNF286A | S19 | ochoa | Zinc finger protein 286A | May be involved in transcriptional regulation. |
Q9HBU1 | BARX1 | S209 | ochoa | Homeobox protein BarH-like 1 | Transcription factor, which is involved in craniofacial development, in odontogenesis and in stomach organogenesis. May have a role in the differentiation of molars from incisors. Plays a role in suppressing endodermal Wnt activity (By similarity). Binds to a regulatory module of the NCAM promoter. {ECO:0000250, ECO:0000269|PubMed:9804553}. |
Q9HC44 | GPBP1L1 | S216 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9HC44 | GPBP1L1 | S445 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9HC52 | CBX8 | S265 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCC9 | ZFYVE28 | S586 | ochoa | Lateral signaling target protein 2 homolog (hLst2) (Zinc finger FYVE domain-containing protein 28) | Negative regulator of epidermal growth factor receptor (EGFR) signaling. Acts by promoting EGFR degradation in endosomes when not monoubiquitinated. {ECO:0000269|PubMed:19460345}. |
Q9HCD6 | TANC2 | S169 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCD6 | TANC2 | S1619 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCE1 | MOV10 | S791 | ochoa | Helicase MOV-10 (EC 3.6.4.13) (Armitage homolog) (Moloney leukemia virus 10 protein) | 5' to 3' RNA helicase that is involved in a number of cellular roles ranging from mRNA metabolism and translation, modulation of viral infectivity, inhibition of retrotransposition, or regulation of synaptic transmission (PubMed:23093941). Plays an important role in innate antiviral immunity by promoting type I interferon production (PubMed:27016603, PubMed:27974568, PubMed:35157734). Mechanistically, specifically uses IKKepsilon/IKBKE as the mediator kinase for IRF3 activation (PubMed:27016603, PubMed:35157734). Blocks HIV-1 virus replication at a post-entry step (PubMed:20215113). Counteracts HIV-1 Vif-mediated degradation of APOBEC3G through its helicase activity by interfering with the ubiquitin-proteasome pathway (PubMed:29258557). Also inhibits hepatitis B virus/HBV replication by interacting with HBV RNA and thereby inhibiting the early step of viral reverse transcription (PubMed:31722967). Contributes to UPF1 mRNA target degradation by translocation along 3' UTRs (PubMed:24726324). Required for microRNA (miRNA)-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:16289642, PubMed:17507929, PubMed:22791714). In cooperation with FMR1, regulates miRNA-mediated translational repression by AGO2 (PubMed:25464849). Restricts retrotransposition of long interspersed element-1 (LINE-1) in cooperation with TUT4 and TUT7 counteracting the RNA chaperonne activity of L1RE1 (PubMed:23093941, PubMed:30122351). Facilitates LINE-1 uridylation by TUT4 and TUT7 (PubMed:30122351). Required for embryonic viability and for normal central nervous system development and function. Plays two critical roles in early brain development: suppresses retroelements in the nucleus by directly inhibiting cDNA synthesis, while regulates cytoskeletal mRNAs to influence neurite outgrowth in the cytosol (By similarity). May function as a messenger ribonucleoprotein (mRNP) clearance factor (PubMed:24726324). {ECO:0000250|UniProtKB:P23249, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:20215113, ECO:0000269|PubMed:22791714, ECO:0000269|PubMed:23093941, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25464849, ECO:0000269|PubMed:27016603, ECO:0000269|PubMed:27974568, ECO:0000269|PubMed:29258557, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31722967, ECO:0000269|PubMed:35157734}.; FUNCTION: (Microbial infection) Required for RNA-directed transcription and replication of the human hepatitis delta virus (HDV). Interacts with small capped HDV RNAs derived from genomic hairpin structures that mark the initiation sites of RNA-dependent HDV RNA transcription. {ECO:0000269|PubMed:18552826}. |
Q9HCE3 | ZNF532 | S130 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCE3 | ZNF532 | S602 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCE6 | ARHGEF10L | S138 | ochoa | Rho guanine nucleotide exchange factor 10-like protein (GrinchGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RHOA, RHOB and RHOC. {ECO:0000269|PubMed:16112081}. |
Q9HCE7 | SMURF1 | S200 | ochoa | E3 ubiquitin-protein ligase SMURF1 (hSMURF1) (EC 2.3.2.26) (HECT-type E3 ubiquitin transferase SMURF1) (SMAD ubiquitination regulatory factor 1) (SMAD-specific E3 ubiquitin-protein ligase 1) | E3 ubiquitin-protein ligase that acts as a negative regulator of BMP signaling pathway. Mediates ubiquitination and degradation of SMAD1 and SMAD5, 2 receptor-regulated SMADs specific for the BMP pathway. Promotes ubiquitination and subsequent proteasomal degradation of TRAF family members and RHOA. Promotes ubiquitination and subsequent proteasomal degradation of MAVS (PubMed:23087404). Acts as an antagonist of TGF-beta signaling by ubiquitinating TGFBR1 and targeting it for degradation (PubMed:21791611). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:10458166, ECO:0000269|PubMed:19937093, ECO:0000269|PubMed:21402695, ECO:0000269|PubMed:21791611, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23999003}. |
Q9HCH5 | SYTL2 | S301 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCH5 | SYTL2 | S398 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCH5 | SYTL2 | S437 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCI5 | MAGEE1 | S467 | ochoa | Melanoma-associated antigen E1 (Alpha-dystrobrevin-associated MAGE Protein) (DAMAGE) (Hepatocellular carcinoma-associated protein 1) (MAGE-E1 antigen) | May enhance ubiquitin ligase activity of RING-type zinc finger-containing E3 ubiquitin-protein ligases. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex. {ECO:0000269|PubMed:20864041}. |
Q9HCJ3 | RAVER2 | S598 | ochoa | Ribonucleoprotein PTB-binding 2 (Protein raver-2) | May bind single-stranded nucleic acids. {ECO:0000305}. |
Q9HCJ3 | RAVER2 | S635 | ochoa | Ribonucleoprotein PTB-binding 2 (Protein raver-2) | May bind single-stranded nucleic acids. {ECO:0000305}. |
Q9HCK4 | ROBO2 | S1140 | ochoa | Roundabout homolog 2 | Receptor for SLIT2, and probably SLIT1, which are thought to act as molecular guidance cue in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development. |
Q9HCL0 | PCDH18 | S778 | ochoa | Protocadherin-18 | Potential calcium-dependent cell-adhesion protein. |
Q9HCM1 | RESF1 | S221 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCM1 | RESF1 | S715 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCM3 | KIAA1549 | S1878 | ochoa | UPF0606 protein KIAA1549 | May play a role in photoreceptor function. {ECO:0000269|PubMed:30120214}. |
Q9HCM4 | EPB41L5 | S550 | ochoa | Band 4.1-like protein 5 (Erythrocyte membrane protein band 4.1-like 5) | Plays a role in the formation and organization of tight junctions during the establishment of polarity in epithelial cells. {ECO:0000269|PubMed:17920587}. |
Q9HCM7 | FBRSL1 | S790 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9HCS5 | EPB41L4A | S389 | ochoa | Band 4.1-like protein 4A (Erythrocyte membrane protein band 4.1-like 4A) (Protein NBL4) | None |
Q9HCX4 | TRPC7 | S714 | psp | Short transient receptor potential channel 7 (TrpC7) (Transient receptor protein 7) (TRP-7) (hTRP7) | Forms a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) (By similarity). May also be activated by intracellular calcium store depletion. {ECO:0000250|UniProtKB:Q9WVC5}. |
Q9HDC5 | JPH1 | S157 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9HDC5 | JPH1 | S185 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9HDC5 | JPH1 | S413 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NP74 | PALMD | S321 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NP74 | PALMD | S498 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NP74 | PALMD | S520 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NP87 | POLM | S372 | ochoa|psp | DNA-directed DNA/RNA polymerase mu (Pol Mu) (EC 2.7.7.7) (Terminal transferase) | Gap-filling polymerase involved in repair of DNA double-strand breaks by non-homologous end joining (NHEJ). Participates in immunoglobulin (Ig) light chain gene rearrangement in V(D)J recombination. {ECO:0000269|PubMed:12640116, ECO:0000269|PubMed:12888504, ECO:0000269|PubMed:17483519, ECO:0000269|PubMed:17915942}. |
Q9NPB8 | GPCPD1 | S175 | ochoa | Glycerophosphocholine phosphodiesterase GPCPD1 (EC 3.1.4.2) (Glycerophosphodiester phosphodiesterase 5) | May be involved in the negative regulation of skeletal muscle differentiation, independently of its glycerophosphocholine phosphodiesterase activity. {ECO:0000250}. |
Q9NPC7 | MYNN | S282 | ochoa | Myoneurin (Zinc finger and BTB domain-containing protein 31) | None |
Q9NPC7 | MYNN | S547 | ochoa | Myoneurin (Zinc finger and BTB domain-containing protein 31) | None |
Q9NPC8 | SIX2 | S150 | ochoa | Homeobox protein SIX2 (Sine oculis homeobox homolog 2) | Transcription factor that plays an important role in the development of several organs, including kidney, skull and stomach. During kidney development, maintains cap mesenchyme multipotent nephron progenitor cells in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud and cooperates with WNT9B to promote renewing progenitor cells proliferation. Acts through its interaction with TCF7L2 and OSR1 in a canonical Wnt signaling independent manner preventing transcription of differentiation genes in cap mesenchyme such as WNT4. Also acts independently of OSR1 to activate expression of many cap mesenchyme genes, including itself, GDNF and OSR1. During craniofacial development plays a role in growth and elongation of the cranial base through regulation of chondrocyte differentiation. During stomach organogenesis, controls pyloric sphincter formation and mucosal growth through regulation of a gene network including NKX2-5, BMPR1B, BMP4, SOX9 and GREM1. During branchial arch development, acts to mediate HOXA2 control over the insulin-like growth factor pathway. May also be involved in limb tendon and ligament development (By similarity). Plays a role in cell proliferation and migration. {ECO:0000250|UniProtKB:Q62232, ECO:0000269|PubMed:22995329}. |
Q9NPE3 | NOP10 | S36 | ochoa | H/ACA ribonucleoprotein complex subunit 3 (Nucleolar protein 10) (Nucleolar protein family A member 3) (snoRNP protein NOP10) | Required for ribosome biogenesis and telomere maintenance. Part of the H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1. Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. May also be required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme. {ECO:0000269|PubMed:15044956, ECO:0000269|PubMed:32554502}. |
Q9NPH3 | IL1RAP | S551 | ochoa | Interleukin-1 receptor accessory protein (IL-1 receptor accessory protein) (IL-1RAcP) (EC 3.2.2.6) (Interleukin-1 receptor 3) (IL-1R-3) (IL-1R3) | Coreceptor for IL1RL2 in the IL-36 signaling system (By similarity). Coreceptor with IL1R1 in the IL-1 signaling system. Associates with IL1R1 bound to IL1B to form the high affinity interleukin-1 receptor complex which mediates interleukin-1-dependent activation of NF-kappa-B and other pathways. Signaling involves the recruitment of adapter molecules such as TOLLIP, MYD88, and IRAK1 or IRAK2 via the respective TIR domains of the receptor/coreceptor subunits. Recruits TOLLIP to the signaling complex. Does not bind to interleukin-1 alone; binding of IL1RN to IL1R1, prevents its association with IL1R1 to form a signaling complex. The cellular response is modulated through a non-signaling association with the membrane IL1R2 decoy receptor. Coreceptor for IL1RL1 in the IL-33 signaling system. Can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to PTPRD (By similarity). May play a role in IL1B-mediated costimulation of IFNG production from T-helper 1 (Th1) cells (Probable). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:10799889, ECO:0000269|PubMed:9371760, ECO:0000305|PubMed:10653850, ECO:0000305|PubMed:19836339}.; FUNCTION: [Isoform 2]: Associates with secreted ligand-bound IL1R2 and increases the affinity of secreted IL1R2 for IL1B; this complex formation may be the dominant mechanism for neutralization of IL1B by secreted/soluble receptors (PubMed:12530978). Enhances the ability of secreted IL1R1 to inhibit IL-33 signaling (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:12530978}.; FUNCTION: [Isoform 4]: Unable to mediate canonical IL-1 signaling (PubMed:19481478). Required for Src phosphorylation by IL1B. May be involved in IL1B-potentiated NMDA-induced calcium influx in neurons (By similarity). {ECO:0000250|UniProtKB:Q61730, ECO:0000269|PubMed:19481478}. |
Q9NPI1 | BRD7 | S289 | ochoa | Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) | Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}. |
Q9NPI1 | BRD7 | S621 | ochoa | Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) | Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}. |
Q9NPI6 | DCP1A | S62 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NPI6 | DCP1A | S373 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NPJ3 | ACOT13 | S92 | ochoa | Acyl-coenzyme A thioesterase 13 (Acyl-CoA thioesterase 13) (EC 3.1.2.-) (Hotdog-fold thioesterase superfamily member 2) (Palmitoyl-CoA hydrolase) (EC 3.1.2.2) (Thioesterase superfamily member 2) (THEM2) [Cleaved into: Acyl-coenzyme A thioesterase 13, N-terminally processed] | Catalyzes the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoASH), regulating their respective intracellular levels (PubMed:16934754, PubMed:19170545). Has acyl-CoA thioesterase activity towards medium (C12) and long-chain (C18) fatty acyl-CoA substrates (By similarity) (PubMed:16934754, PubMed:19170545). Can also hydrolyze 3-hydroxyphenylacetyl-CoA and 3,4-dihydroxyphenylacetyl-CoA (in vitro) (By similarity) (PubMed:16934754, PubMed:19170545). May play a role in controlling adaptive thermogenesis (By similarity). {ECO:0000250|UniProtKB:Q9CQR4, ECO:0000269|PubMed:16934754, ECO:0000269|PubMed:19170545}. |
Q9NPQ8 | RIC8A | S502 | ochoa|psp | Chaperone Ric-8A (Synembryn-A) | Chaperone that specifically binds and folds nascent G alpha proteins prior to G protein heterotrimer formation, promoting their stability and activity: folds GNAI1, GNAO1, GNA13 and GNAQ (By similarity). Does not fold G(s) G-alpha proteins GNAS nor GNAL (By similarity). Also acts as a guanine nucleotide exchange factor (GEF) for G alpha proteins by stimulating exchange of bound GDP for free GTP (By similarity). Involved in regulation of microtubule pulling forces during mitotic movement of chromosomes by stimulating G(i)-alpha protein (GNAI1), possibly leading to release G(i)-alpha-GTP and NuMA proteins from the NuMA-GPSM2-G(i)-alpha-GDP complex (By similarity). Also acts as an activator for G(q)-alpha (GNAQ) protein by enhancing the G(q)-coupled receptor-mediated ERK activation (PubMed:16629901). {ECO:0000250|UniProtKB:Q80ZG1, ECO:0000269|PubMed:16629901}. |
Q9NQ66 | PLCB1 | S582 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NQ75 | CASS4 | S555 | ochoa | Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) | Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}. |
Q9NQ86 | TRIM36 | S80 | ochoa | E3 ubiquitin-protein ligase TRIM36 (EC 2.3.2.27) (RING finger protein 98) (RING-type E3 ubiquitin transferase TRIM36) (Tripartite motif-containing protein 36) (Zinc-binding protein Rbcc728) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins. Involved in chromosome segregation and cell cycle regulation (PubMed:28087737). May play a role in the acrosome reaction and fertilization. {ECO:0000250|UniProtKB:Q80WG7, ECO:0000269|PubMed:28087737}. |
Q9NQ86 | TRIM36 | S87 | ochoa | E3 ubiquitin-protein ligase TRIM36 (EC 2.3.2.27) (RING finger protein 98) (RING-type E3 ubiquitin transferase TRIM36) (Tripartite motif-containing protein 36) (Zinc-binding protein Rbcc728) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins. Involved in chromosome segregation and cell cycle regulation (PubMed:28087737). May play a role in the acrosome reaction and fertilization. {ECO:0000250|UniProtKB:Q80WG7, ECO:0000269|PubMed:28087737}. |
Q9NQ88 | TIGAR | S157 | ochoa | Fructose-2,6-bisphosphatase TIGAR (EC 3.1.3.46) (TP53-induced glycolysis and apoptosis regulator) (TP53-induced glycolysis regulatory phosphatase) | Fructose-bisphosphatase hydrolyzing fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate (PubMed:19015259). Acts as a negative regulator of glycolysis by lowering intracellular levels of fructose-2,6-bisphosphate in a p53/TP53-dependent manner, resulting in the pentose phosphate pathway (PPP) activation and NADPH production (PubMed:16839880, PubMed:22887998). Contributes to the generation of reduced glutathione to cause a decrease in intracellular reactive oxygen species (ROS) content, correlating with its ability to protect cells from oxidative or metabolic stress-induced cell death (PubMed:16839880, PubMed:19713938, PubMed:22887998, PubMed:23726973, PubMed:23817040). Plays a role in promoting protection against cell death during hypoxia by decreasing mitochondria ROS levels in a HK2-dependent manner through a mechanism that is independent of its fructose-bisphosphatase activity (PubMed:23185017). In response to cardiac damage stress, mediates p53-induced inhibition of myocyte mitophagy through ROS levels reduction and the subsequent inactivation of BNIP3. Reduced mitophagy results in an enhanced apoptotic myocyte cell death, and exacerbates cardiac damage (By similarity). Plays a role in adult intestinal regeneration; contributes to the growth, proliferation and survival of intestinal crypts following tissue ablation (PubMed:23726973). Plays a neuroprotective role against ischemic brain damage by enhancing PPP flux and preserving mitochondria functions (By similarity). Protects glioma cells from hypoxia- and ROS-induced cell death by inhibiting glycolysis and activating mitochondrial energy metabolism and oxygen consumption in a TKTL1-dependent and p53/TP53-independent manner (PubMed:22887998). Plays a role in cancer cell survival by promoting DNA repair through activating PPP flux in a CDK5-ATM-dependent signaling pathway during hypoxia and/or genome stress-induced DNA damage responses (PubMed:25928429). Involved in intestinal tumor progression (PubMed:23726973). {ECO:0000250|UniProtKB:Q8BZA9, ECO:0000269|PubMed:16839880, ECO:0000269|PubMed:19015259, ECO:0000269|PubMed:19713938, ECO:0000269|PubMed:22887998, ECO:0000269|PubMed:23185017, ECO:0000269|PubMed:23726973, ECO:0000269|PubMed:23817040, ECO:0000269|PubMed:25928429}. |
Q9NQC3 | RTN4 | S239 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQC3 | RTN4 | S739 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQC7 | CYLD | S399 | ochoa | Ubiquitin carboxyl-terminal hydrolase CYLD (EC 3.4.19.12) (Deubiquitinating enzyme CYLD) (Ubiquitin thioesterase CYLD) (Ubiquitin-specific-processing protease CYLD) | Deubiquitinase that specifically cleaves 'Lys-63'- and linear 'Met-1'-linked polyubiquitin chains and is involved in NF-kappa-B activation and TNF-alpha-induced necroptosis (PubMed:18313383, PubMed:18636086, PubMed:26670046, PubMed:26997266, PubMed:27458237, PubMed:27591049, PubMed:27746020, PubMed:29291351, PubMed:32185393). Negatively regulates NF-kappa-B activation by deubiquitinating upstream signaling factors (PubMed:12917689, PubMed:12917691, PubMed:32185393). Contributes to the regulation of cell survival, proliferation and differentiation via its effects on NF-kappa-B activation (PubMed:12917690). Negative regulator of Wnt signaling (PubMed:20227366). Inhibits HDAC6 and thereby promotes acetylation of alpha-tubulin and stabilization of microtubules (PubMed:19893491). Plays a role in the regulation of microtubule dynamics, and thereby contributes to the regulation of cell proliferation, cell polarization, cell migration, and angiogenesis (PubMed:18222923, PubMed:20194890). Required for normal cell cycle progress and normal cytokinesis (PubMed:17495026, PubMed:19893491). Inhibits nuclear translocation of NF-kappa-B (PubMed:18636086). Plays a role in the regulation of inflammation and the innate immune response, via its effects on NF-kappa-B activation (PubMed:18636086). Dispensable for the maturation of intrathymic natural killer cells, but required for the continued survival of immature natural killer cells (By similarity). Negatively regulates TNFRSF11A signaling and osteoclastogenesis (By similarity). Involved in the regulation of ciliogenesis, allowing ciliary basal bodies to migrate and dock to the plasma membrane; this process does not depend on NF-kappa-B activation (By similarity). Ability to remove linear ('Met-1'-linked) polyubiquitin chains regulates innate immunity and TNF-alpha-induced necroptosis: recruited to the LUBAC complex via interaction with SPATA2 and restricts linear polyubiquitin formation on target proteins (PubMed:26670046, PubMed:26997266, PubMed:27458237, PubMed:27591049). Regulates innate immunity by restricting linear polyubiquitin formation on RIPK2 in response to NOD2 stimulation (PubMed:26997266). Involved in TNF-alpha-induced necroptosis by removing linear ('Met-1'-linked) polyubiquitin chains from RIPK1, thereby regulating the kinase activity of RIPK1 (By similarity). Negatively regulates intestinal inflammation by removing 'Lys-63' linked polyubiquitin chain of NLRP6, thereby reducing the interaction between NLRP6 and PYCARD/ASC and formation of the NLRP6 inflammasome (By similarity). Does not catalyze deubiquitination of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains (PubMed:27746020). Removes 'Lys-63' linked polyubiquitin chain of MAP3K7, which inhibits phosphorylation and blocks downstream activation of the JNK-p38 kinase cascades (PubMed:29291351). Also removes 'Lys-63'-linked polyubiquitin chains of MAP3K1 and MA3P3K3, which inhibit their interaction with MAP2K1 and MAP2K2 (PubMed:34497368). {ECO:0000250|UniProtKB:Q80TQ2, ECO:0000269|PubMed:12917689, ECO:0000269|PubMed:12917690, ECO:0000269|PubMed:12917691, ECO:0000269|PubMed:17495026, ECO:0000269|PubMed:18222923, ECO:0000269|PubMed:18313383, ECO:0000269|PubMed:18636086, ECO:0000269|PubMed:19893491, ECO:0000269|PubMed:20194890, ECO:0000269|PubMed:20227366, ECO:0000269|PubMed:26670046, ECO:0000269|PubMed:26997266, ECO:0000269|PubMed:27458237, ECO:0000269|PubMed:27591049, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:29291351, ECO:0000269|PubMed:32185393, ECO:0000269|PubMed:34497368}. |
Q9NQG5 | RPRD1B | S134 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 1B (Cell cycle-related and expression-elevated protein in tumor) | Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly-A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter through promotion of the formation of a chromatin loop. Also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A. Promotes cell proliferation. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:22264791, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}. |
Q9NQG6 | MIEF1 | S79 | ochoa | Mitochondrial dynamics protein MIEF1 (Mitochondrial dynamics protein of 51 kDa) (Mitochondrial elongation factor 1) (Smith-Magenis syndrome chromosomal region candidate gene 7 protein-like) (SMCR7-like protein) | Mitochondrial outer membrane protein which regulates mitochondrial fission/fusion dynamics (PubMed:21701560, PubMed:23921378, PubMed:33632269). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity and DNM1L oligomerization. Binds ADP and can also bind GDP, although with lower affinity. Does not bind CDP, UDP, ATP, AMP or GTP. Inhibits DNM1L GTPase activity in the absence of bound ADP. Requires ADP to stimulate DNM1L GTPase activity and the assembly of DNM1L into long, oligomeric tubules with a spiral pattern, as opposed to the ring-like DNM1L oligomers observed in the absence of bound ADP. Does not require ADP for its function in recruiting DNM1L. {ECO:0000269|PubMed:21508961, ECO:0000269|PubMed:21701560, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:24515348, ECO:0000269|PubMed:29083303, ECO:0000269|PubMed:33632269}. |
Q9NQG7 | HPS4 | S272 | ochoa | BLOC-3 complex member HPS4 (Hermansky-Pudlak syndrome 4 protein) (Light-ear protein homolog) | Component of the BLOC-3 complex, a complex that acts as a guanine exchange factor (GEF) for RAB32 and RAB38, promotes the exchange of GDP to GTP, converting them from an inactive GDP-bound form into an active GTP-bound form. The BLOC-3 complex plays an important role in the control of melanin production and melanosome biogenesis and promotes the membrane localization of RAB32 and RAB38 (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
Q9NQL9 | DMRT3 | S180 | ochoa | Doublesex- and mab-3-related transcription factor 3 | Probable transcription factor that plays a role in configuring the spinal circuits controlling stride in vertebrates. Involved in neuronal specification within specific subdivision of spinal cord neurons and in the development of a coordinated locomotor network controlling limb movements. May regulate transcription during sexual development (By similarity). {ECO:0000250}. |
Q9NQR1 | KMT5A | S100 | ochoa|psp | N-lysine methyltransferase KMT5A (EC 2.1.1.-) (H4-K20-HMTase KMT5A) (Histone-lysine N-methyltransferase KMT5A) (EC 2.1.1.361) (Lysine N-methyltransferase 5A) (Lysine-specific methylase 5A) (PR/SET domain-containing protein 07) (PR-Set7) (PR/SET07) (SET domain-containing protein 8) | Protein-lysine N-methyltransferase that monomethylates both histones and non-histone proteins (PubMed:12086618, PubMed:12121615, PubMed:15964846, PubMed:17707234, PubMed:27338793). Specifically monomethylates 'Lys-20' of histone H4 (H4K20me1) (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599, PubMed:27338793). H4K20me1 is enriched during mitosis and represents a specific tag for epigenetic transcriptional repression (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Required for cell proliferation, probably by contributing to the maintenance of proper higher-order structure of DNA during mitosis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Involved in chromosome condensation and proper cytokinesis (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Nucleosomes are preferred as substrate compared to free histones (PubMed:12086618, PubMed:12121615, PubMed:15200950, PubMed:15933069, PubMed:15933070, PubMed:15964846, PubMed:16517599). Mediates monomethylation of p53/TP53 at 'Lys-382', leading to repress p53/TP53-target genes (PubMed:17707234). Plays a negative role in TGF-beta response regulation and a positive role in cell migration (PubMed:23478445). {ECO:0000269|PubMed:12086618, ECO:0000269|PubMed:12121615, ECO:0000269|PubMed:15200950, ECO:0000269|PubMed:15933069, ECO:0000269|PubMed:15933070, ECO:0000269|PubMed:15964846, ECO:0000269|PubMed:16517599, ECO:0000269|PubMed:17707234, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:27338793}. |
Q9NQR4 | NIT2 | S47 | ochoa | Omega-amidase NIT2 (EC 3.5.1.3) (Nitrilase homolog 2) | Has omega-amidase activity (PubMed:19595734, PubMed:22674578). The role of omega-amidase is to remove potentially toxic intermediates by converting 2-oxoglutaramate and 2-oxosuccinamate to biologically useful 2-oxoglutarate and oxaloacetate, respectively (PubMed:19595734). {ECO:0000269|PubMed:19595734, ECO:0000269|PubMed:22674578}. |
Q9NQT4 | EXOSC5 | S20 | ochoa | Exosome complex component RRP46 (Chronic myelogenous leukemia tumor antigen 28) (Exosome component 5) (Ribosomal RNA-processing protein 46) (p12B) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes (PubMed:11782436, PubMed:21269460). In vitro, EXOSC5 does not bind or digest single-stranded RNA and binds to double-stranded DNA without detectable DNase activity (PubMed:20660080). {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:20660080, ECO:0000269|PubMed:21269460}. |
Q9NQT8 | KIF13B | S661 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NQT8 | KIF13B | S1382 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NQU5 | PAK6 | S246 | ochoa | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NQU5 | PAK6 | S616 | ochoa | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NQV5 | PRDM11 | S63 | ochoa | PR domain-containing protein 11 (EC 2.1.1.-) | May be involved in transcription regulation. {ECO:0000269|PubMed:25499759}. |
Q9NQW6 | ANLN | S295 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S792 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW7 | XPNPEP1 | S283 | ochoa | Xaa-Pro aminopeptidase 1 (EC 3.4.11.9) (Aminoacylproline aminopeptidase) (Cytosolic aminopeptidase P) (Soluble aminopeptidase P) (sAmp) (X-Pro aminopeptidase 1) (X-prolyl aminopeptidase 1, soluble) | Metalloaminopeptidase that catalyzes the removal of a penultimate prolyl residue from the N-termini of peptides, such as Arg-Pro-Pro (PubMed:11106490, PubMed:18515364, PubMed:35165443). Contributes to the degradation of bradykinin (PubMed:11106490). {ECO:0000269|PubMed:11106490, ECO:0000269|PubMed:18515364, ECO:0000269|PubMed:35165443}. |
Q9NQX0 | PRDM6 | S456 | ochoa | Putative histone-lysine N-methyltransferase PRDM6 (EC 2.1.1.361) (PR domain zinc finger protein 6) (PR domain-containing protein 6) | Putative histone methyltransferase that acts as a transcriptional repressor of smooth muscle gene expression. Promotes the transition from differentiated to proliferative smooth muscle by suppressing differentiation and maintaining the proliferative potential of vascular smooth muscle cells. Also plays a role in endothelial cells by inhibiting endothelial cell proliferation, survival and differentiation. It is unclear whether it has histone methyltransferase activity in vivo. According to some authors, it does not act as a histone methyltransferase by itself and represses transcription by recruiting EHMT2/G9a. According to others, it possesses histone methyltransferase activity when associated with other proteins and specifically methylates 'Lys-20' of histone H4 in vitro. 'Lys-20' methylation represents a specific tag for epigenetic transcriptional repression. {ECO:0000250|UniProtKB:Q3UZD5}. |
Q9NR09 | BIRC6 | S803 | ochoa | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NR19 | ACSS2 | S267 | ochoa|psp | Acetyl-coenzyme A synthetase, cytoplasmic (EC 6.2.1.1) (Acetate--CoA ligase) (Acetyl-CoA synthetase) (ACS) (AceCS) (Acetyl-CoA synthetase 1) (AceCS1) (Acyl-CoA synthetase short-chain family member 2) (Acyl-activating enzyme) (Propionate--CoA ligase) (EC 6.2.1.17) | Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids (PubMed:10843999, PubMed:28003429, PubMed:28552616). Acetate is the preferred substrate (PubMed:10843999, PubMed:28003429). Can also utilize propionate with a much lower affinity (By similarity). Nuclear ACSS2 promotes glucose deprivation-induced lysosomal biogenesis and autophagy, tumor cell survival and brain tumorigenesis (PubMed:28552616). Glucose deprivation results in AMPK-mediated phosphorylation of ACSS2 leading to its translocation to the nucleus where it binds to TFEB and locally produces acetyl-CoA for histone acetylation in the promoter regions of TFEB target genes thereby activating their transcription (PubMed:28552616). The regulation of genes associated with autophagy and lysosomal activity through ACSS2 is important for brain tumorigenesis and tumor survival (PubMed:28552616). Acts as a chromatin-bound transcriptional coactivator that up-regulates histone acetylation and expression of neuronal genes (By similarity). Can be recruited to the loci of memory-related neuronal genes to maintain a local acetyl-CoA pool, providing the substrate for histone acetylation and promoting the expression of specific genes, which is essential for maintaining long-term spatial memory (By similarity). {ECO:0000250|UniProtKB:Q9QXG4, ECO:0000269|PubMed:10843999, ECO:0000269|PubMed:28003429, ECO:0000269|PubMed:28552616}. |
Q9NR30 | DDX21 | S513 | ochoa | Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) | RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}. |
Q9NR45 | NANS | S275 | ochoa | N-acetylneuraminate-9-phosphate synthase (EC 2.5.1.57) (3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase) (EC 2.5.1.132) (N-acetylneuraminic acid phosphate synthase) (NANS) (Sialic acid phosphate synthase) (Sialic acid synthase) | Catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine 6-phosphate (ManNAc-6-P) to synthesize N-acetylneuraminate-9-phosphate (Neu5Ac-9-P) (PubMed:10749855). Also catalyzes the condensation of PEP and D-mannose 6-phosphate (Man-6-P) to produce 3-deoxy-D-glycero-beta-D-galacto-non-2-ulopyranosonate 9-phosphate (KDN-9-P) (PubMed:10749855). Neu5Ac-9-P and KDN-9-P are the phosphorylated forms of sialic acids N-acetylneuraminic acid (Neu5Ac) and deaminoneuraminic acid (KDN), respectively (PubMed:10749855). Required for brain and skeletal development (PubMed:27213289). {ECO:0000269|PubMed:10749855, ECO:0000269|PubMed:27213289}. |
Q9NR48 | ASH1L | S179 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S1186 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S1544 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S1953 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S2825 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRA8 | EIF4ENIF1 | S115 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRA8 | EIF4ENIF1 | S301 | ochoa|psp | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRD1 | FBXO6 | S258 | ochoa | F-box only protein 6 (F-box protein that recognizes sugar chains 2) (F-box/G-domain protein 2) | Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complexes. Involved in endoplasmic reticulum-associated degradation pathway (ERAD) for misfolded lumenal proteins by recognizing and binding sugar chains on unfolded glycoproteins that are retrotranslocated into the cytosol and promoting their ubiquitination and subsequent degradation. Able to recognize and bind denatured glycoproteins, which are modified with not only high-mannose but also complex-type oligosaccharides. Also recognizes sulfated glycans. Also involved in DNA damage response by specifically recognizing activated CHEK1 (phosphorylated on 'Ser-345'), promoting its ubiquitination and degradation. Ubiquitination of CHEK1 is required to ensure that activated CHEK1 does not accumulate as cells progress through S phase, or when replication forks encounter transient impediments during normal DNA replication. {ECO:0000269|PubMed:18203720, ECO:0000269|PubMed:19716789}. |
Q9NRE2 | TSHZ2 | S69 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NRG9 | AAAS | S33 | ochoa | Aladin (Adracalin) | Plays a role in the normal development of the peripheral and central nervous system (PubMed:11062474, PubMed:11159947, PubMed:16022285). Required for the correct localization of aurora kinase AURKA and the microtubule minus end-binding protein NUMA1 as well as a subset of AURKA targets which ensures proper spindle formation and timely chromosome alignment (PubMed:26246606). {ECO:0000269|PubMed:11062474, ECO:0000269|PubMed:11159947, ECO:0000269|PubMed:16022285, ECO:0000269|PubMed:26246606}. |
Q9NRH2 | SNRK | S351 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NRH2 | SNRK | S518 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NRH3 | TUBG2 | S80 | ochoa|psp | Tubulin gamma-2 chain (Gamma-2-tubulin) | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685). Gamma-tubulin is a key component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:38305685). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685). {ECO:0000269|PubMed:38305685}. |
Q9NRJ4 | TULP4 | S577 | ochoa | Tubby-related protein 4 (Tubby superfamily protein) (Tubby-like protein 4) | May be a substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000250}. |
Q9NRL2 | BAZ1A | S270 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NRL2 | BAZ1A | S1353 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NRL2 | BAZ1A | S1371 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NRM7 | LATS2 | S342 | ochoa | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NRR4 | DROSHA | S355 | ochoa|psp | Ribonuclease 3 (EC 3.1.26.3) (Protein Drosha) (Ribonuclease III) (RNase III) (p241) | Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies. Plays a role in growth homeostasis in response to autophagy in motor neurons (By similarity). {ECO:0000250|UniProtKB:Q5HZJ0, ECO:0000269|PubMed:10948199, ECO:0000269|PubMed:14508493, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15565168, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q9NRR4 | DROSHA | S807 | ochoa | Ribonuclease 3 (EC 3.1.26.3) (Protein Drosha) (Ribonuclease III) (RNase III) (p241) | Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies. Plays a role in growth homeostasis in response to autophagy in motor neurons (By similarity). {ECO:0000250|UniProtKB:Q5HZJ0, ECO:0000269|PubMed:10948199, ECO:0000269|PubMed:14508493, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15565168, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q9NRS6 | SNX15 | S116 | ochoa | Sorting nexin-15 | May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}. |
Q9NRS6 | SNX15 | S227 | ochoa | Sorting nexin-15 | May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}. |
Q9NRW4 | DUSP22 | S58 | ochoa | Dual specificity protein phosphatase 22 (EC 3.1.3.16) (EC 3.1.3.48) (JNK pathway associated phosphatase) (JKAP) (JNK-stimulatory phosphatase-1) (JSP-1) (Low molecular weight dual specificity phosphatase 2) (LMW-DSP2) (Mitogen-activated protein kinase phosphatase x) (MAP kinase phosphatase x) (MKP-x) | Dual specificity phosphatase; can dephosphorylate both phosphotyrosine and phosphoserine or phosphothreonine residues (PubMed:24714587, PubMed:38225265). Activates the JNK signaling pathway (PubMed:11717427). Inhibits T-cell receptor signaling and T-cell mediated immune responses, acting, at least in part, by inducing degradation of E3 ubiquitin ligase UBR2 (PubMed:24714587, PubMed:38225265). Dephosphorylates and thereby induces 'Lys-48'-linked ubiquitination of UBR2, leading to proteasomal degradation of UBR2 (PubMed:38225265). Dephosphorylates and thereby inactivates tyrosine kinase LCK (PubMed:24714587). Inhibits UBR2-mediated 'Lys-63'-linked ubiquitination of LCK (PubMed:38225265). May play a role in B-cell receptor (BCR) signaling and B-cell function (By similarity). {ECO:0000250|UniProtKB:Q99N11, ECO:0000269|PubMed:11717427, ECO:0000269|PubMed:24714587, ECO:0000269|PubMed:38225265}. |
Q9NRY4 | ARHGAP35 | S975 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NRY5 | FAM114A2 | S146 | ochoa | Protein FAM114A2 | None |
Q9NS56 | TOPORS | S98 | ochoa|psp | E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) | Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}. |
Q9NS62 | THSD1 | S619 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NS68 | TNFRSF19 | S261 | ochoa | Tumor necrosis factor receptor superfamily member 19 (TRADE) (Toxicity and JNK inducer) | Can mediate activation of JNK and NF-kappa-B. May promote caspase-independent cell death. |
Q9NS73 | MBIP | S91 | ochoa | MAP3K12-binding inhibitory protein 1 (MAPK upstream kinase-binding inhibitory protein) (MUK-binding inhibitory protein) | Inhibits the MAP3K12 activity to induce the activation of the JNK/SAPK pathway. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:19103755}. |
Q9NS91 | RAD18 | S471 | ochoa | E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) | E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}. |
Q9NSI2 | SLX9 | S209 | ochoa | Ribosome biogenesis protein SLX9 homolog | May be involved in ribosome biogenesis. {ECO:0000250|UniProtKB:P53251}. |
Q9NSI6 | BRWD1 | S1374 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSI6 | BRWD1 | S1475 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSK0 | KLC4 | S460 | ochoa | Kinesin light chain 4 (KLC 4) (Kinesin-like protein 8) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport. The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250}. |
Q9NSV4 | DIAPH3 | S175 | ochoa | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9NSY0 | NRBP2 | S209 | ochoa | Nuclear receptor-binding protein 2 (Transformation-related gene 16 protein) (TRG-16) | May regulate apoptosis of neural progenitor cells during their differentiation. {ECO:0000250}. |
Q9NTG7 | SIRT3 | S159 | psp | NAD-dependent protein deacetylase sirtuin-3, mitochondrial (hSIRT3) (EC 2.3.1.286) (NAD-dependent protein delactylase sirtuin-3) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 3) (SIR2-like protein 3) | NAD-dependent protein deacetylase (PubMed:12186850, PubMed:12374852, PubMed:16788062, PubMed:18680753, PubMed:18794531, PubMed:19535340, PubMed:23283301, PubMed:24121500, PubMed:24252090). Activates or deactivates mitochondrial target proteins by deacetylating key lysine residues (PubMed:12186850, PubMed:12374852, PubMed:16788062, PubMed:18680753, PubMed:18794531, PubMed:23283301, PubMed:24121500, PubMed:24252090, PubMed:38146092). Known targets include ACSS1, IDH, GDH, SOD2, PDHA1, LCAD, SDHA, MRPL12 and the ATP synthase subunit ATP5PO (PubMed:16788062, PubMed:18680753, PubMed:19535340, PubMed:24121500, PubMed:24252090, PubMed:38146092). Contributes to the regulation of the cellular energy metabolism (PubMed:24252090). Important for regulating tissue-specific ATP levels (PubMed:18794531). In response to metabolic stress, deacetylates transcription factor FOXO3 and recruits FOXO3 and mitochondrial RNA polymerase POLRMT to mtDNA to promote mtDNA transcription (PubMed:23283301). Acts as a regulator of ceramide metabolism by mediating deacetylation of ceramide synthases CERS1, CERS2 and CERS6, thereby increasing their activity and promoting mitochondrial ceramide accumulation (By similarity). Regulates hepatic lipogenesis (By similarity). Uses NAD(+) substrate imported by SLC25A47, triggering downstream activation of PRKAA1/AMPK-alpha signaling cascade that ultimately downregulates sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance (By similarity). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating delactylation of proteins, such as CCNE2 and 'Lys-16' of histone H4 (H4K16la) (PubMed:36896611, PubMed:37720100). {ECO:0000250|UniProtKB:Q8R104, ECO:0000269|PubMed:12186850, ECO:0000269|PubMed:12374852, ECO:0000269|PubMed:16788062, ECO:0000269|PubMed:18680753, ECO:0000269|PubMed:18794531, ECO:0000269|PubMed:19535340, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:24121500, ECO:0000269|PubMed:24252090, ECO:0000269|PubMed:36896611, ECO:0000269|PubMed:37720100, ECO:0000269|PubMed:38146092}. |
Q9NTI5 | PDS5B | S1087 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTI5 | PDS5B | S1191 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTZ6 | RBM12 | S352 | ochoa | RNA-binding protein 12 (RNA-binding motif protein 12) (SH3/WW domain anchor protein in the nucleus) (SWAN) | None |
Q9NTZ6 | RBM12 | S375 | ochoa | RNA-binding protein 12 (RNA-binding motif protein 12) (SH3/WW domain anchor protein in the nucleus) (SWAN) | None |
Q9NU22 | MDN1 | S1754 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NU22 | MDN1 | S2492 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NUA8 | ZBTB40 | S190 | ochoa | Zinc finger and BTB domain-containing protein 40 | May be involved in transcriptional regulation. |
Q9NUJ3 | TCP11L1 | S56 | ochoa | T-complex protein 11-like protein 1 | None |
Q9NUL3 | STAU2 | S188 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NUL3 | STAU2 | S416 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NUL3 | STAU2 | S440 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NUL7 | DDX28 | S28 | ochoa | Probable ATP-dependent RNA helicase DDX28 (EC 3.6.4.13) (Mitochondrial DEAD box protein 28) | Plays an essential role in facilitating the proper assembly of the mitochondrial large ribosomal subunit and its helicase activity is essential for this function (PubMed:25683708, PubMed:25683715). May be involved in RNA processing or transport. Has RNA and Mg(2+)-dependent ATPase activity (PubMed:11350955). {ECO:0000269|PubMed:11350955, ECO:0000269|PubMed:25683708, ECO:0000269|PubMed:25683715}. |
Q9NUQ2 | AGPAT5 | S298 | ochoa | 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon (EC 2.3.1.51) (1-acylglycerol-3-phosphate O-acyltransferase 5) (1-AGP acyltransferase 5) (1-AGPAT 5) (Lysophosphatidic acid acyltransferase epsilon) (LPAAT-epsilon) | Converts 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (PubMed:21173190). Acts on LPA containing saturated or unsaturated fatty acids C15:0-C20:4 at the sn-1 position using C18:1-CoA as the acyl donor (PubMed:21173190). Also acts on lysophosphatidylethanolamine using oleoyl-CoA, but not arachidonoyl-CoA, and lysophosphatidylinositol using arachidonoyl-CoA, but not oleoyl-CoA (PubMed:21173190). Activity toward lysophosphatidylglycerol not detectable (PubMed:21173190). {ECO:0000269|PubMed:21173190}. |
Q9NUQ6 | SPATS2L | S195 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NV56 | MRGBP | S23 | ochoa | MRG/MORF4L-binding protein (MRG-binding protein) (Up-regulated in colon cancer 4) (Urcc4) | Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. |
Q9NVC3 | SLC38A7 | S28 | ochoa | Sodium-coupled neutral amino acid transporter 7 (Solute carrier family 38 member 7) | Symporter that selectively cotransports sodium ions and amino acids, such as L-glutamine and L-asparagine from the lysosome into the cytoplasm and may participates in mTORC1 activation (PubMed:28416685, PubMed:35561222). The transport activity requires an acidic lysosomal lumen (PubMed:28416685). {ECO:0000269|PubMed:28416685, ECO:0000269|PubMed:35561222}. |
Q9NVF7 | FBXO28 | S235 | ochoa | F-box only protein 28 | Probably recognizes and binds to some phosphorylated proteins and promotes their ubiquitination and degradation. {ECO:0000250}. |
Q9NVG8 | TBC1D13 | S184 | ochoa | TBC1 domain family member 13 | Acts as a GTPase-activating protein for RAB35. Together with RAB35 may be involved in regulation of insulin-induced glucose transporter SLC2A4/GLUT4 translocation to the plasma membrane in adipocytes. {ECO:0000250|UniProtKB:Q8R3D1}. |
Q9NVH2 | INTS7 | S338 | ochoa | Integrator complex subunit 7 (Int7) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope by different components of the INT complex (PubMed:23904267). Plays a role in DNA damage response (DDR) signaling during the S phase (PubMed:21659603). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q9NVH2 | INTS7 | S644 | ochoa | Integrator complex subunit 7 (Int7) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope by different components of the INT complex (PubMed:23904267). Plays a role in DNA damage response (DDR) signaling during the S phase (PubMed:21659603). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q9NVH2 | INTS7 | S809 | ochoa | Integrator complex subunit 7 (Int7) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope by different components of the INT complex (PubMed:23904267). Plays a role in DNA damage response (DDR) signaling during the S phase (PubMed:21659603). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q9NVI1 | FANCI | S407 | ochoa | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVI7 | ATAD3A | S369 | ochoa | ATPase family AAA domain-containing protein 3A (EC 3.6.1.-) | Essential for mitochondrial network organization, mitochondrial metabolism and cell growth at organism and cellular level (PubMed:17210950, PubMed:20154147, PubMed:22453275, PubMed:31522117, PubMed:37832546, PubMed:39116259). May play an important role in mitochondrial protein synthesis (PubMed:22453275). May also participate in mitochondrial DNA replication (PubMed:17210950). May bind to mitochondrial DNA D-loops and contribute to nucleoid stability (PubMed:17210950). Required for enhanced channeling of cholesterol for hormone-dependent steroidogenesis (PubMed:22453275). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Required to protect mitochondria from the PERK-mediated unfolded protein response: specifically inhibits the activity of EIF2AK3/PERK at mitochondria-endoplasmic reticulum contact sites, thereby providing a safe haven for mitochondrial protein translation during endoplasmic reticulum stress (PubMed:39116259). Ability to inhibit EIF2AK3/PERK is independent of its ATPase activity (PubMed:39116259). Also involved in the mitochondrial DNA damage response by promoting signaling between damaged genomes and the mitochondrial membrane, leading to activation of the integrated stress response (ISR) (PubMed:37832546). {ECO:0000269|PubMed:17210950, ECO:0000269|PubMed:20154147, ECO:0000269|PubMed:22453275, ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:39116259}. |
Q9NVN8 | GNL3L | S465 | ochoa | Guanine nucleotide-binding protein-like 3-like protein | Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}. |
Q9NVP1 | DDX18 | S86 | ochoa | ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) | ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}. |
Q9NVP2 | ASF1B | S20 | ochoa | Histone chaperone ASF1B (Anti-silencing function protein 1 homolog B) (hAsf1) (hAsf1b) (CCG1-interacting factor A-II) (CIA-II) (hCIA-II) | Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251, PubMed:21454524, PubMed:26527279). Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251). Also involved in the nuclear import of the histone H3-H4 dimer together with importin-4 (IPO4): specifically recognizes and binds newly synthesized histones with the monomethylation of H3 'Lys-9' (H3K9me1) and diacetylation at 'Lys-5' and 'Lys-12' of H4 (H4K5K12ac) marks in the cytosol (PubMed:20953179, PubMed:21454524, PubMed:26527279). Does not participate in replication-independent nucleosome deposition which is mediated by ASF1A and HIRA (PubMed:11897662, PubMed:14718166, PubMed:15664198, PubMed:16151251). Required for gonad development (PubMed:12842904). {ECO:0000269|PubMed:11897662, ECO:0000269|PubMed:12842904, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15664198, ECO:0000269|PubMed:16151251, ECO:0000269|PubMed:20953179, ECO:0000269|PubMed:21454524, ECO:0000269|PubMed:26527279}. |
Q9NVR0 | KLHL11 | S465 | ochoa | Kelch-like protein 11 | Component of a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex that mediates the ubiquitination of target proteins, leading most often to their proteasomal degradation. {ECO:0000250}. |
Q9NVR2 | INTS10 | S231 | ochoa | Integrator complex subunit 10 (Int10) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}. |
Q9NVR7 | TBCCD1 | S145 | ochoa | TBCC domain-containing protein 1 | Plays a role in the regulation of centrosome and Golgi apparatus positioning, with consequences on cell shape and cell migration. {ECO:0000269|PubMed:20168327}. |
Q9NVS9 | PNPO | S241 | ochoa | Pyridoxine-5'-phosphate oxidase (EC 1.4.3.5) (Pyridoxamine-phosphate oxidase) | Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). {ECO:0000269|PubMed:12824491, ECO:0000269|PubMed:15182361, ECO:0000269|PubMed:15772097}. |
Q9NVT9 | ARMC1 | S246 | ochoa | Armadillo repeat-containing protein 1 | In association with mitochondrial contact site and cristae organizing system (MICOS) complex components and mitochondrial outer membrane sorting assembly machinery (SAM) complex components may regulate mitochondrial dynamics playing a role in determining mitochondrial length, distribution and motility. {ECO:0000269|PubMed:31644573}. |
Q9NW08 | POLR3B | S680 | ochoa | DNA-directed RNA polymerase III subunit RPC2 (RNA polymerase III subunit C2) (EC 2.7.7.6) (C128) (DNA-directed RNA polymerase III 127.6 kDa polypeptide) (DNA-directed RNA polymerase III subunit B) | Catalytic core component of RNA polymerase III (Pol III), a DNA-dependent RNA polymerase which synthesizes small non-coding RNAs using the four ribonucleoside triphosphates as substrates. Synthesizes 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (PubMed:20413673, PubMed:33558766). Pol III-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33558766, PubMed:33674783, PubMed:34675218). Forms Pol III active center together with the largest subunit POLR3A/RPC1. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate (PubMed:19609254, PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33674783, PubMed:34675218). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000250, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33335104, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:33674783, ECO:0000269|PubMed:34675218}. |
Q9NW08 | POLR3B | S816 | ochoa | DNA-directed RNA polymerase III subunit RPC2 (RNA polymerase III subunit C2) (EC 2.7.7.6) (C128) (DNA-directed RNA polymerase III 127.6 kDa polypeptide) (DNA-directed RNA polymerase III subunit B) | Catalytic core component of RNA polymerase III (Pol III), a DNA-dependent RNA polymerase which synthesizes small non-coding RNAs using the four ribonucleoside triphosphates as substrates. Synthesizes 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (PubMed:20413673, PubMed:33558766). Pol III-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33558766, PubMed:33674783, PubMed:34675218). Forms Pol III active center together with the largest subunit POLR3A/RPC1. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate (PubMed:19609254, PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33674783, PubMed:34675218). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000250, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33335104, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:33674783, ECO:0000269|PubMed:34675218}. |
Q9NW68 | BSDC1 | S92 | ochoa | BSD domain-containing protein 1 | None |
Q9NW68 | BSDC1 | S166 | ochoa | BSD domain-containing protein 1 | None |
Q9NW82 | WDR70 | S621 | ochoa | WD repeat-containing protein 70 | None |
Q9NWH9 | SLTM | S421 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWL6 | ASNSD1 | S396 | ochoa | Asparagine synthetase domain-containing protein 1 (HCV NS3-transactivated protein 1) | None |
Q9NWQ4 | GPATCH2L | S31 | ochoa | G patch domain-containing protein 2-like | None |
Q9NWS1 | PARPBP | S332 | ochoa | PCNA-interacting partner (PARI) (PARP-1 binding protein) (PARP1-binding protein) (PARPBP) | Required to suppress inappropriate homologous recombination, thereby playing a central role DNA repair and in the maintenance of genomic stability. Antagonizes homologous recombination by interfering with the formation of the RAD51-DNA homologous recombination structure. Binds single-strand DNA and poly(A) homopolymers. Positively regulate the poly(ADP-ribosyl)ation activity of PARP1; however such function may be indirect. {ECO:0000269|PubMed:20931645, ECO:0000269|PubMed:22153967}. |
Q9NWS6 | FAM118A | S311 | ochoa | Protein FAM118A | None |
Q9NWS9 | ZNF446 | S146 | ochoa | Zinc finger protein 446 (Zinc finger protein with KRAB and SCAN domains 20) | May be involved in transcriptional regulation. |
Q9NWZ5 | UCKL1 | S56 | ochoa | Uridine-cytidine kinase-like 1 (EC 2.7.1.48) | May contribute to UTP accumulation needed for blast transformation and proliferation. {ECO:0000269|PubMed:12199906}. |
Q9NX01 | TXNL4B | S132 | ochoa | Thioredoxin-like protein 4B (Dim1-like protein) | Essential role in pre-mRNA splicing. Required in cell cycle progression for S/G(2) transition. {ECO:0000269|PubMed:15161931}. |
Q9NX40 | OCIAD1 | S191 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NX95 | SYBU | S555 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NXG0 | CNTLN | S1085 | ochoa | Centlein (Centrosomal protein) | Required for centrosome cohesion and recruitment of CEP68 to centrosomes. {ECO:0000269|PubMed:24554434}. |
Q9NXG2 | THUMPD1 | S270 | ochoa | THUMP domain-containing protein 1 | Functions as a tRNA-binding adapter to mediate NAT10-dependent tRNA acetylation modifying cytidine to N4-acetylcytidine (ac4C) (PubMed:25653167, PubMed:35196516). {ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:35196516}. |
Q9NXH9 | TRMT1 | S517 | ochoa | tRNA (guanine(26)-N(2))-dimethyltransferase (EC 2.1.1.216) (tRNA 2,2-dimethylguanosine-26 methyltransferase) (tRNA methyltransferase 1) (hTRM1) (tRNA(guanine-26,N(2)-N(2)) methyltransferase) (tRNA(m(2,2)G26)dimethyltransferase) | Dimethylates a single guanine residue at position 26 of most nuclear- and mitochondrial-encoded tRNAs using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:10982862, PubMed:28784718, PubMed:37204604, PubMed:39786990). tRNA guanine(26)-dimethylation is required for redox homeostasis and ensure proper cellular proliferation and oxidative stress survival (PubMed:28784718). {ECO:0000269|PubMed:10982862, ECO:0000269|PubMed:28784718, ECO:0000269|PubMed:37204604, ECO:0000269|PubMed:39786990}. |
Q9NXL9 | MCM9 | S762 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NXL9 | MCM9 | S942 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NXP7 | GIN1 | S494 | ochoa | Gypsy retrotransposon integrase-like protein 1 (GIN-1) (Ty3/Gypsy integrase 1) (Zinc finger H2C2 domain-containing protein) | None |
Q9NXR1 | NDE1 | S282 | ochoa|psp | Nuclear distribution protein nudE homolog 1 (NudE) | Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the division plane yields one proliferative neuronal progenitor and a postmitotic neuron. A premature shift towards a neuronal fate within the progenitor population may result in an overall reduction in the final number of neurons and an increase in the number of neurons in the deeper layers of the cortex. Acts as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:21529752, ECO:0000269|PubMed:34793709}. |
Q9NXR5 | ANKRD10 | S353 | ochoa | Ankyrin repeat domain-containing protein 10 | None |
Q9NY27 | PPP4R2 | S159 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NY59 | SMPD3 | S173 | ochoa | Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) | Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}. |
Q9NY74 | ETAA1 | S95 | ochoa|psp | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NY74 | ETAA1 | S433 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NY74 | ETAA1 | S464 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYA4 | MTMR4 | S961 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR4 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 2) (FYVE-DSP2) (Myotubularin-related protein 4) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Zinc finger FYVE domain-containing protein 11) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11302699, PubMed:16787938, PubMed:20736309, PubMed:27625994, PubMed:29962048, PubMed:30944173). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic, in a subset of endosomal membranes to negatively regulate both endocytic recycling and trafficking and/or maturation of endosomes toward lysosomes (PubMed:16787938, PubMed:20736309, PubMed:29962048). Through phosphatidylinositol 3-phosphate turnover in phagosome membranes regulates phagocytosis and phagosome maturation (PubMed:31543504). By decreasing phosphatidylinositol 3-monophosphate (PI3P) levels in immune cells it can also regulate the innate immune response (PubMed:30944173). Beside its lipid phosphatase activity, can also function as a molecular adapter to regulate midbody abscission during mitotic cytokinesis (PubMed:25659891). Can also negatively regulate TGF-beta and BMP signaling through Smad proteins dephosphorylation and retention in endosomes (PubMed:20061380, PubMed:23150675). {ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:16787938, ECO:0000269|PubMed:20061380, ECO:0000269|PubMed:20736309, ECO:0000269|PubMed:23150675, ECO:0000269|PubMed:25659891, ECO:0000269|PubMed:27625994, ECO:0000269|PubMed:29962048, ECO:0000269|PubMed:30944173, ECO:0000269|PubMed:31543504}. |
Q9NYD6 | HOXC10 | S61 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYD6 | HOXC10 | S241 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYF5 | FAM13B | S501 | ochoa | Protein FAM13B (GAP-like protein N61) | None |
Q9NYF8 | BCLAF1 | S658 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYI0 | PSD3 | S380 | ochoa | PH and SEC7 domain-containing protein 3 (Epididymis tissue protein Li 20mP) (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 D) (Exchange factor for ARF6 D) (Hepatocellular carcinoma-associated antigen 67) (Pleckstrin homology and SEC7 domain-containing protein 3) | Guanine nucleotide exchange factor for ARF6. {ECO:0000250}. |
Q9NYQ3 | HAO2 | S184 | ochoa | 2-Hydroxyacid oxidase 2 (HAOX2) (EC 1.1.3.15) ((S)-2-hydroxy-acid oxidase, peroxisomal) (Cell growth-inhibiting gene 16 protein) (Long chain alpha-hydroxy acid oxidase) (Long-chain L-2-hydroxy acid oxidase) | Oxidase that catalyzes the oxidation of medium and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, to the correspondong 2-oxoacids (PubMed:10777549). Its role in the oxidation of 2-hydroxy fatty acids may contribute to the general pathway of fatty acid alpha-oxidation (Probable). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2. Is not active on glycolate, glyoxylate, L-lactate and 2-hydroxybutanoate (PubMed:10777549). {ECO:0000269|PubMed:10777549, ECO:0000305|PubMed:10777549}. |
Q9NYQ6 | CELSR1 | S2960 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NYT6 | ZNF226 | S292 | ochoa | Zinc finger protein 226 | May be involved in transcriptional regulation. |
Q9NYV6 | RRN3 | S44 | ochoa|psp | RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) | Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}. |
Q9NYZ3 | GTSE1 | S480 | ochoa | G2 and S phase-expressed protein 1 (GTSE-1) (Protein B99 homolog) | May be involved in p53-induced cell cycle arrest in G2/M phase by interfering with microtubule rearrangements that are required to enter mitosis. Overexpression delays G2/M phase progression. |
Q9NZ09 | UBAP1 | S146 | ochoa | Ubiquitin-associated protein 1 (UBAP-1) (Nasopharyngeal carcinoma-associated gene 20 protein) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process (PubMed:21757351, PubMed:22405001, PubMed:31203368). Binds to ubiquitinated cargo proteins and is required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) (PubMed:21757351, PubMed:22405001). Plays a role in the proteasomal degradation of ubiquitinated cell-surface proteins, such as EGFR and BST2 (PubMed:22405001, PubMed:24284069, PubMed:31203368). {ECO:0000269|PubMed:21757351, ECO:0000269|PubMed:22405001, ECO:0000269|PubMed:24284069, ECO:0000269|PubMed:31203368}. |
Q9NZ56 | FMN2 | S516 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9NZ71 | RTEL1 | S847 | ochoa | Regulator of telomere elongation helicase 1 (EC 5.6.2.-) (Novel helicase-like) | A probable ATP-dependent DNA helicase implicated in telomere-length regulation, DNA repair and the maintenance of genomic stability. Acts as an anti-recombinase to counteract toxic recombination and limit crossover during meiosis. Regulates meiotic recombination and crossover homeostasis by physically dissociating strand invasion events and thereby promotes noncrossover repair by meiotic synthesis dependent strand annealing (SDSA) as well as disassembly of D loop recombination intermediates. Also disassembles T loops and prevents telomere fragility by counteracting telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere. {ECO:0000255|HAMAP-Rule:MF_03065, ECO:0000269|PubMed:18957201, ECO:0000269|PubMed:23453664, ECO:0000269|PubMed:24009516}. |
Q9NZ72 | STMN3 | S73 | ochoa|psp | Stathmin-3 (SCG10-like protein) | Exhibits microtubule-destabilizing activity, which is antagonized by STAT3. {ECO:0000250}. |
Q9NZC4 | EHF | S184 | ochoa | ETS homologous factor (hEHF) (ETS domain-containing transcription factor) (Epithelium-specific Ets transcription factor 3) (ESE-3) | Transcriptional activator that may play a role in regulating epithelial cell differentiation and proliferation. May act as a repressor for a specific subset of ETS/AP-1-responsive genes and as a modulator of the nuclear response to mitogen-activated protein kinase signaling cascades. Binds to DNA sequences containing the consensus nucleotide core sequence GGAA. Involved in regulation of TNFRSF10B/DR5 expression through Ets-binding sequences on the TNFRSF10B/DR5 promoter. May contribute to development and carcinogenesis by acting as a tumor suppressor gene or anti-oncogene. {ECO:0000269|PubMed:10527851, ECO:0000269|PubMed:10644770, ECO:0000269|PubMed:11259407, ECO:0000269|PubMed:12444029, ECO:0000269|PubMed:17027647}. |
Q9NZJ0 | DTL | S676 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZJ4 | SACS | S1779 | ochoa | Sacsin (DnaJ homolog subfamily C member 29) | Co-chaperone which acts as a regulator of the Hsp70 chaperone machinery and may be involved in the processing of other ataxia-linked proteins. {ECO:0000269|PubMed:19208651}. |
Q9NZJ9 | NUDT4 | S148 | ochoa | Diphosphoinositol polyphosphate phosphohydrolase 2 (DIPP-2) (EC 3.6.1.52) (Diadenosine 5',5'''-P1,P6-hexaphosphate hydrolase 2) (EC 3.6.1.61) (Nucleoside diphosphate-linked moiety X motif 4) (Nudix motif 4) | Cleaves the beta-phosphate from diphosphoinositol polyphosphates such as PP-InsP5 (diphosphoinositol pentakisphosphate), PP-InsP4 (diphosphoinositol tetrakisphosphate) and [PP]2-InsP4 (bisdiphosphoinositol tetrakisphosphate), suggesting that it may play a role in signal transduction (PubMed:10777568). Diadenosine polyphosphates, particularly Ap6A (P(1),P(6)-bis(5a-adenosyl) hexaphosphate) and Ap5A (P(1),P(5)-bis(5'-adenosyl) pentaphosphate) are downstream effectors of a signaling cascade that regulates cardiac KATP channels, can also be substrates, although with lower preference than the diphosphoinositol polyphosphates (PubMed:10777568). Can also catalyze the hydrolysis of 5-phosphoribose 1-diphosphate, generating the glycolytic activator ribose 1,5-bisphosphate (PubMed:12370170). Does not play a role in U8 snoRNA decapping activity (By similarity). Binds U8 snoRNA (By similarity). {ECO:0000250|UniProtKB:Q8R2U6, ECO:0000269|PubMed:10777568, ECO:0000269|PubMed:12370170}. |
Q9NZL6 | RGL1 | S508 | ochoa | Ral guanine nucleotide dissociation stimulator-like 1 (RalGDS-like 1) | Probable guanine nucleotide exchange factor. |
Q9NZM1 | MYOF | S963 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9NZN3 | EHD3 | S349 | ochoa | EH domain-containing protein 3 (PAST homolog 3) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (PubMed:25686250). In vitro causes tubulation of endocytic membranes (PubMed:24019528). Binding to phosphatidic acid induces its membrane tubulation activity (By similarity). Plays a role in endocytic transport. Involved in early endosome to recycling endosome compartment (ERC), retrograde early endosome to Golgi, and endosome to plasma membrane (rapid recycling) protein transport. Involved in the regulation of Golgi maintenance and morphology (PubMed:16251358, PubMed:17233914, PubMed:19139087, PubMed:23781025). Involved in the recycling of internalized D1 dopamine receptor (PubMed:21791287). Plays a role in cardiac protein trafficking probably implicating ANK2 (PubMed:20489164). Involved in the ventricular membrane targeting of SLC8A1 and CACNA1C and probably the atrial membrane localization of CACNA1GG and CACNA1H implicated in the regulation of atrial myocyte excitability and cardiac conduction (By similarity). In conjunction with EHD4 may be involved in endocytic trafficking of KDR/VEGFR2 implicated in control of glomerular function (By similarity). Involved in the rapid recycling of integrin beta-3 implicated in cell adhesion maintenance (PubMed:23781025). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle, an early step in cilium biogenesis; possibly sharing redundant functions with EHD1 (PubMed:25686250). {ECO:0000250|UniProtKB:Q9QXY6, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:19139087, ECO:0000269|PubMed:21791287, ECO:0000269|PubMed:23781025, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000305|PubMed:20489164}. |
Q9NZN3 | EHD3 | S456 | ochoa | EH domain-containing protein 3 (PAST homolog 3) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (PubMed:25686250). In vitro causes tubulation of endocytic membranes (PubMed:24019528). Binding to phosphatidic acid induces its membrane tubulation activity (By similarity). Plays a role in endocytic transport. Involved in early endosome to recycling endosome compartment (ERC), retrograde early endosome to Golgi, and endosome to plasma membrane (rapid recycling) protein transport. Involved in the regulation of Golgi maintenance and morphology (PubMed:16251358, PubMed:17233914, PubMed:19139087, PubMed:23781025). Involved in the recycling of internalized D1 dopamine receptor (PubMed:21791287). Plays a role in cardiac protein trafficking probably implicating ANK2 (PubMed:20489164). Involved in the ventricular membrane targeting of SLC8A1 and CACNA1C and probably the atrial membrane localization of CACNA1GG and CACNA1H implicated in the regulation of atrial myocyte excitability and cardiac conduction (By similarity). In conjunction with EHD4 may be involved in endocytic trafficking of KDR/VEGFR2 implicated in control of glomerular function (By similarity). Involved in the rapid recycling of integrin beta-3 implicated in cell adhesion maintenance (PubMed:23781025). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle, an early step in cilium biogenesis; possibly sharing redundant functions with EHD1 (PubMed:25686250). {ECO:0000250|UniProtKB:Q9QXY6, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:19139087, ECO:0000269|PubMed:21791287, ECO:0000269|PubMed:23781025, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000305|PubMed:20489164}. |
Q9NZN5 | ARHGEF12 | S28 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZN5 | ARHGEF12 | S341 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZN5 | ARHGEF12 | S824 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZN5 | ARHGEF12 | S1176 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZN8 | CNOT2 | S406 | ochoa | CCR4-NOT transcription complex subunit 2 (CCR4-associated factor 2) | Component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Required for the CCR4-NOT complex structural integrity. Can repress transcription and may link the CCR4-NOT complex to transcriptional regulation; the repressive function may specifically involve the N-Cor repressor complex containing HDAC3, NCOR1 and NCOR2. Involved in the maintenance of embryonic stem (ES) cell identity. {ECO:0000269|PubMed:14707134, ECO:0000269|PubMed:16712523, ECO:0000269|PubMed:21299754, ECO:0000269|PubMed:22367759}. |
Q9NZQ9 | TMOD4 | S58 | ochoa | Tropomodulin-4 (Skeletal muscle tropomodulin) (Sk-Tmod) | Blocks the elongation and depolymerization of the actin filaments at the pointed end. The Tmod/TM complex contributes to the formation of the short actin protofilament, which in turn defines the geometry of the membrane skeleton. |
Q9P0K7 | RAI14 | S405 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P0L2 | MARK1 | S403 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0L2 | MARK1 | S475 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0M6 | MACROH2A2 | S129 | ochoa | Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}. |
Q9P0V3 | SH3BP4 | S271 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P0V3 | SH3BP4 | S637 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P0V3 | SH3BP4 | S877 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P107 | GMIP | S480 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P1Q0 | VPS54 | S541 | ochoa | Vacuolar protein sorting-associated protein 54 (Hepatocellular carcinoma protein 8) (Tumor antigen HOM-HCC-8) (Tumor antigen SLP-8p) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:18367545). Within the GARP complex, required to tether the complex to the TGN. Not involved in endocytic recycling (PubMed:25799061). {ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}. |
Q9P1Y5 | CAMSAP3 | S863 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P1Y6 | PHRF1 | S793 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Y6 | PHRF1 | S814 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Y6 | PHRF1 | S867 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P1Z0 | ZBTB4 | S391 | ochoa | Zinc finger and BTB domain-containing protein 4 (KAISO-like zinc finger protein 1) (KAISO-L1) | Transcriptional repressor with bimodal DNA-binding specificity. Represses transcription in a methyl-CpG-dependent manner. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to the non-methylated consensus sequence 5'-CTGCNA-3' also known as the consensus kaiso binding site (KBS). Can also bind specifically to a single methyl-CpG pair and can bind hemimethylated DNA but with a lower affinity compared to methylated DNA (PubMed:16354688). Plays a role in postnatal myogenesis, may be involved in the regulation of satellite cells self-renewal (By similarity). {ECO:0000250|UniProtKB:Q5F293, ECO:0000269|PubMed:16354688}. |
Q9P1Z0 | ZBTB4 | S715 | ochoa | Zinc finger and BTB domain-containing protein 4 (KAISO-like zinc finger protein 1) (KAISO-L1) | Transcriptional repressor with bimodal DNA-binding specificity. Represses transcription in a methyl-CpG-dependent manner. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to the non-methylated consensus sequence 5'-CTGCNA-3' also known as the consensus kaiso binding site (KBS). Can also bind specifically to a single methyl-CpG pair and can bind hemimethylated DNA but with a lower affinity compared to methylated DNA (PubMed:16354688). Plays a role in postnatal myogenesis, may be involved in the regulation of satellite cells self-renewal (By similarity). {ECO:0000250|UniProtKB:Q5F293, ECO:0000269|PubMed:16354688}. |
Q9P1Z3 | HCN3 | S562 | ochoa | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 | Hyperpolarization-activated ion channel that are permeable to sodium and potassium ions, with an about 3:1 preference for potassium ions (PubMed:16043489). Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). In particular, plays a pivotal role in maintaining excitability and promoting rhythmic burst firing within hypothalamic nuclei. Exerts a significant influence on the configuration of the cardiac action potential waveform. Does not appear to play a prominent role in the processing of acute, neuropathic, or inflammatory pain (By similarity). {ECO:0000250|UniProtKB:O88705, ECO:0000269|PubMed:16043489}. |
Q9P227 | ARHGAP23 | S372 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P227 | ARHGAP23 | S423 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P227 | ARHGAP23 | S1412 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P242 | NYAP2 | S379 | ochoa | Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 | Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis. {ECO:0000250}. |
Q9P242 | NYAP2 | S599 | ochoa | Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 | Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis. {ECO:0000250}. |
Q9P243 | ZFAT | S21 | ochoa | Zinc finger protein ZFAT (Zinc finger gene in AITD susceptibility region) (Zinc finger protein 406) | May be involved in transcriptional regulation. Overexpression causes down-regulation of a number of genes involved in the immune response. Some genes are also up-regulated (By similarity). {ECO:0000250}. |
Q9P243 | ZFAT | S652 | ochoa | Zinc finger protein ZFAT (Zinc finger gene in AITD susceptibility region) (Zinc finger protein 406) | May be involved in transcriptional regulation. Overexpression causes down-regulation of a number of genes involved in the immune response. Some genes are also up-regulated (By similarity). {ECO:0000250}. |
Q9P246 | STIM2 | S640 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9P246 | STIM2 | S665 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9P266 | JCAD | S543 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P266 | JCAD | S1156 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P266 | JCAD | S1194 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P266 | JCAD | S1304 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P270 | SLAIN2 | S134 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P270 | SLAIN2 | S147 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P270 | SLAIN2 | S160 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P275 | USP36 | S464 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P275 | USP36 | S682 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2B4 | CTTNBP2NL | S481 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9P2B7 | CFAP97 | S474 | ochoa | Cilia- and flagella-associated protein 97 | None |
Q9P2D0 | IBTK | S1069 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2D1 | CHD7 | S2356 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2D1 | CHD7 | S2559 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2D3 | HEATR5B | S1123 | ochoa | HEAT repeat-containing protein 5B | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
Q9P2D3 | HEATR5B | S1737 | ochoa | HEAT repeat-containing protein 5B | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
Q9P2E9 | RRBP1 | S135 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2E9 | RRBP1 | S533 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2E9 | RRBP1 | S573 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2E9 | RRBP1 | S583 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2F5 | STOX2 | S172 | ochoa | Storkhead-box protein 2 | None |
Q9P2F8 | SIPA1L2 | S148 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2F8 | SIPA1L2 | S379 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2F8 | SIPA1L2 | S1029 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2F8 | SIPA1L2 | S1478 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2K3 | RCOR3 | S33 | ochoa | REST corepressor 3 | May act as a component of a corepressor complex that represses transcription. {ECO:0000305}. |
Q9P2K6 | KLHL42 | S171 | ochoa | Kelch-like protein 42 (Cullin-3-binding protein 9) (Ctb9) (Kelch domain-containing protein 5) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex required for mitotic progression and cytokinesis. The BCR(KLHL42) E3 ubiquitin ligase complex mediates the ubiquitination and subsequent degradation of KATNA1. Involved in microtubule dynamics throughout mitosis. {ECO:0000269|PubMed:19261606}. |
Q9P2Q2 | FRMD4A | S604 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2Q2 | FRMD4A | S694 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2Q2 | FRMD4A | S727 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2R6 | RERE | S613 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9P2R7 | SUCLA2 | S79 | ochoa|psp | Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial (EC 6.2.1.5) (ATP-specific succinyl-CoA synthetase subunit beta) (A-SCS) (Succinyl-CoA synthetase beta-A chain) (SCS-betaA) | ATP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of ATP and thus represents the only step of substrate-level phosphorylation in the TCA (PubMed:15877282, PubMed:34492704). The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit (By similarity). {ECO:0000255|HAMAP-Rule:MF_03220, ECO:0000269|PubMed:15877282, ECO:0000269|PubMed:34492704}. |
Q9P2Y5 | UVRAG | S498 | ochoa|psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UBB5 | MBD2 | S181 | ochoa | Methyl-CpG-binding domain protein 2 (Demethylase) (DMTase) (Methyl-CpG-binding protein MBD2) | Binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides (PubMed:9774669). Binds hemimethylated DNA as well (PubMed:10947852, PubMed:24307175). Recruits histone deacetylases and DNA methyltransferases to chromatin (PubMed:10471499, PubMed:10947852). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Acts as a transcriptional repressor and plays a role in gene silencing (PubMed:10471499, PubMed:10947852, PubMed:16415179). Functions as a scaffold protein, targeting GATAD2A and GATAD2B to chromatin to promote repression (PubMed:16415179). May enhance the activation of some unmethylated cAMP-responsive promoters (PubMed:12665568). {ECO:0000269|PubMed:10471499, ECO:0000269|PubMed:10947852, ECO:0000269|PubMed:12665568, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:24307175, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:9774669}. |
Q9UBB6 | NCDN | S448 | ochoa | Neurochondrin | Probably involved in signal transduction in the nervous system, via increasing cell surface localization of GRM5/mGluR5 and positively regulating its signaling (PubMed:33711248). Required for the spatial learning process. Acts as a negative regulator of Ca(2+)-calmodulin-dependent protein kinase 2 (CaMK2) phosphorylation. May play a role in modulating melanin-concentrating hormone-mediated functions via its interaction with MCHR1 that interferes with G protein-coupled signal transduction. May be involved in bone metabolism. May also be involved in neurite outgrowth (Probable). {ECO:0000269|PubMed:16945926, ECO:0000269|PubMed:33711248, ECO:0000305|PubMed:33711248}. |
Q9UBB6 | NCDN | S583 | ochoa | Neurochondrin | Probably involved in signal transduction in the nervous system, via increasing cell surface localization of GRM5/mGluR5 and positively regulating its signaling (PubMed:33711248). Required for the spatial learning process. Acts as a negative regulator of Ca(2+)-calmodulin-dependent protein kinase 2 (CaMK2) phosphorylation. May play a role in modulating melanin-concentrating hormone-mediated functions via its interaction with MCHR1 that interferes with G protein-coupled signal transduction. May be involved in bone metabolism. May also be involved in neurite outgrowth (Probable). {ECO:0000269|PubMed:16945926, ECO:0000269|PubMed:33711248, ECO:0000305|PubMed:33711248}. |
Q9UBB9 | TFIP11 | S568 | ochoa | Tuftelin-interacting protein 11 (Septin and tuftelin-interacting protein 1) (STIP-1) | Involved in pre-mRNA splicing, specifically in spliceosome disassembly during late-stage splicing events. Intron turnover seems to proceed through reactions in two lariat-intron associated complexes termed Intron Large (IL) and Intron Small (IS). In cooperation with DHX15 seems to mediate the transition of the U2, U5 and U6 snRNP-containing IL complex to the snRNP-free IS complex leading to efficient debranching and turnover of excised introns. May play a role in the differentiation of ameloblasts and odontoblasts or in the forming of the enamel extracellular matrix. {ECO:0000269|PubMed:19103666}. |
Q9UBI9 | HECA | S325 | ochoa | Headcase protein homolog (hHDC) | May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs. {ECO:0000303|PubMed:11696983}. |
Q9UBN7 | HDAC6 | S412 | psp | Protein deacetylase HDAC6 (EC 3.5.1.-) (E3 ubiquitin-protein ligase HDAC6) (EC 2.3.2.-) (Tubulin-lysine deacetylase HDAC6) (EC 3.5.1.-) | Deacetylates a wide range of non-histone substrates (PubMed:12024216, PubMed:18606987, PubMed:20308065, PubMed:24882211, PubMed:26246421, PubMed:30538141, PubMed:31857589, PubMed:30770470, PubMed:38534334, PubMed:39567688). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:12024216, PubMed:20308065, PubMed:26246421). Required for cilia disassembly via deacetylation of alpha-tubulin (PubMed:17604723, PubMed:26246421). Alpha-tubulin deacetylation results in destabilization of dynamic microtubules (By similarity). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Deacetylates SQSTM1 (PubMed:31857589). Deacetylates peroxiredoxins PRDX1 and PRDX2, decreasing their reducing activity (PubMed:18606987). Deacetylates antiviral protein RIGI in the presence of viral mRNAs which is required for viral RNA detection by RIGI (By similarity). Sequentially deacetylates and polyubiquitinates DNA mismatch repair protein MSH2 which leads to MSH2 degradation, reducing cellular sensitivity to DNA-damaging agents and decreasing cellular DNA mismatch repair activities (PubMed:24882211). Deacetylates DNA mismatch repair protein MLH1 which prevents recruitment of the MutL alpha complex (formed by the MLH1-PMS2 heterodimer) to the MutS alpha complex (formed by the MSH2-MSH6 heterodimer), leading to tolerance of DNA damage (PubMed:30770470). Deacetylates RHOT1/MIRO1 which blocks mitochondrial transport and mediates axon growth inhibition (By similarity). Deacetylates transcription factor SP1 which leads to increased expression of ENG, positively regulating angiogenesis (PubMed:38534334). Deacetylates KHDRBS1/SAM68 which regulates alternative splicing by inhibiting the inclusion of CD44 alternate exons (PubMed:26080397). Acts as a valine sensor by binding to valine through the primate-specific SE14 repeat region (PubMed:39567688). In valine deprivation conditions, translocates from the cytoplasm to the nucleus where it deacetylates TET2 which promotes TET2-dependent DNA demethylation, leading to DNA damage (PubMed:39567688). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:17846173). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and targets them to the aggresome, facilitating their clearance by autophagy (PubMed:17846173). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:D3ZVD8, ECO:0000250|UniProtKB:Q9Z2V5, ECO:0000269|PubMed:12024216, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18606987, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:24882211, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26246421, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:30770470, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:38534334, ECO:0000269|PubMed:39567688}.; FUNCTION: (Microbial infection) Deacetylates the SARS-CoV-2 N protein which promotes association of the viral N protein with human G3BP1, leading to disruption of cellular stress granule formation and facilitating viral replication. {ECO:0000269|PubMed:39135075}. |
Q9UBS8 | RNF14 | S348 | ochoa | E3 ubiquitin-protein ligase RNF14 (EC 2.3.2.31) (Androgen receptor-associated protein 54) (HFB30) (RING finger protein 14) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Recruited to stalled ribosomes by the ribosome collision sensor GCN1 and mediates 'Lys-6'-linked ubiquitination of target proteins, leading to their degradation (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Mediates ubiquitination of EEF1A1/eEF1A and ETF1/eRF1 translation factors on stalled ribosomes, leading to their degradation (PubMed:36638793, PubMed:37651229). Also catalyzes ubiquitination of ribosomal proteins RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Specifically required to resolve RNA-protein cross-links caused by reactive aldehydes, which trigger translation stress by stalling ribosomes: acts by catalying 'Lys-6'-linked ubiquitination of RNA-protein cross-links, leading to their removal by the ATP-dependent unfoldase VCP and subsequent degradation by the proteasome (PubMed:37951215, PubMed:37951216). Independently of its function in the response to stalled ribosomes, acts as a regulator of transcription in Wnt signaling via its interaction with TCF transcription factors (TCF7/TCF1, TCF7L1/TCF3 and TCF7L2/TCF4) (PubMed:23449499). May also play a role as a coactivator for androgen- and, to a lesser extent, progesterone-dependent transcription (PubMed:19345326). {ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:23449499, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q9UBT2 | UBA2 | S207 | ochoa | SUMO-activating enzyme subunit 2 (EC 2.3.2.-) (Anthracycline-associated resistance ARX) (Ubiquitin-like 1-activating enzyme E1B) (Ubiquitin-like modifier-activating enzyme 2) | The heterodimer acts as an E1 ligase for SUMO1, SUMO2, SUMO3, and probably SUMO4. It mediates ATP-dependent activation of SUMO proteins followed by formation of a thioester bond between a SUMO protein and a conserved active site cysteine residue on UBA2/SAE2. {ECO:0000269|PubMed:11451954, ECO:0000269|PubMed:11481243, ECO:0000269|PubMed:15660128, ECO:0000269|PubMed:17643372, ECO:0000269|PubMed:19443651, ECO:0000269|PubMed:20164921}. |
Q9UBU7 | DBF4 | S613 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UBW7 | ZMYM2 | S624 | ochoa | Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) | Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}. |
Q9UBZ4 | APEX2 | S349 | ochoa | DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) | Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}. |
Q9UBZ9 | REV1 | S254 | ochoa | DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) | Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}. |
Q9UBZ9 | REV1 | S301 | ochoa | DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) | Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}. |
Q9UBZ9 | REV1 | S1097 | ochoa | DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) | Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}. |
Q9UBZ9 | REV1 | S1108 | ochoa | DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) | Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}. |
Q9UDV7 | ZNF282 | S319 | ochoa | Zinc finger protein 282 (HTLV-I U5RE-binding protein 1) (HUB-1) | Binds to the U5 repressive element (U5RE) of the human T cell leukemia virus type I long terminal repeat. It recognizes the 5'-TCCACCCC-3' sequence as a core motif and exerts a strong repressive effect on HTLV-I LTR-mediated expression. |
Q9UDY2 | TJP2 | S130 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY8 | MALT1 | S123 | ochoa | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (EC 3.4.22.-) (MALT lymphoma-associated translocation) (Paracaspase) | Protease that enhances BCL10-induced activation: acts via formation of CBM complexes that channel adaptive and innate immune signaling downstream of CARD domain-containing proteins (CARD9, CARD11 and CARD14) to activate NF-kappa-B and MAP kinase p38 pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11262391, PubMed:18264101, PubMed:24074955). Mediates BCL10 cleavage: MALT1-dependent BCL10 cleavage plays an important role in T-cell antigen receptor-induced integrin adhesion (PubMed:11262391, PubMed:18264101). Involved in the induction of T helper 17 cells (Th17) differentiation (PubMed:11262391, PubMed:18264101). Cleaves RC3H1 and ZC3H12A in response to T-cell receptor (TCR) stimulation which releases their cooperatively repressed targets to promote Th17 cell differentiation (By similarity). Also mediates cleavage of N4BP1 in T-cells following TCR-mediated activation, leading to N4BP1 inactivation (PubMed:31133753). May also have ubiquitin ligase activity: binds to TRAF6, inducing TRAF6 oligomerization and activation of its ligase activity (PubMed:14695475). {ECO:0000250|UniProtKB:Q2TBA3, ECO:0000269|PubMed:11262391, ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:18264101, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:31133753}. |
Q9UEG4 | ZNF629 | S18 | ochoa | Zinc finger protein 629 (Zinc finger protein 65) | May be involved in transcriptional regulation. |
Q9UER7 | DAXX | S178 | ochoa|psp | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UEY8 | ADD3 | S42 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UEY8 | ADD3 | S64 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UEY8 | ADD3 | S442 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UEY8 | ADD3 | S461 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UEY8 | ADD3 | S600 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UFD9 | RIMBP3 | S1294 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UFD9 | RIMBP3 | S1322 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UG56 | PISD | S341 | ochoa | Phosphatidylserine decarboxylase proenzyme, mitochondrial (EC 4.1.1.65) [Cleaved into: Phosphatidylserine decarboxylase beta chain; Phosphatidylserine decarboxylase alpha chain] | Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer) (PubMed:30488656, PubMed:30858161). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine. May be involved in lipid droplet biogenesis at the endoplasmic reticulum membrane (By similarity). {ECO:0000250|UniProtKB:A0A8H4BVL9, ECO:0000255|HAMAP-Rule:MF_03208, ECO:0000269|PubMed:30488656, ECO:0000269|PubMed:30858161}. |
Q9UG63 | ABCF2 | S512 | ochoa | ATP-binding cassette sub-family F member 2 (Iron-inhibited ABC transporter 2) | None |
Q9UGL1 | KDM5B | S1328 | ochoa|psp | Lysine-specific demethylase 5B (EC 1.14.11.67) (Cancer/testis antigen 31) (CT31) (Histone demethylase JARID1B) (Jumonji/ARID domain-containing protein 1B) (PLU-1) (Retinoblastoma-binding protein 2 homolog 1) (RBP2-H1) ([histone H3]-trimethyl-L-lysine(4) demethylase 5B) | Histone demethylase that demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:24952722, PubMed:27214403, PubMed:28262558). Does not demethylate histone H3 'Lys-9' or H3 'Lys-27'. Demethylates trimethylated, dimethylated and monomethylated H3 'Lys-4'. Acts as a transcriptional corepressor for FOXG1B and PAX9. Favors the proliferation of breast cancer cells by repressing tumor suppressor genes such as BRCA1 and HOXA5 (PubMed:24952722). In contrast, may act as a tumor suppressor for melanoma. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:Q80Y84, ECO:0000269|PubMed:12657635, ECO:0000269|PubMed:16645588, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17363312, ECO:0000269|PubMed:24952722, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:26741168, ECO:0000269|PubMed:27214403, ECO:0000269|PubMed:28262558}. |
Q9UGL1 | KDM5B | S1384 | ochoa | Lysine-specific demethylase 5B (EC 1.14.11.67) (Cancer/testis antigen 31) (CT31) (Histone demethylase JARID1B) (Jumonji/ARID domain-containing protein 1B) (PLU-1) (Retinoblastoma-binding protein 2 homolog 1) (RBP2-H1) ([histone H3]-trimethyl-L-lysine(4) demethylase 5B) | Histone demethylase that demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:24952722, PubMed:27214403, PubMed:28262558). Does not demethylate histone H3 'Lys-9' or H3 'Lys-27'. Demethylates trimethylated, dimethylated and monomethylated H3 'Lys-4'. Acts as a transcriptional corepressor for FOXG1B and PAX9. Favors the proliferation of breast cancer cells by repressing tumor suppressor genes such as BRCA1 and HOXA5 (PubMed:24952722). In contrast, may act as a tumor suppressor for melanoma. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:Q80Y84, ECO:0000269|PubMed:12657635, ECO:0000269|PubMed:16645588, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17363312, ECO:0000269|PubMed:24952722, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:26741168, ECO:0000269|PubMed:27214403, ECO:0000269|PubMed:28262558}. |
Q9UGN5 | PARP2 | S34 | ochoa | Poly [ADP-ribose] polymerase 2 (PARP-2) (hPARP-2) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 2) (ARTD2) (DNA ADP-ribosyltransferase PARP2) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 2) (ADPRT-2) (Poly[ADP-ribose] synthase 2) (pADPRT-2) (Protein poly-ADP-ribosyltransferase PARP2) (EC 2.4.2.-) | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:10364231, PubMed:25043379, PubMed:27471034, PubMed:30104678, PubMed:32028527, PubMed:32939087, PubMed:34108479, PubMed:34486521, PubMed:34874266). Mediates glutamate, aspartate or serine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:25043379, PubMed:30104678, PubMed:30321391). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:32939087). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed:25043379). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed:28190768, PubMed:32028527, PubMed:34108479, PubMed:34486521, PubMed:34874266). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:10364231, PubMed:32939087, PubMed:34108479). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly-ADP-ribose chains (PubMed:34732825, PubMed:34795260). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed:30104678). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed:30104678). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:27471034, PubMed:29361132). {ECO:0000269|PubMed:10364231, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30321391, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32939087, ECO:0000269|PubMed:34108479, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266}. |
Q9UGU0 | TCF20 | S1134 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1196 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1262 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1361 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU5 | HMGXB4 | S197 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UH62 | ARMCX3 | S119 | ochoa | Armadillo repeat-containing X-linked protein 3 (ARM protein lost in epithelial cancers on chromosome X 3) (Protein ALEX3) | Regulates mitochondrial aggregation and transport in axons in living neurons. May link mitochondria to the TRAK2-kinesin motor complex via its interaction with Miro and TRAK2. Mitochondrial distribution and dynamics is regulated through ARMCX3 protein degradation, which is promoted by PCK and negatively regulated by WNT1. Enhances the SOX10-mediated transactivation of the neuronal acetylcholine receptor subunit alpha-3 and beta-4 subunit gene promoters. {ECO:0000250|UniProtKB:Q8BHS6}. |
Q9UHB6 | LIMA1 | S609 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHB6 | LIMA1 | S698 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHB9 | SRP68 | S241 | ochoa | Signal recognition particle subunit SRP68 (SRP68) (Signal recognition particle 68 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA), SRP72 binds to this complex subsequently (PubMed:16672232, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38687, ECO:0000269|PubMed:16672232, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
Q9UHF7 | TRPS1 | S157 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S178 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S603 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S803 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S1041 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHI6 | DDX20 | S86 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHI6 | DDX20 | S187 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHI6 | DDX20 | S532 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHI6 | DDX20 | S714 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHQ1 | NARF | S29 | ochoa | Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2) (IOP2) | None |
Q9UHQ1 | NARF | S196 | ochoa | Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2) (IOP2) | None |
Q9UHQ9 | CYB5R1 | S169 | ochoa | NADH-cytochrome b5 reductase 1 (b5R.1) (EC 1.6.2.2) (Humb5R2) (NAD(P)H:quinone oxidoreductase type 3 polypeptide A2) | NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. {ECO:0000250}. |
Q9UHR4 | BAIAP2L1 | S414 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UI08 | EVL | S130 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UIA9 | XPO7 | S40 | ochoa | Exportin-7 (Exp7) (Ran-binding protein 16) | Mediates the nuclear export of proteins (cargos) with broad substrate specificity. In the nucleus binds cooperatively to its cargo and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the cargo from the export receptor. XPO7 then return to the nuclear compartment and mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:11024021, ECO:0000269|PubMed:15282546}. |
Q9UID6 | ZNF639 | S88 | ochoa | Zinc finger protein 639 (Zinc finger protein ANC_2H01) (Zinc finger protein ZASC1) | Binds DNA and may function as a transcriptional repressor. {ECO:0000269|PubMed:16182284}. |
Q9UIF8 | BAZ2B | S405 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UIF8 | BAZ2B | S556 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UIF8 | BAZ2B | S1541 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UIF9 | BAZ2A | S613 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIF9 | BAZ2A | S1542 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIF9 | BAZ2A | S1783 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIJ5 | ZDHHC2 | S248 | ochoa | Palmitoyltransferase ZDHHC2 (EC 2.3.1.225) (Acyltransferase ZDHHC2) (EC 2.3.1.-) (Reduced expression associated with metastasis protein) (Ream) (Reduced expression in cancer protein) (Rec) (Zinc finger DHHC domain-containing protein 2) (DHHC-2) (Zinc finger protein 372) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and is involved in a variety of cellular processes (PubMed:18296695, PubMed:18508921, PubMed:19144824, PubMed:21343290, PubMed:22034844, PubMed:23793055). Has no stringent fatty acid selectivity and in addition to palmitate can also transfer onto target proteins myristate from tetradecanoyl-CoA and stearate from octadecanoyl-CoA (By similarity). In the nervous system, plays a role in long term synaptic potentiation by palmitoylating AKAP5 through which it regulates protein trafficking from the dendritic recycling endosomes to the plasma membrane and controls both structural and functional plasticity at excitatory synapses (By similarity). In dendrites, mediates the palmitoylation of DLG4 when synaptic activity decreases and induces synaptic clustering of DLG4 and associated AMPA-type glutamate receptors (By similarity). Also mediates the de novo and turnover palmitoylation of RGS7BP, a shuttle for Gi/o-specific GTPase-activating proteins/GAPs, promoting its localization to the plasma membrane in response to the activation of G protein-coupled receptors. Through the localization of these GTPase-activating proteins/GAPs, it also probably plays a role in G protein-coupled receptors signaling in neurons (By similarity). Also probably plays a role in cell adhesion by palmitoylating CD9 and CD151 to regulate their expression and function (PubMed:18508921). Palmitoylates the endoplasmic reticulum protein CKAP4 and regulates its localization to the plasma membrane (PubMed:18296695, PubMed:19144824). Could also palmitoylate LCK and regulate its localization to the plasma membrane (PubMed:22034844). {ECO:0000250|UniProtKB:P59267, ECO:0000250|UniProtKB:Q9JKR5, ECO:0000269|PubMed:18296695, ECO:0000269|PubMed:18508921, ECO:0000269|PubMed:19144824, ECO:0000269|PubMed:21343290, ECO:0000269|PubMed:22034844, ECO:0000269|PubMed:23793055}.; FUNCTION: (Microbial infection) Promotes Chikungunya virus (CHIKV) replication by mediating viral nsp1 palmitoylation. {ECO:0000269|PubMed:30404808}. |
Q9UIS9 | MBD1 | S37 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UIS9 | MBD1 | S518 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UIU6 | SIX4 | S249 | ochoa | Homeobox protein SIX4 (Sine oculis homeobox homolog 4) | Transcriptional regulator which can act as both a transcriptional repressor and activator by binding a DNA sequence on these target genes and is involved in processes like cell differentiation, cell migration and cell survival. Transactivates gene expression by binding a 5'-[CAT]A[CT][CT][CTG]GA[GAT]-3' motif present in the Trex site and a 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 site of the muscle-specific genes enhancer. Acts cooperatively with EYA proteins to transactivate their target genes through interaction and nuclear translocation of EYA protein. Acts synergistically with SIX1 to regulate target genes involved in formation of various organs, including muscle, kidney, gonad, ganglia, olfactory epithelium and cranial skeleton. Plays a role in several important steps of muscle development. Controls the genesis of hypaxial myogenic progenitors in the dermomyotome by transactivating PAX3 and the delamination and migration of the hypaxial precursors from the ventral lip to the limb buds through the transactivation of PAX3, MET and LBX1. Controls myoblast determination by transactivating MYF5, MYOD1 and MYF6. Controls somitic differentiation in myocyte through MYOG transactivation. Plays a role in synaptogenesis and sarcomere organization by participating in myofiber specialization during embryogenesis by activating fast muscle program in the primary myotome resulting in an up-regulation of fast muscle genes, including ATP2A1, MYL1 and TNNT3. Simultaneously, is also able to activate inhibitors of slow muscle genes, such as SOX6, HRASLS, and HDAC4, thereby restricting the activation of the slow muscle genes. During muscle regeneration, negatively regulates differentiation of muscle satellite cells through down-regulation of MYOG expression. During kidney development regulates the early stages of metanephros development and ureteric bud formation through regulation of GDNF, SALL1, PAX8 and PAX2 expression. Plays a role in gonad development by regulating both testis determination and size determination. In gonadal sex determination, transactivates ZFPM2 by binding a MEF3 consensus sequence, resulting in SRY up-regulation. In gonadal size determination, transactivates NR5A1 by binding a MEF3 consensus sequence resulting in gonadal precursor cell formation regulation. During olfactory development mediates the specification and patterning of olfactory placode through fibroblast growth factor and BMP4 signaling pathways and also regulates epithelial cell proliferation during placode formation. Promotes survival of sensory neurons during early trigeminal gangliogenesis. In the developing dorsal root ganglia, up-regulates SLC12A2 transcription. Regulates early thymus/parathyroid organogenesis through regulation of GCM2 and FOXN1 expression. Forms gustatory papillae during development of the tongue. Also plays a role during embryonic cranial skeleton morphogenesis. {ECO:0000250|UniProtKB:Q61321}. |
Q9UJF2 | RASAL2 | S635 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S663 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S928 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S946 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S954 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S1119 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJQ4 | SALL4 | S789 | ochoa | Sal-like protein 4 (Zinc finger protein 797) (Zinc finger protein SALL4) | Transcription factor with a key role in the maintenance and self-renewal of embryonic and hematopoietic stem cells. {ECO:0000269|PubMed:23012367}. |
Q9UJU2 | LEF1 | S132 | ochoa|psp | Lymphoid enhancer-binding factor 1 (LEF-1) (T cell-specific transcription factor 1-alpha) (TCF1-alpha) | Transcription factor that binds DNA in a sequence-specific manner (PubMed:2010090). Participates in the Wnt signaling pathway (By similarity). Activates transcription of target genes in the presence of CTNNB1 and EP300 (By similarity). PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1 (PubMed:11266540). Regulates T-cell receptor alpha enhancer function (PubMed:19653274). Required for IL17A expressing gamma-delta T-cell maturation and development, via binding to regulator loci of BLK to modulate expression (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, expression is repressed during the bell stage by MSX1-mediated inhibition of CTNNB1 signaling (By similarity). May play a role in hair cell differentiation and follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:P27782, ECO:0000269|PubMed:11266540, ECO:0000269|PubMed:19653274, ECO:0000269|PubMed:2010090}.; FUNCTION: [Isoform 1]: Transcriptionally activates MYC and CCND1 expression and enhances proliferation of pancreatic tumor cells. {ECO:0000269|PubMed:19653274}.; FUNCTION: [Isoform 3]: Lacks the CTNNB1 interaction domain and may therefore be an antagonist for Wnt signaling. {ECO:0000269|PubMed:11326276}.; FUNCTION: [Isoform 5]: Transcriptionally activates the fibronectin promoter, binds to and represses transcription from the E-cadherin promoter in a CTNNB1-independent manner, and is involved in reducing cellular aggregation and increasing cell migration of pancreatic cancer cells. {ECO:0000269|PubMed:19653274}. |
Q9UJU6 | DBNL | S24 | ochoa | Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) | Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}. |
Q9UJU6 | DBNL | S283 | ochoa | Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) | Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}. |
Q9UJV8 | PURG | S156 | ochoa | Purine-rich element-binding protein gamma (Purine-rich element-binding protein G) | None |
Q9UJV9 | DDX41 | S289 | ochoa | Probable ATP-dependent RNA helicase DDX41 (EC 3.6.4.13) (DEAD box protein 41) (DEAD box protein abstrakt homolog) | Multifunctional protein that participates in many aspects of cellular RNA metabolism. Plays pivotal roles in innate immune sensing and hematopoietic homeostasis (PubMed:34473945). Recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses (PubMed:23222971). Mechanistically, phosphorylation by BTK allows binding to dsDNA leading to interaction with STING1 (PubMed:25704810). Modulates the homeostasis of dsDNA through its ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity (PubMed:35613581). In turn, induces STING1-mediated type I interferon and cytokine responses to DNA and DNA viruses (PubMed:35613581). Selectively modulates the transcription of certain immunity-associated genes by regulating their alternative splicing (PubMed:33650667). Binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, and prevents their accumulation, thereby maintaining genome stability (PubMed:36229594). Also participates in pre-mRNA splicing, translational regulation and snoRNA processing, which is essential for ribosome biogenesis (PubMed:36229594, PubMed:36780110). {ECO:0000250|UniProtKB:Q91VN6, ECO:0000269|PubMed:23222971, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:25920683, ECO:0000269|PubMed:33650667, ECO:0000269|PubMed:34473945, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:36229594, ECO:0000269|PubMed:36780110}. |
Q9UJX5 | ANAPC4 | S488 | ochoa | Anaphase-promoting complex subunit 4 (APC4) (Cyclosome subunit 4) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UJX6 | ANAPC2 | S218 | ochoa | Anaphase-promoting complex subunit 2 (APC2) (Cyclosome subunit 2) | Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:11739784, PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:11739784, PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BZQ7, ECO:0000269|PubMed:11739784, ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UK41 | VPS28 | S62 | ochoa | Vacuolar protein sorting-associated protein 28 homolog (H-Vps28) (ESCRT-I complex subunit VPS28) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. {ECO:0000269|PubMed:11916981}. |
Q9UK58 | CCNL1 | S65 | ochoa | Cyclin-L1 (Cyclin-L) | Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}. |
Q9UK58 | CCNL1 | S166 | ochoa | Cyclin-L1 (Cyclin-L) | Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}. |
Q9UK61 | TASOR | S633 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UK80 | USP21 | S538 | psp | Ubiquitin carboxyl-terminal hydrolase 21 (EC 3.4.19.12) (Deubiquitinating enzyme 21) (Ubiquitin thioesterase 21) (Ubiquitin-specific-processing protease 21) | Deubiquitinates histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (By similarity). Deubiquitination of histone H2A releaves the repression of di- and trimethylation of histone H3 at 'Lys-4', resulting in regulation of transcriptional initiation (By similarity). Regulates gene expression via histone H2A deubiquitination (By similarity). Deubiquitinates BAZ2A/TIP5 leading to its stabilization (PubMed:26100909). Also capable of removing NEDD8 from NEDD8 conjugates but has no effect on Sentrin-1 conjugates (PubMed:10799498). Also acts as a negative regulator of the ribosome quality control (RQC) by mediating deubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS20/uS10, thereby antagonizing ZNF598-mediated 40S ubiquitination (PubMed:32011234). {ECO:0000250|UniProtKB:Q9QZL6, ECO:0000269|PubMed:10799498, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:32011234}. |
Q9UK97 | FBXO9 | S33 | ochoa | F-box only protein 9 (Cross-immune reaction antigen 1) (Renal carcinoma antigen NY-REN-57) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins and plays a role in several biological processes such as cell cycle, cell proliferation, or maintenance of chromosome stability (PubMed:23263282, PubMed:34480022). Ubiquitinates mTORC1-bound TTI1 and TELO2 when they are phosphorylated by CK2 following growth factor deprivation, leading to their degradation. In contrast, does not mediate ubiquitination of TTI1 and TELO2 when they are part of the mTORC2 complex. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation, while mTORC2 is the activated due to the relief of feedback inhibition by mTORC1 (PubMed:23263282). Plays a role in maintaining epithelial cell survival by regulating the turn-over of chromatin modulator PRMT4 through ubiquitination and degradation by the proteasomal pathway (PubMed:34480022). Regulates also PPARgamma stability by facilitating PPARgamma/PPARG ubiquitination and thereby plays a role in adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BK06, ECO:0000269|PubMed:23263282, ECO:0000269|PubMed:34480022}. |
Q9UK97 | FBXO9 | S136 | ochoa | F-box only protein 9 (Cross-immune reaction antigen 1) (Renal carcinoma antigen NY-REN-57) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins and plays a role in several biological processes such as cell cycle, cell proliferation, or maintenance of chromosome stability (PubMed:23263282, PubMed:34480022). Ubiquitinates mTORC1-bound TTI1 and TELO2 when they are phosphorylated by CK2 following growth factor deprivation, leading to their degradation. In contrast, does not mediate ubiquitination of TTI1 and TELO2 when they are part of the mTORC2 complex. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation, while mTORC2 is the activated due to the relief of feedback inhibition by mTORC1 (PubMed:23263282). Plays a role in maintaining epithelial cell survival by regulating the turn-over of chromatin modulator PRMT4 through ubiquitination and degradation by the proteasomal pathway (PubMed:34480022). Regulates also PPARgamma stability by facilitating PPARgamma/PPARG ubiquitination and thereby plays a role in adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BK06, ECO:0000269|PubMed:23263282, ECO:0000269|PubMed:34480022}. |
Q9UKA4 | AKAP11 | S1242 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKA4 | AKAP11 | S1580 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKA9 | PTBP2 | S27 | ochoa | Polypyrimidine tract-binding protein 2 (Neural polypyrimidine tract-binding protein) (Neurally-enriched homolog of PTB) (PTB-like protein) | RNA-binding protein which binds to intronic polypyrimidine tracts and mediates negative regulation of exons splicing. May antagonize in a tissue-specific manner the ability of NOVA1 to activate exon selection. In addition to its function in pre-mRNA splicing, plays also a role in the regulation of translation. {ECO:0000250|UniProtKB:Q91Z31, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:12667457}.; FUNCTION: [Isoform 5]: Reduced affinity for RNA. {ECO:0000269|PubMed:12213192}. |
Q9UKB3 | DNAJC12 | S160 | ochoa | DnaJ homolog subfamily C member 12 (J domain-containing protein 1) | Probable co-chaperone that participates in the proper folding of biopterin-dependent aromatic amino acid hydroxylases, which include phenylalanine-4-hydroxylase (PAH), tyrosine 3-monooxygenase (TH) and peripheral and neuronal tryptophan hydroxylases (TPH1 and TPH2). {ECO:0000269|PubMed:28132689, ECO:0000269|PubMed:32333439}. |
Q9UKD1 | GMEB2 | S126 | ochoa | Glucocorticoid modulatory element-binding protein 2 (GMEB-2) (DNA-binding protein p79PIF) (Parvovirus initiation factor p79) (PIF p79) | Trans-acting factor that binds to glucocorticoid modulatory elements (GME) present in the TAT (tyrosine aminotransferase) promoter and increases sensitivity to low concentrations of glucocorticoids. Also binds to the transferrin receptor promoter. Essential auxiliary factor for the replication of parvoviruses. |
Q9UKD2 | MRTO4 | S80 | ochoa | mRNA turnover protein 4 homolog (Ribosome assembly factor MRTO4) | Component of the ribosome assembly machinery. Nuclear paralog of the ribosomal protein P0, it binds pre-60S subunits at an early stage of assembly in the nucleolus, and is replaced by P0 in cytoplasmic pre-60S subunits and mature 80S ribosomes. {ECO:0000269|PubMed:20083226}. |
Q9UKE5 | TNIK | S526 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKE5 | TNIK | S548 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKE5 | TNIK | S938 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKE5 | TNIK | S985 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKF6 | CPSF3 | S328 | ochoa | Cleavage and polyadenylation specificity factor subunit 3 (EC 3.1.27.-) (Cleavage and polyadenylation specificity factor 73 kDa subunit) (CPSF 73 kDa subunit) (mRNA 3'-end-processing endonuclease CPSF-73) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as an mRNA 3'-end-processing endonuclease (PubMed:30507380). Also involved in the histone 3'-end pre-mRNA processing (PubMed:30507380). U7 snRNP-dependent protein that induces both the 3'-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' to 3' exonuclease for degrading the subsequent downstream cleavage product (DCP) of mature histone mRNAs. Cleavage occurs after the 5'-ACCCA-3' sequence in the histone pre-mRNA leaving a 3'hydroxyl group on the upstream fragment containing the stem loop (SL) and 5' phosphate on the downstream cleavage product (DCP) starting with CU nucleotides. The U7-dependent 5' to 3' exonuclease activity is processive and degrades the DCP RNA substrate even after complete removal of the U7-binding site. Binds to the downstream cleavage product (DCP) of histone pre-mRNAs and the cleaved DCP RNA substrate in a U7 snRNP dependent manner. Required for entering/progressing through S-phase of the cell cycle (PubMed:30507380). Required for the selective processing of microRNAs (miRNAs) during embryonic stem cell differentiation via its interaction with ISY1 (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). {ECO:0000250|UniProtKB:Q9QXK7, ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:15037765, ECO:0000269|PubMed:17128255, ECO:0000269|PubMed:18688255, ECO:0000269|PubMed:30507380}. |
Q9UKF6 | CPSF3 | S496 | ochoa | Cleavage and polyadenylation specificity factor subunit 3 (EC 3.1.27.-) (Cleavage and polyadenylation specificity factor 73 kDa subunit) (CPSF 73 kDa subunit) (mRNA 3'-end-processing endonuclease CPSF-73) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as an mRNA 3'-end-processing endonuclease (PubMed:30507380). Also involved in the histone 3'-end pre-mRNA processing (PubMed:30507380). U7 snRNP-dependent protein that induces both the 3'-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' to 3' exonuclease for degrading the subsequent downstream cleavage product (DCP) of mature histone mRNAs. Cleavage occurs after the 5'-ACCCA-3' sequence in the histone pre-mRNA leaving a 3'hydroxyl group on the upstream fragment containing the stem loop (SL) and 5' phosphate on the downstream cleavage product (DCP) starting with CU nucleotides. The U7-dependent 5' to 3' exonuclease activity is processive and degrades the DCP RNA substrate even after complete removal of the U7-binding site. Binds to the downstream cleavage product (DCP) of histone pre-mRNAs and the cleaved DCP RNA substrate in a U7 snRNP dependent manner. Required for entering/progressing through S-phase of the cell cycle (PubMed:30507380). Required for the selective processing of microRNAs (miRNAs) during embryonic stem cell differentiation via its interaction with ISY1 (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). {ECO:0000250|UniProtKB:Q9QXK7, ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:15037765, ECO:0000269|PubMed:17128255, ECO:0000269|PubMed:18688255, ECO:0000269|PubMed:30507380}. |
Q9UKI2 | CDC42EP3 | S100 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKI2 | CDC42EP3 | S124 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKK3 | PARP4 | S1048 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKK3 | PARP4 | S1186 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKK3 | PARP4 | S1306 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKL0 | RCOR1 | S139 | ochoa | REST corepressor 1 (Protein CoREST) | Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}. |
Q9UKL0 | RCOR1 | S460 | ochoa | REST corepressor 1 (Protein CoREST) | Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}. |
Q9UKL3 | CASP8AP2 | S20 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKL3 | CASP8AP2 | S168 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKL3 | CASP8AP2 | S567 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKL3 | CASP8AP2 | S875 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKL3 | CASP8AP2 | S928 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKN5 | PRDM4 | S202 | ochoa | PR domain zinc finger protein 4 (EC 2.1.1.-) (PR domain-containing protein 4) | May function as a transcription factor involved in cell differentiation. |
Q9UKN5 | PRDM4 | S601 | ochoa | PR domain zinc finger protein 4 (EC 2.1.1.-) (PR domain-containing protein 4) | May function as a transcription factor involved in cell differentiation. |
Q9UKN8 | GTF3C4 | S611 | ochoa | General transcription factor 3C polypeptide 4 (EC 2.3.1.48) (TF3C-delta) (Transcription factor IIIC 90 kDa subunit) (TFIIIC 90 kDa subunit) (TFIIIC90) (Transcription factor IIIC subunit delta) | Essential for RNA polymerase III to make a number of small nuclear and cytoplasmic RNAs, including 5S RNA, tRNA, and adenovirus-associated (VA) RNA of both cellular and viral origin (PubMed:10523658). Has histone acetyltransferase activity (HAT) with unique specificity for free and nucleosomal H3 (PubMed:10523658). May cooperate with GTF3C5 in facilitating the recruitment of TFIIIB and RNA polymerase through direct interactions with BRF1, POLR3C and POLR3F (PubMed:10523658). May be localized close to the A box (PubMed:10523658). {ECO:0000269|PubMed:10523658}. |
Q9UKS7 | IKZF2 | S433 | ochoa | Zinc finger protein Helios (Ikaros family zinc finger protein 2) | Transcriptional regulator required for outer hair cells (OHC) maturation and, consequently, for hearing. {ECO:0000250|UniProtKB:P81183}. |
Q9UKT4 | FBXO5 | S98 | ochoa | F-box only protein 5 (Early mitotic inhibitor 1) | Regulator of APC activity during mitotic and meiotic cell cycle (PubMed:16921029, PubMed:17234884, PubMed:17485488, PubMed:17875940, PubMed:23708001, PubMed:23708605). During mitotic cell cycle plays a role as both substrate and inhibitor of APC-FZR1 complex (PubMed:16921029, PubMed:17234884, PubMed:17485488, PubMed:17875940, PubMed:23708001, PubMed:23708605, PubMed:29875408). During G1 phase, plays a role as substrate of APC-FZR1 complex E3 ligase (PubMed:29875408). Then switches as an inhibitor of APC-FZR1 complex during S and G2 leading to cell-cycle commitment (PubMed:29875408). As APC inhibitor, prevents the degradation of APC substrates at multiple levels: by interacting with APC and blocking access of APC substrates to the D-box coreceptor, formed by FZR1 and ANAPC10; by suppressing ubiquitin ligation and chain elongation by APC by preventing the UBE2C and UBE2S activities (PubMed:16921029, PubMed:23708001, PubMed:23708605). Plays a role in genome integrity preservation by coordinating DNA replication with mitosis through APC inhibition in interphase to stabilize CCNA2 and GMNN in order to promote mitosis and prevent rereplication and DNA damage-induced cellular senescence (PubMed:17234884, PubMed:17485488, PubMed:17875940). During oocyte maturation, plays a role in meiosis through inactivation of APC-FZR1 complex. Inhibits APC through RPS6KA2 interaction that increases FBXO5 affiniy for CDC20 leading to the metaphase arrest of the second meiotic division before fertilization (By similarity). Controls entry into the first meiotic division through inactivation of APC-FZR1 complex (By similarity). Promotes migration and osteogenic differentiation of mesenchymal stem cells (PubMed:29850565). {ECO:0000250|UniProtKB:Q7TSG3, ECO:0000269|PubMed:16921029, ECO:0000269|PubMed:17234884, ECO:0000269|PubMed:17485488, ECO:0000269|PubMed:17875940, ECO:0000269|PubMed:23708001, ECO:0000269|PubMed:23708605, ECO:0000269|PubMed:29850565, ECO:0000269|PubMed:29875408}. |
Q9UKT9 | IKZF3 | S378 | ochoa|psp | Zinc finger protein Aiolos (Ikaros family zinc finger protein 3) | Transcription factor that plays an important role in the regulation of lymphocyte differentiation. Plays an essential role in regulation of B-cell differentiation, proliferation and maturation to an effector state. Involved in regulating BCL2 expression and controlling apoptosis in T-cells in an IL2-dependent manner. {ECO:0000269|PubMed:10369681, ECO:0000269|PubMed:34155405}. |
Q9UKV0 | HDAC9 | S189 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9UKV0 | HDAC9 | S240 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9UKV3 | ACIN1 | S1004 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKW4 | VAV3 | S786 | ochoa | Guanine nucleotide exchange factor VAV3 (VAV-3) | Exchange factor for GTP-binding proteins RhoA, RhoG and, to a lesser extent, Rac1. Binds physically to the nucleotide-free states of those GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). May be important for integrin-mediated signaling, at least in some cell types. In osteoclasts, along with SYK tyrosine kinase, required for signaling through integrin alpha-v/beta-1 (ITAGV-ITGB1), a crucial event for osteoclast proper cytoskeleton organization and function. This signaling pathway involves RAC1, but not RHO, activation. Necessary for proper wound healing. In the course of wound healing, required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Responsible for integrin beta-2 (ITGB2)-mediated macrophage adhesion and, to a lesser extent, contributes to beta-3 (ITGB3)-mediated adhesion. Does not affect integrin beta-1 (ITGB1)-mediated adhesion (By similarity). {ECO:0000250}. |
Q9UKX7 | NUP50 | S221 | ochoa|psp | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UL03 | INTS6 | S150 | ochoa | Integrator complex subunit 6 (Int6) (DBI-1) (Protein deleted in cancer 1) (DICE1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:33243860, PubMed:34004147, PubMed:39504960). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860, PubMed:34004147, PubMed:38570683, PubMed:39504960). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS6 acts as a molecular adapter that promotes assembly of protein phosphatase 2A (PP2A) subunits to the integrator core complex, promoting recruitment of PP2A to transcription pause-release checkpoint (PubMed:33243860, PubMed:34004147). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). May have a tumor suppressor role; an ectopic expression suppressing tumor cell growth (PubMed:15254679, PubMed:16239144). {ECO:0000269|PubMed:15254679, ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:39504960}. |
Q9UL54 | TAOK2 | S825 | ochoa | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
Q9ULC4 | MCTS1 | S118 | ochoa|psp | Malignant T-cell-amplified sequence 1 (MCT-1) (Multiple copies T-cell malignancies) | Translation regulator forming a complex with DENR to promote translation reinitiation. Translation reinitiation is the process where the small ribosomal subunit remains attached to the mRNA following termination of translation of a regulatory upstream ORF (uORF), and resume scanning on the same mRNA molecule to initiate translation of a downstream ORF, usually the main ORF (mORF). The MCTS1/DENR complex is pivotal to two linked mechanisms essential for translation reinitiation. Firstly, the dissociation of deacylated tRNAs from post-termination 40S ribosomal complexes during ribosome recycling. Secondly, the recruitment in an EIF2-independent manner of aminoacylated initiator tRNA to P site of 40S ribosomes for a new round of translation (PubMed:16982740, PubMed:20713520, PubMed:37875108). This regulatory mechanism governs the translation of more than 150 genes which translation reinitiation is MCTS1/DENR complex-dependent (PubMed:16982740, PubMed:20713520, PubMed:37875108). Consequently, modulates various unrelated biological processes including cell cycle regulation and DNA damage signaling and repair (PubMed:10440924, PubMed:11709712, PubMed:12637315, PubMed:15897892, PubMed:16322206, PubMed:17016429, PubMed:17416211, PubMed:9766643). Notably, it positively regulates interferon gamma immunity to mycobacteria by enhancing the translation of JAK2 (PubMed:37875108). {ECO:0000269|PubMed:10440924, ECO:0000269|PubMed:11709712, ECO:0000269|PubMed:12637315, ECO:0000269|PubMed:15897892, ECO:0000269|PubMed:16322206, ECO:0000269|PubMed:16982740, ECO:0000269|PubMed:17016429, ECO:0000269|PubMed:17416211, ECO:0000269|PubMed:20713520, ECO:0000269|PubMed:37875108, ECO:0000269|PubMed:9766643}. |
Q9ULD2 | MTUS1 | S399 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD2 | MTUS1 | S443 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD2 | MTUS1 | S541 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD2 | MTUS1 | S752 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD4 | BRPF3 | S26 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULD4 | BRPF3 | S400 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULD4 | BRPF3 | S943 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULD6 | INTU | S453 | ochoa | Protein inturned (Inturned planar cell polarity effector homolog) (PDZ domain-containing protein 6) | Plays a key role in ciliogenesis and embryonic development. Regulator of cilia formation by controlling the organization of the apical actin cytoskeleton and the positioning of the basal bodies at the apical cell surface, which in turn is essential for the normal orientation of elongating ciliary microtubules. Plays a key role in definition of cell polarity via its role in ciliogenesis but not via conversion extension. Has an indirect effect on hedgehog signaling (By similarity). Proposed to function as core component of the CPLANE (ciliogenesis and planar polarity effectors) complex involved in the recruitment of peripheral IFT-A proteins to basal bodies (PubMed:27158779). Required for recruitment of CPLANE2 to the mother centriole (By similarity). Binds phosphatidylinositol 3-phosphate with highest affinity, followed by phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate (By similarity). {ECO:0000250|UniProtKB:Q059U7, ECO:0000250|UniProtKB:Q2I0E5, ECO:0000305|PubMed:27158779}. |
Q9ULD9 | ZNF608 | S421 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULD9 | ZNF608 | S549 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULD9 | ZNF608 | S895 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULD9 | ZNF608 | S1402 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULH0 | KIDINS220 | S1718 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULH1 | ASAP1 | S525 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULH7 | MRTFB | S66 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULH7 | MRTFB | S921 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULI0 | ATAD2B | S86 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULI3 | HEG1 | S1332 | ochoa | Protein HEG homolog 1 | Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions. {ECO:0000250}. |
Q9ULI4 | KIF26A | S1231 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULJ3 | ZBTB21 | S605 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULL0 | KIAA1210 | S1022 | ochoa | Acrosomal protein KIAA1210 | None |
Q9ULL1 | PLEKHG1 | S108 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULL1 | PLEKHG1 | S497 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULL1 | PLEKHG1 | S1061 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULL1 | PLEKHG1 | S1341 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULL1 | PLEKHG1 | S1362 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULM0 | PLEKHH1 | S234 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9ULM0 | PLEKHH1 | S263 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9ULM0 | PLEKHH1 | S1160 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9ULM2 | ZNF490 | S118 | ochoa | Zinc finger protein 490 | May be involved in transcriptional regulation. |
Q9ULM3 | YEATS2 | S627 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9ULM3 | YEATS2 | S868 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9ULT8 | HECTD1 | S481 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULU4 | ZMYND8 | S406 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULU4 | ZMYND8 | S547 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULV3 | CIZ1 | S783 | ochoa | Cip1-interacting zinc finger protein (CDKN1A-interacting zinc finger protein 1) (Nuclear protein NP94) (Zinc finger protein 356) | May regulate the subcellular localization of CIP/WAF1. |
Q9ULV3 | CIZ1 | S838 | ochoa | Cip1-interacting zinc finger protein (CDKN1A-interacting zinc finger protein 1) (Nuclear protein NP94) (Zinc finger protein 356) | May regulate the subcellular localization of CIP/WAF1. |
Q9ULV4 | CORO1C | S299 | ochoa | Coronin-1C (Coronin-3) (hCRNN4) | Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (PubMed:25074804, PubMed:25925950). Increases the presence of activated RAC1 at the leading edge of migrating cells (PubMed:25074804, PubMed:25925950). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). {ECO:0000250|UniProtKB:Q9WUM4, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:25925950, ECO:0000269|PubMed:30220460, ECO:0000269|PubMed:34106209}.; FUNCTION: [Isoform 3]: Involved in myogenic differentiation. {ECO:0000269|PubMed:19651142}. |
Q9ULX3 | NOB1 | S371 | ochoa | RNA-binding protein NOB1 (EC 3.1.-.-) (Phosphorylation regulatory protein HP-10) (Protein ART-4) | May play a role in mRNA degradation (Probable). Endonuclease required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits (By similarity). {ECO:0000250|UniProtKB:Q9FLL1, ECO:0000305}. |
Q9UM01 | SLC7A7 | S25 | ochoa | Y+L amino acid transporter 1 (Monocyte amino acid permease 2) (MOP-2) (Solute carrier family 7 member 7) (y(+)L-type amino acid transporter 1) (Y+LAT1) (y+LAT-1) | Heterodimer with SLC3A2, that functions as an antiporter which operates as an efflux route by exporting cationic amino acids from inside the cells in exchange with neutral amino acids plus sodium ions and may participate in nitric oxide synthesis via the transport of L-arginine (PubMed:10080182, PubMed:10655553, PubMed:14603368, PubMed:15756301, PubMed:15776427, PubMed:17329401, PubMed:9829974, PubMed:9878049). Also mediates arginine transport in non-polarized cells, such as monocytes, and is essential for the correct function of these cells (PubMed:15280038, PubMed:31705628). The transport mechanism is electroneutral and operates with a stoichiometry of 1:1 (By similarity). In vitro, Na(+) and Li(+), but also H(+), are cotransported with the neutral amino acids (By similarity). {ECO:0000250|UniProtKB:Q9R0S5, ECO:0000269|PubMed:10080182, ECO:0000269|PubMed:10655553, ECO:0000269|PubMed:14603368, ECO:0000269|PubMed:15280038, ECO:0000269|PubMed:15756301, ECO:0000269|PubMed:15776427, ECO:0000269|PubMed:17329401, ECO:0000269|PubMed:31705628, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}. |
Q9UM11 | FZR1 | S70 | ochoa | Fizzy-related protein homolog (Fzr) (CDC20-like protein 1) (Cdh1/Hct1 homolog) (hCDH1) | Substrate-specific adapter for the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin-protein ligase complex. Associates with the APC/C in late mitosis, in replacement of CDC20, and activates the APC/C during anaphase and telophase. The APC/C remains active in degrading substrates to ensure that positive regulators of the cell cycle do not accumulate prematurely. At the G1/S transition FZR1 is phosphorylated, leading to its dissociation from the APC/C. Following DNA damage, it is required for the G2 DNA damage checkpoint: its dephosphorylation and reassociation with the APC/C leads to the ubiquitination of PLK1, preventing entry into mitosis. Acts as an adapter for APC/C to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, may play a role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:25349192). {ECO:0000269|PubMed:14701726, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:25349192, ECO:0000269|PubMed:9734353}. |
Q9UM11 | FZR1 | S163 | psp | Fizzy-related protein homolog (Fzr) (CDC20-like protein 1) (Cdh1/Hct1 homolog) (hCDH1) | Substrate-specific adapter for the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin-protein ligase complex. Associates with the APC/C in late mitosis, in replacement of CDC20, and activates the APC/C during anaphase and telophase. The APC/C remains active in degrading substrates to ensure that positive regulators of the cell cycle do not accumulate prematurely. At the G1/S transition FZR1 is phosphorylated, leading to its dissociation from the APC/C. Following DNA damage, it is required for the G2 DNA damage checkpoint: its dephosphorylation and reassociation with the APC/C leads to the ubiquitination of PLK1, preventing entry into mitosis. Acts as an adapter for APC/C to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, may play a role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:25349192). {ECO:0000269|PubMed:14701726, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:25349192, ECO:0000269|PubMed:9734353}. |
Q9UM54 | MYO6 | S267 | ochoa | Unconventional myosin-VI (Unconventional myosin-6) | Myosins are actin-based motor molecules with ATPase activity (By similarity). Unconventional myosins serve in intracellular movements (By similarity). Myosin 6 is a reverse-direction motor protein that moves towards the minus-end of actin filaments (PubMed:10519557). Has slow rate of actin-activated ADP release due to weak ATP binding (By similarity). Functions in a variety of intracellular processes such as vesicular membrane trafficking and cell migration (By similarity). Required for the structural integrity of the Golgi apparatus via the p53-dependent pro-survival pathway (PubMed:16507995). Appears to be involved in a very early step of clathrin-mediated endocytosis in polarized epithelial cells (PubMed:11447109). Together with TOM1, mediates delivery of endocytic cargo to autophagosomes thereby promoting autophagosome maturation and driving fusion with lysosomes (PubMed:23023224). Links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). May act as a regulator of F-actin dynamics (By similarity). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). May play a role in transporting DAB2 from the plasma membrane to specific cellular targets (By similarity). May play a role in the extension and network organization of neurites (By similarity). Required for structural integrity of inner ear hair cells (By similarity). Required for the correct localization of CLIC5 and RDX at the stereocilium base (By similarity). Modulates RNA polymerase II-dependent transcription (PubMed:16949370). {ECO:0000250|UniProtKB:Q29122, ECO:0000250|UniProtKB:Q64331, ECO:0000269|PubMed:10519557, ECO:0000269|PubMed:11447109, ECO:0000269|PubMed:16507995, ECO:0000269|PubMed:16949370, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:29467281, ECO:0000269|PubMed:31371777}. |
Q9UM54 | MYO6 | S1155 | ochoa | Unconventional myosin-VI (Unconventional myosin-6) | Myosins are actin-based motor molecules with ATPase activity (By similarity). Unconventional myosins serve in intracellular movements (By similarity). Myosin 6 is a reverse-direction motor protein that moves towards the minus-end of actin filaments (PubMed:10519557). Has slow rate of actin-activated ADP release due to weak ATP binding (By similarity). Functions in a variety of intracellular processes such as vesicular membrane trafficking and cell migration (By similarity). Required for the structural integrity of the Golgi apparatus via the p53-dependent pro-survival pathway (PubMed:16507995). Appears to be involved in a very early step of clathrin-mediated endocytosis in polarized epithelial cells (PubMed:11447109). Together with TOM1, mediates delivery of endocytic cargo to autophagosomes thereby promoting autophagosome maturation and driving fusion with lysosomes (PubMed:23023224). Links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). May act as a regulator of F-actin dynamics (By similarity). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). May play a role in transporting DAB2 from the plasma membrane to specific cellular targets (By similarity). May play a role in the extension and network organization of neurites (By similarity). Required for structural integrity of inner ear hair cells (By similarity). Required for the correct localization of CLIC5 and RDX at the stereocilium base (By similarity). Modulates RNA polymerase II-dependent transcription (PubMed:16949370). {ECO:0000250|UniProtKB:Q29122, ECO:0000250|UniProtKB:Q64331, ECO:0000269|PubMed:10519557, ECO:0000269|PubMed:11447109, ECO:0000269|PubMed:16507995, ECO:0000269|PubMed:16949370, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:29467281, ECO:0000269|PubMed:31371777}. |
Q9UM63 | PLAGL1 | S229 | ochoa | Zinc finger protein PLAGL1 (Lost on transformation 1) (LOT-1) (Pleiomorphic adenoma-like protein 1) (Tumor suppressor ZAC) | Acts as a transcriptional activator (PubMed:9722527). Involved in the transcriptional regulation of type 1 receptor for pituitary adenylate cyclase-activating polypeptide. {ECO:0000269|PubMed:18299245, ECO:0000269|PubMed:9722527}. |
Q9UMD9 | COL17A1 | S174 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMD9 | COL17A1 | S374 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMN6 | KMT2B | S351 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UMR3 | TBX20 | S312 | ochoa | T-box transcription factor TBX20 (T-box protein 20) | Acts as a transcriptional activator and repressor required for cardiac development and may have key roles in the maintenance of functional and structural phenotypes in adult heart. {ECO:0000250}. |
Q9UMS5 | PHTF1 | S433 | ochoa | Protein PHTF1 | None |
Q9UMS6 | SYNPO2 | S310 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMS6 | SYNPO2 | S705 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMZ2 | SYNRG | S1006 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UN30 | SCML1 | S138 | ochoa | Sex comb on midleg-like protein 1 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. May be involved in spermatogenesis during sexual maturation (By similarity). {ECO:0000250}. |
Q9UN70 | PCDHGC3 | S780 | ochoa | Protocadherin gamma-C3 (PCDH-gamma-C3) (Protocadherin-2) (Protocadherin-43) (PC-43) | Potential calcium-dependent cell-adhesion protein. May be involved in the establishment and maintenance of specific neuronal connections in the brain. |
Q9UN79 | SOX13 | S386 | ochoa | Transcription factor SOX-13 (Islet cell antigen 12) (SRY (Sex determining region Y)-box 13) (Type 1 diabetes autoantigen ICA12) | Transcription factor that binds to DNA at the consensus sequence 5'-AACAAT-3' (PubMed:10871192). Binds to the proximal promoter region of the myelin protein MPZ gene, and may thereby be involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). Binds to and modifies the activity of TCF7/TCF1, thereby inhibiting transcription and modulates normal gamma-delta T-cell development and differentiation of IL17A expressing gamma-delta T-cells (By similarity). Regulates expression of BLK in the differentiation of IL17A expressing gamma-delta T-cells (By similarity). Promotes brown adipocyte differentiation (By similarity). Inhibitor of WNT signaling (PubMed:20028982). {ECO:0000250|UniProtKB:Q04891, ECO:0000269|PubMed:10871192, ECO:0000269|PubMed:20028982}. |
Q9UNE7 | STUB1 | S273 | ochoa | E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) | E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}. |
Q9UNS1 | TIMELESS | S1087 | ochoa | Protein timeless homolog (hTIM) | Plays an important role in the control of DNA replication, maintenance of replication fork stability, maintenance of genome stability throughout normal DNA replication, DNA repair and in the regulation of the circadian clock (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:23418588, PubMed:26344098, PubMed:31138685, PubMed:32705708, PubMed:35585232, PubMed:9856465). Required to stabilize replication forks during DNA replication by forming a complex with TIPIN: this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:35585232). During DNA replication, inhibits the CMG complex ATPase activity and activates DNA polymerases catalytic activities, coupling DNA unwinding and DNA synthesis (PubMed:23359676). TIMELESS promotes TIPIN nuclear localization (PubMed:17141802, PubMed:17296725). Plays a role in maintaining processive DNA replication past genomic guanine-rich DNA sequences that form G-quadruplex (G4) structures, possibly together with DDX1 (PubMed:32705708). Involved in cell survival after DNA damage or replication stress by promoting DNA repair (PubMed:17141802, PubMed:17296725, PubMed:26344098, PubMed:30356214). In response to double-strand breaks (DSBs), accumulates at DNA damage sites and promotes homologous recombination repair via its interaction with PARP1 (PubMed:26344098, PubMed:30356214, PubMed:31138685). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:15798197). Involved in the determination of period length and in the DNA damage-dependent phase advancing of the circadian clock (PubMed:23418588, PubMed:31138685). Negatively regulates CLOCK|NPAS2-ARTNL/BMAL1|ARTNL2/BMAL2-induced transactivation of PER1 possibly via translocation of PER1 into the nucleus (PubMed:31138685, PubMed:9856465). May play a role as destabilizer of the PER2-CRY2 complex (PubMed:31138685). May also play an important role in epithelial cell morphogenesis and formation of branching tubules (By similarity). {ECO:0000250|UniProtKB:Q9R1X4, ECO:0000269|PubMed:15798197, ECO:0000269|PubMed:17141802, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:23418588, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31138685, ECO:0000269|PubMed:32705708, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9856465}. |
Q9UNX3 | RPL26L1 | S32 | ochoa | Ribosomal protein uL24-like (60S ribosomal protein L26-like 1) (Large ribosomal subunit protein uL24-like 1) | None |
Q9UNY4 | TTF2 | S396 | ochoa | Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) | DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}. |
Q9UNY4 | TTF2 | S883 | ochoa | Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) | DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}. |
Q9UNZ2 | NSFL1C | S114 | ochoa | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UNZ2 | NSFL1C | S140 | ochoa|psp | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UPN3 | MACF1 | S280 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S1367 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S3298 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S3331 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S4496 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S4521 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S5592 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN3 | MACF1 | S6032 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN9 | TRIM33 | S959 | ochoa | E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) | Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}. |
Q9UPP1 | PHF8 | S120 | ochoa|psp | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPP1 | PHF8 | S175 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPP1 | PHF8 | S593 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPQ0 | LIMCH1 | S169 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ0 | LIMCH1 | S601 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ0 | LIMCH1 | S670 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ0 | LIMCH1 | S750 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ0 | LIMCH1 | S973 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ4 | TRIM35 | S65 | ochoa | E3 ubiquitin-protein ligase TRIM35 (EC 2.3.2.27) (Hemopoietic lineage switch protein 5) | E3 ubiquitin-protein ligase that participates in multiple biological processes including cell death, glucose metabolism, and in particular, the innate immune response. Mediates 'Lys-63'-linked polyubiquitination of TRAF3 thereby promoting type I interferon production via RIG-I signaling pathway (PubMed:32562145). Can also catalyze 'Lys-48'-linked polyubiquitination and proteasomal degradation of viral proteins such as influenza virus PB2 (PubMed:32562145). Acts as a negative feedback regulator of TLR7- and TLR9-triggered signaling. Mechanistically, promotes the 'Lys-48'-linked ubiquitination of IRF7 and induces its degradation via a proteasome-dependent pathway (PubMed:25907537). Reduces FGFR1-dependent tyrosine phosphorylation of PKM, inhibiting PKM-dependent lactate production, glucose metabolism, and cell growth (PubMed:25263439). {ECO:0000269|PubMed:25263439, ECO:0000269|PubMed:25907537, ECO:0000269|PubMed:32562145}. |
Q9UPQ7 | PDZRN3 | S848 | ochoa | E3 ubiquitin-protein ligase PDZRN3 (EC 2.3.2.27) (Ligand of Numb protein X 3) (PDZ domain-containing RING finger protein 3) (RING-type E3 ubiquitin transferase PDZRN3) (Semaphorin cytoplasmic domain-associated protein 3) (Protein SEMACAP3) | E3 ubiquitin-protein ligase. Plays an important role in regulating the surface level of MUSK on myotubes. Mediates the ubiquitination of MUSK, promoting its endocytosis and lysosomal degradation. Might contribute to terminal myogenic differentiation. {ECO:0000250|UniProtKB:Q69ZS0}. |
Q9UPQ9 | TNRC6B | S385 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPQ9 | TNRC6B | S803 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPQ9 | TNRC6B | S1432 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPQ9 | TNRC6B | S1512 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPS6 | SETD1B | S211 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UPT6 | MAPK8IP3 | S365 | ochoa|psp | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UPT6 | MAPK8IP3 | S676 | ochoa | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UPT6 | MAPK8IP3 | S1191 | ochoa | C-Jun-amino-terminal kinase-interacting protein 3 (JIP-3) (JNK-interacting protein 3) (JNK MAP kinase scaffold protein 3) (Mitogen-activated protein kinase 8-interacting protein 3) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:12189133). May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins (By similarity). Promotes neuronal axon elongation in a kinesin- and JNK-dependent manner. Activates cofilin at axon tips via local activation of JNK, thereby regulating filopodial dynamics and enhancing axon elongation. Its binding to kinesin heavy chains (KHC), promotes kinesin-1 motility along microtubules and is essential for axon elongation and regeneration. Regulates cortical neuronal migration by mediating NTRK2/TRKB anterograde axonal transport during brain development (By similarity). Acts as an adapter that bridges the interaction between NTRK2/TRKB and KLC1 and drives NTRK2/TRKB axonal but not dendritic anterograde transport, which is essential for subsequent BDNF-triggered signaling and filopodia formation (PubMed:21775604). {ECO:0000250|UniProtKB:Q9ESN9, ECO:0000269|PubMed:12189133, ECO:0000269|PubMed:21775604}. |
Q9UPU5 | USP24 | S914 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU5 | USP24 | S1612 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU5 | USP24 | S1943 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU5 | USP24 | S2047 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU5 | USP24 | S2588 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU7 | TBC1D2B | S155 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UPV0 | CEP164 | S430 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPV0 | CEP164 | S1213 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPV0 | CEP164 | S1374 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPV9 | TRAK1 | S393 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9UPW0 | FOXJ3 | S223 | ochoa | Forkhead box protein J3 | Transcriptional activator of MEF2C involved in the regulation of adult muscle fiber type identity and skeletal muscle regeneration (By similarity). Plays an important role in spermatogenesis (By similarity). Required for the survival of spermatogonia and participates in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q8BUR3}. |
Q9UPW5 | AGTPBP1 | S1142 | ochoa | Cytosolic carboxypeptidase 1 (EC 3.4.17.-) (EC 3.4.17.24) (ATP/GTP-binding protein 1) (Nervous system nuclear protein induced by axotomy protein 1 homolog) (Protein deglutamylase CCP1) | Metallocarboxypeptidase that mediates protein deglutamylation of tubulin and non-tubulin target proteins (PubMed:22170066, PubMed:24022482, PubMed:30420557). Catalyzes the removal of polyglutamate side chains present on the gamma-carboxyl group of glutamate residues within the C-terminal tail of alpha- and beta-tubulin (PubMed:22170066, PubMed:24022482, PubMed:30420557). Specifically cleaves tubulin long-side-chains, while it is not able to remove the branching point glutamate (PubMed:24022482). Also catalyzes the removal of polyglutamate residues from the carboxy-terminus of alpha-tubulin as well as non-tubulin proteins such as MYLK (PubMed:22170066). Involved in KLF4 deglutamylation which promotes KLF4 proteasome-mediated degradation, thereby negatively regulating cell pluripotency maintenance and embryogenesis (PubMed:29593216). {ECO:0000269|PubMed:22170066, ECO:0000269|PubMed:24022482, ECO:0000269|PubMed:29593216, ECO:0000269|PubMed:30420557}. |
Q9UPW5 | AGTPBP1 | S1168 | ochoa | Cytosolic carboxypeptidase 1 (EC 3.4.17.-) (EC 3.4.17.24) (ATP/GTP-binding protein 1) (Nervous system nuclear protein induced by axotomy protein 1 homolog) (Protein deglutamylase CCP1) | Metallocarboxypeptidase that mediates protein deglutamylation of tubulin and non-tubulin target proteins (PubMed:22170066, PubMed:24022482, PubMed:30420557). Catalyzes the removal of polyglutamate side chains present on the gamma-carboxyl group of glutamate residues within the C-terminal tail of alpha- and beta-tubulin (PubMed:22170066, PubMed:24022482, PubMed:30420557). Specifically cleaves tubulin long-side-chains, while it is not able to remove the branching point glutamate (PubMed:24022482). Also catalyzes the removal of polyglutamate residues from the carboxy-terminus of alpha-tubulin as well as non-tubulin proteins such as MYLK (PubMed:22170066). Involved in KLF4 deglutamylation which promotes KLF4 proteasome-mediated degradation, thereby negatively regulating cell pluripotency maintenance and embryogenesis (PubMed:29593216). {ECO:0000269|PubMed:22170066, ECO:0000269|PubMed:24022482, ECO:0000269|PubMed:29593216, ECO:0000269|PubMed:30420557}. |
Q9UPW6 | SATB2 | S303 | ochoa | DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) | Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}. |
Q9UPW8 | UNC13A | S988 | ochoa | Protein unc-13 homolog A (Munc13-1) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-dependent refilling of readily releasable vesicle pool (RRP). Essential for synaptic vesicle maturation in most excitatory/glutamatergic but not inhibitory/GABA-mediated synapses. Facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). Also involved in secretory granule priming in insulin secretion. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q4KUS2, ECO:0000250|UniProtKB:Q62768, ECO:0000269|PubMed:23999003}. |
Q9UPY3 | DICER1 | S1160 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1255 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1280 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1470 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1728 | psp | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY3 | DICER1 | S1868 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UPY8 | MAPRE3 | S162 | ochoa|psp | Microtubule-associated protein RP/EB family member 3 (EB1 protein family member 3) (EBF3) (End-binding protein 3) (EB3) (RP3) | Plus-end tracking protein (+TIP) that binds to the plus-end of microtubules and regulates the dynamics of the microtubule cytoskeleton (PubMed:19255245, PubMed:28814570). Promotes microtubule growth (PubMed:19255245, PubMed:28814570). May be involved in spindle function by stabilizing microtubules and anchoring them at centrosomes (PubMed:19255245, PubMed:28814570). Also acts as a regulator of minus-end microtubule organization: interacts with the complex formed by AKAP9 and PDE4DIP, leading to recruit CAMSAP2 to the Golgi apparatus, thereby tethering non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:28814570). Promotes elongation of CAMSAP2-decorated microtubule stretches on the minus-end of microtubules (PubMed:28814570). {ECO:0000269|PubMed:19255245, ECO:0000269|PubMed:28814570}. |
Q9UPZ3 | HPS5 | S712 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ26 | RIMS2 | S1072 | ochoa | Regulating synaptic membrane exocytosis protein 2 (Rab-3-interacting molecule 2) (RIM 2) (Rab-3-interacting protein 3) | Rab effector involved in exocytosis. May act as scaffold protein. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:23999003}. |
Q9UQ88 | CDK11A | S577 | ochoa | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9UQK1 | PPP1R3C | S33 | ochoa|psp | Protein phosphatase 1 regulatory subunit 3C (Protein phosphatase 1 regulatory subunit 5) (PP1 subunit R5) (Protein targeting to glycogen) (PTG) | Acts as a glycogen-targeting subunit for PP1 and regulates its activity. Activates glycogen synthase, reduces glycogen phosphorylase activity and limits glycogen breakdown. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in a variety of cell types. {ECO:0000250|UniProtKB:Q7TMB3, ECO:0000269|PubMed:8985175}. |
Q9UQK1 | PPP1R3C | S293 | ochoa|psp | Protein phosphatase 1 regulatory subunit 3C (Protein phosphatase 1 regulatory subunit 5) (PP1 subunit R5) (Protein targeting to glycogen) (PTG) | Acts as a glycogen-targeting subunit for PP1 and regulates its activity. Activates glycogen synthase, reduces glycogen phosphorylase activity and limits glycogen breakdown. Dramatically increases basal and insulin-stimulated glycogen synthesis upon overexpression in a variety of cell types. {ECO:0000250|UniProtKB:Q7TMB3, ECO:0000269|PubMed:8985175}. |
Q9UQL6 | HDAC5 | S279 | ochoa|psp | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9UQL6 | HDAC5 | S499 | ochoa | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9UQR1 | ZNF148 | S625 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9UQR1 | ZNF148 | S665 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y217 | MTMR6 | S589 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR6 (EC 3.1.3.95) (Myotubularin-related protein 6) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:19038970, PubMed:22647598). Binds with high affinity to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) but also to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 5-phosphate (PtdIns(5)P), phosphatidic acid and phosphatidylserine (PubMed:19038970). Negatively regulates ER-Golgi protein transport (By similarity). Probably in association with MTMR9, plays a role in the late stages of macropinocytosis by dephosphorylating phosphatidylinositol 3-phosphate in membrane ruffles (PubMed:24591580). Acts as a negative regulator of KCNN4/KCa3.1 channel activity in CD4(+) T-cells possibly by decreasing intracellular levels of phosphatidylinositol 3-phosphate (PubMed:15831468). Negatively regulates proliferation of reactivated CD4(+) T-cells (PubMed:16847315). In complex with MTMR9, negatively regulates DNA damage-induced apoptosis (PubMed:19038970, PubMed:22647598). The formation of the MTMR6-MTMR9 complex stabilizes both MTMR6 and MTMR9 protein levels (PubMed:19038970). {ECO:0000250|UniProtKB:A0A0G2JXT6, ECO:0000269|PubMed:15831468, ECO:0000269|PubMed:16847315, ECO:0000269|PubMed:19038970, ECO:0000269|PubMed:22647598, ECO:0000269|PubMed:24591580, ECO:0000305|PubMed:24591580}. |
Q9Y219 | JAG2 | S1208 | ochoa | Protein jagged-2 (Jagged2) (hJ2) | Putative Notch ligand involved in the mediation of Notch signaling. Involved in limb development (By similarity). {ECO:0000250}. |
Q9Y222 | DMTF1 | S701 | ochoa | Cyclin-D-binding Myb-like transcription factor 1 (hDMTF1) (Cyclin-D-interacting Myb-like protein 1) (hDMP1) | Transcriptional activator which activates the CDKN2A/ARF locus in response to Ras-Raf signaling, thereby promoting p53/TP53-dependent growth arrest (By similarity). Binds to the consensus sequence 5'-CCCG[GT]ATGT-3' (By similarity). Isoform 1 may cooperate with MYB to activate transcription of the ANPEP gene. Isoform 2 may antagonize transcriptional activation by isoform 1. {ECO:0000250, ECO:0000269|PubMed:12917399}. |
Q9Y230 | RUVBL2 | S342 | ochoa | RuvB-like 2 (EC 3.6.4.12) (48 kDa TATA box-binding protein-interacting protein) (48 kDa TBP-interacting protein) (51 kDa erythrocyte cytosolic protein) (ECP-51) (INO80 complex subunit J) (Repressing pontin 52) (Reptin 52) (TIP49b) (TIP60-associated protein 54-beta) (TAP54-beta) | Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:10428817, PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400 (PubMed:14966270). NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). May also inhibit the transcriptional activity of ATF2 (PubMed:11713276). Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway where it negatively regulates expression of ER stress response genes (PubMed:25652260). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:10428817, ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11713276, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:25652260, ECO:0000269|PubMed:28561026, ECO:0000269|PubMed:33205750}. |
Q9Y232 | CDYL | S129 | ochoa | Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) | [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}. |
Q9Y253 | POLH | S551 | ochoa | DNA polymerase eta (EC 2.7.7.7) (RAD30 homolog A) (Xeroderma pigmentosum variant type protein) | DNA polymerase specifically involved in the DNA repair by translesion synthesis (TLS) (PubMed:10385124, PubMed:11743006, PubMed:16357261, PubMed:24449906, PubMed:24553286, PubMed:38212351). Due to low processivity on both damaged and normal DNA, cooperates with the heterotetrameric (REV3L, REV7, POLD2 and POLD3) POLZ complex for complete bypass of DNA lesions. Inserts one or 2 nucleotide(s) opposite the lesion, the primer is further extended by the tetrameric POLZ complex. In the case of 1,2-intrastrand d(GpG)-cisplatin cross-link, inserts dCTP opposite the 3' guanine (PubMed:24449906). Particularly important for the repair of UV-induced pyrimidine dimers (PubMed:10385124, PubMed:11743006). Although inserts the correct base, may cause base transitions and transversions depending upon the context. May play a role in hypermutation at immunoglobulin genes (PubMed:11376341, PubMed:14734526). Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have any lyase activity, preventing the release of the 5'-deoxyribose phosphate (5'-dRP) residue. This covalent trapping of the enzyme by the 5'-dRP residue inhibits its DNA synthetic activity during base excision repair, thereby avoiding high incidence of mutagenesis (PubMed:14630940). Targets POLI to replication foci (PubMed:12606586). {ECO:0000269|PubMed:10385124, ECO:0000269|PubMed:11376341, ECO:0000269|PubMed:11743006, ECO:0000269|PubMed:12606586, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:14734526, ECO:0000269|PubMed:16357261, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:38212351}. |
Q9Y261 | FOXA2 | S436 | ochoa | Hepatocyte nuclear factor 3-beta (HNF-3-beta) (HNF-3B) (Forkhead box protein A2) (Transcription factor 3B) (TCF-3B) | Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). In embryonic development is required for notochord formation. Involved in the development of multiple endoderm-derived organ systems such as the liver, pancreas and lungs; FOXA1 and FOXA2 seem to have at least in part redundant roles. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis; regulates the expression of genes important for glucose sensing in pancreatic beta-cells and glucose homeostasis. Involved in regulation of fat metabolism. Binds to fibrinogen beta promoter and is involved in IL6-induced fibrinogen beta transcriptional activation. {ECO:0000250}. |
Q9Y272 | RASD1 | S202 | ochoa | Dexamethasone-induced Ras-related protein 1 (Activator of G-protein signaling 1) | Small GTPase. Negatively regulates the transcription regulation activity of the APBB1/FE65-APP complex via its interaction with APBB1/FE65 (By similarity). {ECO:0000250}. |
Q9Y285 | FARSA | S490 | ochoa | Phenylalanine--tRNA ligase alpha subunit (EC 6.1.1.20) (CML33) (Phenylalanyl-tRNA synthetase alpha subunit) (PheRS) | None |
Q9Y295 | DRG1 | S307 | ochoa | Developmentally-regulated GTP-binding protein 1 (DRG-1) (Neural precursor cell expressed developmentally down-regulated protein 3) (NEDD-3) (Translation factor GTPase DRG1) (TRAFAC GTPase DRG1) (EC 3.6.5.-) | Catalyzes the conversion of GTP to GDP through hydrolysis of the gamma-phosphate bond in GTP (PubMed:23711155, PubMed:29915238, PubMed:37179472). Appears to have an intrinsic GTPase activity that is stimulated by ZC3H15/DFRP1 binding likely by increasing the affinity for the potassium ions (PubMed:23711155). When hydroxylated at C-3 of 'Lys-22' by JMJD7, may bind to RNA and play a role in translation (PubMed:19819225, PubMed:29915238). Binds to microtubules and promotes microtubule polymerization and stability that are required for mitotic spindle assembly during prophase to anaphase transition. GTPase activity is not necessary for these microtubule-related functions (PubMed:28855639). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155, ECO:0000269|PubMed:28855639, ECO:0000269|PubMed:29915238, ECO:0000269|PubMed:37179472}. |
Q9Y2D8 | SSX2IP | S293 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2D8 | SSX2IP | S526 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2F5 | ICE1 | S255 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2F5 | ICE1 | S944 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H0 | DLGAP4 | S384 | ochoa | Disks large-associated protein 4 (DAP-4) (PSD-95/SAP90-binding protein 4) (SAP90/PSD-95-associated protein 4) (SAPAP-4) | May play a role in the molecular organization of synapses and neuronal cell signaling. Could be an adapter protein linking ion channel to the subsynaptic cytoskeleton. May induce enrichment of PSD-95/SAP90 at the plasma membrane. |
Q9Y2H2 | INPP5F | S123 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H2 | INPP5F | S940 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H2 | INPP5F | S1103 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H5 | PLEKHA6 | S777 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2H6 | FNDC3A | S434 | ochoa | Fibronectin type-III domain-containing protein 3A (Human gene expressed in odontoblasts) | Mediates spermatid-Sertoli adhesion during spermatogenesis. {ECO:0000250}. |
Q9Y2H9 | MAST1 | S708 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2H9 | MAST1 | S1413 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2I1 | NISCH | S1022 | ochoa | Nischarin (Imidazoline receptor 1) (I-1) (IR1) (Imidazoline receptor antisera-selected protein) (hIRAS) (Imidazoline-1 receptor) (I1R) (Imidazoline-1 receptor candidate protein) (I-1 receptor candidate protein) (I1R candidate protein) | Acts either as the functional imidazoline-1 receptor (I1R) candidate or as a membrane-associated mediator of the I1R signaling. Binds numerous imidazoline ligands that induces initiation of cell-signaling cascades triggering to cell survival, growth and migration. Its activation by the agonist rilmenidine induces an increase in phosphorylation of mitogen-activated protein kinases MAPK1 and MAPK3 in rostral ventrolateral medulla (RVLM) neurons that exhibited rilmenidine-evoked hypotension (By similarity). Blocking its activation with efaroxan abolished rilmenidine-induced mitogen-activated protein kinase phosphorylation in RVLM neurons (By similarity). Acts as a modulator of Rac-regulated signal transduction pathways (By similarity). Suppresses Rac1-stimulated cell migration by interacting with PAK1 and inhibiting its kinase activity (By similarity). Also blocks Pak-independent Rac signaling by interacting with RAC1 and inhibiting Rac1-stimulated NF-kB response element and cyclin D1 promoter activation (By similarity). Also inhibits LIMK1 kinase activity by reducing LIMK1 'Tyr-508' phosphorylation (By similarity). Inhibits Rac-induced cell migration and invasion in breast and colon epithelial cells (By similarity). Inhibits lamellipodia formation, when overexpressed (By similarity). Plays a role in protection against apoptosis. Involved in association with IRS4 in the enhancement of insulin activation of MAPK1 and MAPK3. When overexpressed, induces a redistribution of cell surface ITGA5 integrin to intracellular endosomal structures. {ECO:0000250, ECO:0000269|PubMed:10882231, ECO:0000269|PubMed:12868002, ECO:0000269|PubMed:15028619, ECO:0000269|PubMed:15028621, ECO:0000269|PubMed:15475348}. |
Q9Y2I6 | NINL | S185 | psp | Ninein-like protein | Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}. |
Q9Y2I6 | NINL | S191 | ochoa | Ninein-like protein | Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}. |
Q9Y2I7 | PIKFYVE | S329 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2I7 | PIKFYVE | S1754 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2I9 | TBC1D30 | S610 | ochoa | TBC1 domain family member 30 | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}. |
Q9Y2I9 | TBC1D30 | S713 | ochoa | TBC1 domain family member 30 | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}. |
Q9Y2J2 | EPB41L3 | S762 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2J4 | AMOTL2 | S236 | ochoa | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y2K7 | KDM2A | S394 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y2L1 | DIS3 | S730 | ochoa | Exosome complex exonuclease RRP44 (EC 3.1.13.-) (EC 3.1.26.-) (Protein DIS3 homolog) (Ribosomal RNA-processing protein 44) | Putative catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. DIS3 has both 3'-5' exonuclease and endonuclease activities. {ECO:0000269|PubMed:19056938, ECO:0000269|PubMed:20531386}. |
Q9Y2L6 | FRMD4B | S915 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y2L9 | LRCH1 | S370 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 1 (Calponin homology domain-containing protein 1) (Neuronal protein 81) (NP81) | Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration. {ECO:0000269|PubMed:28028151}. |
Q9Y2R2 | PTPN22 | S325 | ochoa | Tyrosine-protein phosphatase non-receptor type 22 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase 70Z-PEP) (Lymphoid phosphatase) (LyP) (PEST-domain phosphatase) (PEP) | Acts as a negative regulator of T-cell receptor (TCR) signaling by direct dephosphorylation of the Src family kinases LCK and FYN, ITAMs of the TCRz/CD3 complex, as well as ZAP70, VAV, VCP and other key signaling molecules (PubMed:16461343, PubMed:18056643). Associates with and probably dephosphorylates CBL. Dephosphorylates LCK at its activating 'Tyr-394' residue (PubMed:21719704). Dephosphorylates ZAP70 at its activating 'Tyr-493' residue (PubMed:16461343). Dephosphorylates the immune system activator SKAP2 (PubMed:21719704). Positively regulates toll-like receptor (TLR)-induced type 1 interferon production (PubMed:23871208). Promotes host antiviral responses mediated by type 1 interferon (By similarity). Regulates NOD2-induced pro-inflammatory cytokine secretion and autophagy (PubMed:23991106). Acts as an activator of NLRP3 inflammasome assembly by mediating dephosphorylation of 'Tyr-861' of NLRP3 (PubMed:27043286). Dephosphorylates phospho-anandamide (p-AEA), an endocannabinoid to anandamide (also called N-arachidonoylethanolamide) (By similarity). {ECO:0000250|UniProtKB:P29352, ECO:0000269|PubMed:16461343, ECO:0000269|PubMed:18056643, ECO:0000269|PubMed:19167335, ECO:0000269|PubMed:21719704, ECO:0000269|PubMed:23871208, ECO:0000269|PubMed:23991106, ECO:0000269|PubMed:27043286}. |
Q9Y2T1 | AXIN2 | S70 | ochoa | Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) | Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}. |
Q9Y2T1 | AXIN2 | S244 | ochoa | Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) | Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}. |
Q9Y2T1 | AXIN2 | S454 | ochoa | Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) | Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}. |
Q9Y2U8 | LEMD3 | S27 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W1 | THRAP3 | S535 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W1 | THRAP3 | S682 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2X0 | MED16 | S326 | ochoa | Mediator of RNA polymerase II transcription subunit 16 (Mediator complex subunit 16) (Thyroid hormone receptor-associated protein 5) (Thyroid hormone receptor-associated protein complex 95 kDa component) (Trap95) (Vitamin D3 receptor-interacting protein complex 92 kDa component) (DRIP92) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:10198638, ECO:0000269|PubMed:10235266}. |
Q9Y2X3 | NOP58 | S109 | ochoa | Nucleolar protein 58 (Nucleolar protein 5) | Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
Q9Y2X3 | NOP58 | S351 | ochoa | Nucleolar protein 58 (Nucleolar protein 5) | Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
Q9Y2X7 | GIT1 | S362 | ochoa | ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}. |
Q9Y2X9 | ZNF281 | S484 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y2X9 | ZNF281 | S651 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y2X9 | ZNF281 | S697 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y2Y9 | KLF13 | S162 | ochoa | Krueppel-like factor 13 (Basic transcription element-binding protein 3) (BTE-binding protein 3) (Novel Sp1-like zinc finger transcription factor 1) (RANTES factor of late activated T-lymphocytes 1) (RFLAT-1) (Transcription factor BTEB3) (Transcription factor NSLP1) | Transcription factor that activates expression from GC-rich minimal promoter regions, including genes in the cells of the erythroid lineage (By similarity). Represses transcription by binding to the BTE site, a GC-rich DNA element, in competition with the activator SP1. It also represses transcription by interacting with the corepressor Sin3A and HDAC1 (PubMed:11477107). Activates RANTES and CCL5 expression in T-cells (PubMed:17513757). {ECO:0000250|UniProtKB:Q9JJZ6, ECO:0000269|PubMed:11477107, ECO:0000269|PubMed:17513757}. |
Q9Y320 | TMX2 | S211 | ochoa | Thioredoxin-related transmembrane protein 2 (Cell proliferation-inducing gene 26 protein) (Thioredoxin domain-containing protein 14) | Endoplasmic reticulum and mitochondria-associated protein that probably functions as a regulator of cellular redox state and thereby regulates protein post-translational modification, protein folding and mitochondrial activity. Indirectly regulates neuronal proliferation, migration, and organization in the developing brain. {ECO:0000269|PubMed:31735293}. |
Q9Y3A4 | RRP7A | S19 | ochoa | Ribosomal RNA-processing protein 7 homolog A (Gastric cancer antigen Zg14) | Nucleolar protein that is involved in ribosomal RNA (rRNA) processing (PubMed:33199730). Also plays a role in primary cilia resorption, and cell cycle progression in neurogenesis and neocortex development (PubMed:33199730). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:33199730, ECO:0000269|PubMed:34516797}. |
Q9Y3A4 | RRP7A | S99 | ochoa | Ribosomal RNA-processing protein 7 homolog A (Gastric cancer antigen Zg14) | Nucleolar protein that is involved in ribosomal RNA (rRNA) processing (PubMed:33199730). Also plays a role in primary cilia resorption, and cell cycle progression in neurogenesis and neocortex development (PubMed:33199730). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:33199730, ECO:0000269|PubMed:34516797}. |
Q9Y3B2 | EXOSC1 | S21 | ochoa | Exosome complex component CSL4 (Exosome component 1) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC1 as peripheral part of the Exo-9 complex stabilizes the hexameric ring of RNase PH-domain subunits through contacts with EXOSC6 and EXOSC8. |
Q9Y3E2 | BOLA1 | S81 | ochoa | BolA-like protein 1 (hBolA) | Acts as a mitochondrial iron-sulfur (Fe-S) cluster assembly factor that facilitates (Fe-S) cluster insertion into a subset of mitochondrial proteins (By similarity). Probably acts together with the monothiol glutaredoxin GLRX5 (PubMed:27532772). May protect cells against oxidative stress (PubMed:22746225). {ECO:0000250|UniProtKB:Q3E793, ECO:0000269|PubMed:22746225, ECO:0000305|PubMed:27532772}. |
Q9Y3L3 | SH3BP1 | S262 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y3M8 | STARD13 | S171 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y3P9 | RABGAP1 | S134 | ochoa | Rab GTPase-activating protein 1 (GAP and centrosome-associated protein) (Rab6 GTPase-activating protein GAPCenA) | May act as a GTPase-activating protein of RAB6A. May play a role in microtubule nucleation by centrosome. May participate in a RAB6A-mediated pathway involved in the metaphase-anaphase transition. {ECO:0000269|PubMed:10202141, ECO:0000269|PubMed:16395330}. |
Q9Y3R0 | GRIP1 | S847 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
Q9Y3S1 | WNK2 | S1276 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y3S1 | WNK2 | S1777 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y426 | C2CD2 | S435 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y450 | HBS1L | S33 | ochoa | HBS1-like protein (EC 3.6.5.-) (ERFS) | GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}. |
Q9Y462 | ZNF711 | S459 | ochoa | Zinc finger protein 711 (Zinc finger protein 6) | Transcription regulator required for brain development (PubMed:20346720). Probably acts as a transcription factor that binds to the promoter of target genes and recruits PHF8 histone demethylase, leading to activated expression of genes involved in neuron development, such as KDM5C (PubMed:20346720, PubMed:31691806). May compete with transcription factor ARX for activation of expression of KDM5C (PubMed:31691806). {ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:31691806}. |
Q9Y463 | DYRK1B | S421 | psp | Dual specificity tyrosine-phosphorylation-regulated kinase 1B (EC 2.7.12.1) (Minibrain-related kinase) (Mirk protein kinase) | Dual-specificity kinase which possesses both serine/threonine and tyrosine kinase activities. Plays an essential role in ribosomal DNA (rDNA) double-strand break repair and rDNA copy number maintenance (PubMed:33469661). During DNA damage, mediates transcription silencing in part via phosphorylating and enforcing DSB accumulation of the histone methyltransferase EHMT2 (PubMed:32611815). Enhances the transcriptional activity of TCF1/HNF1A and FOXO1. Inhibits epithelial cell migration. Mediates colon carcinoma cell survival in mitogen-poor environments. Inhibits the SHH and WNT1 pathways, thereby enhancing adipogenesis. In addition, promotes expression of the gluconeogenic enzyme glucose-6-phosphatase catalytic subunit 1 (G6PC1). {ECO:0000269|PubMed:10910078, ECO:0000269|PubMed:11980910, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:24827035, ECO:0000269|PubMed:33469661}. |
Q9Y467 | SALL2 | S684 | ochoa | Sal-like protein 2 (Zinc finger protein 795) (Zinc finger protein SALL2) (Zinc finger protein Spalt-2) (Sal-2) (hSal2) | Probable transcription factor that plays a role in eye development before, during, and after optic fissure closure. {ECO:0000269|PubMed:24412933}. |
Q9Y485 | DMXL1 | S208 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y485 | DMXL1 | S859 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y485 | DMXL1 | S1754 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y485 | DMXL1 | S1905 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y490 | TLN1 | S729 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S1940 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4A5 | TRRAP | S3791 | ochoa | Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) | Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}. |
Q9Y4B5 | MTCL1 | S901 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1106 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1278 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1514 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1578 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1679 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1730 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1772 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B6 | DCAF1 | S987 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4B6 | DCAF1 | S1000 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4B6 | DCAF1 | S1328 | ochoa | DDB1- and CUL4-associated factor 1 (HIV-1 Vpr-binding protein) (VprBP) (Serine/threonine-protein kinase VPRBP) (EC 2.7.11.1) (Vpr-interacting protein) | Acts both as a substrate recognition component of E3 ubiquitin-protein ligase complexes and as an atypical serine/threonine-protein kinase, playing key roles in various processes such as cell cycle, telomerase regulation and histone modification. Probable substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex, named CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, which mediates ubiquitination and proteasome-dependent degradation of proteins such as NF2 (PubMed:23063525). Involved in the turnover of methylated proteins: recognizes and binds methylated proteins via its chromo domain, leading to ubiquitination of target proteins by the RBX1-DDB1-DCAF1/VPRBP complex (PubMed:23063525). The CUL4A-RBX1-DDB1-DCAF1/VPRBP complex is also involved in B-cell development: DCAF1 is recruited by RAG1 to ubiquitinate proteins, leading to limit error-prone repair during V(D)J recombination (By similarity). Also part of the EDVP complex, an E3 ligase complex that mediates ubiquitination of proteins such as TERT, leading to TERT degradation and telomerase inhibition (PubMed:19287380, PubMed:23362280). The EDVP complex also mediates ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Also acts as an atypical serine/threonine-protein kinase that specifically mediates phosphorylation of 'Thr-120' of histone H2A (H2AT120ph) in a nucleosomal context, thereby repressing transcription (PubMed:24140421). H2AT120ph is present in the regulatory region of many tumor suppresor genes, down-regulates their transcription and is present at high level in a number of tumors (PubMed:24140421). Involved in JNK-mediated apoptosis during cell competition process via its interaction with LLGL1 and LLGL2 (PubMed:20644714). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). {ECO:0000250|UniProtKB:Q80TR8, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:18606781, ECO:0000269|PubMed:19287380, ECO:0000269|PubMed:20644714, ECO:0000269|PubMed:22184063, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:23362280, ECO:0000269|PubMed:24140421, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, it is recruited by HIV-1 Vpr in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to arrest the cell cycle in G2 phase, and also to protect the viral protein from proteasomal degradation by another E3 ubiquitin ligase. The HIV-1 Vpr protein hijacks the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex to promote ubiquitination and degradation of proteins such as TERT and ZIP/ZGPAT. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:17559673, ECO:0000269|PubMed:17609381, ECO:0000269|PubMed:17620334, ECO:0000269|PubMed:17626091, ECO:0000269|PubMed:17630831, ECO:0000269|PubMed:18524771, ECO:0000269|PubMed:24116224}.; FUNCTION: (Microbial infection) In case of infection by HIV-2 virus, it is recruited by HIV-2 Vpx in order to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP function leading to enhanced efficiency of macrophage infection and promotion of the replication of cognate primate lentiviruses in cells of monocyte/macrophage lineage. {ECO:0000269|PubMed:17314515, ECO:0000269|PubMed:18464893, ECO:0000269|PubMed:19264781, ECO:0000269|PubMed:19923175, ECO:0000269|PubMed:24336198}. |
Q9Y4C1 | KDM3A | S283 | ochoa | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4D8 | HECTD4 | S595 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4D8 | HECTD4 | S1493 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4E5 | ZNF451 | S601 | ochoa | E3 SUMO-protein ligase ZNF451 (EC 2.3.2.-) (Coactivator for steroid receptors) (E3 SUMO-protein transferase ZNF451) (Zinc finger protein 451) | E3 SUMO-protein ligase; has a preference for SUMO2 and SUMO3 and facilitates UBE2I/UBC9-mediated sumoylation of target proteins (PubMed:26524493, PubMed:26524494). Plays a role in protein SUMO2 modification in response to stress caused by DNA damage and by proteasome inhibitors (in vitro). Required for MCM4 sumoylation (By similarity). Has no activity with SUMO1 (PubMed:26524493). Preferentially transfers an additional SUMO2 chain onto the SUMO2 consensus site 'Lys-11' (PubMed:26524493). Negatively regulates transcriptional activation mediated by the SMAD4 complex in response to TGF-beta signaling. Inhibits EP300-mediated acetylation of histone H3 at 'Lys-9' (PubMed:24324267). Plays a role in regulating the transcription of AR targets (PubMed:18656483). {ECO:0000250|UniProtKB:Q8C0P7, ECO:0000269|PubMed:18656483, ECO:0000269|PubMed:24324267, ECO:0000269|PubMed:26524493, ECO:0000269|PubMed:26524494}. |
Q9Y4E6 | WDR7 | S1063 | ochoa | WD repeat-containing protein 7 (Rabconnectin-3 beta) (TGF-beta resistance-associated protein TRAG) | None |
Q9Y4F3 | MARF1 | S66 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y4F3 | MARF1 | S827 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y4F9 | RIPOR2 | S730 | ochoa | Rho family-interacting cell polarization regulator 2 | Acts as an inhibitor of the small GTPase RHOA and plays several roles in the regulation of myoblast and hair cell differentiation, lymphocyte T proliferation and neutrophil polarization (PubMed:17150207, PubMed:23241886, PubMed:24687993, PubMed:24958875, PubMed:25588844, PubMed:27556504). Inhibits chemokine-induced T lymphocyte responses, such as cell adhesion, polarization and migration (PubMed:23241886). Involved also in the regulation of neutrophil polarization, chemotaxis and adhesion (By similarity). Required for normal development of inner and outer hair cell stereocilia within the cochlea of the inner ear (By similarity). Plays a role for maintaining the structural organization of the basal domain of stereocilia (By similarity). Involved in mechanosensory hair cell function (By similarity). Required for normal hearing (PubMed:24958875). {ECO:0000250|UniProtKB:Q80U16, ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:23241886, ECO:0000269|PubMed:24687993, ECO:0000269|PubMed:24958875, ECO:0000269|PubMed:27556504}.; FUNCTION: [Isoform 2]: Acts as an inhibitor of the small GTPase RHOA (PubMed:25588844). Plays a role in fetal mononuclear myoblast differentiation by promoting filopodia and myotube formation (PubMed:17150207). Maintains naive T lymphocytes in a quiescent state (PubMed:27556504). {ECO:0000269|PubMed:17150207, ECO:0000269|PubMed:25588844, ECO:0000269|PubMed:27556504}. |
Q9Y4G2 | PLEKHM1 | S432 | ochoa | Pleckstrin homology domain-containing family M member 1 (PH domain-containing family M member 1) (162 kDa adapter protein) (AP162) | Acts as a multivalent adapter protein that regulates Rab7-dependent and HOPS complex-dependent fusion events in the endolysosomal system and couples autophagic and the endocytic trafficking pathways. Acts as a dual effector of RAB7A and ARL8B that simultaneously binds these GTPases, bringing about clustering and fusion of late endosomes and lysosomes (PubMed:25498145, PubMed:28325809). Required for late stages of endolysosomal maturation, facilitating both endocytosis-mediated degradation of growth factor receptors and autophagosome clearance. Interaction with Arl8b is a crucial factor in the terminal maturation of autophagosomes and to mediate autophagosome-lysosome fusion (PubMed:25498145). Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). May be involved in negative regulation of endocytic transport from early endosome to late endosome/lysosome implicating its association with Rab7 (PubMed:20943950). May have a role in sialyl-lex-mediated transduction of apoptotic signals (PubMed:12820725). Involved in bone resorption (By similarity). {ECO:0000250|UniProtKB:Q5PQS0, ECO:0000250|UniProtKB:Q7TSI1, ECO:0000269|PubMed:12820725, ECO:0000269|PubMed:20943950, ECO:0000269|PubMed:25498145, ECO:0000269|PubMed:28325809}.; FUNCTION: (Microbial infection) In case of infection contributes to Salmonella typhimurium pathogenesis by supporting the integrity of the Salmonella-containing vacuole (SCV) probably in concert with the HOPS complex and Rab7. {ECO:0000269|PubMed:25500191}. |
Q9Y4G2 | PLEKHM1 | S501 | ochoa | Pleckstrin homology domain-containing family M member 1 (PH domain-containing family M member 1) (162 kDa adapter protein) (AP162) | Acts as a multivalent adapter protein that regulates Rab7-dependent and HOPS complex-dependent fusion events in the endolysosomal system and couples autophagic and the endocytic trafficking pathways. Acts as a dual effector of RAB7A and ARL8B that simultaneously binds these GTPases, bringing about clustering and fusion of late endosomes and lysosomes (PubMed:25498145, PubMed:28325809). Required for late stages of endolysosomal maturation, facilitating both endocytosis-mediated degradation of growth factor receptors and autophagosome clearance. Interaction with Arl8b is a crucial factor in the terminal maturation of autophagosomes and to mediate autophagosome-lysosome fusion (PubMed:25498145). Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). May be involved in negative regulation of endocytic transport from early endosome to late endosome/lysosome implicating its association with Rab7 (PubMed:20943950). May have a role in sialyl-lex-mediated transduction of apoptotic signals (PubMed:12820725). Involved in bone resorption (By similarity). {ECO:0000250|UniProtKB:Q5PQS0, ECO:0000250|UniProtKB:Q7TSI1, ECO:0000269|PubMed:12820725, ECO:0000269|PubMed:20943950, ECO:0000269|PubMed:25498145, ECO:0000269|PubMed:28325809}.; FUNCTION: (Microbial infection) In case of infection contributes to Salmonella typhimurium pathogenesis by supporting the integrity of the Salmonella-containing vacuole (SCV) probably in concert with the HOPS complex and Rab7. {ECO:0000269|PubMed:25500191}. |
Q9Y4G6 | TLN2 | S428 | ochoa | Talin-2 | As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}. |
Q9Y4G8 | RAPGEF2 | S1080 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4I1 | MYO5A | S600 | ochoa | Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) | Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}. |
Q9Y4I1 | MYO5A | S1452 | ochoa | Unconventional myosin-Va (Dilute myosin heavy chain, non-muscle) (Myosin heavy chain 12) (Myosin-12) (Myoxin) | Processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament. Can hydrolyze ATP in the presence of actin, which is essential for its function as a motor protein (PubMed:10448864). Involved in melanosome transport. Also mediates the transport of vesicles to the plasma membrane (By similarity). May also be required for some polarization process involved in dendrite formation (By similarity). {ECO:0000250|UniProtKB:Q99104, ECO:0000250|UniProtKB:Q9QYF3, ECO:0000269|PubMed:10448864}. |
Q9Y4P3 | TBL2 | S340 | ochoa | Transducin beta-like protein 2 (WS beta-transducin repeats protein) (WS-betaTRP) (Williams-Beuren syndrome chromosomal region 13 protein) | None |
Q9Y4R8 | TELO2 | S688 | ochoa | Telomere length regulation protein TEL2 homolog (Protein clk-2 homolog) (hCLK2) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. May be involved in telomere length regulation. {ECO:0000269|PubMed:12670948, ECO:0000269|PubMed:20810650}. |
Q9Y4W2 | LAS1L | S528 | ochoa | Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) | Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}. |
Q9Y4X4 | KLF12 | S92 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y4X4 | KLF12 | S202 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y4X4 | KLF12 | S273 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y519 | TMEM184B | S358 | ochoa | Transmembrane protein 184B (Putative MAPK-activating protein FM08) | May activate the MAP kinase signaling pathway. {ECO:0000269|PubMed:12761501}. |
Q9Y520 | PRRC2C | S2105 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y520 | PRRC2C | S2143 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y561 | LRP12 | S720 | ochoa | Low-density lipoprotein receptor-related protein 12 (LDLR-related protein 12) (LRP-12) (Suppressor of tumorigenicity 7 protein) | Probable receptor, which may be involved in the internalization of lipophilic molecules and/or signal transduction. May act as a tumor suppressor. {ECO:0000269|PubMed:12809483}. |
Q9Y570 | PPME1 | S42 | ochoa | Protein phosphatase methylesterase 1 (PME-1) (EC 3.1.1.89) | Demethylates proteins that have been reversibly carboxymethylated. Demethylates PPP2CB (in vitro) and PPP2CA. Binding to PPP2CA displaces the manganese ion and inactivates the enzyme. {ECO:0000269|PubMed:10318862}. |
Q9Y573 | IPP | S265 | ochoa | Actin-binding protein IPP (Intracisternal A particle-promoted polypeptide) (IPP) (Kelch-like protein 27) | May play a role in organizing the actin cytoskeleton. |
Q9Y580 | RBM7 | S163 | ochoa | RNA-binding protein 7 (RNA-binding motif protein 7) | RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104, PubMed:27871484). NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:25189701, PubMed:25852104, PubMed:27871484). Binds preferentially polyuridine sequences and associates with newly synthesized RNAs, including pre-mRNAs and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from small nuclear RNAs (snRNAs) (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104). Participates in several biological processes including DNA damage response (DDR) and stress response (PubMed:25525152, PubMed:30824372). During stress response, activation of the p38MAPK-MK2 pathway decreases RBM7-RNA-binding and subsequently the RNA exosome degradation activities, thereby modulating the turnover of non-coding transcriptome (PubMed:25525152). Participates in DNA damage response (DDR), through its interaction with MEPCE and LARP7, the core subunits of 7SK snRNP complex, that release the positive transcription elongation factor b (P-TEFb) complex from the 7SK snRNP. In turn, activation of P-TEFb complex induces the transcription of P-TEFb-dependent DDR genes to promote cell viability (PubMed:30824372). {ECO:0000269|PubMed:25189701, ECO:0000269|PubMed:25525152, ECO:0000269|PubMed:25578728, ECO:0000269|PubMed:25852104, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:30824372}. |
Q9Y597 | KCTD3 | S612 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y597 | KCTD3 | S653 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y597 | KCTD3 | S711 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y5A7 | NUB1 | S489 | ochoa | NEDD8 ultimate buster 1 (Negative regulator of ubiquitin-like proteins 1) (Renal carcinoma antigen NY-REN-18) | Specific down-regulator of the NEDD8 conjugation system. Recruits NEDD8, UBD, and their conjugates to the proteasome for degradation. Isoform 1 promotes the degradation of NEDD8 more efficiently than isoform 2. {ECO:0000269|PubMed:16707496}. |
Q9Y5A9 | YTHDF2 | S39 | ochoa|psp | YTH domain-containing family protein 2 (DF2) (CLL-associated antigen KW-14) (High-glucose-regulated protein 8) (Renal carcinoma antigen NY-REN-2) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:24284625, PubMed:26046440, PubMed:26318451, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:25412658, PubMed:25412661, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT and ribonuclease P/MRP complexes, depending on the context (PubMed:24284625, PubMed:26046440, PubMed:27558897, PubMed:30930054, PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). M6A-containing mRNAs containing a binding site for RIDA/HRSP12 (5'-GGUUC-3') are preferentially degraded by endoribonucleolytic cleavage: cooperative binding of RIDA/HRSP12 and YTHDF2 to transcripts leads to recruitment of the ribonuclease P/MRP complex (PubMed:30930054). Other m6A-containing mRNAs undergo deadenylation via direct interaction between YTHDF2 and CNOT1, leading to recruitment of the CCR4-NOT and subsequent deadenylation of m6A-containing mRNAs (PubMed:27558897). Required maternally to regulate oocyte maturation: probably acts by binding to m6A-containing mRNAs, thereby regulating maternal transcript dosage during oocyte maturation, which is essential for the competence of oocytes to sustain early zygotic development (By similarity). Also required during spermatogenesis: regulates spermagonial adhesion by promoting degradation of m6A-containing transcripts coding for matrix metallopeptidases (By similarity). Also involved in hematopoietic stem cells specification by binding to m6A-containing mRNAs, leading to promote their degradation (PubMed:30065315). Also acts as a regulator of neural development by promoting m6A-dependent degradation of neural development-related mRNA targets (By similarity). Inhibits neural specification of induced pluripotent stem cells by binding to methylated neural-specific mRNAs and promoting their degradation, thereby restraining neural differentiation (PubMed:32169943). Regulates circadian regulation of hepatic lipid metabolism: acts by promoting m6A-dependent degradation of PPARA transcripts (PubMed:30428350). Regulates the innate immune response to infection by inhibiting the type I interferon response: acts by binding to m6A-containing IFNB transcripts and promoting their degradation (PubMed:30559377). May also act as a promoter of cap-independent mRNA translation following heat shock stress: upon stress, relocalizes to the nucleus and specifically binds mRNAs with some m6A methylation mark at their 5'-UTR, protecting demethylation of mRNAs by FTO, thereby promoting cap-independent mRNA translation (PubMed:26458103). Regulates mitotic entry by promoting the phase-specific m6A-dependent degradation of WEE1 transcripts (PubMed:32267835). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:31642031, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind RNAs modified by C5-methylcytosine (m5C) and act as a regulator of rRNA processing (PubMed:31815440). {ECO:0000250|UniProtKB:Q91YT7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25412658, ECO:0000269|PubMed:25412661, ECO:0000269|PubMed:26046440, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:30065315, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:30930054, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:31642031, ECO:0000269|PubMed:31815440, ECO:0000269|PubMed:32169943, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: (Microbial infection) Promotes viral gene expression and replication of polyomavirus SV40: acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29447282). {ECO:0000269|PubMed:29447282}.; FUNCTION: (Microbial infection) Promotes viral gene expression and virion production of kaposis sarcoma-associated herpesvirus (KSHV) at some stage of the KSHV life cycle (in iSLK.219 and iSLK.BAC16 cells) (PubMed:29659627). Acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29659627). {ECO:0000269|PubMed:29659627}. |
Q9Y5B0 | CTDP1 | S674 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5J3 | HEY1 | S40 | ochoa | Hairy/enhancer-of-split related with YRPW motif protein 1 (Cardiovascular helix-loop-helix factor 2) (CHF-2) (Class B basic helix-loop-helix protein 31) (bHLHb31) (HES-related repressor protein 1) (Hairy and enhancer of split-related protein 1) (HESR-1) (Hairy-related transcription factor 1) (HRT-1) (hHRT1) | Transcriptional repressor which binds preferentially to the canonical E box sequence 5'-CACGTG-3' (PubMed:11095750). Downstream effector of Notch signaling required for cardiovascular development. Specifically required for the Notch-induced endocardial epithelial to mesenchymal transition, which is itself criticial for cardiac valve and septum development. May be required in conjunction with HEY2 to specify arterial cell fate or identity. Promotes maintenance of neuronal precursor cells and glial versus neuronal fate specification. Represses transcription by the cardiac transcriptional activators GATA4 and GATA6 and by the neuronal bHLH factors ASCL1/MASH1 and NEUROD4/MATH3 (PubMed:15485867). Involved in the regulation of liver cancer cells self-renewal (PubMed:25985737). {ECO:0000250|UniProtKB:Q9WV93, ECO:0000269|PubMed:11095750, ECO:0000269|PubMed:15485867, ECO:0000269|PubMed:25985737}. |
Q9Y5P3 | RAI2 | S333 | ochoa | Retinoic acid-induced protein 2 | None |
Q9Y5Q9 | GTF3C3 | S282 | ochoa | General transcription factor 3C polypeptide 3 (Transcription factor IIIC 102 kDa subunit) (TFIIIC 102 kDa subunit) (TFIIIC102) (Transcription factor IIIC subunit gamma) (TF3C-gamma) | Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters. |
Q9Y5S1 | TRPV2 | S741 | ochoa | Transient receptor potential cation channel subfamily V member 2 (TrpV2) (Osm-9-like TRP channel 2) (OTRPC2) (Vanilloid receptor-like protein 1) (VRL-1) | Calcium-permeable, non-selective cation channel with an outward rectification. Seems to be regulated, at least in part, by IGF1, PDGF and neuropeptide head activator. May transduce physical stimuli in mast cells. Activated by temperatures higher than 52 degrees Celsius; is not activated by vanilloids and acidic pH. {ECO:0000269|PubMed:10201375}. |
Q9Y5S2 | CDC42BPB | S363 | ochoa | Serine/threonine-protein kinase MRCK beta (EC 2.7.11.1) (CDC42-binding protein kinase beta) (CDC42BP-beta) (DMPK-like beta) (Myotonic dystrophy kinase-related CDC42-binding kinase beta) (MRCK beta) (Myotonic dystrophy protein kinase-like beta) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration. Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715, PubMed:21949762). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates PPP1R12A (PubMed:21457715). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). {ECO:0000250|UniProtKB:Q7TT50, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:21949762}. |
Q9Y5T4 | DNAJC15 | S104 | ochoa | DnaJ homolog subfamily C member 15 (Cell growth-inhibiting gene 22 protein) (Methylation-controlled J protein) (MCJ) | Negative regulator of the mitochondrial respiratory chain. Prevents mitochondrial hyperpolarization state and restricts mitochondrial generation of ATP (By similarity). Acts as an import component of the TIM23 translocase complex. Stimulates the ATPase activity of HSPA9. {ECO:0000250, ECO:0000269|PubMed:23263864}. |
Q9Y5T5 | USP16 | S189 | ochoa | Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) | Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}. |
Q9Y5T5 | USP16 | S552 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) | Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}. |
Q9Y5W7 | SNX14 | S734 | ochoa | Sorting nexin-14 | Plays a role in maintaining normal neuronal excitability and synaptic transmission. May be involved in several stages of intracellular trafficking (By similarity). Required for autophagosome clearance, possibly by mediating the fusion of lysosomes with autophagosomes (Probable). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a key component of late endosomes/lysosomes (PubMed:25848753). Does not bind phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:25148684, PubMed:25848753). {ECO:0000250|UniProtKB:Q8BHY8, ECO:0000269|PubMed:25148684, ECO:0000269|PubMed:25848753, ECO:0000305|PubMed:25848753}. |
Q9Y5Y5 | PEX16 | S138 | ochoa | Peroxisomal membrane protein PEX16 (Peroxin-16) (Peroxisomal biogenesis factor 16) | Required for peroxisome membrane biogenesis. May play a role in early stages of peroxisome assembly. Can recruit other peroxisomal proteins, such as PEX3 and PMP34, to de novo peroxisomes derived from the endoplasmic reticulum (ER). May function as receptor for PEX3. {ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:12223482, ECO:0000269|PubMed:16717127}. |
Q9Y5Y5 | PEX16 | S158 | ochoa | Peroxisomal membrane protein PEX16 (Peroxin-16) (Peroxisomal biogenesis factor 16) | Required for peroxisome membrane biogenesis. May play a role in early stages of peroxisome assembly. Can recruit other peroxisomal proteins, such as PEX3 and PMP34, to de novo peroxisomes derived from the endoplasmic reticulum (ER). May function as receptor for PEX3. {ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:12223482, ECO:0000269|PubMed:16717127}. |
Q9Y5Z4 | HEBP2 | S181 | ochoa | Heme-binding protein 2 (Placental protein 23) (PP23) (Protein SOUL) | Can promote mitochondrial permeability transition and facilitate necrotic cell death under different types of stress conditions. {ECO:0000269|PubMed:17098234}. |
Q9Y616 | IRAK3 | S110 | ochoa | Interleukin-1 receptor-associated kinase 3 (IRAK-3) (IL-1 receptor-associated kinase M) (IRAK-M) (Inactive IL-1 receptor-associated kinase 3) | Putative inactive protein kinase which regulates signaling downstream of immune receptors including IL1R and Toll-like receptors (PubMed:10383454, PubMed:29686383). Inhibits dissociation of IRAK1 and IRAK4 from the Toll-like receptor signaling complex by either inhibiting the phosphorylation of IRAK1 and IRAK4 or stabilizing the receptor complex (By similarity). Upon IL33-induced lung inflammation, positively regulates expression of IL6, CSF3, CXCL2 and CCL5 mRNAs in dendritic cells (PubMed:29686383). {ECO:0000250|UniProtKB:Q8K4B2, ECO:0000269|PubMed:10383454, ECO:0000269|PubMed:29686383}. |
Q9Y653 | ADGRG1 | S670 | ochoa | Adhesion G-protein coupled receptor G1 (G-protein coupled receptor 56) [Cleaved into: Adhesion G-protein coupled receptor G1, N-terminal fragment (ADGRG1 N-terminal fragment) (ADGRG1 NT) (GPR56 N-terminal fragment) (GPR56 NT) (GPR56(N)) (GPR56 extracellular subunit) (GPR56 subunit alpha); Adhesion G-protein coupled receptor G1, C-terminal fragment (ADGRG1 C-terminal fragment) (ADGRG1 CT) (GPR56 C-terminal fragment) (GPR56 CT) (GPR56(C)) (GPR56 seven-transmembrane subunit) (GPR56 7TM) (GPR56 subunit beta)] | Adhesion G-protein coupled receptor (aGPCR) for steroid hormone 17alpha-hydroxypregnenolone (17-OH), which is involved in cell adhesion and cell-cell interactions (PubMed:39389061). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors, such as RhoA pathway (PubMed:28874577, PubMed:35418682, PubMed:39389061). ADGRG1 is coupled to G(12) and/or G(13) G proteins (GNA12 and GNA13, respectively) and mediates the activation Rho small GTPases (PubMed:22238662, PubMed:28424266, PubMed:35418682, PubMed:39389061). Acts as a potent suppressor of ferroptosis: binding to 17-OH-binding initiates signaling that down-regulates CD36 and alleviates ferroptosis-induced liver injury (By similarity). Ligand-binding also induces cell adhesion activity via association with proteins such as collagen III/COL3A1 and TGM2 (By similarity). Mediates cell matrix adhesion in developing neurons and hematopoietic stem cells (By similarity). Involved in cortical development, specifically in maintenance of the pial basement membrane integrity and in cortical lamination: association with COL3A1 in the developing brain inhibits neuronal migration via activation of the RhoA pathway (PubMed:24531968). Together with TGM2, acts as a regulator of myelination and myelin repair in oligodendrocyte precursor cells (By similarity). Acts as a hemostatic sensor of shear force: G protein-coupled receptor signaling is activated in response to shear force in platelets, promoting G(13) G protein signaling, and platelet shape change and aggregation in a COL3A1-dependent manner (PubMed:33097663). Acts as an inhibitor of VEGFA production thereby inhibiting angiogenesis through a signaling pathway mediated by PRKCA (PubMed:16757564, PubMed:19572147, PubMed:21724588). Plays a role in the maintenance of hematopoietic stem cells in bone marrow niche (By similarity). Plays an essential role in testis development (By similarity). {ECO:0000250|UniProtKB:Q8K209, ECO:0000269|PubMed:16757564, ECO:0000269|PubMed:19572147, ECO:0000269|PubMed:21724588, ECO:0000269|PubMed:22238662, ECO:0000269|PubMed:24531968, ECO:0000269|PubMed:28424266, ECO:0000269|PubMed:28874577, ECO:0000269|PubMed:33097663, ECO:0000269|PubMed:35418682, ECO:0000269|PubMed:39389061}. |
Q9Y657 | SPIN1 | S199 | ochoa | Spindlin-1 (Ovarian cancer-related protein) (Spindlin1) | Chromatin reader that specifically recognizes and binds histone H3 both trimethylated at 'Lys-4' and 'Lys-9' (H3K4me3K9me3) and is involved in piRNA-mediated retrotransposon silencing during spermatogenesis (PubMed:33574238). Plays a key role in the initiation of the PIWIL4-piRNA pathway, a pathway that directs transposon DNA methylation and silencing in the male embryonic germ cells, by promoting recruitment of DNA methylation machinery to transposons: binds young, but not old, LINE1 transposons, which are specifically marked with H3K4me3K9me3, and promotes the recruitment of PIWIL4 and SPOCD1 to transposons, leading to piRNA-directed DNA methylation (By similarity). Also recognizes and binds histone H3 both trimethylated at 'Lys-4' and asymmetrically dimethylated at 'Arg-8' (H3K4me3 and H3R8me2a) and acts as an activator of Wnt signaling pathway downstream of PRMT2 (PubMed:22258766, PubMed:29061846). In case of cancer, promotes cell cancer proliferation via activation of the Wnt signaling pathway (PubMed:24589551). Overexpression induces metaphase arrest and chromosomal instability. Localizes to active rDNA loci and promotes the expression of rRNA genes (PubMed:21960006). May play a role in cell-cycle regulation during the transition from gamete to embryo (By similarity). Involved in oocyte meiotic resumption, a process that takes place before ovulation to resume meiosis of oocytes blocked in prophase I: may act by regulating maternal transcripts to control meiotic resumption (By similarity). {ECO:0000250|UniProtKB:Q61142, ECO:0000269|PubMed:21960006, ECO:0000269|PubMed:22258766, ECO:0000269|PubMed:24589551, ECO:0000269|PubMed:29061846, ECO:0000269|PubMed:33574238}. |
Q9Y673 | ALG5 | S62 | ochoa | Dolichyl-phosphate beta-glucosyltransferase (DolP-glucosyltransferase) (EC 2.4.1.117) (Asparagine-linked glycosylation protein 5 homolog) | Dolichyl-phosphate beta-glucosyltransferase that operates in the biosynthetic pathway of dolichol-linked oligosaccharides, the glycan precursors employed in protein asparagine (N)-glycosylation. The assembly of dolichol-linked oligosaccharides begins on the cytosolic side of the endoplasmic reticulum membrane and finishes in its lumen. The sequential addition of sugars to dolichol pyrophosphate produces dolichol-linked oligosaccharides containing fourteen sugars, including two GlcNAcs, nine mannoses and three glucoses. Once assembled, the oligosaccharide is transferred from the lipid to nascent proteins by oligosaccharyltransferases. Dolichyl-phosphate beta-glucosyltransferase produces dolichyl beta-D-glucosyl phosphate/Dol-P-Glc, the glucose donor substrate used sequentially by ALG6, ALG8 and ALG10 to add glucose residues on top of the Man(9)GlcNAc(2)-PP-Dol structure. These are the three last steps in the biosynthetic pathway of dolichol-linked oligosaccharides to produce Glc(3)Man(9)GlcNAc(2)-PP-Dol. The enzyme is most probably active on the cytoplasmic side of the endoplasmic reticulum while its product Dol-P-Glc is the substrate for ALG6, ALG8 and ALG11 in the lumen of the endoplasmic reticulum. {ECO:0000269|PubMed:10359825, ECO:0000269|PubMed:35896117}. |
Q9Y692 | GMEB1 | S129 | ochoa | Glucocorticoid modulatory element-binding protein 1 (GMEB-1) (DNA-binding protein p96PIF) (Parvovirus initiation factor p96) (PIF p96) | Trans-acting factor that binds to glucocorticoid modulatory elements (GME) present in the TAT (tyrosine aminotransferase) promoter and increases sensitivity to low concentrations of glucocorticoids. Also binds to the transferrin receptor promoter. Essential auxiliary factor for the replication of parvoviruses. |
Q9Y6A5 | TACC3 | S25 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6A5 | TACC3 | S71 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6A5 | TACC3 | S570 | ochoa | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6D6 | ARFGEF1 | S410 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6D9 | MAD1L1 | S428 | ochoa|psp | Mitotic spindle assembly checkpoint protein MAD1 (Mitotic arrest deficient 1-like protein 1) (MAD1-like protein 1) (Mitotic checkpoint MAD1 protein homolog) (HsMAD1) (hMAD1) (Tax-binding protein 181) | Component of the spindle-assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate (PubMed:10049595, PubMed:20133940, PubMed:29162720). Forms a heterotetrameric complex with the closed conformation form of MAD2L1 (C-MAD2) at unattached kinetochores during prometaphase, recruits an open conformation of MAD2L1 (O-MAD2) and promotes the conversion of O-MAD2 to C-MAD2, which ensures mitotic checkpoint signaling (PubMed:29162720). {ECO:0000269|PubMed:10049595, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:36322655}.; FUNCTION: [Isoform 3]: Sequesters MAD2L1 in the cytoplasm preventing its function as an activator of the mitotic spindle assembly checkpoint (SAC) resulting in SAC impairment and chromosomal instability in hepatocellular carcinomas. {ECO:0000269|PubMed:19010891}. |
Q9Y6F1 | PARP3 | S461 | psp | Protein mono-ADP-ribosyltransferase PARP3 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 3) (ARTD3) (DNA ADP-ribosyltransferase PARP3) (EC 2.4.2.-) (IRT1) (NAD(+) ADP-ribosyltransferase 3) (ADPRT-3) (Poly [ADP-ribose] polymerase 3) (PARP-3) (hPARP-3) (Poly[ADP-ribose] synthase 3) (pADPRT-3) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins and plays a key role in the response to DNA damage (PubMed:16924674, PubMed:19354255, PubMed:20064938, PubMed:21211721, PubMed:21270334, PubMed:23742272, PubMed:24598253, PubMed:25043379, PubMed:28447610). Mediates mono-ADP-ribosylation of glutamate, aspartate or lysine residues on target proteins (PubMed:20064938, PubMed:25043379). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Involved in DNA repair by mediating mono-ADP-ribosylation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism, such as histone H2B, XRCC5 and XRCC6 (PubMed:16924674, PubMed:24598253). ADP-ribosylation follows DNA damage and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks (PubMed:16924674, PubMed:21211721, PubMed:21270334). Involved in single-strand break repair by catalyzing mono-ADP-ribosylation of histone H2B on 'Glu-2' (H2BE2ADPr) of nucleosomes containing nicked DNA (PubMed:27530147). Cooperates with the XRCC5-XRCC6 (Ku80-Ku70) heterodimer to limit end-resection thereby promoting accurate NHEJ (PubMed:24598253). Suppresses G-quadruplex (G4) structures in response to DNA damage (PubMed:28447610). Associates with a number of DNA repair factors and is involved in the response to exogenous and endogenous DNA strand breaks (PubMed:16924674, PubMed:21211721, PubMed:21270334). Together with APLF, promotes the retention of the LIG4-XRCC4 complex on chromatin and accelerate DNA ligation during non-homologous end-joining (NHEJ) (PubMed:21211721). May link the DNA damage surveillance network to the mitotic fidelity checkpoint (PubMed:16924674). Acts as a negative regulator of immunoglobulin class switch recombination, probably by controlling the level of AICDA /AID on the chromatin (By similarity). In addition to proteins, also able to ADP-ribosylate DNA: mediates DNA mono-ADP-ribosylation of DNA strand break termini via covalent addition of a single ADP-ribose moiety to a 5'- or 3'-terminal phosphate residues in DNA containing multiple strand breaks (PubMed:29361132, PubMed:29520010). {ECO:0000250|UniProtKB:Q3ULW8, ECO:0000269|PubMed:16924674, ECO:0000269|PubMed:19354255, ECO:0000269|PubMed:20064938, ECO:0000269|PubMed:21211721, ECO:0000269|PubMed:21270334, ECO:0000269|PubMed:23742272, ECO:0000269|PubMed:24598253, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27530147, ECO:0000269|PubMed:28447610, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:29520010}. |
Q9Y6G5 | COMMD10 | S155 | ochoa | COMM domain-containing protein 10 | Scaffold protein in the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). May modulate activity of cullin-RING E3 ubiquitin ligase (CRL) complexes (PubMed:21778237). May down-regulate activation of NF-kappa-B (PubMed:15799966). {ECO:0000269|PubMed:15799966, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129, ECO:0000305|PubMed:21778237}. |
Q9Y6I9 | TEX264 | S71 | ochoa | Testis-expressed protein 264 (Putative secreted protein Zsig11) | Major reticulophagy (also called ER-phagy) receptor that acts independently of other candidate reticulophagy receptors to remodel subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover (PubMed:31006537, PubMed:31006538). The ATG8-containing isolation membrane (IM) cradles a tubular segment of TEX264-positive ER near a three-way junction, allowing the formation of a synapse of 2 juxtaposed membranes with trans interaction between the TEX264 and ATG8 proteins (PubMed:31006537). Expansion of the IM would extend the capture of ER, possibly through a 'zipper-like' process involving continued trans TEX264-ATG8 interactions, until poorly understood mechanisms lead to the fission of relevant membranes and, ultimately, autophagosomal membrane closure (PubMed:31006537). Also involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis: acts by bridging VCP/p97 to covalent DNA-protein cross-links (DPCs) and initiating resolution of DPCs by SPRTN (PubMed:32152270). {ECO:0000269|PubMed:31006537, ECO:0000269|PubMed:31006538, ECO:0000269|PubMed:32152270}. |
Q9Y6J0 | CABIN1 | S1752 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6K1 | DNMT3A | S75 | ochoa | DNA (cytosine-5)-methyltransferase 3A (Dnmt3a) (EC 2.1.1.37) (Cysteine methyltransferase DNMT3A) (EC 2.1.1.-) (DNA methyltransferase HsaIIIA) (DNA MTase HsaIIIA) (M.HsaIIIA) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development (PubMed:12138111, PubMed:16357870, PubMed:30478443). DNA methylation is coordinated with methylation of histones (PubMed:12138111, PubMed:16357870, PubMed:30478443). It modifies DNA in a non-processive manner and also methylates non-CpG sites (PubMed:12138111, PubMed:16357870, PubMed:30478443). May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1 (By similarity). Plays a role in paternal and maternal imprinting (By similarity). Required for methylation of most imprinted loci in germ cells (By similarity). Acts as a transcriptional corepressor for ZBTB18 (By similarity). Recruited to trimethylated 'Lys-36' of histone H3 (H3K36me3) sites (By similarity). Can actively repress transcription through the recruitment of HDAC activity (By similarity). Also has weak auto-methylation activity on Cys-710 in absence of DNA (By similarity). {ECO:0000250|UniProtKB:O88508, ECO:0000269|PubMed:12138111, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:30478443}. |
Q9Y6K5 | OAS3 | S792 | ochoa | 2'-5'-oligoadenylate synthase 3 ((2-5')oligo(A) synthase 3) (2-5A synthase 3) (EC 2.7.7.84) (p100 OAS) (p100OAS) | Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical role in cellular innate antiviral response. In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation. Synthesizes preferentially dimers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation. Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication. Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L. Displays antiviral activity against Chikungunya virus (CHIKV), Dengue virus, Sindbis virus (SINV) and Semliki forest virus (SFV). {ECO:0000269|PubMed:19056102, ECO:0000269|PubMed:19923450, ECO:0000269|PubMed:9880533}. |
Q9Y6N7 | ROBO1 | S1055 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9Y6N9 | USH1C | S201 | ochoa | Harmonin (Antigen NY-CO-38/NY-CO-37) (Autoimmune enteropathy-related antigen AIE-75) (Protein PDZ-73) (Renal carcinoma antigen NY-REN-3) (Usher syndrome type-1C protein) | Anchoring/scaffolding protein that is a part of the functional network formed by USH1C, USH1G, CDH23 and MYO7A that mediates mechanotransduction in cochlear hair cells. Required for normal development and maintenance of cochlear hair cell bundles (By similarity). As part of the intermicrovillar adhesion complex/IMAC plays a role in brush border differentiation, controlling microvilli organization and length. Probably plays a central regulatory role in the assembly of the complex, recruiting CDHR2, CDHR5 and MYO7B to the microvilli tips (PubMed:24725409, PubMed:26812018). {ECO:0000250|UniProtKB:Q9ES64, ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018}. |
Q9Y6Q9 | NCOA3 | S694 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6Q9 | NCOA3 | S728 | ochoa|psp | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6R4 | MAP3K4 | S84 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
Q9Y6U3 | SCIN | S381 | ochoa | Scinderin (Adseverin) | Ca(2+)-dependent actin filament-severing protein that has a regulatory function in exocytosis by affecting the organization of the microfilament network underneath the plasma membrane (PubMed:26365202, PubMed:8547642). Severing activity is inhibited by phosphatidylinositol 4,5-bis-phosphate (PIP2) (By similarity). In vitro, also has barbed end capping and nucleating activities in the presence of Ca(2+). Required for megakaryocyte differentiation, maturation, polyploidization and apoptosis with the release of platelet-like particles (PubMed:11568009). Plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts (By similarity). Regulates chondrocyte proliferation and differentiation (By similarity). Inhibits cell proliferation and tumorigenesis. Signaling is mediated by MAPK, p38 and JNK pathways (PubMed:11568009). {ECO:0000250|UniProtKB:Q28046, ECO:0000250|UniProtKB:Q5ZIV9, ECO:0000250|UniProtKB:Q60604, ECO:0000269|PubMed:11568009, ECO:0000269|PubMed:26365202, ECO:0000269|PubMed:8547642}. |
Q9Y6X0 | SETBP1 | S830 | ochoa | SET-binding protein (SEB) | None |
Q9Y6X8 | ZHX2 | S628 | ochoa | Zinc fingers and homeoboxes protein 2 (Alpha-fetoprotein regulator 1) (AFP regulator 1) (Regulator of AFP) (Zinc finger and homeodomain protein 2) | Acts as a transcriptional repressor (PubMed:12741956). Represses the promoter activity of the CDC25C gene stimulated by NFYA (PubMed:12741956). May play a role in retinal development where it regulates the composition of bipolar cell populations, by promoting differentiation of bipolar OFF-type cells (By similarity). In the brain, may promote maintenance and suppress differentiation of neural progenitor cells in the developing cortex (By similarity). {ECO:0000250|UniProtKB:Q8C0C0, ECO:0000269|PubMed:12741956}. |
Q9Y6X8 | ZHX2 | S719 | ochoa | Zinc fingers and homeoboxes protein 2 (Alpha-fetoprotein regulator 1) (AFP regulator 1) (Regulator of AFP) (Zinc finger and homeodomain protein 2) | Acts as a transcriptional repressor (PubMed:12741956). Represses the promoter activity of the CDC25C gene stimulated by NFYA (PubMed:12741956). May play a role in retinal development where it regulates the composition of bipolar cell populations, by promoting differentiation of bipolar OFF-type cells (By similarity). In the brain, may promote maintenance and suppress differentiation of neural progenitor cells in the developing cortex (By similarity). {ECO:0000250|UniProtKB:Q8C0C0, ECO:0000269|PubMed:12741956}. |
Q9Y6X9 | MORC2 | S730 | ochoa | ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) | Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}. |
Q9Y6Y0 | IVNS1ABP | S284 | ochoa | Influenza virus NS1A-binding protein (NS1-BP) (NS1-binding protein) (Aryl hydrocarbon receptor-associated protein 3) (Kelch-like protein 39) | Involved in many cell functions, including pre-mRNA splicing, the aryl hydrocarbon receptor (AHR) pathway, F-actin organization and protein ubiquitination. Plays a role in the dynamic organization of the actin skeleton as a stabilizer of actin filaments by association with F-actin through Kelch repeats (By similarity). Protects cells from cell death induced by actin destabilization (By similarity). Functions as modifier of the AHR/Aryl hydrocarbon receptor pathway increasing the concentration of AHR available to activate transcription (PubMed:16582008). In addition, functions as a negative regulator of BCR(KLHL20) E3 ubiquitin ligase complex to prevent ubiquitin-mediated proteolysis of PML and DAPK1, two tumor suppressors (PubMed:25619834). Inhibits pre-mRNA splicing (in vitro) (PubMed:9696811). May play a role in mRNA nuclear export (PubMed:30538201). {ECO:0000250|UniProtKB:Q920Q8, ECO:0000269|PubMed:16582008, ECO:0000269|PubMed:25619834, ECO:0000269|PubMed:30538201, ECO:0000269|PubMed:9696811}.; FUNCTION: (Microbial infection) Involved in the alternative splicing of influenza A virus M1 mRNA through interaction with HNRNPK, thereby facilitating the generation of viral M2 protein (PubMed:23825951, PubMed:9696811). The BTB and Kelch domains are required for splicing activity (PubMed:30538201). Promotes export of viral M mRNA and RNP via its interaction with mRNA export factor ALYREF (PubMed:30538201). {ECO:0000269|PubMed:23825951, ECO:0000269|PubMed:30538201, ECO:0000269|PubMed:9696811}. |
V9GYD0 | ARL2-SNX15 | S45 | ochoa | ARL2-SNX15 readthrough (NMD candidate) | None |
O00444 | PLK4 | S499 | Sugiyama | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
O15075 | DCLK1 | S172 | Sugiyama | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O14910 | LIN7A | S130 | Sugiyama | Protein lin-7 homolog A (Lin-7A) (hLin-7) (Mammalian lin-seven protein 1) (MALS-1) (Tax interaction protein 33) (TIP-33) (Vertebrate lin-7 homolog 1) (Veli-1) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:Q8JZS0, ECO:0000269|PubMed:12967566}. |
O15264 | MAPK13 | S27 | Sugiyama | Mitogen-activated protein kinase 13 (MAP kinase 13) (MAPK 13) (EC 2.7.11.24) (Mitogen-activated protein kinase p38 delta) (MAP kinase p38 delta) (Stress-activated protein kinase 4) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK13 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK13 is one of the less studied p38 MAPK isoforms. Some of the targets are downstream kinases such as MAPKAPK2, which are activated through phosphorylation and further phosphorylate additional targets. Plays a role in the regulation of protein translation by phosphorylating and inactivating EEF2K. Involved in cytoskeletal remodeling through phosphorylation of MAPT and STMN1. Mediates UV irradiation induced up-regulation of the gene expression of CXCL14. Plays an important role in the regulation of epidermal keratinocyte differentiation, apoptosis and skin tumor development. Phosphorylates the transcriptional activator MYB in response to stress which leads to rapid MYB degradation via a proteasome-dependent pathway. MAPK13 also phosphorylates and down-regulates PRKD1 during regulation of insulin secretion in pancreatic beta cells. {ECO:0000269|PubMed:11500363, ECO:0000269|PubMed:11943212, ECO:0000269|PubMed:15632108, ECO:0000269|PubMed:17256148, ECO:0000269|PubMed:18006338, ECO:0000269|PubMed:18367666, ECO:0000269|PubMed:20478268, ECO:0000269|PubMed:9731215}. |
O15264 | MAPK13 | S278 | Sugiyama | Mitogen-activated protein kinase 13 (MAP kinase 13) (MAPK 13) (EC 2.7.11.24) (Mitogen-activated protein kinase p38 delta) (MAP kinase p38 delta) (Stress-activated protein kinase 4) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK13 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK13 is one of the less studied p38 MAPK isoforms. Some of the targets are downstream kinases such as MAPKAPK2, which are activated through phosphorylation and further phosphorylate additional targets. Plays a role in the regulation of protein translation by phosphorylating and inactivating EEF2K. Involved in cytoskeletal remodeling through phosphorylation of MAPT and STMN1. Mediates UV irradiation induced up-regulation of the gene expression of CXCL14. Plays an important role in the regulation of epidermal keratinocyte differentiation, apoptosis and skin tumor development. Phosphorylates the transcriptional activator MYB in response to stress which leads to rapid MYB degradation via a proteasome-dependent pathway. MAPK13 also phosphorylates and down-regulates PRKD1 during regulation of insulin secretion in pancreatic beta cells. {ECO:0000269|PubMed:11500363, ECO:0000269|PubMed:11943212, ECO:0000269|PubMed:15632108, ECO:0000269|PubMed:17256148, ECO:0000269|PubMed:18006338, ECO:0000269|PubMed:18367666, ECO:0000269|PubMed:20478268, ECO:0000269|PubMed:9731215}. |
P07737 | PFN1 | S28 | Sugiyama | Profilin-1 (Epididymis tissue protein Li 184a) (Profilin I) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. Inhibits androgen receptor (AR) and HTT aggregation and binding of G-actin is essential for its inhibition of AR. {ECO:0000269|PubMed:18573880}. |
P07858 | CTSB | S216 | Sugiyama | Cathepsin B (EC 3.4.22.1) (APP secretase) (APPS) (Cathepsin B1) [Cleaved into: Cathepsin B light chain; Cathepsin B heavy chain] | Thiol protease which is believed to participate in intracellular degradation and turnover of proteins (PubMed:12220505). Cleaves matrix extracellular phosphoglycoprotein MEPE (PubMed:12220505). Involved in the solubilization of cross-linked TG/thyroglobulin in the thyroid follicle lumen (By similarity). Has also been implicated in tumor invasion and metastasis (PubMed:3972105). {ECO:0000250|UniProtKB:P10605, ECO:0000269|PubMed:12220505, ECO:0000269|PubMed:3972105}. |
P07942 | LAMB1 | S658 | Sugiyama | Laminin subunit beta-1 (Laminin B1 chain) (Laminin-1 subunit beta) (Laminin-10 subunit beta) (Laminin-12 subunit beta) (Laminin-2 subunit beta) (Laminin-6 subunit beta) (Laminin-8 subunit beta) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Involved in the organization of the laminar architecture of cerebral cortex. It is probably required for the integrity of the basement membrane/glia limitans that serves as an anchor point for the endfeet of radial glial cells and as a physical barrier to migrating neurons. Radial glial cells play a central role in cerebral cortical development, where they act both as the proliferative unit of the cerebral cortex and a scaffold for neurons migrating toward the pial surface. {ECO:0000269|PubMed:23472759}. |
P13798 | APEH | S304 | Sugiyama | Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) | This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}. |
P16278 | GLB1 | S434 | Sugiyama | Beta-galactosidase (EC 3.2.1.23) (Acid beta-galactosidase) (Lactase) (Elastin receptor 1) | [Isoform 1]: Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. {ECO:0000269|PubMed:15714521, ECO:0000269|PubMed:19472408, ECO:0000269|PubMed:2511208, ECO:0000269|PubMed:25936995, ECO:0000269|PubMed:8200356}.; FUNCTION: [Isoform 2]: Has no beta-galactosidase catalytic activity, but plays functional roles in the formation of extracellular elastic fibers (elastogenesis) and in the development of connective tissue. Seems to be identical to the elastin-binding protein (EBP), a major component of the non-integrin cell surface receptor expressed on fibroblasts, smooth muscle cells, chondroblasts, leukocytes, and certain cancer cell types. In elastin producing cells, associates with tropoelastin intracellularly and functions as a recycling molecular chaperone which facilitates the secretions of tropoelastin and its assembly into elastic fibers. {ECO:0000269|PubMed:10841810, ECO:0000269|PubMed:8922281}. |
P17174 | GOT1 | S93 | Sugiyama | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P18827 | SDC1 | S233 | Sugiyama | Syndecan-1 (SYND1) (CD antigen CD138) | Cell surface proteoglycan that contains both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix (By similarity). Regulates exosome biogenesis in concert with SDCBP and PDCD6IP (PubMed:22660413). Able to induce its own expression in dental mesenchymal cells and also in the neighboring dental epithelial cells via an MSX1-mediated pathway (By similarity). {ECO:0000250|UniProtKB:P18828, ECO:0000269|PubMed:22660413}. |
P30101 | PDIA3 | S443 | Sugiyama | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
P47756 | CAPZB | S207 | Sugiyama | F-actin-capping protein subunit beta (CapZ beta) | F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. Plays a role in the regulation of cell morphology and cytoskeletal organization. Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A9XFX6, ECO:0000269|PubMed:21834987}. |
P49753 | ACOT2 | S360 | Sugiyama | Acyl-coenzyme A thioesterase 2, mitochondrial (Acyl-CoA thioesterase 2) (EC 3.1.2.2) (Acyl-coenzyme A thioester hydrolase 2a) (CTE-Ia) (Long-chain acyl-CoA thioesterase 2) (ZAP128) | Catalyzes the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoASH), regulating their respective intracellular levels (PubMed:10944470, PubMed:16940157). Displays higher activity toward long chain acyl CoAs (C14-C20) (PubMed:10944470, PubMed:16940157). The enzyme is involved in enhancing the hepatic fatty acid oxidation in mitochondria (By similarity). {ECO:0000250|UniProtKB:Q9QYR9, ECO:0000269|PubMed:10944470, ECO:0000269|PubMed:16940157}. |
P50895 | BCAM | S296 | Sugiyama | Basal cell adhesion molecule (Auberger B antigen) (B-CAM cell surface glycoprotein) (F8/G253 antigen) (Lutheran antigen) (Lutheran blood group glycoprotein) (CD antigen CD239) | Transmembrane glycoprotein that functions as both a receptor and an adhesion molecule playing a crucial role in cell adhesion, motility, migration and invasion (PubMed:9616226, PubMed:31413112). Extracellular domain enables binding to extracellular matrix proteins, such as laminin, integrin and other ligands while its intracellular domain interacts with cytoskeletal proteins like hemoglobin, facilitating cell signal transduction (PubMed:17158232). Serves as a receptor for laminin alpha-5/LAMA5 to promote cell adhesion (PubMed:15975931). Mechanistically, JAK2 induces BCAM phosphorylation and activates its adhesion to laminin by stimulating a Rap1/AKT signaling pathway in the absence of EPOR (PubMed:23160466). {ECO:0000269|PubMed:15975931, ECO:0000269|PubMed:17158232, ECO:0000269|PubMed:23160466, ECO:0000269|PubMed:31413112, ECO:0000269|PubMed:9616226}. |
P60174 | TPI1 | S80 | Sugiyama | Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Methylglyoxal synthase) (EC 4.2.3.3) (Triose-phosphate isomerase) | Triosephosphate isomerase is an extremely efficient metabolic enzyme that catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P) in glycolysis and gluconeogenesis. {ECO:0000269|PubMed:18562316}.; FUNCTION: It is also responsible for the non-negligible production of methylglyoxal a reactive cytotoxic side-product that modifies and can alter proteins, DNA and lipids. {ECO:0000250|UniProtKB:P00939}. |
P60228 | EIF3E | S203 | Sugiyama | Eukaryotic translation initiation factor 3 subunit E (eIF3e) (Eukaryotic translation initiation factor 3 subunit 6) (Viral integration site protein INT-6 homolog) (eIF-3 p48) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). Required for nonsense-mediated mRNA decay (NMD); may act in conjunction with UPF2 to divert mRNAs from translation to the NMD pathway (PubMed:17468741). May interact with MCM7 and EPAS1 and regulate the proteasome-mediated degradation of these proteins (PubMed:17310990, PubMed:17324924). {ECO:0000255|HAMAP-Rule:MF_03004, ECO:0000269|PubMed:17310990, ECO:0000269|PubMed:17324924, ECO:0000269|PubMed:17468741, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q14204 | DYNC1H1 | S2410 | Sugiyama | Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) | Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}. |
Q14697 | GANAB | S58 | Sugiyama | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q15154 | PCM1 | S861 | Sugiyama | Pericentriolar material 1 protein (PCM-1) (hPCM-1) | Required for centrosome assembly and function (PubMed:12403812, PubMed:15659651, PubMed:16943179). Essential for the correct localization of several centrosomal proteins including CEP250, CETN3, PCNT and NEK2 (PubMed:12403812, PubMed:15659651). Required to anchor microtubules to the centrosome (PubMed:12403812, PubMed:15659651). Also involved in cilium biogenesis by recruiting the BBSome, a ciliary protein complex involved in cilium biogenesis, to the centriolar satellites (PubMed:20551181, PubMed:24121310, PubMed:27979967). Recruits the tubulin polyglutamylase complex (TPGC) to centriolar satellites (PubMed:34782749). {ECO:0000269|PubMed:12403812, ECO:0000269|PubMed:15659651, ECO:0000269|PubMed:16943179, ECO:0000269|PubMed:20551181, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:34782749}. |
Q16595 | FXN | S158 | Sugiyama | Frataxin, mitochondrial (EC 1.16.3.1) (Friedreich ataxia protein) (Fxn) [Cleaved into: Frataxin intermediate form (i-FXN); Frataxin(56-210) (m56-FXN); Frataxin(78-210) (d-FXN) (m78-FXN); Frataxin mature form (Frataxin(81-210)) (m81-FXN); Extramitochondrial frataxin] | [Frataxin mature form]: Functions as an activator of persulfide transfer to the scaffoding protein ISCU as component of the core iron-sulfur cluster (ISC) assembly complex and participates to the [2Fe-2S] cluster assembly (PubMed:12785837, PubMed:24971490). Accelerates sulfur transfer from NFS1 persulfide intermediate to ISCU and to small thiols such as L-cysteine and glutathione leading to persulfuration of these thiols and ultimately sulfide release (PubMed:24971490). Binds ferrous ion and is released from FXN upon the addition of both L-cysteine and reduced FDX2 during [2Fe-2S] cluster assembly (PubMed:29576242). The core iron-sulfur cluster (ISC) assembly complex is involved in the de novo synthesis of a [2Fe-2S] cluster, the first step of the mitochondrial iron-sulfur protein biogenesis. This process is initiated by the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1) that produces persulfide which is delivered on the scaffold protein ISCU in a FXN-dependent manner. Then this complex is stabilized by FDX2 which provides reducing equivalents to accomplish the [2Fe-2S] cluster assembly. Finally, the [2Fe-2S] cluster is transferred from ISCU to chaperone proteins, including HSCB, HSPA9 and GLRX5 (By similarity). May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity (PubMed:15641778). May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has only been shown using heterologous overexpression systems (PubMed:11823441, PubMed:12755598). May function as an iron chaperone protein that protects the aconitase [4Fe-4S]2+ cluster from disassembly and promotes enzyme reactivation (PubMed:15247478). May play a role as a high affinity iron binding partner for FECH that is capable of both delivering iron to ferrochelatase and mediating the terminal step in mitochondrial heme biosynthesis (PubMed:15123683, PubMed:16239244). {ECO:0000250|UniProtKB:Q9H1K1, ECO:0000269|PubMed:11823441, ECO:0000269|PubMed:12755598, ECO:0000269|PubMed:12785837, ECO:0000269|PubMed:15123683, ECO:0000269|PubMed:15247478, ECO:0000269|PubMed:15641778, ECO:0000269|PubMed:16239244, ECO:0000269|PubMed:24971490, ECO:0000269|PubMed:29576242}.; FUNCTION: [Extramitochondrial frataxin]: Modulates the RNA-binding activity of ACO1 (PubMed:20053667). May be involved in the cytoplasmic iron-sulfur protein biogenesis (PubMed:16091420). May contribute to oxidative stress resistance and overall cell survival (PubMed:16608849). {ECO:0000269|PubMed:16091420, ECO:0000269|PubMed:16608849, ECO:0000269|PubMed:20053667}. |
Q5R3I4 | TTC38 | S362 | Sugiyama | Tetratricopeptide repeat protein 38 (TPR repeat protein 38) | None |
Q6ULP2 | AFTPH | S151 | Sugiyama | Aftiphilin | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
Q86TX2 | ACOT1 | S298 | Sugiyama | Acyl-coenzyme A thioesterase 1 (Acyl-CoA thioesterase 1) (EC 3.1.2.-) (CTE-I) (CTE-Ib) (Inducible cytosolic acyl-coenzyme A thioester hydrolase) (Long chain acyl-CoA thioester hydrolase) (Long chain acyl-CoA hydrolase) (Palmitoyl-coenzyme A thioesterase) (EC 3.1.2.2) | Catalyzes the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoASH), regulating their respective intracellular levels. More active towards saturated and unsaturated long chain fatty acyl-CoAs (C12-C20). {ECO:0000269|PubMed:16940157}. |
Q86VP6 | CAND1 | S376 | Sugiyama | Cullin-associated NEDD8-dissociated protein 1 (Cullin-associated and neddylation-dissociated protein 1) (TBP-interacting protein of 120 kDa A) (TBP-interacting protein 120A) (p120 CAND1) | Key assembly factor of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complexes that promotes the exchange of the substrate-recognition F-box subunit in SCF complexes, thereby playing a key role in the cellular repertoire of SCF complexes. Acts as a F-box protein exchange factor. The exchange activity of CAND1 is coupled with cycles of neddylation conjugation: in the deneddylated state, cullin-binding CAND1 binds CUL1-RBX1, increasing dissociation of the SCF complex and promoting exchange of the F-box protein. Probably plays a similar role in other cullin-RING E3 ubiquitin ligase complexes. {ECO:0000269|PubMed:12504025, ECO:0000269|PubMed:12504026, ECO:0000269|PubMed:12609982, ECO:0000269|PubMed:16449638, ECO:0000269|PubMed:21249194, ECO:0000269|PubMed:23453757}. |
Q8NBJ7 | SUMF2 | S44 | Sugiyama | Inactive C-alpha-formylglycine-generating enzyme 2 (Paralog of formylglycine-generating enzyme) (pFGE) (Sulfatase-modifying factor 2) | Lacks formylglycine generating activity and is unable to convert newly synthesized inactive sulfatases to their active form. Inhibits the activation of sulfatases by SUMF1. {ECO:0000269|PubMed:12757706, ECO:0000269|PubMed:15708861, ECO:0000269|PubMed:15962010}. |
Q92973 | TNPO1 | S111 | Sugiyama | Transportin-1 (Importin beta-2) (Karyopherin beta-2) (M9 region interaction protein) (MIP) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates (PubMed:24753571). May mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones (By similarity). In vitro, mediates nuclear import of SRP19 (PubMed:11682607). Mediates nuclear import of ADAR/ADAR1 isoform 1 and isoform 5 in a RanGTP-dependent manner (PubMed:19124606, PubMed:24753571). Main mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with the karyopherins KPNA1 and KPNA2 (PubMed:35446349). {ECO:0000250|UniProtKB:Q8BFY9, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:19124606, ECO:0000269|PubMed:24753571, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:8986607, ECO:0000269|PubMed:9687515}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000269|PubMed:16704975}. |
Q9BZK7 | TBL1XR1 | S451 | Sugiyama | F-box-like/WD repeat-containing protein TBL1XR1 (Nuclear receptor corepressor/HDAC3 complex subunit TBLR1) (TBL1-related protein 1) (Transducin beta-like 1X-related protein 1) | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation. {ECO:0000269|PubMed:14980219}. |
Q9H2C0 | GAN | S52 | Sugiyama | Gigaxonin (Kelch-like protein 16) | Probable cytoskeletal component that directly or indirectly plays an important role in neurofilament architecture. May act as a substrate-specific adapter of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Controls degradation of TBCB. Controls degradation of MAP1B and MAP1S, and is critical for neuronal maintenance and survival. {ECO:0000269|PubMed:12147674, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16227972, ECO:0000269|PubMed:16303566}. |
Q9H488 | POFUT1 | S264 | Sugiyama | GDP-fucose protein O-fucosyltransferase 1 (EC 2.4.1.221) (Peptide-O-fucosyltransferase 1) (O-FucT-1) | Catalyzes the reaction that attaches fucose through an O-glycosidic linkage to a conserved serine or threonine residue found in the consensus sequence C2-X(4,5)-[S/T]-C3 of EGF domains, where C2 and C3 are the second and third conserved cysteines. Specifically uses GDP-fucose as donor substrate and proper disulfide pairing of the substrate EGF domains is required for fucose transfer. Plays a crucial role in NOTCH signaling. Initial fucosylation of NOTCH by POFUT1 generates a substrate for FRINGE/RFNG, an acetylglucosaminyltransferase that can then extend the fucosylation on the NOTCH EGF repeats. This extended fucosylation is required for optimal ligand binding and canonical NOTCH signaling induced by DLL1 or JAGGED1. Fucosylates AGRN and determines its ability to cluster acetylcholine receptors (AChRs). {ECO:0000269|PubMed:11524432, ECO:0000269|PubMed:28334865, ECO:0000269|PubMed:8358148}. |
Q9HAP6 | LIN7B | S115 | Sugiyama | Protein lin-7 homolog B (Lin-7B) (hLin7B) (Mammalian lin-seven protein 2) (MALS-2) (Vertebrate lin-7 homolog 2) (Veli-2) (hVeli2) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. May increase the amplitude of ASIC3 acid-evoked currents by stabilizing the channel at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:O88951, ECO:0000269|PubMed:11742811}. |
Q9NQR4 | NIT2 | S133 | Sugiyama | Omega-amidase NIT2 (EC 3.5.1.3) (Nitrilase homolog 2) | Has omega-amidase activity (PubMed:19595734, PubMed:22674578). The role of omega-amidase is to remove potentially toxic intermediates by converting 2-oxoglutaramate and 2-oxosuccinamate to biologically useful 2-oxoglutarate and oxaloacetate, respectively (PubMed:19595734). {ECO:0000269|PubMed:19595734, ECO:0000269|PubMed:22674578}. |
Q9UHL4 | DPP7 | S213 | Sugiyama | Dipeptidyl peptidase 2 (EC 3.4.14.2) (Dipeptidyl aminopeptidase II) (Dipeptidyl peptidase 7) (Dipeptidyl peptidase II) (DPP II) (Quiescent cell proline dipeptidase) | Plays an important role in the degradation of some oligopeptides. {ECO:0000269|PubMed:15487984}. |
Q9UBS0 | RPS6KB2 | S370 | SIGNOR|EPSD | Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) | Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}. |
O43283 | MAP3K13 | S39 | Sugiyama | Mitogen-activated protein kinase kinase kinase 13 (EC 2.7.11.25) (Leucine zipper-bearing kinase) (Mixed lineage kinase) (MLK) | Activates the JUN N-terminal pathway through activation of the MAP kinase kinase MAP2K7. Acts synergistically with PRDX3 to regulate the activation of NF-kappa-B in the cytosol. This activation is kinase-dependent and involves activating the IKK complex, the IKBKB-containing complex that phosphorylates inhibitors of NF-kappa-B. {ECO:0000269|PubMed:11726277, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:9353328}. |
O43283 | MAP3K13 | S681 | Sugiyama | Mitogen-activated protein kinase kinase kinase 13 (EC 2.7.11.25) (Leucine zipper-bearing kinase) (Mixed lineage kinase) (MLK) | Activates the JUN N-terminal pathway through activation of the MAP kinase kinase MAP2K7. Acts synergistically with PRDX3 to regulate the activation of NF-kappa-B in the cytosol. This activation is kinase-dependent and involves activating the IKK complex, the IKBKB-containing complex that phosphorylates inhibitors of NF-kappa-B. {ECO:0000269|PubMed:11726277, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:9353328}. |
O60285 | NUAK1 | S325 | Sugiyama | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
Q14C86 | GAPVD1 | S950 | EPSD|PSP | GTPase-activating protein and VPS9 domain-containing protein 1 (GAPex-5) (Rab5-activating protein 6) | Acts both as a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF), and participates in various processes such as endocytosis, insulin receptor internalization or LC2A4/GLUT4 trafficking. Acts as a GEF for the Ras-related protein RAB31 by exchanging bound GDP for free GTP, leading to regulate LC2A4/GLUT4 trafficking. In the absence of insulin, it maintains RAB31 in an active state and promotes a futile cycle between LC2A4/GLUT4 storage vesicles and early endosomes, retaining LC2A4/GLUT4 inside the cells. Upon insulin stimulation, it is translocated to the plasma membrane, releasing LC2A4/GLUT4 from intracellular storage vesicles. Also involved in EGFR trafficking and degradation, possibly by promoting EGFR ubiquitination and subsequent degradation by the proteasome. Has GEF activity for Rab5 and GAP activity for Ras. {ECO:0000269|PubMed:16410077}. |
Q15154 | PCM1 | S69 | Sugiyama | Pericentriolar material 1 protein (PCM-1) (hPCM-1) | Required for centrosome assembly and function (PubMed:12403812, PubMed:15659651, PubMed:16943179). Essential for the correct localization of several centrosomal proteins including CEP250, CETN3, PCNT and NEK2 (PubMed:12403812, PubMed:15659651). Required to anchor microtubules to the centrosome (PubMed:12403812, PubMed:15659651). Also involved in cilium biogenesis by recruiting the BBSome, a ciliary protein complex involved in cilium biogenesis, to the centriolar satellites (PubMed:20551181, PubMed:24121310, PubMed:27979967). Recruits the tubulin polyglutamylase complex (TPGC) to centriolar satellites (PubMed:34782749). {ECO:0000269|PubMed:12403812, ECO:0000269|PubMed:15659651, ECO:0000269|PubMed:16943179, ECO:0000269|PubMed:20551181, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:34782749}. |
Q7Z628 | NET1 | S131 | GPS6 | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q9BQQ3 | GORASP1 | S373 | SIGNOR | Golgi reassembly-stacking protein 1 (Golgi peripheral membrane protein p65) (Golgi phosphoprotein 5) (GOLPH5) (Golgi reassembly-stacking protein of 65 kDa) (GRASP65) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP2/GRASP55, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP1 plays an important role in assembly and membrane stacking of the cisternae, and in the reassembly of Golgi stacks after breakdown during mitosis (By similarity). Caspase-mediated cleavage of GORASP1 is required for fragmentation of the Golgi during apoptosis (By similarity). Also mediates, via its interaction with GOLGA2/GM130, the docking of transport vesicles with the Golgi membranes (PubMed:16489344). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936). {ECO:0000250|UniProtKB:O35254, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:33301566}. |
Q9H9S0 | NANOG | S65 | PSP | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
P07333 | CSF1R | S688 | Sugiyama | Macrophage colony-stimulating factor 1 receptor (CSF-1 receptor) (CSF-1-R) (CSF-1R) (M-CSF-R) (EC 2.7.10.1) (Proto-oncogene c-Fms) (CD antigen CD115) | Tyrosine-protein kinase that acts as a cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding, including the ERK1/2 and the JNK pathway (PubMed:20504948, PubMed:30982609). Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor. In the central nervous system, may play a role in the development of microglia macrophages (PubMed:30982608). {ECO:0000269|PubMed:12882960, ECO:0000269|PubMed:15117969, ECO:0000269|PubMed:16170366, ECO:0000269|PubMed:16337366, ECO:0000269|PubMed:16648572, ECO:0000269|PubMed:17121910, ECO:0000269|PubMed:18467591, ECO:0000269|PubMed:18814279, ECO:0000269|PubMed:19193011, ECO:0000269|PubMed:19934330, ECO:0000269|PubMed:20489731, ECO:0000269|PubMed:20504948, ECO:0000269|PubMed:20829061, ECO:0000269|PubMed:30982608, ECO:0000269|PubMed:30982609, ECO:0000269|PubMed:7683918}. |
P47756 | CAPZB | S73 | Sugiyama | F-actin-capping protein subunit beta (CapZ beta) | F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. Plays a role in the regulation of cell morphology and cytoskeletal organization. Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A9XFX6, ECO:0000269|PubMed:21834987}. |
P30281 | CCND3 | S133 | Sugiyama | G1/S-specific cyclin-D3 | Regulatory component of the cyclin D3-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:8114739). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:8114739). Hypophosphorylates RB1 in early G(1) phase (PubMed:8114739). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:8114739). Component of the ternary complex, cyclin D3/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:16782892). Shows transcriptional coactivator activity with ATF5 independently of CDK4 (PubMed:15358120). {ECO:0000269|PubMed:15358120, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:8114739}. |
P10398 | ARAF | S528 | Sugiyama | Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) | Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}. |
P20020 | ATP2B1 | S1178 | ELM|iPTMNet|EPSD | Plasma membrane calcium-transporting ATPase 1 (EC 7.2.2.10) (Plasma membrane calcium ATPase isoform 1) (PMCA1) (Plasma membrane calcium pump isoform 1) | Catalyzes the hydrolysis of ATP coupled with the transport of calcium from the cytoplasm to the extracellular space thereby maintaining intracellular calcium homeostasis (PubMed:35358416). Plays a role in blood pressure regulation through regulation of intracellular calcium concentration and nitric oxide production leading to regulation of vascular smooth muscle cells vasoconstriction. Positively regulates bone mineralization through absorption of calcium from the intestine. Plays dual roles in osteoclast differentiation and survival by regulating RANKL-induced calcium oscillations in preosteoclasts and mediating calcium extrusion in mature osteoclasts (By similarity). Regulates insulin sensitivity through calcium/calmodulin signaling pathway by regulating AKT1 activation and NOS3 activation in endothelial cells (PubMed:29104511). May play a role in synaptic transmission by modulating calcium and proton dynamics at the synaptic vesicles. {ECO:0000250|UniProtKB:G5E829, ECO:0000269|PubMed:29104511, ECO:0000269|PubMed:35358416}. |
P62714 | PPP2CB | S212 | Sugiyama | Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform (PP2A-beta) (EC 3.1.3.16) | Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (Probable). PP2A can modulate the activity of phosphorylase B kinase, casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:2555176, ECO:0000305}. |
P67775 | PPP2CA | S212 | Sugiyama | Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform (PP2A-alpha) (EC 3.1.3.16) (Replication protein C) (RP-C) | Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:22613722, PubMed:33243860, PubMed:34004147, PubMed:9920888). PP2A is the major phosphatase for microtubule-associated proteins (MAPs) (PubMed:22613722). PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase (PubMed:22613722). Cooperates with SGO2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate various proteins, such as SV40 large T antigen, AXIN1, p53/TP53, PIM3, WEE1 (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:9920888). Activates RAF1 by dephosphorylating it at 'Ser-259' (PubMed:10801873). Mediates dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). Mediates dephosphorylation of MYC; promoting its ubiquitin-mediated proteolysis: interaction with AMBRA1 enhances interaction between PPP2CA and MYC (PubMed:25438055). Mediates dephosphorylation of FOXO3; promoting its stabilization: interaction with AMBRA1 enhances interaction between PPP2CA and FOXO3 (PubMed:30513302). Catalyzes dephosphorylation of the pyrin domain of NLRP3, promoting assembly of the NLRP3 inflammasome (By similarity). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Catalyzes dephosphorylation of PIM3, promotinh PIM3 ubiquitination and proteasomal degradation (PubMed:12473674). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147, PubMed:37080207). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, PPP2CA catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147, PubMed:37080207). {ECO:0000250|UniProtKB:P63330, ECO:0000269|PubMed:10801873, ECO:0000269|PubMed:12473674, ECO:0000269|PubMed:17245430, ECO:0000269|PubMed:22613722, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:37080207, ECO:0000269|PubMed:9920888}. |
O15230 | LAMA5 | S422 | Sugiyama | Laminin subunit alpha-5 (Laminin-10 subunit alpha) (Laminin-11 subunit alpha) (Laminin-15 subunit alpha) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Plays a role in the regulation of skeletogenesis, through a mechanism that involves integrin-mediated signaling and PTK2B/PYK2 (PubMed:33242826). {ECO:0000269|PubMed:33242826}. |
O95456 | PSMG1 | S186 | Sugiyama | Proteasome assembly chaperone 1 (PAC-1) (Chromosome 21 leucine-rich protein) (C21-LRP) (Down syndrome critical region protein 2) (Proteasome chaperone homolog 1) (Pba1) | Chaperone protein which promotes assembly of the 20S proteasome as part of a heterodimer with PSMG2. The PSMG1-PSMG2 heterodimer binds to the PSMA5 and PSMA7 proteasome subunits, promotes assembly of the proteasome alpha subunits into the heteroheptameric alpha ring and prevents alpha ring dimerization. {ECO:0000269|PubMed:16251969, ECO:0000269|PubMed:17707236}. |
P07814 | EPRS1 | S1350 | Sugiyama | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P17813 | ENG | S521 | Sugiyama | Endoglin (CD antigen CD105) | Vascular endothelium glycoprotein that plays an important role in the regulation of angiogenesis (PubMed:21737454, PubMed:23300529). Required for normal structure and integrity of adult vasculature (PubMed:7894484). Regulates the migration of vascular endothelial cells (PubMed:17540773). Required for normal extraembryonic angiogenesis and for embryonic heart development (By similarity). May regulate endothelial cell shape changes in response to blood flow, which drive vascular remodeling and establishment of normal vascular morphology during angiogenesis (By similarity). May play a critical role in the binding of endothelial cells to integrins and/or other RGD receptors (PubMed:1692830). Acts as a TGF-beta coreceptor and is involved in the TGF-beta/BMP signaling cascade that ultimately leads to the activation of SMAD transcription factors (PubMed:21737454, PubMed:22347366, PubMed:23300529, PubMed:8370410). Required for GDF2/BMP9 signaling through SMAD1 in endothelial cells and modulates TGFB1 signaling through SMAD3 (PubMed:21737454, PubMed:22347366, PubMed:23300529). {ECO:0000250|UniProtKB:Q63961, ECO:0000269|PubMed:17540773, ECO:0000269|PubMed:21737454, ECO:0000269|PubMed:23300529, ECO:0000269|PubMed:7894484, ECO:0000269|PubMed:8370410, ECO:0000305|PubMed:1692830}. |
Q00975 | CACNA1B | S446 | SIGNOR | Voltage-dependent N-type calcium channel subunit alpha-1B (Brain calcium channel III) (BIII) (Calcium channel, L type, alpha-1 polypeptide isoform 5) (Voltage-gated calcium channel subunit alpha Cav2.2) | Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group. They are involved in pain signaling (PubMed:25296916). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons. Mediates Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). {ECO:0000250|UniProtKB:Q02294, ECO:0000269|PubMed:25296916}.; FUNCTION: [Isoform Alpha-1B-1]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This alpha-1B subunit gives rise to N-type calcium currents. {ECO:0000269|PubMed:1321501}. |
Q02641 | CACNB1 | S161 | SIGNOR | Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) | Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}. |
Q02641 | CACNB1 | S348 | SIGNOR | Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) | Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}. |
Q13362 | PPP2R5C | S337 | SIGNOR | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform (PP2A B subunit isoform B'-gamma) (PP2A B subunit isoform B56-gamma) (PP2A B subunit isoform PR61-gamma) (PP2A B subunit isoform R5-gamma) (Renal carcinoma antigen NY-REN-29) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. The PP2A-PPP2R5C holoenzyme may specifically dephosphorylate and activate TP53 and play a role in DNA damage-induced inhibition of cell proliferation. PP2A-PPP2R5C may also regulate the ERK signaling pathway through ERK dephosphorylation. {ECO:0000269|PubMed:16456541, ECO:0000269|PubMed:17245430}. |
Q8IZQ8 | MYOCD | S815 | GPS6 | Myocardin | Smooth muscle cells (SM) and cardiac muscle cells-specific transcriptional factor which uses the canonical single or multiple CArG boxes DNA sequence. Acts as a cofactor of serum response factor (SRF) with the potential to modulate SRF-target genes. Plays a crucial role in cardiogenesis, urinary bladder development, and differentiation of the smooth muscle cell lineage (myogenesis) (By similarity). Positively regulates the transcription of genes involved in vascular smooth muscle contraction (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q8R5I7, ECO:0000269|PubMed:12640126, ECO:0000269|PubMed:31513549}. |
P24046 | GABRR1 | S435 | SIGNOR|iPTMNet|EPSD | Gamma-aminobutyric acid receptor subunit rho-1 (GABA(A) receptor subunit rho-1) (GABAAR subunit rho-1) (GABA(C) receptor) | Rho subunit of the pentameric ligand-gated chloride channels responsible for mediating the effects of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain (PubMed:37659407). Rho-containing GABA-gated chloride channels are a subclass of GABA(A) receptors (GABAARs) entirely composed of rho subunits, where GABA molecules bind at the rho intersubunit interfaces (PubMed:37659407). When activated by GABA, rho-GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:37659407). Rho-1 subunits are primarily expressed in retina where rho-1-containing GABAARs may play a role in retinal neurotransmission (PubMed:1849271). Rho-1 GABAARs are also involved in neuronal tonic (extrasynaptic) and phasic (synaptic) transmission in the Purkinje neurons of the cerebellum (By similarity). Rho-1 GABAARs may also contribute to the regulation of glial development in the cerebellum by controlling extrasynaptic transmission (By similarity). {ECO:0000250|UniProtKB:P56475, ECO:0000269|PubMed:1849271, ECO:0000269|PubMed:37659407}. |
P52564 | MAP2K6 | S275 | Sugiyama | Dual specificity mitogen-activated protein kinase kinase 6 (MAP kinase kinase 6) (MAPKK 6) (EC 2.7.12.2) (MAPK/ERK kinase 6) (MEK 6) (Stress-activated protein kinase kinase 3) (SAPK kinase 3) (SAPKK-3) (SAPKK3) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. With MAP3K3/MKK3, catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinases p38 MAPK11, MAPK12, MAPK13 and MAPK14 and plays an important role in the regulation of cellular responses to cytokines and all kinds of stresses. Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are both essential for the activation of MAPK11 and MAPK13 induced by environmental stress, whereas MAP2K6/MKK6 is the major MAPK11 activator in response to TNF. MAP2K6/MKK6 also phosphorylates and activates PAK6. The p38 MAP kinase signal transduction pathway leads to direct activation of transcription factors. Nuclear targets of p38 MAP kinase include the transcription factors ATF2 and ELK1. Within the p38 MAPK signal transduction pathway, MAP3K6/MKK6 mediates phosphorylation of STAT4 through MAPK14 activation, and is therefore required for STAT4 activation and STAT4-regulated gene expression in response to IL-12 stimulation. The pathway is also crucial for IL-6-induced SOCS3 expression and down-regulation of IL-6-mediated gene induction; and for IFNG-dependent gene transcription. Has a role in osteoclast differentiation through NF-kappa-B transactivation by TNFSF11, and in endochondral ossification and since SOX9 is another likely downstream target of the p38 MAPK pathway. MAP2K6/MKK6 mediates apoptotic cell death in thymocytes. Acts also as a regulator for melanocytes dendricity, through the modulation of Rho family GTPases. {ECO:0000269|PubMed:10961885, ECO:0000269|PubMed:11727828, ECO:0000269|PubMed:15550393, ECO:0000269|PubMed:20869211, ECO:0000269|PubMed:8622669, ECO:0000269|PubMed:8626699, ECO:0000269|PubMed:8663074, ECO:0000269|PubMed:9218798}. |
Q04721 | NOTCH2 | S671 | Sugiyama | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q96G03 | PGM2 | S186 | Sugiyama | Phosphopentomutase (EC 5.4.2.7) (Glucose phosphomutase 2) (Phosphodeoxyribomutase) (Phosphoglucomutase-2) (EC 5.4.2.2) | Catalyzes the conversion of the nucleoside breakdown products ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses (PubMed:17804405). Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate but with a lower catalytic efficiency (PubMed:17804405). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (PubMed:17804405). In vitro, also has a low glucose 1,6-bisphosphate synthase activity which is most probably not physiologically relevant (PubMed:17804405, PubMed:18927083). {ECO:0000269|PubMed:17804405, ECO:0000269|PubMed:18927083}. |
Q9Y3D2 | MSRB2 | S95 | Sugiyama | Methionine-R-sulfoxide reductase B2, mitochondrial (MsrB2) (EC 1.8.4.12) (EC 1.8.4.14) | Methionine-sulfoxide reductase that specifically reduces methionine (R)-sulfoxide back to methionine. While in many cases, methionine oxidation is the result of random oxidation following oxidative stress, methionine oxidation is also a post-translational modification that takes place on specific residue. Upon oxidative stress, may play a role in the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance. {ECO:0000269|PubMed:18424444}. |
P31152 | MAPK4 | S196 | GPS6|ELM|iPTMNet|EPSD | Mitogen-activated protein kinase 4 (MAP kinase 4) (MAPK 4) (EC 2.7.11.24) (Extracellular signal-regulated kinase 4) (ERK-4) (MAP kinase isoform p63) (p63-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK4/MAPK4 is phosphorylated at Ser-186 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK4/MAPK4. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
O60568 | PLOD3 | S367 | Sugiyama | Multifunctional procollagen lysine hydroxylase and glycosyltransferase LH3 [Includes: Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (EC 1.14.11.4) (Lysyl hydroxylase 3) (LH3); Procollagen glycosyltransferase (EC 2.4.1.50) (EC 2.4.1.66) (Galactosylhydroxylysine-glucosyltransferase) (Procollagen galactosyltransferase) (Procollagen glucosyltransferase)] | Multifunctional enzyme that catalyzes a series of essential post-translational modifications on Lys residues in procollagen (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Plays a redundant role in catalyzing the formation of hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812, PubMed:9582318, PubMed:9724729). Plays a redundant role in catalyzing the transfer of galactose onto hydroxylysine groups, giving rise to galactosyl 5-hydroxylysine (PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Has an essential role by catalyzing the subsequent transfer of glucose moieties, giving rise to 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:10934207, PubMed:11896059, PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Catalyzes hydroxylation and glycosylation of Lys residues in the MBL1 collagen-like domain, giving rise to hydroxylysine and 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:25419660). Essential for normal biosynthesis and secretion of type IV collagens (Probable) (PubMed:18834968). Essential for normal formation of basement membranes (By similarity). {ECO:0000250|UniProtKB:Q9R0E1, ECO:0000269|PubMed:10934207, ECO:0000269|PubMed:11896059, ECO:0000269|PubMed:11956192, ECO:0000269|PubMed:12475640, ECO:0000269|PubMed:18298658, ECO:0000269|PubMed:18834968, ECO:0000269|PubMed:25419660, ECO:0000269|PubMed:30089812, ECO:0000269|PubMed:9582318, ECO:0000269|PubMed:9724729, ECO:0000305}. |
P17936 | IGFBP3 | S97 | Sugiyama | Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:10874028, PubMed:19556345). Also exhibits IGF-independent antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R (PubMed:20353938). Inhibits the positive effect of humanin on insulin sensitivity (PubMed:19623253). Promotes testicular germ cell apoptosis (PubMed:19952275). Acts via LRP-1/alpha2M receptor, also known as TGF-beta type V receptor, to mediate cell growth inhibition independent of IGF1 (PubMed:9252371). Mechanistically, induces serine-specific dephosphorylation of IRS1 or IRS2 upon ligation to its receptor, leading to the inhibitory cascade (PubMed:15371331). In the nucleus, interacts with transcription factors such as retinoid X receptor-alpha/RXRA to regulate transcriptional signaling and apoptosis (PubMed:10874028). {ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:15371331, ECO:0000269|PubMed:19159218, ECO:0000269|PubMed:19556345, ECO:0000269|PubMed:19623253, ECO:0000269|PubMed:19952275, ECO:0000269|PubMed:20353938}. |
P33992 | MCM5 | S398 | Sugiyama | DNA replication licensing factor MCM5 (EC 3.6.4.12) (CDC46 homolog) (P1-CDC46) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232}. |
Q5JR12 | PPM1J | S93 | SIGNOR | Protein phosphatase 1J (EC 3.1.3.16) (Protein phosphatase 2C isoform zeta) (PP2C-zeta) | None |
Q96HN2 | AHCYL2 | S107 | Sugiyama | Adenosylhomocysteinase 3 (AdoHcyase 3) (EC 3.13.2.1) (IP(3)Rs binding protein released with IP(3) 2) (IRBIT2) (Long-IRBIT) (S-adenosyl-L-homocysteine hydrolase 3) (S-adenosylhomocysteine hydrolase-like protein 2) | May regulate the electrogenic sodium/bicarbonate cotransporter SLC4A4 activity and Mg(2+)-sensitivity. On the contrary of its homolog AHCYL1, does not regulate ITPR1 sensitivity to inositol 1,4,5-trisphosphate (PubMed:19220705). {ECO:0000250|UniProtKB:A6QLP2, ECO:0000269|PubMed:19220705}. |
P46734 | MAP2K3 | S286 | Sugiyama | Dual specificity mitogen-activated protein kinase kinase 3 (MAP kinase kinase 3) (MAPKK 3) (EC 2.7.12.2) (MAPK/ERK kinase 3) (MEK 3) (Stress-activated protein kinase kinase 2) (SAPK kinase 2) (SAPKK-2) (SAPKK2) | Dual specificity kinase. Is activated by cytokines and environmental stress in vivo. Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinase p38. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. {ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:8622669}. |
Q9NY33 | DPP3 | S242 | Sugiyama | Dipeptidyl peptidase 3 (EC 3.4.14.4) (Dipeptidyl aminopeptidase III) (Dipeptidyl arylamidase III) (Dipeptidyl peptidase III) (DPP III) (Enkephalinase B) | Cleaves and degrades bioactive peptides, including angiotensin, Leu-enkephalin and Met-enkephalin (PubMed:1515063, PubMed:3233187). Also cleaves Arg-Arg-beta-naphthylamide (in vitro) (PubMed:11209758, PubMed:3233187, PubMed:9425109). {ECO:0000269|PubMed:11209758, ECO:0000269|PubMed:1515063, ECO:0000269|PubMed:3233187, ECO:0000269|PubMed:9425109}. |
P19447 | ERCC3 | S90 | SIGNOR|PSP | General transcription and DNA repair factor IIH helicase/translocase subunit XPB (TFIIH subunit XPB) (EC 5.6.2.4) (Basic transcription factor 2 89 kDa subunit) (BTF2 p89) (DNA 3'-5' helicase/translocase XPB) (DNA excision repair protein ERCC-3) (DNA repair protein complementing XP-B cells) (TFIIH basal transcription factor complex 89 kDa subunit) (TFIIH 89 kDa subunit) (TFIIH p89) (Xeroderma pigmentosum group B-complementing protein) | ATP-dependent 3'-5' DNA helicase/translocase (PubMed:17466626, PubMed:27193682, PubMed:33902107, PubMed:8465201, PubMed:8663148). Binds dsDNA rather than ssDNA, unzipping it in a translocase rather than classical helicase activity (PubMed:27193682, PubMed:33902107). Component of the general transcription and DNA repair factor IIH (TFIIH) core complex (PubMed:10024882, PubMed:17466626, PubMed:8157004, PubMed:8465201). When complexed to CDK-activating kinase (CAK), involved in RNA transcription by RNA polymerase II. The ATPase activity of XPB/ERCC3, but not its helicase activity, is required for DNA opening; it may wrap around the damaged DNA wedging it open, causing localized melting that allows XPD/ERCC2 helicase to anchor (PubMed:10024882, PubMed:17466626). In transcription, TFIIH has an essential role in transcription initiation (PubMed:30894545, PubMed:8157004). When the pre-initiation complex (PIC) has been established, TFIIH is required for promoter opening and promoter escape (PubMed:8157004). The ATP-dependent helicase activity of XPB/ERCC3 is required for promoter opening and promoter escape (PubMed:10024882). In transcription pre-initiation complexes induces and propagates a DNA twist to open DNA (PubMed:27193682, PubMed:33902107). Also involved in transcription-coupled nucleotide excision repair (NER) of damaged DNA (PubMed:17466626, PubMed:2111438, PubMed:8157004). In NER, TFIIH acts by opening DNA around the lesion to allow the excision of the damaged oligonucleotide and its replacement by a new DNA fragment. The structure of the TFIIH transcription complex differs from the NER-TFIIH complex; large movements by XPD/ERCC2 and XPB/ERCC3 are stabilized by XPA (PubMed:31253769, PubMed:33902107). XPA retains XPB/ERCC3 at the 5' end of a DNA bubble (mimicking DNA damage) (PubMed:31253769). {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:17466626, ECO:0000269|PubMed:30894545, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:33902107, ECO:0000269|PubMed:7724549, ECO:0000269|PubMed:8157004, ECO:0000269|PubMed:8663148, ECO:0000305|PubMed:8465201}. |
Q9NQR4 | NIT2 | S207 | Sugiyama | Omega-amidase NIT2 (EC 3.5.1.3) (Nitrilase homolog 2) | Has omega-amidase activity (PubMed:19595734, PubMed:22674578). The role of omega-amidase is to remove potentially toxic intermediates by converting 2-oxoglutaramate and 2-oxosuccinamate to biologically useful 2-oxoglutarate and oxaloacetate, respectively (PubMed:19595734). {ECO:0000269|PubMed:19595734, ECO:0000269|PubMed:22674578}. |
P51451 | BLK | S190 | Sugiyama | Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) | Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}. |
P07942 | LAMB1 | S1237 | Sugiyama | Laminin subunit beta-1 (Laminin B1 chain) (Laminin-1 subunit beta) (Laminin-10 subunit beta) (Laminin-12 subunit beta) (Laminin-2 subunit beta) (Laminin-6 subunit beta) (Laminin-8 subunit beta) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Involved in the organization of the laminar architecture of cerebral cortex. It is probably required for the integrity of the basement membrane/glia limitans that serves as an anchor point for the endfeet of radial glial cells and as a physical barrier to migrating neurons. Radial glial cells play a central role in cerebral cortical development, where they act both as the proliferative unit of the cerebral cortex and a scaffold for neurons migrating toward the pial surface. {ECO:0000269|PubMed:23472759}. |
Q16600 | ZNF239 | S129 | GPS6 | Zinc finger protein 239 (Zinc finger protein HOK-2) (Zinc finger protein MOK-2) | May be involved in transcriptional regulation. |
Q9P2J9 | PDP2 | S118 | Sugiyama | [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 2, mitochondrial (PDP 2) (EC 3.1.3.43) (Pyruvate dehydrogenase phosphatase catalytic subunit 2) (PDPC 2) | Mitochondrial enzyme that catalyzes the dephosphorylation and concomitant reactivation of the alpha subunit of the E1 component of the pyruvate dehydrogenase complex (PDC), thereby stimulating the conversion of pyruvate into acetyl-CoA (By similarity). Acts as a crucial regulator of T cell metabolism and function, with a particular focus on T-helper Th17 (By similarity). {ECO:0000250|UniProtKB:O88484, ECO:0000250|UniProtKB:Q504M2}. |
Q15751 | HERC1 | S3238 | Sugiyama | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q16222 | UAP1 | S484 | Sugiyama | UDP-N-acetylhexosamine pyrophosphorylase (Antigen X) (AGX) (Protein-pyrophosphorylation enzyme) (EC 2.7.4.-) (Sperm-associated antigen 2) (UDP-N-acetylgalactosamine pyrophosphorylase) (EC 2.7.7.83) (UDP-N-acetylglucosamine pyrophosphorylase) (EC 2.7.7.23) | Catalyzes the last step in biosynthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by converting UTP and glucosamine 1-phosphate (GlcNAc-1-P) to the sugar nucleotide (PubMed:9603950, PubMed:9765219). Also converts UTP and galactosamine 1-phosphate (GalNAc-1-P) into uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) (PubMed:9765219). In addition to its role in metabolism, acts as a regulator of innate immunity in response to virus infection by mediating pyrophosphorylation of IRF3: catalyzes pyrophosphorylation of IRF3 phosphorylated at 'Ser-386' by TBK1, promoting IRF3 dimerization and activation, leading to type I interferon responses (PubMed:36603579). {ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:9603950, ECO:0000269|PubMed:9765219}.; FUNCTION: [Isoform AGX1]: Isoform AGX1 has 2 to 3 times higher activity towards galactosamine 1-phosphate (GalNAc-1-P). {ECO:0000269|PubMed:9765219}.; FUNCTION: [Isoform AGX1]: Isoform AGX2 has 8 times more activity towards glucosamine 1-phosphate (GlcNAc-1-P). {ECO:0000269|PubMed:9765219}. |
Q01813 | PFKP | S679 | SIGNOR | ATP-dependent 6-phosphofructokinase, platelet type (ATP-PFK) (PFK-P) (EC 2.7.1.11) (6-phosphofructokinase type C) (Phosphofructo-1-kinase isozyme C) (PFK-C) (Phosphohexokinase) | Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. |
Q8TEQ6 | GEMIN5 | S648 | Sugiyama | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q969H0 | FBXW7 | S372 | GPS6 | F-box/WD repeat-containing protein 7 (Archipelago homolog) (hAgo) (F-box and WD-40 domain-containing protein 7) (F-box protein FBX30) (SEL-10) (hCdc4) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:17434132, PubMed:22748924, PubMed:26976582, PubMed:28727686, PubMed:34741373, PubMed:35395208). Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter brings them to the SCF complex for ubiquitination (PubMed:17434132, PubMed:22748924, PubMed:26774286, PubMed:26976582, PubMed:28727686, PubMed:34741373). Identified substrates include cyclin-E (CCNE1 or CCNE2), DISC1, JUN, MYC, NOTCH1 released notch intracellular domain (NICD), NFE2L1, NOTCH2, MCL1, MLST8, RICTOR, and probably PSEN1 (PubMed:11565034, PubMed:11585921, PubMed:12354302, PubMed:14739463, PubMed:15103331, PubMed:17558397, PubMed:17873522, PubMed:22608923, PubMed:22748924, PubMed:25775507, PubMed:25897075, PubMed:26976582, PubMed:28007894, PubMed:28727686, PubMed:29149593, PubMed:34102342). Acts as a negative regulator of JNK signaling by binding to phosphorylated JUN and promoting its ubiquitination and subsequent degradation (PubMed:14739463). Involved in bone homeostasis and negative regulation of osteoclast differentiation (PubMed:29149593). Regulates the amplitude of the cyclic expression of hepatic core clock genes and genes involved in lipid and glucose metabolism via ubiquitination and proteasomal degradation of their transcriptional repressor NR1D1; CDK1-dependent phosphorylation of NR1D1 is necessary for SCF(FBXW7)-mediated ubiquitination (PubMed:27238018). Also able to promote 'Lys-63'-linked ubiquitination in response to DNA damage (PubMed:26774286). The SCF(FBXW7) complex facilitates double-strand break repair following phosphorylation by ATM: phosphorylation promotes localization to sites of double-strand breaks and 'Lys-63'-linked ubiquitination of phosphorylated XRCC4, enhancing DNA non-homologous end joining (PubMed:26774286). {ECO:0000269|PubMed:11565034, ECO:0000269|PubMed:11585921, ECO:0000269|PubMed:14739463, ECO:0000269|PubMed:15103331, ECO:0000269|PubMed:17434132, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:22748924, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:26976582, ECO:0000269|PubMed:27238018, ECO:0000269|PubMed:28007894, ECO:0000269|PubMed:28727686, ECO:0000269|PubMed:29149593, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34741373, ECO:0000269|PubMed:35395208, ECO:0000305|PubMed:12354302}. |
Q02156 | PRKCE | S62 | Sugiyama | Protein kinase C epsilon type (EC 2.7.11.13) (nPKC-epsilon) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells (PubMed:19542546). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11884385, ECO:0000269|PubMed:1374067, ECO:0000269|PubMed:15355962, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:17603037, ECO:0000269|PubMed:17875639, ECO:0000269|PubMed:17875724, ECO:0000269|PubMed:19542546, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:36040231}. |
Q13164 | MAPK7 | S210 | Sugiyama | Mitogen-activated protein kinase 7 (MAP kinase 7) (MAPK 7) (EC 2.7.11.24) (Big MAP kinase 1) (BMK-1) (Extracellular signal-regulated kinase 5) (ERK-5) | Plays a role in various cellular processes such as proliferation, differentiation and cell survival. The upstream activator of MAPK7 is the MAPK kinase MAP2K5. Upon activation, it translocates to the nucleus and phosphorylates various downstream targets including MEF2C. EGF activates MAPK7 through a Ras-independent and MAP2K5-dependent pathway. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via interaction with STUB1/CHIP and promotion of STUB1-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). May have a role in muscle cell differentiation. May be important for endothelial function and maintenance of blood vessel integrity. MAP2K5 and MAPK7 interact specifically with one another and not with MEK1/ERK1 or MEK2/ERK2 pathways. Phosphorylates SGK1 at Ser-78 and this is required for growth factor-induced cell cycle progression. Involved in the regulation of p53/TP53 by disrupting the PML-MDM2 interaction. {ECO:0000250|UniProtKB:P0C865, ECO:0000269|PubMed:11254654, ECO:0000269|PubMed:11278431, ECO:0000269|PubMed:22869143, ECO:0000269|PubMed:9384584, ECO:0000269|PubMed:9790194}. |
Q03112 | MECOM | S1039 | SIGNOR | Histone-lysine N-methyltransferase MECOM (EC 2.1.1.367) (Ecotropic virus integration site 1 protein homolog) (EVI-1) (MDS1 and EVI1 complex locus protein) (Myelodysplasia syndrome 1 protein) (Myelodysplasia syndrome-associated protein 1) | [Isoform 1]: Functions as a transcriptional regulator binding to DNA sequences in the promoter region of target genes and regulating positively or negatively their expression. Oncogene which plays a role in development, cell proliferation and differentiation. May also play a role in apoptosis through regulation of the JNK and TGF-beta signaling. Involved in hematopoiesis. {ECO:0000269|PubMed:10856240, ECO:0000269|PubMed:11568182, ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16462766, ECO:0000269|PubMed:19767769, ECO:0000269|PubMed:9665135}.; FUNCTION: [Isoform 7]: Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation. Likely to be one of the primary histone methyltransferases along with PRDM16 that direct cytoplasmic H3K9me1 methylation. {ECO:0000250|UniProtKB:P14404}. |
P42261 | GRIA1 | S645 | SIGNOR|iPTMNet | Glutamate receptor 1 (GluR-1) (AMPA-selective glutamate receptor 1) (GluR-A) (GluR-K1) (Glutamate receptor ionotropic, AMPA 1) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:1311100, PubMed:20805473, PubMed:21172611, PubMed:28628100, PubMed:35675825). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed:21172611). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity). {ECO:0000250|UniProtKB:P19490, ECO:0000269|PubMed:1311100, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611, ECO:0000269|PubMed:28628100, ECO:0000269|PubMed:35675825}. |
Q15569 | TESK1 | S220 | SIGNOR|iPTMNet|EPSD | Dual specificity testis-specific protein kinase 1 (EC 2.7.12.1) (Testicular protein kinase 1) | Dual specificity protein kinase activity catalyzing autophosphorylation and phosphorylation of exogenous substrates on both serine/threonine and tyrosine residues (By similarity). Regulates the cellular cytoskeleton by enhancing actin stress fiber formation via phosphorylation of cofilin and by preventing microtubule breakdown via inhibition of TAOK1/MARKK kinase activity (By similarity). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Positively regulates integrin-mediated cell spreading, via phosphorylation of cofilin (PubMed:15584898). Suppresses ciliogenesis via multiple pathways; phosphorylation of CFL1, suppression of ciliary vesicle directional trafficking to the ciliary base, and by facilitating YAP1 nuclear localization where it acts as a transcriptional corepressor of the TEAD4 target genes AURKA and PLK1 (PubMed:25849865). Probably plays a central role at and after the meiotic phase of spermatogenesis (By similarity). {ECO:0000250|UniProtKB:O70146, ECO:0000250|UniProtKB:Q63572, ECO:0000269|PubMed:15584898, ECO:0000269|PubMed:25849865}. |
Q59H18 | TNNI3K | S430 | Sugiyama | Serine/threonine-protein kinase TNNI3K (EC 2.7.11.1) (Cardiac ankyrin repeat kinase) (Cardiac troponin I-interacting kinase) (TNNI3-interacting kinase) | May play a role in cardiac physiology. {ECO:0000303|PubMed:12721663}. |
Q5S007 | LRRK2 | S1124 | EPSD|PSP | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5S007 | LRRK2 | S2370 | Sugiyama | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q8NE63 | HIPK4 | S337 | Sugiyama | Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) | Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}. |
Q14C86 | GAPVD1 | S1019 | Sugiyama | GTPase-activating protein and VPS9 domain-containing protein 1 (GAPex-5) (Rab5-activating protein 6) | Acts both as a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF), and participates in various processes such as endocytosis, insulin receptor internalization or LC2A4/GLUT4 trafficking. Acts as a GEF for the Ras-related protein RAB31 by exchanging bound GDP for free GTP, leading to regulate LC2A4/GLUT4 trafficking. In the absence of insulin, it maintains RAB31 in an active state and promotes a futile cycle between LC2A4/GLUT4 storage vesicles and early endosomes, retaining LC2A4/GLUT4 inside the cells. Upon insulin stimulation, it is translocated to the plasma membrane, releasing LC2A4/GLUT4 from intracellular storage vesicles. Also involved in EGFR trafficking and degradation, possibly by promoting EGFR ubiquitination and subsequent degradation by the proteasome. Has GEF activity for Rab5 and GAP activity for Ras. {ECO:0000269|PubMed:16410077}. |
P11047 | LAMC1 | S401 | Sugiyama | Laminin subunit gamma-1 (Laminin B2 chain) (Laminin-1 subunit gamma) (Laminin-10 subunit gamma) (Laminin-11 subunit gamma) (Laminin-2 subunit gamma) (Laminin-3 subunit gamma) (Laminin-4 subunit gamma) (Laminin-6 subunit gamma) (Laminin-7 subunit gamma) (Laminin-8 subunit gamma) (Laminin-9 subunit gamma) (S-laminin subunit gamma) (S-LAM gamma) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. |
P62714 | PPP2CB | S75 | Sugiyama | Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform (PP2A-beta) (EC 3.1.3.16) | Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (Probable). PP2A can modulate the activity of phosphorylase B kinase, casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:2555176, ECO:0000305}. |
P67775 | PPP2CA | S75 | Sugiyama | Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform (PP2A-alpha) (EC 3.1.3.16) (Replication protein C) (RP-C) | Catalytic subunit of protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:22613722, PubMed:33243860, PubMed:34004147, PubMed:9920888). PP2A is the major phosphatase for microtubule-associated proteins (MAPs) (PubMed:22613722). PP2A can modulate the activity of phosphorylase B kinase casein kinase 2, mitogen-stimulated S6 kinase, and MAP-2 kinase (PubMed:22613722). Cooperates with SGO2 to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I (By similarity). Can dephosphorylate various proteins, such as SV40 large T antigen, AXIN1, p53/TP53, PIM3, WEE1 (PubMed:10801873, PubMed:12473674, PubMed:17245430, PubMed:9920888). Activates RAF1 by dephosphorylating it at 'Ser-259' (PubMed:10801873). Mediates dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). Mediates dephosphorylation of MYC; promoting its ubiquitin-mediated proteolysis: interaction with AMBRA1 enhances interaction between PPP2CA and MYC (PubMed:25438055). Mediates dephosphorylation of FOXO3; promoting its stabilization: interaction with AMBRA1 enhances interaction between PPP2CA and FOXO3 (PubMed:30513302). Catalyzes dephosphorylation of the pyrin domain of NLRP3, promoting assembly of the NLRP3 inflammasome (By similarity). Together with RACK1 adapter, mediates dephosphorylation of AKT1 at 'Ser-473', preventing AKT1 activation and AKT-mTOR signaling pathway (By similarity). Dephosphorylation of AKT1 is essential for regulatory T-cells (Treg) homeostasis and stability (By similarity). Catalyzes dephosphorylation of PIM3, promotinh PIM3 ubiquitination and proteasomal degradation (PubMed:12473674). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:33633399). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:33633399). Key mediator of a quality checkpoint during transcription elongation as part of the Integrator-PP2A (INTAC) complex (PubMed:33243860, PubMed:34004147, PubMed:37080207). The INTAC complex drives premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: within the INTAC complex, PPP2CA catalyzes dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, thereby preventing transcriptional elongation (PubMed:33243860, PubMed:34004147, PubMed:37080207). {ECO:0000250|UniProtKB:P63330, ECO:0000269|PubMed:10801873, ECO:0000269|PubMed:12473674, ECO:0000269|PubMed:17245430, ECO:0000269|PubMed:22613722, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:33633399, ECO:0000269|PubMed:34004147, ECO:0000269|PubMed:37080207, ECO:0000269|PubMed:9920888}. |
Q9NQU5 | PAK6 | S132 | Sugiyama | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
O15031 | PLXNB2 | S650 | Sugiyama | Plexin-B2 (MM1) | Cell surface receptor for SEMA4C, SEMA4D and SEMA4G that plays an important role in cell-cell signaling (By similarity). Plays a role in glutamatergic synapse development and is required for SEMA4A-mediated excitatory synapse development (By similarity). Binding to class 4 semaphorins promotes downstream activation of RHOA and phosphorylation of ERBB2 at 'Tyr-1248' (By similarity). Also acts as a cell surface receptor for angiogenin (ANG); promoting ANG endocytosis and translocation to the cytoplasm or nucleus (PubMed:29100074, PubMed:32510170). Required for normal differentiation and migration of neuronal cells during brain corticogenesis and for normal embryonic brain development (By similarity). Regulates the migration of cerebellar granule cells in the developing brain (By similarity). Plays a role in RHOA activation and subsequent changes of the actin cytoskeleton (PubMed:12183458). Plays a role in axon guidance, invasive growth and cell migration (PubMed:15184888). May modulate the activity of RAC1 and CDC42 (By similarity). {ECO:0000250|UniProtKB:B2RXS4, ECO:0000269|PubMed:12183458, ECO:0000269|PubMed:15184888, ECO:0000269|PubMed:29100074, ECO:0000269|PubMed:32510170}. |
Q9NR20 | DYRK4 | S501 | Sugiyama | Dual specificity tyrosine-phosphorylation-regulated kinase 4 (EC 2.7.12.1) | Possible non-essential role in spermiogenesis. {ECO:0000250}. |
O95255 | ABCC6 | S66 | Sugiyama | ATP-binding cassette sub-family C member 6 (EC 7.6.2.-) (EC 7.6.2.3) (Anthracycline resistance-associated protein) (Multi-specific organic anion transporter E) (MOAT-E) (Multidrug resistance-associated protein 6) | [Isoform 1]: ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of glutathione conjugates such as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS) (in vitro), and an anionic cyclopentapeptide endothelin antagonist, BQ-123 (PubMed:11880368, PubMed:12414644). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Does not appear to actively transport drugs outside the cell. Confers low levels of cellular resistance to etoposide, teniposide, anthracyclines and cisplatin (PubMed:12414644). {ECO:0000269|PubMed:11880368, ECO:0000269|PubMed:12414644, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 1]: Mediates the release of nucleoside triphosphates, predominantly ATP, into the circulation, where it is rapidly converted into AMP and the mineralization inhibitor inorganic pyrophosphate (PPi) by the ecto-enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), therefore playing a role in PPi homeostasis. {ECO:0000269|PubMed:24277820, ECO:0000269|PubMed:24969777}.; FUNCTION: [Isoform 2]: Inhibits TNF-alpha-mediated apoptosis through blocking one or more caspases. {ECO:0000269|PubMed:23912081}. |
Q9UBE8 | NLK | S232 | Sugiyama | Serine/threonine-protein kinase NLK (EC 2.7.11.24) (Nemo-like kinase) (Protein LAK1) | Serine/threonine-protein kinase that regulates a number of transcription factors with key roles in cell fate determination (PubMed:12482967, PubMed:14960582, PubMed:15004007, PubMed:15764709, PubMed:20061393, PubMed:20874444, PubMed:21454679). Positive effector of the non-canonical Wnt signaling pathway, acting downstream of WNT5A, MAP3K7/TAK1 and HIPK2 (PubMed:15004007, PubMed:15764709). Negative regulator of the canonical Wnt/beta-catenin signaling pathway (PubMed:12482967). Binds to and phosphorylates TCF7L2/TCF4 and LEF1, promoting the dissociation of the TCF7L2/LEF1/beta-catenin complex from DNA, as well as the ubiquitination and subsequent proteolysis of LEF1 (PubMed:21454679). Together these effects inhibit the transcriptional activation of canonical Wnt/beta-catenin target genes (PubMed:12482967, PubMed:21454679). Negative regulator of the Notch signaling pathway (PubMed:20118921). Binds to and phosphorylates NOTCH1, thereby preventing the formation of a transcriptionally active ternary complex of NOTCH1, RBPJ/RBPSUH and MAML1 (PubMed:20118921). Negative regulator of the MYB family of transcription factors (PubMed:15082531). Phosphorylation of MYB leads to its subsequent proteolysis while phosphorylation of MYBL1 and MYBL2 inhibits their interaction with the coactivator CREBBP (PubMed:15082531). Other transcription factors may also be inhibited by direct phosphorylation of CREBBP itself (PubMed:15082531). Acts downstream of IL6 and MAP3K7/TAK1 to phosphorylate STAT3, which is in turn required for activation of NLK by MAP3K7/TAK1 (PubMed:15004007, PubMed:15764709). Upon IL1B stimulus, cooperates with ATF5 to activate the transactivation activity of C/EBP subfamily members (PubMed:25512613). Phosphorylates ATF5 but also stabilizes ATF5 protein levels in a kinase-independent manner (PubMed:25512613). Acts as an inhibitor of the mTORC1 complex in response to osmotic stress by mediating phosphorylation of RPTOR, thereby preventing recruitment of the mTORC1 complex to lysosomes (PubMed:26588989). {ECO:0000269|PubMed:12482967, ECO:0000269|PubMed:14960582, ECO:0000269|PubMed:15004007, ECO:0000269|PubMed:15082531, ECO:0000269|PubMed:15764709, ECO:0000269|PubMed:20061393, ECO:0000269|PubMed:20118921, ECO:0000269|PubMed:20874444, ECO:0000269|PubMed:21454679, ECO:0000269|PubMed:25512613, ECO:0000269|PubMed:26588989}. |
Q9UQ07 | MOK | S365 | Sugiyama | MAPK/MAK/MRK overlapping kinase (EC 2.7.11.22) (MOK protein kinase) (Renal tumor antigen 1) (RAGE-1) | Able to phosphorylate several exogenous substrates and to undergo autophosphorylation. Negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner. {ECO:0000250|UniProtKB:Q9WVS4}. |
A0AVK6 | E2F8 | S71 | ochoa | Transcription factor E2F8 (E2F-8) | Atypical E2F transcription factor that participates in various processes such as angiogenesis and polyploidization of specialized cells. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1: component of a feedback loop in S phase by repressing the expression of E2F1, thereby preventing p53/TP53-dependent apoptosis. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. {ECO:0000269|PubMed:15897886, ECO:0000269|PubMed:16179649, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:22903062}. |
A0AVK6 | E2F8 | S417 | ochoa | Transcription factor E2F8 (E2F-8) | Atypical E2F transcription factor that participates in various processes such as angiogenesis and polyploidization of specialized cells. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1: component of a feedback loop in S phase by repressing the expression of E2F1, thereby preventing p53/TP53-dependent apoptosis. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. {ECO:0000269|PubMed:15897886, ECO:0000269|PubMed:16179649, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:22903062}. |
A2RUB6 | CCDC66 | S757 | ochoa | Coiled-coil domain-containing protein 66 | Microtubule-binding protein required for ciliogenesis (PubMed:28235840). May function in ciliogenesis by mediating the transport of proteins like BBS4 to the cilium, but also through the organization of the centriolar satellites (PubMed:28235840). Required for the assembly of signaling-competent cilia with proper structure and length (PubMed:36606424). Mediates this function in part by regulating transition zone assembly and basal body recruitment of the IFT-B complex (PubMed:36606424). Cooperates with the ciliopathy proteins CSPP1 and CEP104 during cilium length regulation (PubMed:36606424). Plays two important roles during cell division (PubMed:35849559). First, is required for mitotic progression via regulation of spindle assembly, organization and orientation, levels of spindle microtubules (MTs), kinetochore-fiber integrity, and chromosome alignment (PubMed:35849559). Second, functions during cytokinesis in part by regulating assembly and organization of central spindle and midbody MTs (PubMed:35849559). Plays a role in retina morphogenesis and/or homeostasis (By similarity). {ECO:0000250|UniProtKB:Q6NS45, ECO:0000269|PubMed:28235840, ECO:0000269|PubMed:35849559}. |
A6NC98 | CCDC88B | S1410 | ochoa | Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) | Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}. |
A6NKT7 | RGPD3 | S395 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NMK8 | INSYN2B | S100 | ochoa | Protein INSYN2B (Inhibitory synaptic factor family member 2B) | None |
A6QL64 | ANKRD36 | S478 | ochoa | Ankyrin repeat domain-containing protein 36A | None |
A7XYQ1 | SOBP | S583 | ochoa | Sine oculis-binding protein homolog (Jackson circler protein 1) | Implicated in development of the cochlea. {ECO:0000250|UniProtKB:Q0P5V2}. |
A8MYA2 | CXorf49; | S281 | ochoa | Uncharacterized protein CXorf49 | None |
A9YTQ3 | AHRR | S101 | ochoa | Aryl hydrocarbon receptor repressor (AhR repressor) (AhRR) (Class E basic helix-loop-helix protein 77) (bHLHe77) | Mediates dioxin toxicity and is involved in regulation of cell growth and differentiation. Represses the transcription activity of AHR by competing with this transcription factor for heterodimer formation with the ARNT and subsequently binding to the xenobiotic response element (XRE) sequence present in the promoter regulatory region of variety of genes. Represses CYP1A1 by binding the XRE sequence and recruiting ANKRA2, HDAC4 and/or HDAC5. Autoregulates its expression by associating with its own XRE site. {ECO:0000269|PubMed:17890447, ECO:0000269|PubMed:18172554}. |
E7EW31 | PROB1 | S777 | ochoa | Proline-rich basic protein 1 | None |
E7EW31 | PROB1 | S789 | ochoa | Proline-rich basic protein 1 | None |
H0YC42 | None | S201 | ochoa | Tumor protein D52 | None |
O00257 | CBX4 | S182 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O00268 | TAF4 | S648 | ochoa | Transcription initiation factor TFIID subunit 4 (RNA polymerase II TBP-associated factor subunit C) (TBP-associated factor 4) (Transcription initiation factor TFIID 130 kDa subunit) (TAF(II)130) (TAFII-130) (TAFII130) (Transcription initiation factor TFIID 135 kDa subunit) (TAF(II)135) (TAFII-135) (TAFII135) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10594036, PubMed:33795473, PubMed:8942982). TAF4 may maintain an association between the TFIID and TFIIA complexes, while bound to the promoter, together with TBP, during PIC assembly (PubMed:33795473). Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone (PubMed:9192867). {ECO:0000269|PubMed:10594036, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:8942982, ECO:0000269|PubMed:9192867}. |
O00308 | WWP2 | S211 | ochoa | NEDD4-like E3 ubiquitin-protein ligase WWP2 (EC 2.3.2.26) (Atrophin-1-interacting protein 2) (AIP2) (HECT-type E3 ubiquitin transferase WWP2) (WW domain-containing protein 2) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Polyubiquitinates POU5F1 by 'Lys-63'-linked conjugation and promotes it to proteasomal degradation; in embryonic stem cells (ESCs) the ubiquitination is proposed to regulate POU5F1 protein level. Ubiquitinates EGR2 and promotes it to proteasomal degradation; in T-cells the ubiquitination inhibits activation-induced cell death. Ubiquitinates SLC11A2; the ubiquitination is enhanced by presence of NDFIP1 and NDFIP2. Ubiquitinates RPB1 and promotes it to proteasomal degradation. {ECO:0000269|PubMed:19274063, ECO:0000269|PubMed:19651900}. |
O00515 | LAD1 | S356 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O14513 | NCKAP5 | S1469 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O14578 | CIT | S371 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14578 | CIT | S440 | ochoa | Citron Rho-interacting kinase (CRIK) (EC 2.7.11.1) (Serine/threonine-protein kinase 21) | Plays a role in cytokinesis. Required for KIF14 localization to the central spindle and midbody. Putative RHO/RAC effector that binds to the GTP-bound forms of RHO and RAC1. It probably binds p21 with a tighter specificity in vivo. Displays serine/threonine protein kinase activity. Plays an important role in the regulation of cytokinesis and the development of the central nervous system. Phosphorylates MYL9/MLC2. {ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:27453578}. |
O14827 | RASGRF2 | S848 | ochoa | Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2) (Ras guanine nucleotide exchange factor 2) | Functions as a calcium-regulated nucleotide exchange factor activating both Ras and RAC1 through the exchange of bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on their different types of prenylation. Functions in synaptic plasticity by contributing to the induction of long term potentiation. {ECO:0000269|PubMed:15128856}. |
O14974 | PPP1R12A | S432 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O14976 | GAK | S326 | ochoa | Cyclin-G-associated kinase (EC 2.7.11.1) (DnaJ homolog subfamily C member 26) | Associates with cyclin G and CDK5. Seems to act as an auxilin homolog that is involved in the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells. Expression oscillates slightly during the cell cycle, peaking at G1 (PubMed:10625686). May play a role in clathrin-mediated endocytosis and intracellular trafficking, and in the dynamics of clathrin assembly/disassembly (PubMed:18489706). {ECO:0000269|PubMed:10625686, ECO:0000269|PubMed:18489706}. |
O14978 | ZNF263 | S178 | ochoa | Zinc finger protein 263 (Zinc finger protein FPM315) (Zinc finger protein with KRAB and SCAN domains 12) | Transcription factor that binds to the consensus sequence 5'-TCCTCCC-3' and acts as a transcriptional repressor (PubMed:32051553). Binds to the promoter region of SIX3 and recruits other proteins involved in chromatin modification and transcriptional corepression, resulting in methylation of the promoter and transcriptional repression (PubMed:32051553). Acts as a transcriptional repressor of HS3ST1 and HS3ST3A1 via binding to gene promoter regions (PubMed:32277030). {ECO:0000269|PubMed:32051553, ECO:0000269|PubMed:32277030}. |
O15014 | ZNF609 | S842 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15014 | ZNF609 | S907 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15015 | ZNF646 | S991 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15061 | SYNM | S1379 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S1435 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15062 | ZBTB5 | S127 | ochoa | Zinc finger and BTB domain-containing protein 5 | May be involved in transcriptional regulation. |
O15062 | ZBTB5 | S234 | ochoa | Zinc finger and BTB domain-containing protein 5 | May be involved in transcriptional regulation. |
O15083 | ERC2 | S187 | ochoa | ERC protein 2 | Thought to be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. Seems to act together with BSN. May recruit liprin-alpha proteins to the CAZ. |
O15151 | MDM4 | S314 | psp | Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) | Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}. |
O15156 | ZBTB7B | S150 | ochoa | Zinc finger and BTB domain-containing protein 7B (Krueppel-related zinc finger protein cKrox) (hcKrox) (T-helper-inducing POZ/Krueppel-like factor) (Zinc finger and BTB domain-containing protein 15) (Zinc finger protein 67 homolog) (Zfp-67) (Zinc finger protein 857B) (Zinc finger protein Th-POK) | Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I molecules, respectively. Cross-antagonism between ZBTB7B and CBF complexes are determinative to CD4 versus CD8 cell fate decision. Suppresses RUNX3 expression and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. induces, as a transcriptional activator, SOCS genes expression which represses RUNX3 expression and promotes the CD4+ lineage fate. During CD4 lineage commitment, associates with multiple sites at the CD8 locus, acting as a negative regulator of the CD8 promoter and enhancers by epigenetic silencing through the recruitment of class II histone deacetylases, such as HDAC4 and HDAC5, to these loci. Regulates the development of IL17-producing CD1d-restricted naural killer (NK) T cells. Also functions as an important metabolic regulator in the lactating mammary glands. Critical feed-forward regulator of insulin signaling in mammary gland lactation, directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling (By similarity). Transcriptional repressor of the collagen COL1A1 and COL1A2 genes. May also function as a repressor of fibronectin and possibly other extracellular matrix genes (PubMed:9370309). Potent driver of brown fat development, thermogenesis and cold-induced beige fat formation. Recruits the brown fat lncRNA 1 (Blnc1):HNRNPU ribonucleoprotein complex to activate thermogenic gene expression in brown and beige adipocytes (By similarity). {ECO:0000250|UniProtKB:Q64321, ECO:0000269|PubMed:9370309}. |
O15350 | TP73 | S145 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15550 | KDM6A | S761 | ochoa | Lysine-specific demethylase 6A (EC 1.14.11.68) (Histone demethylase UTX) (Ubiquitously-transcribed TPR protein on the X chromosome) (Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase 6A) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17761849, PubMed:17851529). Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27' (PubMed:17713478, PubMed:17761849, PubMed:17851529). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A (PubMed:17761849). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression (By similarity). {ECO:0000250|UniProtKB:O70546, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17761849, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914}. |
O43166 | SIPA1L1 | S1181 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43299 | AP5Z1 | S732 | ochoa | AP-5 complex subunit zeta-1 (Adaptor-related protein complex 5 zeta subunit) (Zeta5) | As part of AP-5, a probable fifth adaptor protein complex it may be involved in endosomal transport. According to PubMed:20613862 it is a putative helicase required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20613862, ECO:0000269|PubMed:22022230}. |
O43301 | HSPA12A | S23 | ochoa | Heat shock 70 kDa protein 12A (Heat shock protein family A member 12A) | Adapter protein for SORL1, but not SORT1. Delays SORL1 internalization and affects SORL1 subcellular localization. {ECO:0000269|PubMed:30679749}. |
O43379 | WDR62 | S501 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43491 | EPB41L2 | S499 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43502 | RAD51C | S20 | ochoa | DNA repair protein RAD51 homolog 3 (R51H3) (RAD51 homolog C) (RAD51-like protein 2) | Essential for the homologous recombination (HR) pathway of DNA repair. Involved in the homologous recombination repair (HRR) pathway of double-stranded DNA breaks arising during DNA replication or induced by DNA-damaging agents. Part of the RAD51 paralog protein complexes BCDX2 and CX3 which act at different stages of the BRCA1-BRCA2-dependent HR pathway. Upon DNA damage, BCDX2 seems to act downstream of BRCA2 recruitment and upstream of RAD51 recruitment; CX3 seems to act downstream of RAD51 recruitment; both complexes bind predominantly to the intersection of the four duplex arms of the Holliday junction (HJ) and to junction of replication forks. The BCDX2 complex was originally reported to bind single-stranded DNA, single-stranded gaps in duplex DNA and specifically to nicks in duplex DNA. The BCDX2 subcomplex RAD51B:RAD51C exhibits single-stranded DNA-dependent ATPase activity suggesting an involvement in early stages of the HR pathway. Involved in RAD51 foci formation in response to DNA damage suggesting an involvement in early stages of HR probably in the invasion step. Has an early function in DNA repair in facilitating phosphorylation of the checkpoint kinase CHEK2 and thereby transduction of the damage signal, leading to cell cycle arrest and HR activation. Participates in branch migration and HJ resolution and thus is important for processing HR intermediates late in the DNA repair process; the function may be linked to the CX3 complex. Part of a PALB2-scaffolded HR complex containing BRCA2 and which is thought to play a role in DNA repair by HR. Protects RAD51 from ubiquitin-mediated degradation that is enhanced following DNA damage. Plays a role in regulating mitochondrial DNA copy number under conditions of oxidative stress in the presence of RAD51 and XRCC3. Contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Involved in maintaining centrosome number in mitosis. {ECO:0000269|PubMed:14716019, ECO:0000269|PubMed:16215984, ECO:0000269|PubMed:16395335, ECO:0000269|PubMed:19451272, ECO:0000269|PubMed:19783859, ECO:0000269|PubMed:20413593, ECO:0000269|PubMed:23108668, ECO:0000269|PubMed:23149936}. |
O43663 | PRC1 | S513 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O43829 | ZBTB14 | S190 | ochoa | Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) | Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}. |
O60264 | SMARCA5 | S116 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O60303 | KATNIP | S758 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60336 | MAPKBP1 | S819 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60336 | MAPKBP1 | S1188 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60353 | FZD6 | S653 | ochoa | Frizzled-6 (Fz-6) (hFz6) | Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Together with FZD3, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q61089}. |
O60356 | NUPR1 | S58 | ochoa | Nuclear protein 1 (Candidate of metastasis 1) (Protein p8) | Transcription regulator that converts stress signals into a program of gene expression that empowers cells with resistance to the stress induced by a change in their microenvironment. Thereby participates in the regulation of many processes namely cell-cycle, apoptosis, autophagy and DNA repair responses (PubMed:11056169, PubMed:11940591, PubMed:16300740, PubMed:16478804, PubMed:18690848, PubMed:19650074, PubMed:19723804, PubMed:20181828, PubMed:22565310, PubMed:22858377, PubMed:30451898). Controls cell cycle progression and protects cells from genotoxic stress induced by doxorubicin through the complex formation with TP53 and EP300 that binds CDKN1A promoter leading to transcriptional induction of CDKN1A (PubMed:18690848). Protects pancreatic cancer cells from stress-induced cell death by binding the RELB promoter and activating its transcription, leading to IER3 transactivation (PubMed:22565310). Negatively regulates apoptosis through interaction with PTMA (PubMed:16478804). Inhibits autophagy-induced apoptosis in cardiac cells through FOXO3 interaction, inducing cytoplasmic translocation of FOXO3 thereby preventing the FOXO3 association with the pro-autophagic BNIP3 promoter (PubMed:20181828). Inhibits cell growth and facilitates programmed cell death by apoptosis after adriamycin-induced DNA damage through transactivation of TP53 (By similarity). Regulates methamphetamine-induced apoptosis and autophagy through DDIT3-mediated endoplasmic reticulum stress pathway (By similarity). Participates in DNA repair following gamma-irradiation by facilitating DNA access of the transcription machinery through interaction with MSL1 leading to inhibition of histone H4' Lys-16' acetylation (H4K16ac) (PubMed:19650074). Coactivator of PAX2 transcription factor activity, both by recruiting EP300 to increase PAX2 transcription factor activity and by binding PAXIP1 to suppress PAXIP1-induced inhibition on PAX2 (PubMed:11940591). Positively regulates cell cycle progression through interaction with COPS5 inducing cytoplasmic translocation of CDKN1B leading to the CDKN1B degradation (PubMed:16300740). Coordinates, through its interaction with EP300, the assiociation of MYOD1, EP300 and DDX5 to the MYOG promoter, leading to inhibition of cell-cycle progression and myogenic differentiation promotion (PubMed:19723804). Negatively regulates beta cell proliferation via inhibition of cell-cycle regulatory genes expression through the suppression of their promoter activities (By similarity). Also required for LHB expression and ovarian maturation (By similarity). Exacerbates CNS inflammation and demyelination upon cuprizone treatment (By similarity). {ECO:0000250|UniProtKB:O54842, ECO:0000250|UniProtKB:Q9WTK0, ECO:0000269|PubMed:11056169, ECO:0000269|PubMed:11940591, ECO:0000269|PubMed:16300740, ECO:0000269|PubMed:16478804, ECO:0000269|PubMed:18690848, ECO:0000269|PubMed:19650074, ECO:0000269|PubMed:19723804, ECO:0000269|PubMed:20181828, ECO:0000269|PubMed:22565310, ECO:0000269|PubMed:22858377, ECO:0000269|PubMed:30451898}. |
O60488 | ACSL4 | S447 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60583 | CCNT2 | S480 | ochoa | Cyclin-T2 (CycT2) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}. |
O60684 | KPNA6 | S113 | ochoa | Importin subunit alpha-7 (Karyopherin subunit alpha-6) | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:10523667}. |
O75037 | KIF21B | S1215 | ochoa | Kinesin-like protein KIF21B | Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}. |
O75330 | HMMR | S20 | ochoa | Hyaluronan mediated motility receptor (Intracellular hyaluronic acid-binding protein) (Receptor for hyaluronan-mediated motility) (CD antigen CD168) | Receptor for hyaluronic acid (HA) (By similarity). Involved in cell motility (By similarity). When hyaluronan binds to HMMR, the phosphorylation of a number of proteins, including PTK2/FAK1 occurs. May also be involved in cellular transformation and metastasis formation, and in regulating extracellular-regulated kinase (ERK) activity. May act as a regulator of adipogenisis (By similarity). {ECO:0000250|UniProtKB:Q00547}. |
O75362 | ZNF217 | S253 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S593 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S662 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S980 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75369 | FLNB | S2135 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75417 | POLQ | S1414 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75417 | POLQ | S1587 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75643 | SNRNP200 | S835 | ochoa | U5 small nuclear ribonucleoprotein 200 kDa helicase (EC 3.6.4.13) (Activating signal cointegrator 1 complex subunit 3-like 1) (BRR2 homolog) (U5 snRNP-specific 200 kDa protein) (U5-200KD) | Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome (PubMed:35241646). Plays a role in pre-mRNA splicing as a core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154, PubMed:30728453). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:23045696, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:35241646, ECO:0000269|PubMed:8670905, ECO:0000269|PubMed:9539711, ECO:0000305|PubMed:33509932}. |
O75787 | ATP6AP2 | S291 | ochoa | Renin receptor (ATPase H(+)-transporting lysosomal accessory protein 2) (ATPase H(+)-transporting lysosomal-interacting protein 2) (ER-localized type I transmembrane adapter) (Embryonic liver differentiation factor 10) (N14F) (Renin/prorenin receptor) (Vacuolar ATP synthase membrane sector-associated protein M8-9) (ATP6M8-9) (V-ATPase M8.9 subunit) [Cleaved into: Renin receptor N-terminal fragment; Renin receptor C-terminal fragment] | Multifunctional protein which functions as a renin, prorenin cellular receptor and is involved in the assembly of the lysosomal proton-transporting V-type ATPase (V-ATPase) and the acidification of the endo-lysosomal system (PubMed:12045255, PubMed:29127204, PubMed:30374053, PubMed:32276428). May mediate renin-dependent cellular responses by activating ERK1 and ERK2 (PubMed:12045255). By increasing the catalytic efficiency of renin in AGT/angiotensinogen conversion to angiotensin I, may also play a role in the renin-angiotensin system (RAS) (PubMed:12045255). Through its function in V-type ATPase (v-ATPase) assembly and acidification of the lysosome it regulates protein degradation and may control different signaling pathways important for proper brain development, synapse morphology and synaptic transmission (By similarity). {ECO:0000250|UniProtKB:Q9CYN9, ECO:0000269|PubMed:12045255, ECO:0000269|PubMed:29127204, ECO:0000269|PubMed:30374053, ECO:0000269|PubMed:32276428}. |
O75828 | CBR3 | S192 | ochoa | Carbonyl reductase [NADPH] 3 (EC 1.1.1.184) (NADPH-dependent carbonyl reductase 3) (Quinone reductase CBR3) (EC 1.6.5.10) (Short chain dehydrogenase/reductase family 21C member 2) | Catalyzes the NADPH-dependent reduction of carbonyl compounds to their corresponding alcohols (PubMed:18493841). Has low NADPH-dependent oxidoreductase activity. Acts on several orthoquinones, acts as well on non-quinone compounds, such as isatin or on the anticancer drug oracin (PubMed:15537833, PubMed:18493841, PubMed:19841672). Best substrates for CBR3 is 1,2- naphthoquinone, hence could play a role in protection against cytotoxicity of exogenous quinones (PubMed:19841672). Exerts activity toward ortho-quinones but not paraquinones. No endogenous substrate for CBR3 except isatin has been identified (PubMed:19841672). {ECO:0000269|PubMed:15537833, ECO:0000269|PubMed:18493841, ECO:0000269|PubMed:19841672}. |
O75962 | TRIO | S1779 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O75969 | AKAP3 | S208 | ochoa | A-kinase anchor protein 3 (AKAP-3) (A-kinase anchor protein 110 kDa) (AKAP 110) (Cancer/testis antigen 82) (CT82) (Fibrous sheath protein of 95 kDa) (FSP95) (Fibrousheathin I) (Fibrousheathin-1) (Protein kinase A-anchoring protein 3) (PRKA3) (Sperm oocyte-binding protein) | Structural component of sperm fibrous sheath (By similarity). Required for the formation of the subcellular structure of the sperm flagellum, sperm motility and male fertility (PubMed:35228300). {ECO:0000250|UniProtKB:O88987, ECO:0000269|PubMed:35228300}. |
O76039 | CDKL5 | S720 | ochoa|psp | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O76094 | SRP72 | S443 | ochoa | Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
O94782 | USP1 | S327 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94782 | USP1 | S475 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94811 | TPPP | S160 | ochoa|psp | Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) | Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}. |
O94880 | PHF14 | S530 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94885 | SASH1 | S442 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94885 | SASH1 | S721 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94900 | TOX | S216 | ochoa | Thymocyte selection-associated high mobility group box protein TOX (Thymus high mobility group box protein TOX) | Transcriptional regulator with a major role in neural stem cell commitment and corticogenesis as well as in lymphoid cell development and lymphoid tissue organogenesis (By similarity). Binds to GC-rich DNA sequences in the proximity of transcription start sites and may alter chromatin structure, modifying access of transcription factors to DNA. During cortical development, controls the neural stem cell pool by inhibiting the switch from proliferative to differentiating progenitors. Beyond progenitor cells, promotes neurite outgrowth in newborn neurons migrating to reach the cortical plate. May activate or repress critical genes for neural stem cell fate such as SOX2, EOMES and ROBO2 (By similarity). Plays an essential role in the development of lymphoid tissue-inducer (LTi) cells, a subset necessary for the formation of secondary lymphoid organs: peripheral lymph nodes and Peyer's patches. Acts as a developmental checkpoint and regulates thymocyte positive selection toward T cell lineage commitment. Required for the development of various T cell subsets, including CD4-positive helper T cells, CD8-positive cytotoxic T cells, regulatory T cells and CD1D-dependent natural killer T (NKT) cells. Required for the differentiation of common lymphoid progenitors (CMP) to innate lymphoid cells (ILC) (By similarity). May regulate the NOTCH-mediated gene program, promoting differentiation of the ILC lineage. Required at the progenitor phase of NK cell development in the bone marrow to specify NK cell lineage commitment (By similarity) (PubMed:21126536). Upon chronic antigen stimulation, diverts T cell development by promoting the generation of exhaustive T cells, while suppressing effector and memory T cell programming. May regulate the expression of genes encoding inhibitory receptors such as PDCD1 and induce the exhaustion program, to prevent the overstimulation of T cells and activation-induced cell death (By similarity). {ECO:0000250|UniProtKB:Q66JW3, ECO:0000269|PubMed:21126536}. |
O94956 | SLCO2B1 | S320 | ochoa | Solute carrier organic anion transporter family member 2B1 (Organic anion transporter B) (OATP-B) (Organic anion transporter polypeptide-related protein 2) (OATP-RP2) (OATPRP2) (Organic anion transporting polypeptide 2B1) (OATP2B1) (Solute carrier family 21 member 9) | Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:11159893, ECO:0000269|PubMed:11932330, ECO:0000269|PubMed:12409283, ECO:0000269|PubMed:12724351, ECO:0000269|PubMed:14610227, ECO:0000269|PubMed:16908597, ECO:0000269|PubMed:18501590, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:20507927, ECO:0000269|PubMed:22201122, ECO:0000269|PubMed:23531488, ECO:0000269|PubMed:25132355, ECO:0000269|PubMed:26277985, ECO:0000269|PubMed:26383540, ECO:0000269|PubMed:27576593, ECO:0000269|PubMed:29871943, ECO:0000269|PubMed:34628357, ECO:0000269|PubMed:35714613, ECO:0000269|Ref.25, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 3]: Has estrone 3-sulfate (E1S) transport activity comparable with the full-length isoform 1. {ECO:0000269|PubMed:23531488}. |
O94967 | WDR47 | S374 | ochoa | WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) | None |
O94986 | CEP152 | S1507 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O95140 | MFN2 | S27 | ochoa|psp | Mitofusin-2 (EC 3.6.5.-) (Transmembrane GTPase MFN2) | Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion (PubMed:11181170, PubMed:11950885, PubMed:19889647, PubMed:26214738, PubMed:28114303). Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events (PubMed:28114303). Overexpression induces the formation of mitochondrial networks (PubMed:28114303). Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the regulation of vascular smooth muscle cell proliferation (By similarity). Involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (PubMed:23620051). Is required for PRKN recruitment to dysfunctional mitochondria (PubMed:23620051). Involved in the control of unfolded protein response (UPR) upon ER stress including activation of apoptosis and autophagy during ER stress (By similarity). Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal conditions (By similarity). {ECO:0000250|UniProtKB:Q80U63, ECO:0000250|UniProtKB:Q8R500, ECO:0000269|PubMed:11181170, ECO:0000269|PubMed:11950885, ECO:0000269|PubMed:19889647, ECO:0000269|PubMed:23620051, ECO:0000269|PubMed:26085578, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:28114303, ECO:0000305}. |
O95201 | ZNF205 | S94 | ochoa | Transcriptional repressor RHIT (Repressor of heat-inducible transcription) (RhitH) (Zinc finger protein 205) (Zinc finger protein 210) | Transcriptional repressor involved in regulating MPV17L expression (PubMed:22306510). By regulating MPV17L expression, contributes to the regulation of genes involved in H(2)O(2) metabolism and the mitochondrial apoptotic cascade (PubMed:22306510). {ECO:0000269|PubMed:22306510}. |
O95235 | KIF20A | S21 | ochoa|psp | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95271 | TNKS | S218 | ochoa | Poly [ADP-ribose] polymerase tankyrase-1 (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 5) (ARTD5) (Poly [ADP-ribose] polymerase 5A) (Protein poly-ADP-ribosyltransferase tankyrase-1) (EC 2.4.2.-) (TNKS-1) (TRF1-interacting ankyrin-related ADP-ribose polymerase) (Tankyrase I) (Tankyrase-1) (TANK1) | Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking (PubMed:10988299, PubMed:11739745, PubMed:16076287, PubMed:19759537, PubMed:21478859, PubMed:22864114, PubMed:23622245, PubMed:25043379, PubMed:28619731). Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation (PARsylation) of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex: poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation (PubMed:19759537, PubMed:21478859). Also mediates PARsylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination (PubMed:21478859). Mediates PARsylation of TERF1, thereby contributing to the regulation of telomere length (PubMed:11739745). Involved in centrosome maturation during prometaphase by mediating PARsylation of HEPACAM2/MIKI (PubMed:22864114). May also regulate vesicle trafficking and modulate the subcellular distribution of SLC2A4/GLUT4-vesicles (PubMed:10988299). May be involved in spindle pole assembly through PARsylation of NUMA1 (PubMed:16076287). Stimulates 26S proteasome activity (PubMed:23622245). {ECO:0000269|PubMed:10988299, ECO:0000269|PubMed:11739745, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:19759537, ECO:0000269|PubMed:21478859, ECO:0000269|PubMed:22864114, ECO:0000269|PubMed:23622245, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:28619731}. |
O95319 | CELF2 | S203 | ochoa | CUGBP Elav-like family member 2 (CELF-2) (Bruno-like protein 3) (CUG triplet repeat RNA-binding protein 2) (CUG-BP2) (CUG-BP- and ETR-3-like factor 2) (ELAV-type RNA-binding protein 3) (ETR-3) (Neuroblastoma apoptosis-related RNA-binding protein) (hNAPOR) (RNA-binding protein BRUNOL-3) | RNA-binding protein implicated in the regulation of several post-transcriptional events. Involved in pre-mRNA alternative splicing, mRNA translation and stability. Mediates exon inclusion and/or exclusion in pre-mRNA that are subject to tissue-specific and developmentally regulated alternative splicing. Specifically activates exon 5 inclusion of TNNT2 in embryonic, but not adult, skeletal muscle. Activates TNNT2 exon 5 inclusion by antagonizing the repressive effect of PTB. Acts both as an activator and as a repressor of a pair of coregulated exons: promotes inclusion of the smooth muscle (SM) exon but exclusion of the non-muscle (NM) exon in actinin pre-mRNAs. Promotes inclusion of exonS 21 and exclusion of exon 5 of the NMDA receptor R1 pre-mRNA. Involved in the apoB RNA editing activity. Increases COX2 mRNA stability and inhibits COX2 mRNA translation in epithelial cells after radiation injury (By similarity). Modulates the cellular apoptosis program by regulating COX2-mediated prostaglandin E2 (PGE2) expression (By similarity). Binds to (CUG)n triplet repeats in the 3'-UTR of transcripts such as DMPK. Binds to the muscle-specific splicing enhancer (MSE) intronic sites flanking the TNNT2 alternative exon 5. Binds preferentially to UG-rich sequences, in particular UG repeat and UGUU motifs. Binds to apoB mRNA, specifically to AU-rich sequences located immediately upstream of the edited cytidine. Binds AU-rich sequences in the 3'-UTR of COX2 mRNA (By similarity). Binds to an intronic RNA element responsible for the silencing of exon 21 splicing (By similarity). Binds to (CUG)n repeats (By similarity). May be a specific regulator of miRNA biogenesis. Binds to primary microRNA pri-MIR140 and, with CELF1, negatively regulates the processing to mature miRNA (PubMed:28431233). {ECO:0000250|UniProtKB:Q9Z0H4, ECO:0000269|PubMed:11158314, ECO:0000269|PubMed:11577082, ECO:0000269|PubMed:11931771, ECO:0000269|PubMed:12649496, ECO:0000269|PubMed:14973222, ECO:0000269|PubMed:15657417, ECO:0000269|PubMed:15894795, ECO:0000269|PubMed:28431233}. |
O95359 | TACC2 | S1608 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S2256 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95382 | MAP3K6 | S1129 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95391 | SLU7 | S215 | ochoa | Pre-mRNA-splicing factor SLU7 (hSlu7) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:10197984, PubMed:28502770, PubMed:30705154). Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3'-splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3'-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation. {ECO:0000269|PubMed:10197984, ECO:0000269|PubMed:10647016, ECO:0000269|PubMed:12764196, ECO:0000269|PubMed:15181151, ECO:0000269|PubMed:15728250, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:30705154}. |
O95476 | CTDNEP1 | S49 | ochoa | CTD nuclear envelope phosphatase 1 (EC 3.1.3.16) (Serine/threonine-protein phosphatase dullard) | Serine/threonine protein phosphatase forming with CNEP1R1 an active phosphatase complex that dephosphorylates and may activate LPIN1 and LPIN2. LPIN1 and LPIN2 are phosphatidate phosphatases that catalyze the conversion of phosphatidic acid to diacylglycerol and control the metabolism of fatty acids at different levels. May indirectly modulate the lipid composition of nuclear and/or endoplasmic reticulum membranes and be required for proper nuclear membrane morphology and/or dynamics. May also indirectly regulate the production of lipid droplets and triacylglycerol. May antagonize BMP signaling. {ECO:0000269|PubMed:17420445, ECO:0000269|PubMed:22134922}. |
O95478 | NSA2 | S205 | ochoa | Ribosome biogenesis protein NSA2 homolog (Hairy cell leukemia protein 1) (TGF-beta-inducible nuclear protein 1) | Involved in the biogenesis of the 60S ribosomal subunit. May play a part in the quality control of pre-60S particles (By similarity). {ECO:0000250}. |
O95613 | PCNT | S54 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95671 | ASMTL | S421 | ochoa | Probable bifunctional dTTP/UTP pyrophosphatase/methyltransferase protein [Includes: dTTP/UTP pyrophosphatase (dTTPase/UTPase) (EC 3.6.1.9) (Nucleoside triphosphate pyrophosphatase) (Nucleotide pyrophosphatase) (Nucleotide PPase); N-acetylserotonin O-methyltransferase-like protein (ASMTL) (EC 2.1.1.-)] | Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. Can also hydrolyze CTP and the modified nucleotides pseudo-UTP, 5-methyl-UTP (m(5)UTP) and 5-methyl-CTP (m(5)CTP). Has weak activity with dCTP, 8-oxo-GTP and N(4)-methyl-dCTP (PubMed:24210219). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids (PubMed:24210219). In addition, the presence of the putative catalytic domain of S-adenosyl-L-methionine binding in the C-terminal region argues for a methyltransferase activity (Probable). {ECO:0000269|PubMed:24210219, ECO:0000305}. |
O95696 | BRD1 | S25 | ochoa | Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}. |
O95714 | HERC2 | S1366 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95822 | MLYCD | S204 | psp | Malonyl-CoA decarboxylase, mitochondrial (MCD) (EC 4.1.1.9) | Catalyzes the conversion of malonyl-CoA to acetyl-CoA. In the fatty acid biosynthesis MCD selectively removes malonyl-CoA and thus assures that methyl-malonyl-CoA is the only chain elongating substrate for fatty acid synthase and that fatty acids with multiple methyl side chains are produced. In peroxisomes it may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids. Plays a role in the metabolic balance between glucose and lipid oxidation in muscle independent of alterations in insulin signaling. May play a role in controlling the extent of ischemic injury by promoting glucose oxidation. {ECO:0000269|PubMed:10455107, ECO:0000269|PubMed:15003260, ECO:0000269|PubMed:18314420, ECO:0000269|PubMed:23482565}. |
O95835 | LATS1 | S635 | ochoa | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
O95873 | C6orf47 | S112 | ochoa | Uncharacterized protein C6orf47 (Protein G4) | None |
P00558 | PGK1 | S203 | ochoa|psp | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P02452 | COL1A1 | S1247 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P03928 | MT-ATP8 | S38 | ochoa | ATP synthase F(0) complex subunit 8 (A6L) (F-ATPase subunit 8) | Subunit 8, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P04792 | HSPB1 | S158 | ochoa | Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) | Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}. |
P04899 | GNAI2 | S282 | ochoa | Guanine nucleotide-binding protein G(i) subunit alpha-2 (Adenylate cyclase-inhibiting G alpha protein) | Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta-adrenergic stimuli. May play a role in cell division. {ECO:0000269|PubMed:17635935}.; FUNCTION: [Isoform sGi2]: Regulates the cell surface density of dopamine receptors DRD2 by sequestrating them as an intracellular pool. {ECO:0000269|PubMed:17550964}. |
P06401 | PGR | S676 | psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P06732 | CKM | S199 | ochoa | Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}. |
P08151 | GLI1 | S116 | psp | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P08151 | GLI1 | S201 | psp | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P0DI81 | TRAPPC2 | S119 | ochoa | Trafficking protein particle complex subunit 2 (Sedlin) | Prevents transcriptional repression and induction of cell death by ENO1 (By similarity). May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000250}. |
P0DI82 | TRAPPC2B | S119 | ochoa | Trafficking protein particle complex subunit 2B (MBP-1-interacting protein 2A) (MIP-2A) | Prevents transcriptional repression and induction of cell death by ENO1. May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000269|PubMed:11134351}. |
P10644 | PRKAR1A | S83 | ochoa|psp | cAMP-dependent protein kinase type I-alpha regulatory subunit (Tissue-specific extinguisher 1) (TSE1) | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. {ECO:0000269|PubMed:16491121, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:26405036}. |
P10809 | HSPD1 | S225 | ochoa | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P11137 | MAP2 | S338 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11388 | TOP2A | S1213 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P11532 | DMD | S3066 | psp | Dystrophin | Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}. |
P12277 | CKB | S199 | ochoa | Creatine kinase B-type (EC 2.7.3.2) (Brain creatine kinase) (B-CK) (Creatine kinase B chain) (Creatine phosphokinase B-type) (CPK-B) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate) (PubMed:8186255). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa (Probable). Acts as a key regulator of adaptive thermogenesis as part of the futile creatine cycle: localizes to the mitochondria of thermogenic fat cells and acts by mediating phosphorylation of creatine to initiate a futile cycle of creatine phosphorylation and dephosphorylation (By similarity). During the futile creatine cycle, creatine and N-phosphocreatine are in a futile cycle, which dissipates the high energy charge of N-phosphocreatine as heat without performing any mechanical or chemical work (By similarity). {ECO:0000250|UniProtKB:Q04447, ECO:0000269|PubMed:8186255, ECO:0000305}. |
P12757 | SKIL | S514 | ochoa | Ski-like protein (Ski-related oncogene) (Ski-related protein) | May have regulatory role in cell division or differentiation in response to extracellular signals. |
P13639 | EEF2 | S279 | ochoa | Elongation factor 2 (EF-2) (EC 3.6.5.-) | Catalyzes the GTP-dependent ribosomal translocation step during translation elongation (PubMed:26593721). During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively (PubMed:26593721). Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (PubMed:26593721). {ECO:0000269|PubMed:26593721}. |
P13716 | ALAD | S215 | ochoa | Delta-aminolevulinic acid dehydratase (ALADH) (EC 4.2.1.24) (Porphobilinogen synthase) | Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen. {ECO:0000269|PubMed:11032836, ECO:0000269|PubMed:19812033}. |
P15407 | FOSL1 | S191 | ochoa | Fos-related antigen 1 (FRA-1) | None |
P15559 | NQO1 | S82 | ochoa|psp | NAD(P)H dehydrogenase [quinone] 1 (EC 1.6.5.2) (Azoreductase) (DT-diaphorase) (DTD) (Menadione reductase) (NAD(P)H:quinone oxidoreductase 1) (Phylloquinone reductase) (Quinone reductase 1) (QR1) | Flavin-containing quinone reductase that catalyzes two-electron reduction of quinones to hydroquinones using either NADH or NADPH as electron donors. In a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to flavin cofactor and then from reduced flavin to the quinone, bypassing the formation of semiquinone and reactive oxygen species (By similarity) (PubMed:8999809, PubMed:9271353). Regulates cellular redox state primarily through quinone detoxification. Reduces components of plasma membrane redox system such as coenzyme Q and vitamin quinones, producing antioxidant hydroquinone forms. In the process may function as superoxide scavenger to prevent hydroquinone oxidation and facilitate excretion (PubMed:15102952, PubMed:8999809, PubMed:9271353). Alternatively, can activate quinones and their derivatives by generating redox reactive hydroquinones with DNA cross-linking antitumor potential (PubMed:8999809). Acts as a gatekeeper of the core 20S proteasome known to degrade proteins with unstructured regions. Upon oxidative stress, interacts with tumor suppressors TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-independent degradation by the 20S proteasome (PubMed:15687255, PubMed:28291250). {ECO:0000250|UniProtKB:P05982, ECO:0000269|PubMed:15102952, ECO:0000269|PubMed:15687255, ECO:0000269|PubMed:28291250, ECO:0000269|PubMed:8999809, ECO:0000269|PubMed:9271353}. |
P15822 | HIVEP1 | S2599 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S2682 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P16144 | ITGB4 | S1356 | ochoa|psp | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P16885 | PLCG2 | S443 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-gamma-2) (Phospholipase C-IV) (PLC-IV) (Phospholipase C-gamma-2) (PLC-gamma-2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling. {ECO:0000269|PubMed:23000145}. |
P17540 | CKMT2 | S233 | ochoa | Creatine kinase S-type, mitochondrial (EC 2.7.3.2) (Basic-type mitochondrial creatine kinase) (Mib-CK) (Sarcomeric mitochondrial creatine kinase) (S-MtCK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. |
P17661 | DES | S432 | ochoa | Desmin | Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}. |
P18031 | PTPN1 | S386 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) | Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}. |
P18583 | SON | S1556 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18846 | ATF1 | S198 | ochoa|psp | Cyclic AMP-dependent transcription factor ATF-1 (cAMP-dependent transcription factor ATF-1) (Activating transcription factor 1) (Protein TREB36) | This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Binds to the Tax-responsive element (TRE) of HTLV-I. Mediates PKA-induced stimulation of CRE-reporter genes. Represses the expression of FTH1 and other antioxidant detoxification genes. Triggers cell proliferation and transformation. {ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:20980392}. |
P19174 | PLCG1 | S451 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (EC 3.1.4.11) (PLC-148) (Phosphoinositide phospholipase C-gamma-1) (Phospholipase C-II) (PLC-II) (Phospholipase C-gamma-1) (PLC-gamma-1) | Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, EGFR, FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Plays a role in actin reorganization and cell migration (PubMed:17229814). Guanine nucleotide exchange factor that binds the GTPase DNM1 and catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place, therefore enhancing DNM1-dependent endocytosis (By similarity). {ECO:0000250|UniProtKB:P10686, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:37422272}. |
P21359 | NF1 | S2515 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21796 | VDAC1 | S104 | ochoa|psp | Non-selective voltage-gated ion channel VDAC1 (Outer mitochondrial membrane protein porin 1) (Plasmalemmal porin) (Porin 31HL) (Porin 31HM) (Voltage-dependent anion-selective channel protein 1) (VDAC-1) (hVDAC1) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:30061676, PubMed:8420959). The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis (PubMed:10661876, PubMed:11845315, PubMed:18755977, PubMed:8420959). It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV (PubMed:10661876, PubMed:18755977, PubMed:8420959). The open state has a weak anion selectivity whereas the closed state is cation-selective (PubMed:18755977, PubMed:8420959). Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:18755977, PubMed:31015432). In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033). May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756). May mediate ATP export from cells (PubMed:30061676). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Mediates cytochrome c efflux (PubMed:20230784). {ECO:0000250|UniProtKB:Q60932, ECO:0000269|PubMed:10661876, ECO:0000269|PubMed:11845315, ECO:0000269|PubMed:15033708, ECO:0000269|PubMed:18755977, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:25296756, ECO:0000269|PubMed:30061676, ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P24864 | CCNE1 | S387 | ochoa|psp | G1/S-specific cyclin-E1 | Essential for the control of the cell cycle at the G1/S (start) transition. {ECO:0000269|PubMed:7739542}. |
P26358 | DNMT1 | S878 | ochoa|psp | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P27708 | CAD | S1038 | ochoa | Multifunctional protein CAD (Carbamoyl phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) [Includes: Glutamine-dependent carbamoyl phosphate synthase (EC 6.3.5.5); Glutamine amidotransferase (GATase) (GLNase) (EC 3.5.1.2); Ammonium-dependent carbamoyl phosphate synthase (CPS) (CPSase) (EC 6.3.4.16); Aspartate carbamoyltransferase (EC 2.1.3.2); Dihydroorotase (EC 3.5.2.3)] | Multifunctional protein that encodes the first 3 enzymatic activities of the de novo pyrimidine pathway: carbamoylphosphate synthetase (CPSase; EC 6.3.5.5), aspartate transcarbamylase (ATCase; EC 2.1.3.2) and dihydroorotase (DHOase; EC 3.5.2.3). The CPSase-function is accomplished in 2 steps, by a glutamine-dependent amidotransferase activity (GATase) that binds and cleaves glutamine to produce ammonia, followed by an ammonium-dependent carbamoyl phosphate synthetase, which reacts with the ammonia, hydrogencarbonate and ATP to form carbamoyl phosphate. The endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site. ATCase then catalyzes the formation of carbamoyl-L-aspartate from L-aspartate and carbamoyl phosphate. In the last step, DHOase catalyzes the cyclization of carbamoyl aspartate to dihydroorotate. {ECO:0000269|PubMed:24332717}. |
P27987 | ITPKB | S355 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P28290 | ITPRID2 | S883 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29218 | IMPA1 | S38 | ochoa | Inositol monophosphatase 1 (IMP 1) (IMPase 1) (EC 3.1.3.25) (D-galactose 1-phosphate phosphatase) (EC 3.1.3.94) (Inositol-1(or 4)-monophosphatase 1) (Lithium-sensitive myo-inositol monophosphatase A1) | Phosphatase involved in the dephosphorylation of myo-inositol monophosphates to generate myo-inositol (PubMed:17068342, PubMed:8718889, PubMed:9462881). Is also able to dephosphorylate scyllo-inositol-phosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-1,3-diphosphate and scyllo-inositol-1,4-diphosphate (PubMed:17068342). Also dephosphorylates in vitro other sugar-phosphates including D-galactose-1-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate and 2'-AMP (PubMed:17068342, PubMed:8718889, PubMed:9462881). Responsible for the provision of inositol required for synthesis of phosphatidylinositols and polyphosphoinositides, and involved in maintaining normal brain function (PubMed:26416544, PubMed:8718889). Has been implicated as the pharmacological target for lithium (Li(+)) action in brain, which is used to treat bipolar affective disorder (PubMed:17068342). Is equally active with 1D-myo-inositol 1-phosphate, 1D-myo-inositol 3-phosphate and D-galactose 1-phosphate (PubMed:9462881). {ECO:0000269|PubMed:17068342, ECO:0000269|PubMed:26416544, ECO:0000269|PubMed:8718889, ECO:0000269|PubMed:9462881}. |
P30291 | WEE1 | S472 | psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P30304 | CDC25A | S88 | psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31350 | RRM2 | S20 | ochoa|psp | Ribonucleoside-diphosphate reductase subunit M2 (EC 1.17.4.1) (Ribonucleotide reductase small chain) (Ribonucleotide reductase small subunit) | Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. Inhibits Wnt signaling. |
P31629 | HIVEP2 | S1443 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31942 | HNRNPH3 | S216 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31943 | HNRNPH1 | S310 | ochoa | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P31948 | STIP1 | S481 | ochoa | Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing protein) (Hop) (Renal carcinoma antigen NY-REN-11) (Transformation-sensitive protein IEF SSP 3521) | Acts as a co-chaperone for HSP90AA1 (PubMed:27353360). Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity). {ECO:0000250|UniProtKB:O35814, ECO:0000303|PubMed:27353360}. |
P33991 | MCM4 | S88 | ochoa|psp | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35251 | RFC1 | S360 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35520 | CBS | S199 | ochoa | Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) | Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}. |
P35548 | MSX2 | S91 | ochoa | Homeobox protein MSX-2 (Homeobox protein Hox-8) | Acts as a transcriptional regulator in bone development. Represses the ALPL promoter activity and antagonizes the stimulatory effect of DLX5 on ALPL expression during osteoblast differentiation. Probable morphogenetic role. May play a role in limb-pattern formation. In osteoblasts, suppresses transcription driven by the osteocalcin FGF response element (OCFRE). Binds to the homeodomain-response element of the ALPL promoter. {ECO:0000269|PubMed:12145306}. |
P35611 | ADD1 | S431 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35670 | ATP7B | S478 | psp | Copper-transporting ATPase 2 (EC 7.2.2.8) (Copper pump 2) (Wilson disease-associated protein) [Cleaved into: WND/140 kDa] | Copper ion transmembrane transporter involved in the export of copper out of the cells. It is involved in copper homeostasis in the liver, where it ensures the efflux of copper from hepatocytes into the bile in response to copper overload. {ECO:0000269|PubMed:18203200, ECO:0000269|PubMed:22240481, ECO:0000269|PubMed:24706876, ECO:0000269|PubMed:26004889}. |
P35711 | SOX5 | S370 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P35712 | SOX6 | S399 | ochoa | Transcription factor SOX-6 | Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (Probable). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube. Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). {ECO:0000250|UniProtKB:P40645, ECO:0000305|PubMed:32442410}. |
P37231 | PPARG | S112 | ochoa|psp | Peroxisome proliferator-activated receptor gamma (PPAR-gamma) (Nuclear receptor subfamily 1 group C member 3) | Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity). {ECO:0000250|UniProtKB:P37238, ECO:0000269|PubMed:16150867, ECO:0000269|PubMed:20829347, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:9065481}.; FUNCTION: (Microbial infection) Upon treatment with M.tuberculosis or its lipoprotein LpqH, phosphorylation of MAPK p38 and IL-6 production are modulated, probably via this protein. {ECO:0000269|PubMed:25504154}. |
P38432 | COIL | S218 | ochoa | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P38606 | ATP6V1A | S411 | ochoa | V-type proton ATPase catalytic subunit A (V-ATPase subunit A) (EC 7.1.2.2) (V-ATPase 69 kDa subunit) (Vacuolar ATPase isoform VA68) (Vacuolar proton pump subunit alpha) | Catalytic subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:8463241). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (PubMed:32001091). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). May play a role in neurite development and synaptic connectivity (PubMed:29668857). {ECO:0000250|UniProtKB:P50516, ECO:0000269|PubMed:28296633, ECO:0000269|PubMed:29668857, ECO:0000269|PubMed:8463241, ECO:0000303|PubMed:32001091}.; FUNCTION: (Microbial infection) Plays an important role in virion uncoating during Rabies virus replication after membrane fusion. Specifically, participates in the dissociation of incoming viral matrix M proteins uncoating through direct interaction. {ECO:0000269|PubMed:33208464}. |
P40261 | NNMT | S108 | ochoa | Nicotinamide N-methyltransferase (EC 2.1.1.1) | Catalyzes the N-methylation of nicotinamide using the universal methyl donor S-adenosyl-L-methionine to form N1-methylnicotinamide and S-adenosyl-L-homocysteine, a predominant nicotinamide/vitamin B3 clearance pathway (PubMed:21823666, PubMed:23455543, PubMed:8182091). Plays a central role in regulating cellular methylation potential, by consuming S-adenosyl-L-methionine and limiting its availability for other methyltransferases. Actively mediates genome-wide epigenetic and transcriptional changes through hypomethylation of repressive chromatin marks, such as H3K27me3 (PubMed:23455543, PubMed:26571212, PubMed:31043742). In a developmental context, contributes to low levels of the repressive histone marks that characterize pluripotent embryonic stem cell pre-implantation state (PubMed:26571212). Acts as a metabolic regulator primarily on white adipose tissue energy expenditure as well as hepatic gluconeogenesis and cholesterol biosynthesis. In white adipocytes, regulates polyamine flux by consuming S-adenosyl-L-methionine which provides for propylamine group in polyamine biosynthesis, whereas by consuming nicotinamide controls NAD(+) levels through the salvage pathway (By similarity). Via its product N1-methylnicotinamide regulates protein acetylation in hepatocytes, by repressing the ubiquitination and increasing the stability of SIRT1 deacetylase (By similarity). Can also N-methylate other pyridines structurally related to nicotinamide and play a role in xenobiotic detoxification (PubMed:30044909). {ECO:0000250|UniProtKB:O55239, ECO:0000269|PubMed:21823666, ECO:0000269|PubMed:23455543, ECO:0000269|PubMed:26571212, ECO:0000269|PubMed:30044909, ECO:0000269|PubMed:31043742, ECO:0000269|PubMed:8182091}. |
P40855 | PEX19 | S35 | ochoa | Peroxisomal biogenesis factor 19 (33 kDa housekeeping protein) (Peroxin-19) (Peroxisomal farnesylated protein) | Necessary for early peroxisomal biogenesis. Acts both as a cytosolic chaperone and as an import receptor for peroxisomal membrane proteins (PMPs). Binds and stabilizes newly synthesized PMPs in the cytoplasm by interacting with their hydrophobic membrane-spanning domains, and targets them to the peroxisome membrane by binding to the integral membrane protein PEX3. Excludes CDKN2A from the nucleus and prevents its interaction with MDM2, which results in active degradation of TP53. {ECO:0000269|PubMed:10051604, ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:11259404, ECO:0000269|PubMed:11883941, ECO:0000269|PubMed:14709540, ECO:0000269|PubMed:15007061}. |
P41182 | BCL6 | S404 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P41229 | KDM5C | S287 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P42166 | TMPO | S424 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P42226 | STAT6 | S756 | psp | Signal transducer and activator of transcription 6 (IL-4 Stat) | Carries out a dual function: signal transduction and activation of transcription. Involved in IL4/interleukin-4- and IL3/interleukin-3-mediated signaling. {ECO:0000269|PubMed:17210636, ECO:0000269|PubMed:36758835, ECO:0000269|PubMed:36884218}. |
P42229 | STAT5A | S726 | psp | Signal transducer and activator of transcription 5A | Carries out a dual function: signal transduction and activation of transcription. Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Mediates cellular responses to ERBB4. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Binds to the GAS element and activates PRL-induced transcription. Regulates the expression of milk proteins during lactation. {ECO:0000269|PubMed:15534001}. |
P42345 | MTOR | S567 | ochoa | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P42684 | ABL2 | S275 | ochoa | Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) | Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}. |
P42858 | HTT | S2074 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42858 | HTT | S2421 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43307 | SSR1 | S268 | ochoa | Translocon-associated protein subunit alpha (TRAP-alpha) (Signal sequence receptor subunit alpha) (SSR-alpha) | TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins. May be involved in the recycling of the translocation apparatus after completion of the translocation process or may function as a membrane-bound chaperone facilitating folding of translocated proteins. |
P45880 | VDAC2 | S115 | ochoa|psp | Non-selective voltage-gated ion channel VDAC2 (VDAC-2) (hVDAC2) (Outer mitochondrial membrane protein porin 2) | Non-selective voltage-gated ion channel that mediates the transport of anions and cations through the mitochondrion outer membrane and plasma membrane (PubMed:8420959). The channel adopts an open conformation at zero mV and a closed conformation at both positive and negative potentials (PubMed:8420959). There are two populations of channels; the main that functions in a lower open-state conductance with lower ion selectivity, that switch, in a voltage-dependent manner, from the open to a low-conducting 'closed' state and the other that has a normal ion selectivity in the typical high conductance, 'open' state (PubMed:8420959). Binds various lipids, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterols cholesterol and oxysterol (PubMed:31015432). Binding of ceramide promotes the mitochondrial outer membrane permeabilization (MOMP) apoptotic pathway (PubMed:31015432). {ECO:0000269|PubMed:31015432, ECO:0000269|PubMed:8420959}.; FUNCTION: Catalyzes the scrambling of phospholipids across the outer mitochondrial membrane; the mechanism is unrelated to channel activity and is capable of translocating both anionic and zwitterionic phospholipids. {ECO:0000269|PubMed:38065946}. |
P46013 | MKI67 | S713 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46020 | PHKA1 | S981 | ochoa | Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform (Phosphorylase kinase alpha M subunit) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin. |
P46459 | NSF | S569 | ochoa | Vesicle-fusing ATPase (EC 3.6.4.6) (N-ethylmaleimide-sensitive fusion protein) (NEM-sensitive fusion protein) (Vesicular-fusion protein NSF) | Required for vesicle-mediated transport. Catalyzes the fusion of transport vesicles within the Golgi cisternae. Is also required for transport from the endoplasmic reticulum to the Golgi stack. Seems to function as a fusion protein required for the delivery of cargo proteins to all compartments of the Golgi stack independent of vesicle origin. Interaction with AMPAR subunit GRIA2 leads to influence GRIA2 membrane cycling (By similarity). {ECO:0000250}. |
P46781 | RPS9 | S163 | ochoa | Small ribosomal subunit protein uS4 (40S ribosomal protein S9) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P46821 | MAP1B | S1965 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P47736 | RAP1GAP | S515 | ochoa | Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) | GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}. |
P48378 | RFX2 | S171 | ochoa | DNA-binding protein RFX2 (Regulatory factor X 2) | Transcription factor that acts as a key regulator of spermatogenesis. Acts by regulating expression of genes required for the haploid phase during spermiogenesis, such as genes required for cilium assembly and function (By similarity). Recognizes and binds the X-box, a regulatory motif with DNA sequence 5'-GTNRCC(0-3N)RGYAAC-3' present on promoters (PubMed:10330134). Probably activates transcription of the testis-specific histone gene H1-6 (By similarity). {ECO:0000250|UniProtKB:P48379, ECO:0000269|PubMed:10330134}. |
P48436 | SOX9 | S199 | ochoa | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P48745 | CCN3 | S316 | ochoa | CCN family member 3 (Cellular communication network factor 3) (Insulin-like growth factor-binding protein 9) (IBP-9) (IGF-binding protein 9) (IGFBP-9) (Nephro blastoma-overexpressed gene protein homolog) (Protein NOV homolog) (NovH) | Immediate-early protein playing a role in various cellular processes including proliferation, adhesion, migration, differentiation and survival (PubMed:12050162, PubMed:12695522, PubMed:15181016, PubMed:15611078, PubMed:21344378). Acts by binding to integrins or membrane receptors such as NOTCH1 (PubMed:12695522, PubMed:15611078, PubMed:21344378). Essential regulator of hematopoietic stem and progenitor cell function (PubMed:17463287). Inhibits myogenic differentiation through the activation of Notch-signaling pathway (PubMed:12050162). Inhibits vascular smooth muscle cells proliferation by increasing expression of cell-cycle regulators such as CDKN2B or CDKN1A independently of TGFB1 signaling (PubMed:20139355). Ligand of integrins ITGAV:ITGB3 and ITGA5:ITGB1, acts directly upon endothelial cells to stimulate pro-angiogenic activities and induces angiogenesis. In endothelial cells, supports cell adhesion, induces directed cell migration (chemotaxis) and promotes cell survival (PubMed:12695522). Also plays a role in cutaneous wound healing acting as integrin receptor ligand. Supports skin fibroblast adhesion through ITGA5:ITGB1 and ITGA6:ITGB1 and induces fibroblast chemotaxis through ITGAV:ITGB5. Seems to enhance bFGF-induced DNA synthesis in fibroblasts (PubMed:15611078). Involved in bone regeneration as a negative regulator (By similarity). Enhances the articular chondrocytic phenotype, whereas it repressed the one representing endochondral ossification (PubMed:21871891). Impairs pancreatic beta-cell function, inhibits beta-cell proliferation and insulin secretion (By similarity). Plays a role as negative regulator of endothelial pro-inflammatory activation reducing monocyte adhesion, its anti-inflammatory effects occur secondary to the inhibition of NF-kappaB signaling pathway (PubMed:21063504). Contributes to the control and coordination of inflammatory processes in atherosclerosis (By similarity). Attenuates inflammatory pain through regulation of IL1B- and TNF-induced MMP9, MMP2 and CCL2 expression. Inhibits MMP9 expression through ITGB1 engagement (PubMed:21871891). Brain osteoanabolic hormone (By similarity). Drives osteogenesis in osteochondral skeletal stem cells (PubMed:38987585). During lactation, maintains the maternal skeleton and viability of offspring (By similarity). {ECO:0000250|UniProtKB:Q64299, ECO:0000269|PubMed:12050162, ECO:0000269|PubMed:12695522, ECO:0000269|PubMed:15181016, ECO:0000269|PubMed:15611078, ECO:0000269|PubMed:17463287, ECO:0000269|PubMed:20139355, ECO:0000269|PubMed:21063504, ECO:0000269|PubMed:21344378, ECO:0000269|PubMed:21871891, ECO:0000269|PubMed:38987585}. |
P49116 | NR2C2 | S68 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49327 | FASN | S207 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49756 | RBM25 | S677 | ochoa | RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) | RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}. |
P49758 | RGS6 | S244 | ochoa | Regulator of G-protein signaling 6 (RGS6) (S914) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. The RGS6/GNB5 dimer enhances GNAO1 GTPase activity (PubMed:10521509). {ECO:0000269|PubMed:10521509}. |
P49792 | RANBP2 | S394 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49796 | RGS3 | S674 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P49815 | TSC2 | S1217 | psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P50851 | LRBA | S1135 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51692 | STAT5B | S731 | ochoa|psp | Signal transducer and activator of transcription 5B | Carries out a dual function: signal transduction and activation of transcription (PubMed:29844444). Mediates cellular responses to the cytokine KITLG/SCF and other growth factors. Binds to the GAS element and activates PRL-induced transcription. Positively regulates hematopoietic/erythroid differentiation. {ECO:0000269|PubMed:20702587, ECO:0000269|PubMed:29844444, ECO:0000269|PubMed:8732682}. |
P51814 | ZNF41 | S269 | ochoa | Zinc finger protein 41 | May be involved in transcriptional regulation. |
P52179 | MYOM1 | S451 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52179 | MYOM1 | S1181 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52294 | KPNA1 | S95 | ochoa | Importin subunit alpha-5 (Karyopherin subunit alpha-1) (Nucleoprotein interactor 1) (NPI-1) (RAG cohort protein 2) (SRP1-beta) [Cleaved into: Importin subunit alpha-5, N-terminally processed] | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:27713473, PubMed:7892216, PubMed:8692858). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:27713473, PubMed:7892216, PubMed:8692858). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:27713473, PubMed:7892216). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin (PubMed:7892216). The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (PubMed:7892216). Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA2 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:27713473, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7892216, ECO:0000269|PubMed:8692858}.; FUNCTION: (Microbial infection) In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. {ECO:0000269|PubMed:12610148}. |
P52597 | HNRNPF | S310 | ochoa | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
P52701 | MSH6 | S91 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P52701 | MSH6 | S137 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P52737 | ZNF136 | S292 | ochoa | Zinc finger protein 136 | May be involved in transcriptional regulation as a weak repressor when alone, or a potent one when fused with a heterologous protein containing a KRAB B-domain. |
P53675 | CLTCL1 | S889 | ochoa | Clathrin heavy chain 2 (Clathrin heavy chain on chromosome 22) (CLH-22) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network (By similarity). {ECO:0000250}. |
P55072 | VCP | S664 | psp | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55196 | AFDN | S1512 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55265 | ADAR | S614 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P55265 | ADAR | S825 | ochoa|psp | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P55795 | HNRNPH2 | S310 | ochoa | Heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) (FTP-3) (Heterogeneous nuclear ribonucleoprotein H') (hnRNP H') [Cleaved into: Heterogeneous nuclear ribonucleoprotein H2, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Binds poly(RG). |
P61371 | ISL1 | S221 | ochoa | Insulin gene enhancer protein ISL-1 (Islet-1) | DNA-binding transcriptional activator. Recognizes and binds to the consensus octamer binding site 5'-ATAATTAA-3' in promoter of target genes. Plays a fundamental role in the gene regulatory network essential for retinal ganglion cell (RGC) differentiation. Cooperates with the transcription factor POU4F2 to achieve maximal levels of expression of RGC target genes and RGC fate specification in the developing retina. Involved in the specification of motor neurons in cooperation with LHX3 and LDB1 (By similarity). Binds to insulin gene enhancer sequences (By similarity). Essential for heart development. Marker of one progenitor cell population that give rise to the outflow tract, right ventricle, a subset of left ventricular cells, and a large number of atrial cells as well, its function is required for these progenitors to contribute to the heart. Controls the expression of FGF and BMP growth factors in this cell population and is required for proliferation and survival of cells within pharyngeal foregut endoderm and adjacent splanchnic mesoderm as well as for migration of cardiac progenitors into the heart (By similarity). {ECO:0000250|UniProtKB:P61372, ECO:0000250|UniProtKB:P61374}. |
P62070 | RRAS2 | S186 | ochoa|psp | Ras-related protein R-Ras2 (EC 3.6.5.2) (Ras-like protein TC21) (Teratocarcinoma oncogene) | GTP-binding protein with GTPase activity, involved in the regulation of MAPK signaling pathway and thereby controlling multiple cellular processes (PubMed:31130282, PubMed:31130285, PubMed:39809765). Regulates craniofacial development (PubMed:31130282, PubMed:31130285). {ECO:0000269|PubMed:31130282, ECO:0000269|PubMed:31130285, ECO:0000269|PubMed:39809765}. |
P78395 | PRAME | S277 | ochoa | Melanoma antigen preferentially expressed in tumors (Opa-interacting protein 4) (OIP-4) (Preferentially expressed antigen of melanoma) | Substrate-recognition component of a Cul2-RING (CRL2) E3 ubiquitin-protein ligase complex, which mediates ubiquitination of target proteins, leading to their degradation (PubMed:21822215, PubMed:26138980). The CRL2(PRAME) complex mediates ubiquitination and degradation of truncated MSRB1/SEPX1 selenoproteins produced by failed UGA/Sec decoding (PubMed:26138980). In the nucleus, the CRL2(PRAME) complex is recruited to epigenetically and transcriptionally active promoter regions bound by nuclear transcription factor Y (NFY) and probably plays a role in chromstin regulation (PubMed:21822215). Functions as a transcriptional repressor, inhibiting the signaling of retinoic acid through the retinoic acid receptors RARA, RARB and RARG: prevents retinoic acid-induced cell proliferation arrest, differentiation and apoptosis (PubMed:16179254). {ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:21822215, ECO:0000269|PubMed:26138980}. |
P78559 | MAP1A | S1776 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P81877 | SSBP2 | S321 | ochoa | Single-stranded DNA-binding protein 2 (Sequence-specific single-stranded-DNA-binding protein 2) | None |
P82094 | TMF1 | S170 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P83436 | COG7 | S506 | ochoa | Conserved oligomeric Golgi complex subunit 7 (COG complex subunit 7) (Component of oligomeric Golgi complex 7) | Required for normal Golgi function. {ECO:0000269|PubMed:11980916}. |
P98172 | EFNB1 | S287 | ochoa | Ephrin-B1 (EFL-3) (ELK ligand) (ELK-L) (EPH-related receptor tyrosine kinase ligand 2) (LERK-2) [Cleaved into: Ephrin-B1 C-terminal fragment (Ephrin-B1 CTF); Ephrin-B1 intracellular domain (Ephrin-B1 ICD)] | Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development (PubMed:7973638, PubMed:8070404). Binding to Eph receptors residing on adjacent cells leads to contact-dependent bidirectional signaling into neighboring cells (PubMed:7973638, PubMed:8070404). Shows high affinity for the receptor tyrosine kinase EPHB1/ELK (PubMed:7973638, PubMed:8070404). Can also bind EPHB2 and EPHB3 (PubMed:8070404). Binds to, and induces collapse of, commissural axons/growth cones in vitro (By similarity). May play a role in constraining the orientation of longitudinally projecting axons (By similarity). {ECO:0000250|UniProtKB:P52795, ECO:0000269|PubMed:7973638, ECO:0000269|PubMed:8070404}. |
P98175 | RBM10 | S73 | ochoa | RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) | Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}. |
Q01085 | TIAL1 | S105 | ochoa | Nucleolysin TIAR (TIA-1-related protein) | RNA-binding protein involved in alternative pre-RNA splicing and in cytoplasmic stress granules formation (PubMed:10613902, PubMed:1326761, PubMed:17488725, PubMed:8576255). Shows a preference for uridine-rich RNAs (PubMed:8576255). Activates splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on its own pre-mRNA and on TIA1 mRNA (By similarity). Promotes the inclusion of TIA1 exon 5 to give rise to the long isoform (isoform a) of TIA1 (PubMed:17488725). Acts downstream of the stress-induced phosphorylation of EIF2S1/EIF2A to promote the recruitment of untranslated mRNAs to cytoplasmic stress granules (SG) (PubMed:10613902). Possesses nucleolytic activity against cytotoxic lymphocyte target cells (PubMed:1326761). May be involved in apoptosis (PubMed:1326761). {ECO:0000250|UniProtKB:P70318, ECO:0000269|PubMed:10613902, ECO:0000269|PubMed:1326761, ECO:0000269|PubMed:17488725, ECO:0000269|PubMed:8576255}. |
Q01167 | FOXK2 | S252 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01484 | ANK2 | S2127 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2172 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2250 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01543 | FLI1 | S79 | ochoa | Friend leukemia integration 1 transcription factor (Proto-oncogene Fli-1) (Transcription factor ERGB) | Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'-C[CA]GGAAGT-3'. {ECO:0000269|PubMed:24100448, ECO:0000269|PubMed:26316623, ECO:0000269|PubMed:28255014}. |
Q01543 | FLI1 | S241 | ochoa | Friend leukemia integration 1 transcription factor (Proto-oncogene Fli-1) (Transcription factor ERGB) | Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'-C[CA]GGAAGT-3'. {ECO:0000269|PubMed:24100448, ECO:0000269|PubMed:26316623, ECO:0000269|PubMed:28255014}. |
Q02446 | SP4 | S46 | ochoa | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q06413 | MEF2C | S240 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q06546 | GABPA | S309 | ochoa | GA-binding protein alpha chain (GABP subunit alpha) (Nuclear respiratory factor 2 subunit alpha) (Transcription factor E4TF1-60) | Transcription factor capable of interacting with purine rich repeats (GA repeats). Positively regulates transcription of transcriptional repressor RHIT/ZNF205 (PubMed:22306510). {ECO:0000269|PubMed:22306510}.; FUNCTION: (Microbial infection) Necessary for the expression of the Adenovirus E4 gene. |
Q07343 | PDE4B | S290 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}. |
Q07687 | DLX2 | S127 | ochoa | Homeobox protein DLX-2 | Acts as a transcriptional activator (By similarity). Activates transcription of CGA/alpha-GSU, via binding to the downstream activin regulatory element (DARE) in the gene promoter (By similarity). Plays a role in terminal differentiation of interneurons, such as amacrine and bipolar cells in the developing retina. Likely to play a regulatory role in the development of the ventral forebrain (By similarity). May play a role in craniofacial patterning and morphogenesis (By similarity). {ECO:0000250|UniProtKB:P40764}. |
Q08050 | FOXM1 | S522 | ochoa|psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q08211 | DHX9 | S87 | ochoa | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q08357 | SLC20A2 | S324 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q08379 | GOLGA2 | S66 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q08999 | RBL2 | S1068 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08AD1 | CAMSAP2 | S599 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q09666 | AHNAK | S177 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5552 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5763 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0VDF9 | HSPA14 | S186 | ochoa | Heat shock 70 kDa protein 14 (HSP70-like protein 1) (Heat shock protein HSP60) (Heat shock protein family A member 14) | Component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, binds to the nascent polypeptide chain, while DNAJC2 stimulates its ATPase activity. {ECO:0000269|PubMed:16002468}. |
Q0VG06 | FAAP100 | S667 | ochoa | Fanconi anemia core complex-associated protein 100 (Fanconi anemia-associated protein of 100 kDa) | Plays a role in Fanconi anemia-associated DNA damage response network. Regulates FANCD2 monoubiquitination and the stability of the FA core complex. Induces chromosomal instability as well as hypersensitivity to DNA cross-linking agents, when repressed. {ECO:0000269|PubMed:17396147}. |
Q12778 | FOXO1 | S394 | psp | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
Q12791 | KCNMA1 | S978 | psp | Calcium-activated potassium channel subunit alpha-1 (BK channel) (BKCA alpha) (Calcium-activated potassium channel, subfamily M subunit alpha-1) (K(VCA)alpha) (KCa1.1) (Maxi K channel) (MaxiK) (Slo-alpha) (Slo1) (Slowpoke homolog) (Slo homolog) (hSlo) | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+) (PubMed:14523450, PubMed:29330545, PubMed:31152168). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Kinetics of KCNMA1 channels are determined by alternative splicing, phosphorylation status and its combination with modulating beta subunits. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX). Possibly induces sleep when activated by melatonin and through melatonin receptor MTNR1A-dependent dissociation of G-beta and G-gamma subunits, leading to increased sensitivity to Ca(2+) and reduced synaptic transmission (PubMed:32958651). {ECO:0000269|PubMed:14523450, ECO:0000269|PubMed:29330545, ECO:0000269|PubMed:31152168, ECO:0000269|PubMed:32958651}.; FUNCTION: [Isoform 5]: Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). {ECO:0000269|PubMed:7573516, ECO:0000269|PubMed:7877450}. |
Q12816 | TRO | S155 | ochoa | Trophinin (MAGE-D3 antigen) | Could be involved with bystin and tastin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. Directly responsible for homophilic cell adhesion. |
Q12923 | PTPN13 | S273 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12946 | FOXF1 | S335 | ochoa | Forkhead box protein F1 (Forkhead-related activator 1) (FREAC-1) (Forkhead-related protein FKHL5) (Forkhead-related transcription factor 1) | Probable transcription activator for a number of lung-specific genes. |
Q12955 | ANK3 | S1702 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12980 | NPRL3 | S189 | ochoa | GATOR1 complex protein NPRL3 (-14 gene protein) (Alpha-globin regulatory element-containing gene protein) (Nitrogen permease regulator 3-like protein) (Protein CGTHBA) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:29590090, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:29590090, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:35338845}. |
Q13009 | TIAM1 | S358 | ochoa | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13029 | PRDM2 | S781 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13061 | TRDN | S678 | ochoa | Triadin | Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}. |
Q13151 | HNRNPA0 | S68 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13415 | ORC1 | S287 | ochoa | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13427 | PPIG | S687 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13428 | TCOF1 | S1257 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13459 | MYO9B | S1122 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13469 | NFATC2 | S148 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13492 | PICALM | S359 | ochoa | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) | Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}. |
Q13554 | CAMK2B | S235 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit beta (CaM kinase II subunit beta) (CaMK-II subunit beta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle (PubMed:16690701). In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeting of CaMK2A, which acts downstream of NMDAR to promote dendritic spine and synapse formation and maintain synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In developing hippocampal neurons, promotes arborization of the dendritic tree and in mature neurons, promotes dendritic remodeling. Also regulates the migration of developing neurons (PubMed:29100089). Participates in the modulation of skeletal muscle function in response to exercise (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of triadin, a ryanodine receptor-coupling factor, and phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). Phosphorylates reticulophagy regulator RETREG1 at 'Ser-151' under endoplasmic reticulum stress conditions which enhances RETREG1 oligomerization and its membrane scission and reticulophagy activity (PubMed:31930741). {ECO:0000250|UniProtKB:P08413, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:29100089, ECO:0000269|PubMed:31930741}. |
Q13555 | CAMK2G | S235 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}. |
Q13557 | CAMK2D | S235 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q13568 | IRF5 | S301 | psp | Interferon regulatory factor 5 (IRF-5) | Transcription factor that plays a critical role in innate immunity by activating expression of type I interferon (IFN) IFNA and INFB and inflammatory cytokines downstream of endolysosomal toll-like receptors TLR7, TLR8 and TLR9 (PubMed:11303025, PubMed:15695821, PubMed:22412986, PubMed:25326418, PubMed:32433612). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (By similarity). Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction downstream of the TLR-activated, MyD88-dependent pathway (By similarity). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000250|UniProtKB:P56477, ECO:0000269|PubMed:11303025, ECO:0000269|PubMed:15695821, ECO:0000269|PubMed:22412986, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:32433612, ECO:0000269|PubMed:33440148}. |
Q13591 | SEMA5A | S1010 | ochoa | Semaphorin-5A (Semaphorin-F) (Sema F) | Bifunctional axonal guidance cue regulated by sulfated proteoglycans; attractive effects result from interactions with heparan sulfate proteoglycans (HSPGs), while the inhibitory effects depend on interactions with chondroitin sulfate proteoglycans (CSPGs) (By similarity). Ligand for receptor PLXNB3. In glioma cells, SEMA5A stimulation of PLXNB3 results in the disassembly of F-actin stress fibers, disruption of focal adhesions and cellular collapse as well as inhibition of cell migration and invasion through ARHGDIA-mediated inactivation of RAC1. May promote angiogenesis by increasing endothelial cell proliferation and migration and inhibiting apoptosis. {ECO:0000250, ECO:0000269|PubMed:15218527, ECO:0000269|PubMed:19850054, ECO:0000269|PubMed:20696765, ECO:0000269|PubMed:21706053}. |
Q13615 | MTMR3 | S883 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR3 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 1) (FYVE-DSP1) (Myotubularin-related protein 3) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) (Zinc finger FYVE domain-containing protein 10) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:10733931, PubMed:11302699, PubMed:11676921, PubMed:12646134). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic (PubMed:11302699, PubMed:11676921, PubMed:12646134). Could also have a molecular sequestering/adapter activity and regulate biological processes independently of its phosphatase activity. It includes the regulation of midbody abscission during mitotic cytokinesis (PubMed:25659891). {ECO:0000269|PubMed:10733931, ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:11676921, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:25659891}. |
Q13627 | DYRK1A | S555 | ochoa | Dual specificity tyrosine-phosphorylation-regulated kinase 1A (EC 2.7.11.23) (EC 2.7.12.1) (Dual specificity YAK1-related kinase) (HP86) (Protein kinase minibrain homolog) (MNBH) (hMNB) | Dual-specificity kinase which possesses both serine/threonine and tyrosine kinase activities (PubMed:20981014, PubMed:21127067, PubMed:23665168, PubMed:30773093, PubMed:8769099). Exhibits a substrate preference for proline at position P+1 and arginine at position P-3 (PubMed:23665168). Plays an important role in double-strand breaks (DSBs) repair following DNA damage (PubMed:31024071). Mechanistically, phosphorylates RNF169 and increases its ability to block accumulation of TP53BP1 at the DSB sites thereby promoting homologous recombination repair (HRR) (PubMed:30773093). Also acts as a positive regulator of transcription by acting as a CTD kinase that mediates phosphorylation of the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A (PubMed:25620562, PubMed:29849146). May play a role in a signaling pathway regulating nuclear functions of cell proliferation (PubMed:14500717). Modulates alternative splicing by phosphorylating the splice factor SRSF6 (By similarity). Has pro-survival function and negatively regulates the apoptotic process (By similarity). Promotes cell survival upon genotoxic stress through phosphorylation of SIRT1 (By similarity). This in turn inhibits p53/TP53 activity and apoptosis (By similarity). Phosphorylates SEPTIN4, SEPTIN5 and SF3B1 at 'Thr-434' (By similarity). {ECO:0000250|UniProtKB:Q61214, ECO:0000250|UniProtKB:Q63470, ECO:0000269|PubMed:14500717, ECO:0000269|PubMed:20981014, ECO:0000269|PubMed:21127067, ECO:0000269|PubMed:23665168, ECO:0000269|PubMed:25620562, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30773093, ECO:0000269|PubMed:31024071, ECO:0000269|PubMed:8769099}. |
Q13642 | FHL1 | S98 | ochoa | Four and a half LIM domains protein 1 (FHL-1) (Skeletal muscle LIM-protein 1) (SLIM) (SLIM-1) | May have an involvement in muscle development or hypertrophy. |
Q13761 | RUNX3 | S397 | ochoa | Runt-related transcription factor 3 (Acute myeloid leukemia 2 protein) (Core-binding factor subunit alpha-3) (CBF-alpha-3) (Oncogene AML-2) (Polyomavirus enhancer-binding protein 2 alpha C subunit) (PEA2-alpha C) (PEBP2-alpha C) (SL3-3 enhancer factor 1 alpha C subunit) (SL3/AKV core-binding factor alpha C subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (By similarity). May be involved in the control of cellular proliferation and/or differentiation. In association with ZFHX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Necessary for the development and survival of sensory neurons expressing parvalbumin (By similarity). {ECO:0000250|UniProtKB:Q64131, ECO:0000269|PubMed:20599712}. |
Q13873 | BMPR2 | S818 | ochoa | Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}. |
Q14004 | CDK13 | S1483 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14008 | CKAP5 | S816 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14134 | TRIM29 | S104 | ochoa | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q14134 | TRIM29 | S489 | ochoa | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q14162 | SCARF1 | S611 | ochoa | Scavenger receptor class F member 1 (Acetyl LDL receptor) (Scavenger receptor expressed by endothelial cells 1) (SREC-I) | Mediates the binding and degradation of acetylated low density lipoprotein (Ac-LDL). Mediates heterophilic interactions, suggesting a function as adhesion protein. Plays a role in the regulation of neurite-like outgrowth (By similarity). {ECO:0000250}. |
Q14202 | ZMYM3 | S774 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14315 | FLNC | S566 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14449 | GRB14 | S366 | psp | Growth factor receptor-bound protein 14 (GRB14 adapter protein) | Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}. |
Q14517 | FAT1 | S357 | ochoa | Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] | [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}. |
Q14524 | SCN5A | S577 | ochoa | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14534 | SQLE | S83 | psp | Squalene monooxygenase (EC 1.14.14.17) (Squalene epoxidase) (SE) | Catalyzes the stereospecific oxidation of squalene to (S)-2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. {ECO:0000269|PubMed:10666321, ECO:0000269|PubMed:30626872}. |
Q14542 | SLC29A2 | S252 | ochoa | Equilibrative nucleoside transporter 2 (hENT2) (36 kDa nucleolar protein HNP36) (Delayed-early response protein 12) (Equilibrative nitrobenzylmercaptopurine riboside-insensitive nucleoside transporter) (Equilibrative NBMPR-insensitive nucleoside transporter) (Hydrophobic nucleolar protein, 36 kDa) (Nucleoside transporter, ei-type) (Solute carrier family 29 member 2) | Bidirectional uniporter involved in the facilitative transport of nucleosides and nucleobases, and contributes to maintaining their cellular homeostasis (PubMed:10722669, PubMed:12527552, PubMed:12590919, PubMed:16214850, PubMed:21795683, PubMed:9396714, PubMed:9478986). Functions as a Na(+)-independent, passive transporter (PubMed:9478986). Involved in the transport of nucleosides such as inosine, adenosine, uridine, thymidine, cytidine and guanosine (PubMed:10722669, PubMed:12527552, PubMed:12590919, PubMed:16214850, PubMed:21795683, PubMed:9396714, PubMed:9478986). Also able to transport purine nucleobases (hypoxanthine, adenine, guanine) and pyrimidine nucleobases (thymine, uracil) (PubMed:16214850, PubMed:21795683). Involved in nucleoside transport at basolateral membrane of kidney cells, allowing liver absorption of nucleoside metabolites (PubMed:12527552). Mediates apical nucleoside uptake into Sertoli cells, thereby regulating the transport of nucleosides in testis across the blood-testis-barrier (PubMed:23639800). Mediates both the influx and efflux of hypoxanthine in skeletal muscle microvascular endothelial cells to control the amount of intracellular hypoxanthine available for xanthine oxidase-mediated ROS production (By similarity). {ECO:0000250|UniProtKB:O54699, ECO:0000269|PubMed:10722669, ECO:0000269|PubMed:12527552, ECO:0000269|PubMed:12590919, ECO:0000269|PubMed:16214850, ECO:0000269|PubMed:21795683, ECO:0000269|PubMed:23639800, ECO:0000269|PubMed:9396714, ECO:0000269|PubMed:9478986}.; FUNCTION: [Isoform 3]: Non functional nucleoside transporter protein for adenosine or thymidine transport. Does not express on cell membrane. {ECO:0000269|PubMed:12527552}. |
Q14624 | ITIH4 | S225 | ochoa | Inter-alpha-trypsin inhibitor heavy chain H4 (ITI heavy chain H4) (ITI-HC4) (Inter-alpha-inhibitor heavy chain 4) (Inter-alpha-trypsin inhibitor family heavy chain-related protein) (IHRP) (Plasma kallikrein sensitive glycoprotein 120) (Gp120) (PK-120) [Cleaved into: 70 kDa inter-alpha-trypsin inhibitor heavy chain H4; 35 kDa inter-alpha-trypsin inhibitor heavy chain H4] | Type II acute-phase protein (APP) involved in inflammatory responses to trauma. May also play a role in liver development or regeneration. {ECO:0000269|PubMed:19263524}. |
Q14643 | ITPR1 | S421 | psp | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR1 (IP3 receptor isoform 1) (IP3R 1) (InsP3R1) (Inositol 1,4,5 trisphosphate receptor) (Inositol 1,4,5-trisphosphate receptor type 1) (Type 1 inositol 1,4,5-trisphosphate receptor) (Type 1 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon inositol 1,4,5-trisphosphate binding, mediates calcium release from the endoplasmic reticulum (ER) (PubMed:10620513, PubMed:27108797). Undergoes conformational changes upon ligand binding, suggesting structural flexibility that allows the channel to switch from a closed state, capable of interacting with its ligands such as 1,4,5-trisphosphate and calcium, to an open state, capable of transferring calcium ions across the ER membrane (By similarity). Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CAMK2 complex (By similarity). Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Regulates fertilization and egg activation by tuning the frequency and amplitude of calcium oscillations (By similarity). {ECO:0000250|UniProtKB:P11881, ECO:0000250|UniProtKB:P29994, ECO:0000269|PubMed:10620513, ECO:0000269|PubMed:27108797}. |
Q14679 | TTLL4 | S207 | ochoa | Tubulin monoglutamylase TTLL4 (EC 6.3.2.-) (Protein monoglutamylase TTLL4) (Tubulin--tyrosine ligase-like protein 4) | Monoglutamylase which modifies both tubulin and non-tubulin proteins, adding a single glutamate on the gamma-carboxyl group of specific glutamate residues of target proteins. Involved in the side-chain initiation step of the polyglutamylation reaction but not in the elongation step. Preferentially modifies beta-tail tubulin over the alpha-tubulin. Monoglutamylates nucleosome assembly proteins NAP1L1 and NAP1L4. Monoglutamylates nucleotidyltransferase CGAS, leading to inhibition of CGAS catalytic activity, thereby preventing antiviral defense function. Involved in KLF4 glutamylation which impedes its ubiquitination, thereby leading to somatic cell reprogramming, pluripotency maintenance and embryogenesis. {ECO:0000250|UniProtKB:Q80UG8}. |
Q14680 | MELK | S498 | ochoa | Maternal embryonic leucine zipper kinase (hMELK) (EC 2.7.11.1) (Protein kinase Eg3) (pEg3 kinase) (Protein kinase PK38) (hPK38) (Tyrosine-protein kinase MELK) (EC 2.7.10.2) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis and splicing regulation. Has a broad substrate specificity; phosphorylates BCL2L14, CDC25B, MAP3K5/ASK1 and ZNF622. Acts as an activator of apoptosis by phosphorylating and activating MAP3K5/ASK1. Acts as a regulator of cell cycle, notably by mediating phosphorylation of CDC25B, promoting localization of CDC25B to the centrosome and the spindle poles during mitosis. Plays a key role in cell proliferation and carcinogenesis. Required for proliferation of embryonic and postnatal multipotent neural progenitors. Phosphorylates and inhibits BCL2L14, possibly leading to affect mammary carcinogenesis by mediating inhibition of the pro-apoptotic function of BCL2L14. Also involved in the inhibition of spliceosome assembly during mitosis by phosphorylating ZNF622, thereby contributing to its redirection to the nucleus. May also play a role in primitive hematopoiesis. {ECO:0000269|PubMed:11802789, ECO:0000269|PubMed:12400006, ECO:0000269|PubMed:14699119, ECO:0000269|PubMed:15908796, ECO:0000269|PubMed:16216881, ECO:0000269|PubMed:17280616}. |
Q14686 | NCOA6 | S1721 | ochoa | Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins. |
Q14699 | RFTN1 | S521 | ochoa | Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) | Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}. |
Q14789 | GOLGB1 | S1148 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14790 | CASP8 | S387 | ochoa|psp | Caspase-8 (CASP-8) (EC 3.4.22.61) (Apoptotic cysteine protease) (Apoptotic protease Mch-5) (CAP4) (FADD-homologous ICE/ced-3-like protease) (FADD-like ICE) (FLICE) (ICE-like apoptotic protease 5) (MORT1-associated ced-3 homolog) (MACH) [Cleaved into: Caspase-8 subunit p18; Caspase-8 subunit p10] | Thiol protease that plays a key role in programmed cell death by acting as a molecular switch for apoptosis, necroptosis and pyroptosis, and is required to prevent tissue damage during embryonic development and adulthood (PubMed:23516580, PubMed:35338844, PubMed:35446120, PubMed:8681376, PubMed:8681377, PubMed:8962078, PubMed:9006941, PubMed:9184224). Initiator protease that induces extrinsic apoptosis by mediating cleavage and activation of effector caspases responsible for FAS/CD95-mediated and TNFRSF1A-induced cell death (PubMed:23516580, PubMed:35338844, PubMed:35446120, PubMed:8681376, PubMed:8681377, PubMed:8962078, PubMed:9006941, PubMed:9184224). Cleaves and activates effector caspases CASP3, CASP4, CASP6, CASP7, CASP9 and CASP10 (PubMed:16916640, PubMed:8962078, PubMed:9006941). Binding to the adapter molecule FADD recruits it to either receptor FAS/TNFRSF6 or TNFRSF1A (PubMed:8681376, PubMed:8681377). The resulting aggregate called the death-inducing signaling complex (DISC) performs CASP8 proteolytic activation (PubMed:9184224). The active dimeric enzyme is then liberated from the DISC and free to activate downstream apoptotic proteases (PubMed:9184224). Proteolytic fragments of the N-terminal propeptide (termed CAP3, CAP5 and CAP6) are likely retained in the DISC (PubMed:9184224). In addition to extrinsic apoptosis, also acts as a negative regulator of necroptosis: acts by cleaving RIPK1 at 'Asp-324', which is crucial to inhibit RIPK1 kinase activity, limiting TNF-induced apoptosis, necroptosis and inflammatory response (PubMed:31827280, PubMed:31827281). Also able to initiate pyroptosis by mediating cleavage and activation of gasdermin-C and -D (GSDMC and GSDMD, respectively): gasdermin cleavage promotes release of the N-terminal moiety that binds to membranes and forms pores, triggering pyroptosis (PubMed:32929201, PubMed:34012073). Initiates pyroptosis following inactivation of MAP3K7/TAK1 (By similarity). Also acts as a regulator of innate immunity by mediating cleavage and inactivation of N4BP1 downstream of TLR3 or TLR4, thereby promoting cytokine production (By similarity). May participate in the Granzyme B (GZMB) cell death pathways (PubMed:8755496). Cleaves PARP1 and PARP2 (PubMed:8681376). Independent of its protease activity, promotes cell migration following phosphorylation at Tyr-380 (PubMed:18216014, PubMed:27109099). {ECO:0000250|UniProtKB:O89110, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:18216014, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:27109099, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:34012073, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120, ECO:0000269|PubMed:8681376, ECO:0000269|PubMed:8681377, ECO:0000269|PubMed:8755496, ECO:0000269|PubMed:8962078, ECO:0000269|PubMed:9006941, ECO:0000269|PubMed:9184224}.; FUNCTION: [Isoform 5]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 6]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 7]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex (Probable). Acts as an inhibitor of the caspase cascade (PubMed:12010809). {ECO:0000269|PubMed:12010809, ECO:0000305|PubMed:8681376}.; FUNCTION: [Isoform 8]: Lacks the catalytic site and may interfere with the pro-apoptotic activity of the complex. {ECO:0000305|PubMed:8681376}. |
Q14865 | ARID5B | S1032 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14CS0 | UBXN2B | S56 | ochoa|psp | UBX domain-containing protein 2B (NSFL1 cofactor p37) (p97 cofactor p37) | Adapter protein required for Golgi and endoplasmic reticulum biogenesis (PubMed:17141156). Involved in Golgi and endoplasmic reticulum maintenance during interphase and in their reassembly at the end of mitosis (PubMed:17141156). The complex formed with VCP has membrane fusion activity; membrane fusion activity requires USO1-GOLGA2 tethering and BET1L (PubMed:17141156). VCPIP1 is also required, but not its deubiquitinating activity (PubMed:17141156). Together with NSFL1C/p47, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000269|PubMed:17141156, ECO:0000269|PubMed:23649807}. |
Q15003 | NCAPH | S432 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15003 | NCAPH | S589 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15042 | RAB3GAP1 | S400 | ochoa | Rab3 GTPase-activating protein catalytic subunit (RAB3 GTPase-activating protein 130 kDa subunit) (Rab3-GAP p130) (Rab3-GAP) | Catalytic subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:10859313, PubMed:24891604, PubMed:9030515). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (PubMed:10859313). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (PubMed:15696165). The Rab3GAP complex, acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (PubMed:15696165, PubMed:23420520). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (PubMed:9030515, PubMed:9852129). {ECO:0000269|PubMed:10859313, ECO:0000269|PubMed:15696165, ECO:0000269|PubMed:23420520, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9030515, ECO:0000269|PubMed:9852129}. |
Q15051 | IQCB1 | S20 | ochoa | IQ calmodulin-binding motif-containing protein 1 (Nephrocystin-5) (p53 and DNA damage-regulated IQ motif protein) (PIQ) | Involved in ciliogenesis. The function in an early step in cilia formation depends on its association with CEP290/NPHP6 (PubMed:21565611, PubMed:23446637). Involved in regulation of the BBSome complex integrity, specifically for presence of BBS2 and BBS5 in the complex, and in ciliary targeting of selected BBSome cargos. May play a role in controlling entry of the BBSome complex to cilia possibly implicating CEP290/NPHP6 (PubMed:25552655). {ECO:0000269|PubMed:23446637, ECO:0000269|PubMed:25552655}. |
Q15149 | PLEC | S149 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15256 | PTPRR | S324 | ochoa | Receptor-type tyrosine-protein phosphatase R (R-PTP-R) (EC 3.1.3.48) (Ch-1PTPase) (NC-PTPCOM1) (Protein-tyrosine phosphatase PCPTP1) | Sequesters mitogen-activated protein kinases (MAPKs) such as MAPK1, MAPK3 and MAPK14 in the cytoplasm in an inactive form. The MAPKs bind to a dephosphorylated kinase interacting motif, phosphorylation of which by the protein kinase A complex releases the MAPKs for activation and translocation into the nucleus (By similarity). {ECO:0000250}. |
Q15326 | ZMYND11 | S447 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15468 | STIL | S475 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15468 | STIL | S753 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15477 | SKIC2 | S1017 | ochoa | Superkiller complex protein 2 (Ski2) (EC 3.6.4.13) (Helicase-like protein) (HLP) | Helicase component of the SKI complex, a multiprotein complex that assists the RNA-degrading exosome during the mRNA decay and quality-control pathways (PubMed:16024656, PubMed:32006463, PubMed:35120588). The SKI complex catalyzes mRNA extraction from 80S ribosomal complexes in the 3'-5' direction and channels mRNA to the cytosolic exosome for degradation (PubMed:32006463, PubMed:35120588). SKI-mediated extraction of mRNA from stalled ribosomes allow binding of the Pelota-HBS1L complex and subsequent ribosome disassembly by ABCE1 for ribosome recycling (PubMed:32006463). In the nucleus, the SKI complex associates with transcriptionally active genes in a manner dependent on PAF1 complex (PAF1C) (PubMed:16024656). {ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:32006463, ECO:0000269|PubMed:35120588}. |
Q15561 | TEAD4 | S322 | psp | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15652 | JMJD1C | S1185 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15678 | PTPN14 | S512 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15738 | NSDHL | S106 | ochoa | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (EC 1.1.1.170) (Protein H105e3) | Catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of the C4 methyl groups of 4-alpha-carboxysterols in post-squalene cholesterol biosynthesis (By similarity). Also plays a role in the regulation of the endocytic trafficking of EGFR (By similarity). {ECO:0000250|UniProtKB:Q9R1J0}. |
Q15772 | SPEG | S2343 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15776 | ZKSCAN8 | S193 | ochoa | Zinc finger protein with KRAB and SCAN domains 8 (LD5-1) (Zinc finger protein 192) | May be involved in transcriptional regulation. |
Q15788 | NCOA1 | S488 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q15788 | NCOA1 | S517 | psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q15814 | TBCC | S168 | ochoa | Tubulin-specific chaperone C (Tubulin-folding cofactor C) (CFC) | Tubulin-folding protein; involved in the final step of the tubulin folding pathway. {ECO:0000269|PubMed:11847227}. |
Q15858 | SCN9A | S113 | ochoa | Sodium channel protein type 9 subunit alpha (Neuroendocrine sodium channel) (hNE-Na) (Peripheral sodium channel 1) (PN1) (Sodium channel protein type IX subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.7) | Pore-forming subunit of Nav1.7, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:15385606, PubMed:16988069, PubMed:17145499, PubMed:17167479, PubMed:19369487, PubMed:24311784, PubMed:25240195, PubMed:26680203, PubMed:7720699). Nav1.7 plays a crucial role in controlling the excitability and action potential propagation from nociceptor neurons, thereby contributing to the sensory perception of pain (PubMed:17145499, PubMed:17167479, PubMed:19369487, PubMed:24311784). {ECO:0000269|PubMed:15178348, ECO:0000269|PubMed:15385606, ECO:0000269|PubMed:16988069, ECO:0000269|PubMed:17145499, ECO:0000269|PubMed:17167479, ECO:0000269|PubMed:19369487, ECO:0000269|PubMed:24311784, ECO:0000269|PubMed:25240195, ECO:0000269|PubMed:26680203, ECO:0000269|PubMed:7720699}. |
Q15911 | ZFHX3 | S2896 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16181 | SEPTIN7 | S77 | ochoa | Septin-7 (CDC10 protein homolog) | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}. |
Q16236 | NFE2L2 | S433 | ochoa|psp | Nuclear factor erythroid 2-related factor 2 (NF-E2-related factor 2) (NFE2-related factor 2) (Nrf-2) (Nuclear factor, erythroid derived 2, like 2) | Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles (PubMed:11035812, PubMed:19489739, PubMed:29018201, PubMed:31398338). In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex (PubMed:11035812, PubMed:15601839, PubMed:29018201). In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, heterodimerization with one of the small Maf proteins and binding to ARE elements of cytoprotective target genes (PubMed:19489739, PubMed:29590092). The NFE2L2/NRF2 pathway is also activated in response to selective autophagy: autophagy promotes interaction between KEAP1 and SQSTM1/p62 and subsequent inactivation of the BCR(KEAP1) complex, leading to NFE2L2/NRF2 nuclear accumulation and expression of cytoprotective genes (PubMed:20452972). The NFE2L2/NRF2 pathway is also activated during the unfolded protein response (UPR), contributing to redox homeostasis and cell survival following endoplasmic reticulum stress (By similarity). May also be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region (PubMed:7937919). Also plays an important role in the regulation of the innate immune response and antiviral cytosolic DNA sensing. It is a critical regulator of the innate immune response and survival during sepsis by maintaining redox homeostasis and restraint of the dysregulation of pro-inflammatory signaling pathways like MyD88-dependent and -independent and TNF-alpha signaling (By similarity). Suppresses macrophage inflammatory response by blocking pro-inflammatory cytokine transcription and the induction of IL6 (By similarity). Binds to the proximity of pro-inflammatory genes in macrophages and inhibits RNA Pol II recruitment. The inhibition is independent of the NRF2-binding motif and reactive oxygen species level (By similarity). Represses antiviral cytosolic DNA sensing by suppressing the expression of the adapter protein STING1 and decreasing responsiveness to STING1 agonists while increasing susceptibility to infection with DNA viruses (PubMed:30158636). Once activated, limits the release of pro-inflammatory cytokines in response to human coronavirus SARS-CoV-2 infection and to virus-derived ligands through a mechanism that involves inhibition of IRF3 dimerization. Also inhibits both SARS-CoV-2 replication, as well as the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism (PubMed:33009401). {ECO:0000250|UniProtKB:Q60795, ECO:0000269|PubMed:11035812, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:19489739, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:29018201, ECO:0000269|PubMed:29590092, ECO:0000269|PubMed:30158636, ECO:0000269|PubMed:31398338, ECO:0000269|PubMed:33009401, ECO:0000269|PubMed:7937919}. |
Q16236 | NFE2L2 | S577 | psp | Nuclear factor erythroid 2-related factor 2 (NF-E2-related factor 2) (NFE2-related factor 2) (Nrf-2) (Nuclear factor, erythroid derived 2, like 2) | Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles (PubMed:11035812, PubMed:19489739, PubMed:29018201, PubMed:31398338). In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex (PubMed:11035812, PubMed:15601839, PubMed:29018201). In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, heterodimerization with one of the small Maf proteins and binding to ARE elements of cytoprotective target genes (PubMed:19489739, PubMed:29590092). The NFE2L2/NRF2 pathway is also activated in response to selective autophagy: autophagy promotes interaction between KEAP1 and SQSTM1/p62 and subsequent inactivation of the BCR(KEAP1) complex, leading to NFE2L2/NRF2 nuclear accumulation and expression of cytoprotective genes (PubMed:20452972). The NFE2L2/NRF2 pathway is also activated during the unfolded protein response (UPR), contributing to redox homeostasis and cell survival following endoplasmic reticulum stress (By similarity). May also be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region (PubMed:7937919). Also plays an important role in the regulation of the innate immune response and antiviral cytosolic DNA sensing. It is a critical regulator of the innate immune response and survival during sepsis by maintaining redox homeostasis and restraint of the dysregulation of pro-inflammatory signaling pathways like MyD88-dependent and -independent and TNF-alpha signaling (By similarity). Suppresses macrophage inflammatory response by blocking pro-inflammatory cytokine transcription and the induction of IL6 (By similarity). Binds to the proximity of pro-inflammatory genes in macrophages and inhibits RNA Pol II recruitment. The inhibition is independent of the NRF2-binding motif and reactive oxygen species level (By similarity). Represses antiviral cytosolic DNA sensing by suppressing the expression of the adapter protein STING1 and decreasing responsiveness to STING1 agonists while increasing susceptibility to infection with DNA viruses (PubMed:30158636). Once activated, limits the release of pro-inflammatory cytokines in response to human coronavirus SARS-CoV-2 infection and to virus-derived ligands through a mechanism that involves inhibition of IRF3 dimerization. Also inhibits both SARS-CoV-2 replication, as well as the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism (PubMed:33009401). {ECO:0000250|UniProtKB:Q60795, ECO:0000269|PubMed:11035812, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:19489739, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:29018201, ECO:0000269|PubMed:29590092, ECO:0000269|PubMed:30158636, ECO:0000269|PubMed:31398338, ECO:0000269|PubMed:33009401, ECO:0000269|PubMed:7937919}. |
Q16600 | ZNF239 | S191 | ochoa | Zinc finger protein 239 (Zinc finger protein HOK-2) (Zinc finger protein MOK-2) | May be involved in transcriptional regulation. |
Q1ED39 | KNOP1 | S119 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q2KHM9 | KIAA0753 | S287 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2LD37 | BLTP1 | S3653 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M2I8 | AAK1 | S797 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2PPJ7 | RALGAPA2 | S1593 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q2TB10 | ZNF800 | S336 | ochoa | Zinc finger protein 800 | May be involved in transcriptional regulation. |
Q3KP66 | INAVA | S107 | ochoa | Innate immunity activator protein | Expressed in peripheral macrophages and intestinal myeloid-derived cells, is required for optimal PRR (pattern recognition receptor)-induced signaling, cytokine secretion, and bacterial clearance. Upon stimulation of a broad range of PRRs (pattern recognition receptor) such as NOD2 or TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9, associates with YWHAQ/14-3-3T, which in turn leads to the recruitment and activation of MAP kinases and NF-kappa-B signaling complexes that amplifies PRR-induced downstream signals and cytokine secretion (PubMed:28436939). In the intestine, regulates adherens junction stability by regulating the degradation of CYTH1 and CYTH2, probably acting as substrate cofactor for SCF E3 ubiquitin-protein ligase complexes. Stabilizes adherens junctions by limiting CYTH1-dependent ARF6 activation (PubMed:29420262). {ECO:0000269|PubMed:28436939, ECO:0000269|PubMed:29420262}. |
Q3KQV3 | ZNF792 | S121 | ochoa | Zinc finger protein 792 | May be involved in transcriptional regulation. |
Q3MIN7 | RGL3 | S52 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q3V6T2 | CCDC88A | S1020 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q460N5 | PARP14 | S1411 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q4KWH8 | PLCH1 | S1255 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q4VC44 | FLYWCH1 | S696 | ochoa | FLYWCH-type zinc finger-containing protein 1 | Transcription cofactor (PubMed:30097457). Negatively regulates transcription activation by catenin beta-1 CTNNB1, perhaps acting by competing with TCF4 for CTNNB1 binding (PubMed:30097457). May play a role in DNA-damage response signaling (PubMed:33924684). Binds specifically to DNA sequences at peri-centromeric chromatin loci. {ECO:0000269|PubMed:30097457, ECO:0000269|PubMed:33924684, ECO:0000269|PubMed:34408139}. |
Q52LR7 | EPC2 | S688 | ochoa | Enhancer of polycomb homolog 2 (EPC-like) | May play a role in transcription or DNA repair. {ECO:0000250}. |
Q52LR7 | EPC2 | S754 | ochoa | Enhancer of polycomb homolog 2 (EPC-like) | May play a role in transcription or DNA repair. {ECO:0000250}. |
Q53EP0 | FNDC3B | S208 | ochoa | Fibronectin type III domain-containing protein 3B (Factor for adipocyte differentiation 104) (HCV NS5A-binding protein 37) | May be a positive regulator of adipogenesis. {ECO:0000269|PubMed:15564382}. |
Q53GA4 | PHLDA2 | S42 | ochoa | Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) | Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}. |
Q53GI3 | ZNF394 | S258 | ochoa | Zinc finger protein 394 (Zinc finger protein with KRAB and SCAN domains 14) | May be involved in transcriptional regulation. |
Q53GL7 | PARP10 | S431 | ochoa | Protein mono-ADP-ribosyltransferase PARP10 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 10) (ARTD10) (Poly [ADP-ribose] polymerase 10) (PARP-10) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate and aspartate residues on target proteins (PubMed:18851833, PubMed:23332125, PubMed:23474714, PubMed:25043379). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:18851833). Catalyzes mono-ADP-ribosylation of GSK3B, leading to negatively regulate GSK3B kinase activity (PubMed:23332125). Involved in translesion DNA synthesis in response to DNA damage via its interaction with PCNA (PubMed:24695737). {ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:23332125, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:24695737, ECO:0000269|PubMed:25043379}. |
Q562F6 | SGO2 | S1144 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5BKX6 | SLC45A4 | S732 | ochoa | Solute carrier family 45 member 4 | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}. |
Q5F1R6 | DNAJC21 | S430 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5FWE3 | PRRT3 | S841 | ochoa | Proline-rich transmembrane protein 3 | None |
Q5FWF5 | ESCO1 | S279 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5JPF3 | ANKRD36C | S512 | ochoa | Ankyrin repeat domain-containing protein 36C (Protein immuno-reactive with anti-PTH polyclonal antibodies) | None |
Q5JSH3 | WDR44 | S50 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JWR5 | DOP1A | S1238 | ochoa | Protein DOP1A | May be involved in protein traffic between late Golgi and early endosomes. {ECO:0000250|UniProtKB:Q03921}. |
Q5R3F8 | ELFN2 | S758 | ochoa | Protein phosphatase 1 regulatory subunit 29 (Extracellular leucine-rich repeat and fibronectin type III domain-containing protein 2) (Leucine-rich repeat and fibronectin type-III domain-containing protein 6) (Leucine-rich repeat-containing protein 62) | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. {ECO:0000269|PubMed:19389623}. |
Q5SVZ6 | ZMYM1 | S127 | ochoa | Zinc finger MYM-type protein 1 | None |
Q5SYC1 | CLVS2 | S293 | ochoa | Clavesin-2 (Retinaldehyde-binding protein 1-like 2) (clathrin vesicle-associated Sec14 protein 2) | Required for normal morphology of late endosomes and/or lysosomes in neurons (By similarity). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). {ECO:0000250, ECO:0000269|PubMed:19651769}. |
Q5T0F9 | CC2D1B | S751 | ochoa | Coiled-coil and C2 domain-containing protein 1B (Five prime repressor element under dual repression-binding protein 2) (FRE under dual repression-binding protein 2) (Freud-2) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. {ECO:0000269|PubMed:19423080}. |
Q5T0T0 | MARCHF8 | S253 | ochoa | E3 ubiquitin-protein ligase MARCHF8 (EC 2.3.2.27) (Cellular modulator of immune recognition) (c-MIR) (Membrane-associated RING finger protein 8) (Membrane-associated RING-CH protein VIII) (MARCH-VIII) (RING finger protein 178) (RING-type E3 ubiquitin transferase MARCHF8) | E3 ubiquitin-protein ligase that plays several important roles in innate immunity and adaptive immunity (PubMed:34285233, PubMed:35019698, PubMed:35503863). Mediates ubiquitination of CD86 and MHC class II proteins, such as HLA-DR alpha and beta, and promotes their subsequent endocytosis and sorting to lysosomes via multivesicular bodies (PubMed:19117940, PubMed:19566897). Possesses a very broad antiviral activity by specifically inactivating different viral fusion proteins (PubMed:32934085). Targets and ubiquitinates cytoplasmic lysine residues of viral envelope glycoproteins with single transmembrane domains leading to their lysosomal degradation (PubMed:35019698). Therefore, shows broad-spectrum inhibition against many viruses including retroviruses, rhabdoviruses, arenaviruses, sarbecoviruses or influenzaviruses (PubMed:34285233, PubMed:35019698). Strongly blocks human immunodeficiency virus type 1 envelope glycoprotein incorporation into virions by down-regulating its cell surface expression. Also blocks ebola virus glycoprotein/GP incorporation via surface down-regulation (PubMed:32934085). Mediates 'Lys-63'-linked polyubiquitination of influenza M2 to target it to lysosome for degradation (PubMed:34285233). Mediates the regulation of constitutive ubiquitination and trafficking of the viral restriction factor BST2 within the endocytic pathway (PubMed:28320822). Plays a role in maintenance of immune tolerance to self by promoting the turnover and proteasomal degradation of PD-L1/CD274 via ubiquitination (PubMed:34183449). Catalyzes the 'Lys-63'-linked polyubiquitylation of cGAS thereby inhibiting its DNA binding ability and impairing its antiviral innate immunity (PubMed:35503863). Negatively regulates IL7-mediated T-cell homeostasis by mediating 'Lys-27'-linked polyubiquitination of IL7R, leading to its lysosomal degradation (PubMed:39311660). {ECO:0000269|PubMed:12582153, ECO:0000269|PubMed:14722266, ECO:0000269|PubMed:18389477, ECO:0000269|PubMed:19117940, ECO:0000269|PubMed:19566897, ECO:0000269|PubMed:28320822, ECO:0000269|PubMed:32934085, ECO:0000269|PubMed:34183449, ECO:0000269|PubMed:34285233, ECO:0000269|PubMed:35019698, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:39311660}.; FUNCTION: (Microbial infection) Mediates 'Lys-63'-linked polyubiquitination of hepatitis C virus/HCV protein NS2 which allows its binding to HGS, an ESCRT-0 complex component, and this interaction is essential for HCV envelopment. {ECO:0000269|PubMed:30759391}. |
Q5T0W9 | FAM83B | S976 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T200 | ZC3H13 | S110 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5P2 | KIAA1217 | S1551 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5P2 | KIAA1217 | S1568 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T5Y3 | CAMSAP1 | S575 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5TCX8 | MAP3K21 | S618 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TGY3 | AHDC1 | S1476 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5THJ4 | VPS13D | S1042 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5U623 | ATF7IP2 | S521 | ochoa | Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}. |
Q5UIP0 | RIF1 | S1162 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VST9 | OBSCN | S6881 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT25 | CDC42BPA | S674 | ochoa | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VTT5 | MYOM3 | S553 | ochoa | Myomesin-3 (Myomesin family member 3) | May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}. |
Q5VTT5 | MYOM3 | S1049 | ochoa | Myomesin-3 (Myomesin family member 3) | May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}. |
Q5VVJ2 | MYSM1 | S340 | ochoa | Deubiquitinase MYSM1 (2A-DUB) (EC 3.4.19.-) (Myb-like, SWIRM and MPN domain-containing protein 1) | Metalloprotease with deubiquitinase activity that plays important regulator roles in hematopoietic stem cell function, blood cell production and immune response (PubMed:24062447, PubMed:26220525, PubMed:28115216). Participates in the normal programming of B-cell responses to antigen after the maturation process (By similarity). Within the cytoplasm, plays critical roles in the repression of innate immunity and autoimmunity (PubMed:33086059). Removes 'Lys-63'-linked polyubiquitins from TRAF3 and TRAF6 complexes (By similarity). Attenuates NOD2-mediated inflammation and tissue injury by promoting 'Lys-63'-linked deubiquitination of RIPK2 component (By similarity). Suppresses the CGAS-STING1 signaling pathway by cleaving STING1 'Lys-63'-linked ubiquitin chains (PubMed:33086059). In the nucleus, acts as a hematopoietic transcription regulator derepressing a range of genes essential for normal stem cell differentiation including EBF1 and PAX5 in B-cells, ID2 in NK-cell progenitor or FLT3 in dendritic cell precursors (PubMed:24062447). Deubiquitinates monoubiquitinated histone H2A, a specific tag for epigenetic transcriptional repression, leading to dissociation of histone H1 from the nucleosome (PubMed:17707232). {ECO:0000250|UniProtKB:Q69Z66, ECO:0000269|PubMed:17707232, ECO:0000269|PubMed:22169041, ECO:0000269|PubMed:24062447, ECO:0000269|PubMed:26220525, ECO:0000269|PubMed:28115216, ECO:0000269|PubMed:33086059}. |
Q5VWG9 | TAF3 | S755 | ochoa | Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}. |
Q5VWN6 | TASOR2 | S384 | ochoa | Protein TASOR 2 | None |
Q5VYV7 | SLX4IP | S280 | ochoa | Protein SLX4IP (SLX4-interacting protein) | None |
Q5VZ89 | DENND4C | S1297 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S1101 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q5W0Q7 | USPL1 | S909 | ochoa | SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) | SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}. |
Q641Q2 | WASHC2A | S498 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q66GS9 | CEP135 | S253 | ochoa | Centrosomal protein of 135 kDa (Cep135) (Centrosomal protein 4) | Centrosomal microtubule-binding protein involved in centriole biogenesis (PubMed:27477386). Acts as a scaffolding protein during early centriole biogenesis. Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP and CEP290 and recruitment of WRAP73 to centrioles. Also required for centriole-centriole cohesion during interphase by acting as a platform protein for CEP250 at the centriole. Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18851962, ECO:0000269|PubMed:26675238, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27477386}. |
Q68CZ1 | RPGRIP1L | S999 | ochoa | Protein fantom (Nephrocystin-8) (RPGR-interacting protein 1-like protein) (RPGRIP1-like protein) | Negatively regulates signaling through the G-protein coupled thromboxane A2 receptor (TBXA2R) (PubMed:19464661). May be involved in mechanisms like programmed cell death, craniofacial development, patterning of the limbs, and formation of the left-right axis (By similarity). Involved in the organization of apical junctions; the function is proposed to implicate a NPHP1-4-8 module. Does not seem to be strictly required for ciliogenesis (PubMed:19464661). Involved in establishment of planar cell polarity such as in cochlear sensory epithelium and is proposed to implicate stabilization of disheveled proteins (By similarity). Involved in regulation of proteasomal activity at the primary cilium probably implicating association with PSDM2 (By similarity). {ECO:0000250|UniProtKB:Q8CG73, ECO:0000269|PubMed:19464661}. |
Q68DA7 | FMN1 | S554 | ochoa | Formin-1 (Limb deformity protein homolog) | Plays a role in the formation of adherens junction and the polymerization of linear actin cables. {ECO:0000250}. |
Q68DK2 | ZFYVE26 | S297 | ochoa | Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) | Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}. |
Q68DQ2 | CRYBG3 | S395 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6AHZ1 | ZNF518A | S437 | ochoa | Zinc finger protein 518A | Through its association with the EHMT1-EHMT2/G9A and PRC2/EED-EZH2 histone methyltransferase complexes may function in gene silencing, regulating repressive post-translational methylation of histone tails at promoters of target genes. {ECO:0000250|UniProtKB:B2RRF6}. |
Q6AI08 | HEATR6 | S1124 | ochoa | HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) | Amplification-dependent oncogene. |
Q6DCA0 | AMMECR1L | S87 | ochoa | AMMECR1-like protein | None |
Q6IE81 | JADE1 | S703 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6IMN6 | CAPRIN2 | S566 | ochoa | Caprin-2 (C1q domain-containing protein 1) (Cytoplasmic activation/proliferation-associated protein 2) (Gastric cancer multidrug resistance-associated protein) (Protein EEG-1) (RNA granule protein 140) | Promotes phosphorylation of the Wnt coreceptor LRP6, leading to increased activity of the canonical Wnt signaling pathway (PubMed:18762581). Facilitates constitutive LRP6 phosphorylation by CDK14/CCNY during G2/M stage of the cell cycle, which may potentiate cells for Wnt signaling (PubMed:27821587). May regulate the transport and translation of mRNAs, modulating for instance the expression of proteins involved in synaptic plasticity in neurons (By similarity). Involved in regulation of growth as erythroblasts shift from a highly proliferative state towards their terminal phase of differentiation (PubMed:14593112). May be involved in apoptosis (PubMed:14593112). {ECO:0000250|UniProtKB:Q05A80, ECO:0000269|PubMed:14593112, ECO:0000269|PubMed:18762581, ECO:0000269|PubMed:27821587}. |
Q6N043 | ZNF280D | S530 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6P2E9 | EDC4 | S844 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P435 | None | S111 | ochoa | Putative uncharacterized SMG1-like protein | None |
Q6P4F7 | ARHGAP11A | S868 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P996 | PDXDC1 | S79 | ochoa | Pyridoxal-dependent decarboxylase domain-containing protein 1 (EC 4.1.1.-) | None |
Q6PGQ7 | BORA | S41 | psp | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PGQ7 | BORA | S137 | ochoa|psp | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PIZ9 | TRAT1 | S157 | ochoa | T-cell receptor-associated transmembrane adapter 1 (T-cell receptor-interacting molecule) (TRIM) (pp29/30) | Stabilizes the TCR (T-cell antigen receptor)/CD3 complex at the surface of T-cells. {ECO:0000269|PubMed:11390434}. |
Q6PJF5 | RHBDF2 | S309 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6T4P5 | PLPPR3 | S508 | ochoa | Phospholipid phosphatase-related protein type 3 (Inactive phospholipid phosphatase PLPPR3) (Lipid phosphate phosphatase-related protein type 3) (PAP-2-like protein 2) (Plasticity-related gene 2 protein) (PRG-2) | None |
Q6T4R5 | NHS | S739 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB98 | ANKRD12 | S630 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6VY07 | PACS1 | S430 | ochoa | Phosphofurin acidic cluster sorting protein 1 (PACS-1) | Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}. |
Q6XZF7 | DNMBP | S689 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZN17 | LIN28B | S203 | ochoa | Protein lin-28 homolog B (Lin-28B) | Suppressor of microRNA (miRNA) biogenesis, including that of let-7 and possibly of miR107, miR-143 and miR-200c. Binds primary let-7 transcripts (pri-let-7), including pri-let-7g and pri-let-7a-1, and sequester them in the nucleolus, away from the microprocessor complex, hence preventing their processing into mature miRNA (PubMed:22118463). Does not act on pri-miR21 (PubMed:22118463). The repression of let-7 expression is required for normal development and contributes to maintain the pluripotent state of embryonic stem cells by preventing let-7-mediated differentiation. When overexpressed, recruits ZCCHC11/TUT4 uridylyltransferase to pre-let-7 transcripts, leading to their terminal uridylation and degradation (PubMed:19703396). This activity might not be relevant in vivo, as LIN28B-mediated inhibition of let-7 miRNA maturation appears to be ZCCHC11-independent (PubMed:22118463). Interaction with target pre-miRNAs occurs via an 5'-GGAG-3' motif in the pre-miRNA terminal loop. Mediates MYC-induced let-7 repression (By similarity). When overexpressed, isoform 1 stimulates growth of the breast adenocarcinoma cell line MCF-7. Isoform 2 has no effect on cell growth. {ECO:0000250|UniProtKB:Q45KJ6, ECO:0000269|PubMed:16971064, ECO:0000269|PubMed:18951094, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22118463}. |
Q6ZNH5 | ZNF497 | S98 | ochoa | Zinc finger protein 497 | May be involved in transcriptional regulation. |
Q6ZRI6 | C15orf39 | S208 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZWE6 | PLEKHM3 | S350 | ochoa | Pleckstrin homology domain-containing family M member 3 (PH domain-containing family M member 3) (Differentiation associated protein) | Involved in skeletal muscle differentiation. May act as a scaffold protein for AKT1 during muscle differentiation. {ECO:0000250|UniProtKB:Q8BM47}. |
Q6ZWK4 | RHEX | S128 | ochoa | Regulator of hemoglobinization and erythroid cell expansion protein (Regulator of human erythroid cell expansion protein) | Acts as a signaling transduction factor of the EPO-EPOR signaling pathway promoting erythroid cell differentiation (PubMed:25092874). {ECO:0000269|PubMed:25092874}. |
Q709C8 | VPS13C | S842 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q709C8 | VPS13C | S2071 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q76L83 | ASXL2 | S440 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L5N1 | COPS6 | S148 | psp | COP9 signalosome complex subunit 6 (SGN6) (Signalosome subunit 6) (JAB1-containing signalosome subunit 6) (MOV34 homolog) (Vpr-interacting protein) (hVIP) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Has some glucocorticoid receptor-responsive activity. Stabilizes COP1 through reducing COP1 auto-ubiquitination and decelerating COP1 turnover rate, hence regulates the ubiquitination of COP1 targets. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21625211, ECO:0000269|PubMed:9535219}. |
Q7L7X3 | TAOK1 | S177 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7L8S5 | OTUD6A | S240 | psp | OTU domain-containing protein 6A (EC 3.4.19.12) (DUBA-2) | Deubiquitinating enzyme that hydrolyzes 'Lys-27'-, 'Lys-29'- and 'Lys-33'-linked polyubiquitin chains. Also able to hydrolyze 'Lys-11'-linked ubiquitin chains. {ECO:0000269|PubMed:23827681}. |
Q7LBC6 | KDM3B | S1267 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7RTP6 | MICAL3 | S649 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2K8 | GPRIN1 | S704 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2Z1 | TICRR | S1001 | ochoa|psp | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z333 | SETX | S1330 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z3J3 | RGPD4 | S395 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3K3 | POGZ | S554 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3U7 | MON2 | S298 | ochoa | Protein MON2 homolog (Protein SF21) | Plays a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and DOP1B, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q7Z3V4 | UBE3B | S419 | ochoa | Ubiquitin-protein ligase E3B (EC 2.3.2.26) (HECT-type ubiquitin transferase E3B) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Ubiquitinates BCKDK and targets it for degradation, thereby regulating various metabolic processes (By similarity). Involved in the positive regulation of neurite branching in hippocampal neurons and the control of neuronal spine number and morphology, through the ubiquitination of PPP3CC (By similarity). {ECO:0000250|UniProtKB:Q9ES34}. |
Q7Z401 | DENND4A | S1117 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z434 | MAVS | S165 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z589 | EMSY | S385 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z699 | SPRED1 | S176 | ochoa | Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) | Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}. |
Q7Z6I8 | C5orf24 | S137 | ochoa | UPF0461 protein C5orf24 | None |
Q7Z6J2 | TAMALIN | S94 | ochoa | Protein TAMALIN (General receptor for phosphoinositides 1-associated scaffold protein) (GRP1-associated scaffold protein) | Plays a role in intracellular trafficking and contributes to the macromolecular organization of group 1 metabotropic glutamate receptors (mGluRs) at synapses. {ECO:0000250}. |
Q7Z7G8 | VPS13B | S3052 | ochoa | Intermembrane lipid transfer protein VPS13B (Cohen syndrome protein 1) (Vacuolar protein sorting-associated protein 13B) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phosphatidylinositol 3-phosphate (By similarity). Functions as a tethering factor in the slow endocytic recycling pathway, to assist traffic between early and recycling endosomes (PubMed:24334764, PubMed:30962439, PubMed:32375900). Involved in the transport of proacrosomal vesicles to the nuclear dense lamina (NDL) during spermatid development (By similarity). Plays a role in the assembly of the Golgi apparatus, possibly by mediating trafficking to the Golgi membrane (PubMed:21865173). Plays a role in the development of the nervous system, and may be required for neuron projection development (PubMed:25492866, PubMed:32560273). May also play a role during adipose tissue development (PubMed:26358774). Required for maintenance of the ocular lens (By similarity). {ECO:0000250|UniProtKB:Q07878, ECO:0000250|UniProtKB:Q80TY5, ECO:0000269|PubMed:21865173, ECO:0000269|PubMed:24334764, ECO:0000269|PubMed:26358774, ECO:0000269|PubMed:30962439, ECO:0000269|PubMed:32375900, ECO:0000269|PubMed:32560273, ECO:0000305|PubMed:25492866, ECO:0000305|PubMed:32560273}. |
Q7Z7L9 | ZSCAN2 | S318 | ochoa | Zinc finger and SCAN domain-containing protein 2 (Zinc finger protein 29 homolog) (Zfp-29) (Zinc finger protein 854) | May be involved in transcriptional regulation during the post-meiotic stages of spermatogenesis. {ECO:0000250}. |
Q86SQ0 | PHLDB2 | S39 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86T90 | KIAA1328 | S273 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86TU7 | SETD3 | S38 | ochoa | Actin-histidine N-methyltransferase (EC 2.1.1.85) (Protein-L-histidine N-tele-methyltransferase) (SET domain-containing protein 3) (hSETD3) | Protein-histidine N-methyltransferase that specifically mediates 3-methylhistidine (tele-methylhistidine) methylation of actin at 'His-73' (PubMed:30526847, PubMed:30626964, PubMed:30785395, PubMed:31388018, PubMed:31993215). Histidine methylation of actin is required for smooth muscle contraction of the laboring uterus during delivery (PubMed:30626964). Does not have protein-lysine N-methyltransferase activity and probably only catalyzes histidine methylation of actin (PubMed:30626964, PubMed:30785395, PubMed:31388018). {ECO:0000269|PubMed:30526847, ECO:0000269|PubMed:30626964, ECO:0000269|PubMed:30785395, ECO:0000269|PubMed:31388018, ECO:0000269|PubMed:31993215}. |
Q86UE8 | TLK2 | S182 | ochoa | Serine/threonine-protein kinase tousled-like 2 (EC 2.7.11.1) (HsHPK) (PKU-alpha) (Tousled-like kinase 2) | Serine/threonine-protein kinase involved in the process of chromatin assembly and probably also DNA replication, transcription, repair, and chromosome segregation (PubMed:10523312, PubMed:11470414, PubMed:12660173, PubMed:12955071, PubMed:29955062, PubMed:33323470, PubMed:9427565). Phosphorylates the chromatin assembly factors ASF1A and ASF1B (PubMed:11470414, PubMed:20016786, PubMed:29955062, PubMed:35136069). Phosphorylation of ASF1A prevents its proteasome-mediated degradation, thereby enhancing chromatin assembly (PubMed:20016786). Negative regulator of amino acid starvation-induced autophagy (PubMed:22354037). {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:12955071, ECO:0000269|PubMed:20016786, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:29955062, ECO:0000269|PubMed:33323470, ECO:0000269|PubMed:35136069, ECO:0000269|PubMed:9427565}. |
Q86UP2 | KTN1 | S1313 | ochoa | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
Q86UQ0 | ZNF589 | S190 | ochoa | Zinc finger protein 589 (Stem cell zinc finger protein 1) | May play a role in hematopoietic stem/progenitor cell differentiation. May play a role as a DNA binding-dependent transcriptional repressor. {ECO:0000269|PubMed:10029171, ECO:0000269|PubMed:12097288}. |
Q86UU1 | PHLDB1 | S489 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UX7 | FERMT3 | S428 | ochoa | Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) | Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}. |
Q86XA9 | HEATR5A | S1996 | ochoa | HEAT repeat-containing protein 5A | None |
Q86YC2 | PALB2 | S64 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YV0 | RASAL3 | S988 | ochoa | RAS protein activator like-3 | Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}. |
Q8IUD2 | ERC1 | S191 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IUG5 | MYO18B | S2193 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IUY3 | GRAMD2A | S27 | ochoa | GRAM domain-containing protein 2A | Participates in the organization of endoplasmic reticulum-plasma membrane contact sites (EPCS) with pleiotropic functions including STIM1 recruitment and calcium homeostasis. Constitutive tether that co-localize with ESYT2/3 tethers at endoplasmic reticulum-plasma membrane contact sites in a phosphatidylinositol lipid-dependent manner. Pre-marks the subset of phosphtidylinositol 4,5-biphosphate (PI(4,5)P2)-enriched EPCS destined for the store operated calcium entry pathway (SOCE). {ECO:0000269|PubMed:29469807}. |
Q8IVF5 | TIAM2 | S209 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IVG5 | SAMD9L | S79 | ochoa | Sterile alpha motif domain-containing protein 9-like (SAM domain-containing protein 9-like) | May be involved in endosome fusion. Mediates down-regulation of growth factor signaling via internalization of growth factor receptors. {ECO:0000250|UniProtKB:Q69Z37}. |
Q8IVL0 | NAV3 | S1190 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IW19 | APLF | S131 | ochoa | Aprataxin and PNK-like factor (EC 3.1.-.-) (Apurinic-apyrimidinic endonuclease APLF) (PNK and APTX-like FHA domain-containing protein) (XRCC1-interacting protein 1) | Histone chaperone involved in single-strand and double-strand DNA break repair (PubMed:17353262, PubMed:17396150, PubMed:21211721, PubMed:21211722, PubMed:29905837, PubMed:30104678). Recruited to sites of DNA damage through interaction with branched poly-ADP-ribose chains, a polymeric post-translational modification synthesized transiently at sites of chromosomal damage to accelerate DNA strand break repair reactions (PubMed:17353262, PubMed:17396150, PubMed:21211721, PubMed:30104678). Following recruitment to DNA damage sites, acts as a histone chaperone that mediates histone eviction during DNA repair and promotes recruitment of histone variant MACROH2A1 (PubMed:21211722, PubMed:29905837, PubMed:30104678). Also has a nuclease activity: displays apurinic-apyrimidinic (AP) endonuclease and 3'-5' exonuclease activities in vitro (PubMed:17353262, PubMed:17396150). Also able to introduce nicks at hydroxyuracil and other types of pyrimidine base damage (PubMed:17353262, PubMed:17396150). Together with PARP3, promotes the retention of the LIG4-XRCC4 complex on chromatin and accelerate DNA ligation during non-homologous end-joining (NHEJ) (PubMed:21211721, PubMed:23689425). Also acts as a negative regulator of cell pluripotency by promoting histone exchange (By similarity). Required for the embryo implantation during the epithelial to mesenchymal transition in females (By similarity). {ECO:0000250|UniProtKB:Q9D842, ECO:0000269|PubMed:17353262, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:21211721, ECO:0000269|PubMed:21211722, ECO:0000269|PubMed:23689425, ECO:0000269|PubMed:29905837, ECO:0000269|PubMed:30104678}. |
Q8IWC1 | MAP7D3 | S290 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWC1 | MAP7D3 | S461 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWS0 | PHF6 | S155 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IWU2 | LMTK2 | S630 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IWY9 | CDAN1 | S265 | ochoa | Codanin-1 | May act as a negative regulator of ASF1 in chromatin assembly. {ECO:0000269|PubMed:22407294}. |
Q8IY63 | AMOTL1 | S322 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IYW5 | RNF168 | S481 | ochoa | E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) | E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}. |
Q8IZD4 | DCP1B | S448 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8IZH2 | XRN1 | S1348 | ochoa | 5'-3' exoribonuclease 1 (EC 3.1.13.-) (Strand-exchange protein 1 homolog) | Major 5'-3' exoribonuclease involved in mRNA decay. Required for the 5'-3'-processing of the G4 tetraplex-containing DNA and RNA substrates. The kinetic of hydrolysis is faster for G4 RNA tetraplex than for G4 DNA tetraplex and monomeric RNA tetraplex. Binds to RNA and DNA (By similarity). Plays a role in replication-dependent histone mRNA degradation. May act as a tumor suppressor protein in osteogenic sarcoma (OGS). {ECO:0000250|UniProtKB:P97789, ECO:0000269|PubMed:18172165}. |
Q8N103 | TAGAP | S354 | ochoa | T-cell activation Rho GTPase-activating protein (T-cell activation GTPase-activating protein) | May function as a GTPase-activating protein and may play important roles during T-cell activation. {ECO:0000269|PubMed:15177553}. |
Q8N1G0 | ZNF687 | S374 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1K5 | THEMIS | S584 | ochoa | Protein THEMIS (Thymocyte-expressed molecule involved in selection) | Plays a central role in late thymocyte development by controlling both positive and negative T-cell selection. Required to sustain and/or integrate signals required for proper lineage commitment and maturation of T-cells. Regulates T-cell development through T-cell antigen receptor (TCR) signaling and in particular through the regulation of calcium influx and phosphorylation of Erk. {ECO:0000250|UniProtKB:Q8BGW0}. |
Q8N2M8 | CLASRP | S101 | ochoa | CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) | Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}. |
Q8N3K9 | CMYA5 | S1283 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3X6 | LCORL | S485 | ochoa | Ligand-dependent nuclear receptor corepressor-like protein (LCoR-like protein) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3'. May play a role in spermatogenesis (By similarity). {ECO:0000250}. |
Q8N4X5 | AFAP1L2 | S767 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N6Q8 | METTL25 | S265 | ochoa | Probable methyltransferase-like protein 25 (EC 2.1.1.-) | Probable methyltransferase. {ECO:0000305}. |
Q8N720 | ZNF655 | S285 | ochoa | Zinc finger protein 655 (Vav-interacting Krueppel-like protein) | Probable transcription factor. {ECO:0000305}. |
Q8N8K9 | KIAA1958 | S272 | ochoa | Uncharacterized protein KIAA1958 | None |
Q8N9M5 | TMEM102 | S246 | ochoa | Transmembrane protein 102 (Common beta-chain associated protein) (CBAP) | Selectively involved in CSF2 deprivation-induced apoptosis via a mitochondria-dependent pathway. {ECO:0000269|PubMed:17828305}. |
Q8N9V3 | WDSUB1 | S445 | ochoa | WD repeat, SAM and U-box domain-containing protein 1 | None |
Q8NB16 | MLKL | S125 | ochoa | Mixed lineage kinase domain-like protein (hMLKL) | Pseudokinase that plays a key role in TNF-induced necroptosis, a programmed cell death process (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Does not have protein kinase activity (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). Activated following phosphorylation by RIPK3, leading to homotrimerization, localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage (PubMed:22265413, PubMed:22265414, PubMed:22421439, PubMed:24316671). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following activation by ZBP1, MLKL is phosphorylated by RIPK3 in the nucleus, triggering disruption of the nuclear envelope and leakage of cellular DNA into the cytosol.following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Binds to highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which is essential for its necroptotic function (PubMed:29883610). {ECO:0000250|UniProtKB:Q9D2Y4, ECO:0000269|PubMed:22265413, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:22421439, ECO:0000269|PubMed:24316671, ECO:0000269|PubMed:29883610}. |
Q8NCF5 | NFATC2IP | S314 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCF5 | NFATC2IP | S338 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8ND30 | PPFIBP2 | S441 | ochoa | Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q8NDI1 | EHBP1 | S335 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NE01 | CNNM3 | S599 | ochoa | Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) | Probable metal transporter. {ECO:0000250}. |
Q8NFP9 | NBEA | S1011 | ochoa | Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}. |
Q8NFU0 | BEST4 | S397 | ochoa | Bestrophin-4 (Vitelliform macular dystrophy 2-like protein 2) | Ligand-gated anion channel that allows the movement of anions across cell membranes when activated by Calcium (Ca2+) (PubMed:12907679, PubMed:18400985). Mediates the movement of hydrogencarbonate and chloride (PubMed:12907679, PubMed:18400985). {ECO:0000269|PubMed:12907679, ECO:0000269|PubMed:18400985}. |
Q8NG31 | KNL1 | S1076 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NI35 | PATJ | S522 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8TAG9 | EXOC6 | S446 | ochoa | Exocyst complex component 6 (Exocyst complex component Sec15A) (SEC15-like protein 1) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. Together with RAB11A, RAB3IP, RAB8A, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (By similarity). {ECO:0000250}. |
Q8TB72 | PUM2 | S136 | ochoa | Pumilio homolog 2 (Pumilio-2) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (, PubMed:21397187). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:22345517). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). May regulate DCUN1D3 mRNA levels (PubMed:25349211). May support proliferation and self-renewal of stem cells. Binds specifically to miRNA MIR199A precursor, with PUM1, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25349211, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233}. |
Q8TBX8 | PIP4K2C | S328 | psp | Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (EC 2.7.1.149) (Phosphatidylinositol 5-phosphate 4-kinase type II gamma) (PI(5)P 4-kinase type II gamma) (PIP4KII-gamma) | Phosphatidylinositol 5-phosphate 4-kinase with low enzymatic activity. May be a GTP sensor, has higher GTP-dependent kinase activity than ATP-dependent kinase activity. PIP4Ks negatively regulate insulin signaling through a catalytic-independent mechanism. They interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:31091439}. |
Q8TE77 | SSH3 | S87 | ochoa | Protein phosphatase Slingshot homolog 3 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 3) (SSH-3L) (hSSH-3L) | Protein phosphatase which may play a role in the regulation of actin filament dynamics. Can dephosphorylate and activate the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly (By similarity). {ECO:0000250}. |
Q8TED9 | AFAP1L1 | S329 | ochoa | Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) | May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}. |
Q8TEK3 | DOT1L | S826 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1104 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TES7 | FBF1 | S130 | ochoa | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TEV9 | SMCR8 | S614 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8TF47 | ZFP90 | S406 | ochoa | Zinc finger protein 90 homolog (Zfp-90) (Zinc finger protein 756) | Inhibits the transcriptional repressor activity of REST by inhibiting its binding to DNA, thereby derepressing transcription of REST target genes. {ECO:0000269|PubMed:21284946}.; FUNCTION: [Isoform 2]: Acts as a bridge between FOXP3 and the corepressor TRIM28, and is required for the transcriptional repressor activity of FOXP3 in regulatory T-cells (Treg). {ECO:0000269|PubMed:23543754}. |
Q8WUU5 | GATAD1 | S235 | ochoa | GATA zinc finger domain-containing protein 1 (Ocular development-associated gene protein) | Component of some chromatin complex recruited to chromatin sites methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3). {ECO:0000269|PubMed:20850016}. |
Q8WUY3 | PRUNE2 | S1789 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S1803 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WXI7 | MUC16 | S12468 | ochoa | Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) | Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}. |
Q8WXI9 | GATAD2B | S213 | ochoa | Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}. |
Q8WY36 | BBX | S75 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WY36 | BBX | S844 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WYA6 | CTNNBL1 | S545 | ochoa | Beta-catenin-like protein 1 (Nuclear-associated protein) (NAP) (Testis development protein NYD-SP19) | Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. Participates in AID/AICDA-mediated somatic hypermutation (SHM) and class-switch recombination (CSR), 2 processes resulting in the production of high-affinity, mutated isotype-switched antibodies (PubMed:32484799). {ECO:0000269|PubMed:32484799}. |
Q8WYB5 | KAT6B | S1598 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q92556 | ELMO1 | S594 | ochoa | Engulfment and cell motility protein 1 (Protein ced-12 homolog) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}. |
Q92560 | BAP1 | S123 | psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92613 | JADE3 | S620 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92621 | NUP205 | S1377 | ochoa | Nuclear pore complex protein Nup205 (205 kDa nucleoporin) (Nucleoporin Nup205) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor NUP62 and other nucleoporins, but not NUP153 and TPR, to the NPC (PubMed:15229283). In association with TMEM209, may be involved in nuclear transport of various nuclear proteins in addition to MYC (PubMed:22719065). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22719065, ECO:0000269|PubMed:9348540}. |
Q92681 | RSC1A1 | S493 | ochoa | Regulatory solute carrier protein family 1 member 1 (Transporter regulator RS1) (hRS1) | Mediates transcriptional and post-transcriptional regulation of SLC5A1. Inhibits a dynamin and PKC-dependent exocytotic pathway of SLC5A1. Also involved in transcriptional regulation of SLC22A2. Exhibits glucose-dependent, short-term inhibition of SLC5A1 and SLC22A2 by inhibiting the release of vesicles from the trans-Golgi network. {ECO:0000269|PubMed:14724758, ECO:0000269|PubMed:16788146, ECO:0000269|PubMed:8836035}. |
Q92738 | USP6NL | S396 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92750 | TAF4B | S252 | ochoa | Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) | Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}. |
Q92766 | RREB1 | S161 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92833 | JARID2 | S331 | ochoa | Protein Jumonji (Jumonji/ARID domain-containing protein 2) | Regulator of histone methyltransferase complexes that plays an essential role in embryonic development, including heart and liver development, neural tube fusion process and hematopoiesis (PubMed:20075857). Acts as an accessory subunit for the core PRC2 (Polycomb repressive complex 2) complex, which mediates histone H3K27 (H3K27me3) trimethylation on chromatin (PubMed:20075857, PubMed:29499137, PubMed:31959557). Binds DNA and mediates the recruitment of the PRC2 complex to target genes in embryonic stem cells, thereby playing a key role in stem cell differentiation and normal embryonic development (PubMed:20075857). In cardiac cells, it is required to repress expression of cyclin-D1 (CCND1) by activating methylation of 'Lys-9' of histone H3 (H3K9me) by the GLP1/EHMT1 and G9a/EHMT2 histone methyltransferases (By similarity). Also acts as a transcriptional repressor of ANF via its interaction with GATA4 and NKX2-5 (By similarity). Participates in the negative regulation of cell proliferation signaling (By similarity). Does not have histone demethylase activity (By similarity). {ECO:0000250|UniProtKB:Q62315, ECO:0000269|PubMed:20075857, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q92870 | APBB2 | S31 | ochoa | Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) | Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}. |
Q92974 | ARHGEF2 | S696 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q92997 | DVL3 | S421 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q93084 | ATP2A3 | S662 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) (SR Ca(2+)-ATPase 3) (EC 7.2.2.10) (Calcium pump 3) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. {ECO:0000269|PubMed:11956212, ECO:0000269|PubMed:15028735}. |
Q96A47 | ISL2 | S231 | ochoa | Insulin gene enhancer protein ISL-2 (Islet-2) | Transcriptional factor that defines subclasses of motoneurons that segregate into columns in the spinal cord and select distinct axon pathways. {ECO:0000250}. |
Q96AV8 | E2F7 | S95 | ochoa | Transcription factor E2F7 (E2F-7) | Atypical E2F transcription factor that participates in various processes such as angiogenesis, polyploidization of specialized cells and DNA damage response. Mainly acts as a transcription repressor that binds DNA independently of DP proteins and specifically recognizes the E2 recognition site 5'-TTTC[CG]CGC-3'. Directly represses transcription of classical E2F transcription factors such as E2F1. Acts as a regulator of S-phase by recognizing and binding the E2-related site 5'-TTCCCGCC-3' and mediating repression of G1/S-regulated genes. Plays a key role in polyploidization of cells in placenta and liver by regulating the endocycle, probably by repressing genes promoting cytokinesis and antagonizing action of classical E2F proteins (E2F1, E2F2 and/or E2F3). Required for placental development by promoting polyploidization of trophoblast giant cells. Also involved in DNA damage response: up-regulated by p53/TP53 following genotoxic stress and acts as a downstream effector of p53/TP53-dependent repression by mediating repression of indirect p53/TP53 target genes involved in DNA replication. Acts as a promoter of sprouting angiogenesis, possibly by acting as a transcription activator: associates with HIF1A, recognizes and binds the VEGFA promoter, which is different from canonical E2 recognition site, and activates expression of the VEGFA gene. Acts as a negative regulator of keratinocyte differentiation. {ECO:0000269|PubMed:14633988, ECO:0000269|PubMed:15133492, ECO:0000269|PubMed:18202719, ECO:0000269|PubMed:19223542, ECO:0000269|PubMed:21248772, ECO:0000269|PubMed:22802528, ECO:0000269|PubMed:22802529, ECO:0000269|PubMed:22903062}. |
Q96AY4 | TTC28 | S47 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96BU1 | S100PBP | S201 | ochoa | S100P-binding protein (S100P-binding protein Riken) | None |
Q96D71 | REPS1 | S222 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96D71 | REPS1 | S482 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96DM3 | RMC1 | S329 | ochoa | Regulator of MON1-CCZ1 complex (Colon cancer-associated protein Mic1) (Mic-1) (WD repeat-containing protein 98) | Component of the CCZ1-MON1 RAB7A guanine exchange factor (GEF). Acts as a positive regulator of CCZ1-MON1A/B function necessary for endosomal/autophagic flux and efficient RAB7A localization (PubMed:29038162). {ECO:0000269|PubMed:29038162}. |
Q96EY5 | MVB12A | S232 | ochoa|psp | Multivesicular body subunit 12A (CIN85/CD2AP family-binding protein) (ESCRT-I complex subunit MVB12A) (Protein FAM125A) | Component of the ESCRT-I complex, a regulator of vesicular trafficking process. Required for the sorting of endocytic ubiquitinated cargos into multivesicular bodies. May be involved in the ligand-mediated internalization and down-regulation of EGF receptor. {ECO:0000269|PubMed:16895919}. |
Q96F86 | EDC3 | S131 | ochoa|psp | Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) | Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}. |
Q96FZ2 | HMCES | S160 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96IZ5 | RBM41 | S260 | ochoa | RNA-binding protein 41 (RNA-binding motif protein 41) | May bind RNA. {ECO:0000305}. |
Q96JN0 | LCOR | S249 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JQ2 | CLMN | S402 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96JQ2 | CLMN | S585 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96JZ2 | HSH2D | S276 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96L73 | NSD1 | S2471 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96LT9 | RNPC3 | S108 | ochoa | RNA-binding region-containing protein 3 (RNA-binding motif protein 40) (RNA-binding protein 40) (U11/U12 small nuclear ribonucleoprotein 65 kDa protein) (U11/U12 snRNP 65 kDa protein) (U11/U12-65K) | Participates in pre-mRNA U12-dependent splicing, performed by the minor spliceosome which removes U12-type introns. U12-type introns comprises less than 1% of all non-coding sequences. Binds to the 3'-stem-loop of m(7)G-capped U12 snRNA. {ECO:0000269|PubMed:16096647, ECO:0000269|PubMed:19447915, ECO:0000269|PubMed:24480542, ECO:0000269|PubMed:29255062}. |
Q96NJ6 | ZFP3 | S63 | ochoa | Zinc finger protein 3 homolog (Zfp-3) (Zinc finger protein 752) | May be involved in transcriptional regulation. |
Q96NY8 | NECTIN4 | S462 | ochoa | Nectin-4 (Ig superfamily receptor LNIR) (Nectin cell adhesion molecule 4) (Poliovirus receptor-related protein 4) [Cleaved into: Processed poliovirus receptor-related protein 4] | Seems to be involved in cell adhesion through trans-homophilic and -heterophilic interactions, the latter including specifically interactions with NECTIN1. Does not act as receptor for alpha-herpesvirus entry into cells.; FUNCTION: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:22048310, ECO:0000269|PubMed:23202587}. |
Q96PX6 | CCDC85A | S255 | ochoa | Coiled-coil domain-containing protein 85A | May play a role in cell-cell adhesion and epithelium development through its interaction with proteins of the beta-catenin family. {ECO:0000305|PubMed:25009281}. |
Q96Q15 | SMG1 | S115 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96QD5 | DEPDC7 | S195 | ochoa | DEP domain-containing protein 7 (Protein TR2/D15) | None |
Q96QE3 | ATAD5 | S86 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96QS3 | ARX | S37 | psp | Homeobox protein ARX (Aristaless-related homeobox) | Transcription factor (PubMed:22194193, PubMed:31691806). Binds to specific sequence motif 5'-TAATTA-3' in regulatory elements of target genes, such as histone demethylase KDM5C (PubMed:22194193, PubMed:31691806). Positively modulates transcription of KDM5C (PubMed:31691806). Activates expression of KDM5C synergistically with histone lysine demethylase PHF8 and perhaps in competition with transcription regulator ZNF711; synergy may be related to enrichment of histone H3K4me3 in regulatory elements (PubMed:31691806). Required for normal brain development (PubMed:11889467, PubMed:12379852, PubMed:14722918). Plays a role in neuronal proliferation, interneuronal migration and differentiation in the embryonic forebrain (By similarity). May also be involved in axonal guidance in the floor plate (By similarity). {ECO:0000250|UniProtKB:O35085, ECO:0000269|PubMed:11889467, ECO:0000269|PubMed:12379852, ECO:0000269|PubMed:14722918, ECO:0000269|PubMed:22194193, ECO:0000269|PubMed:31691806}. |
Q96R06 | SPAG5 | S205 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RS0 | TGS1 | S189 | ochoa | Trimethylguanosine synthase (EC 2.1.1.-) (CLL-associated antigen KW-2) (Cap-specific guanine-N(2) methyltransferase) (Hepatocellular carcinoma-associated antigen 137) (Nuclear receptor coactivator 6-interacting protein) (PRIP-interacting protein with methyltransferase motif) (PIMT) (PIPMT) | Catalyzes the 2 serial methylation steps for the conversion of the 7-monomethylguanosine (m(7)G) caps of snRNAs and snoRNAs to a 2,2,7-trimethylguanosine (m(2,2,7)G) cap structure. The enzyme is specific for guanine, and N7 methylation must precede N2 methylation. Hypermethylation of the m7G cap of U snRNAs leads to their concentration in nuclear foci, their colocalization with coilin and the formation of canonical Cajal bodies (CBs). Plays a role in transcriptional regulation. {ECO:0000269|PubMed:11517327, ECO:0000269|PubMed:11912212, ECO:0000269|PubMed:16687569, ECO:0000269|PubMed:18775984}. |
Q96RT1 | ERBIN | S832 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RV3 | PCNX1 | S420 | ochoa | Pecanex-like protein 1 (Pecanex homolog protein 1) | None |
Q96S38 | RPS6KC1 | S560 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96T37 | RBM15 | S365 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q99501 | GAS2L1 | S429 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q99502 | EYA1 | S19 | ochoa | Protein phosphatase EYA1 (EC 3.1.3.16) (EC 3.1.3.48) (Eyes absent homolog 1) | Functions both as protein phosphatase and as transcriptional coactivator for SIX1, and probably also for SIX2, SIX4 and SIX5 (By similarity). Tyrosine phosphatase that dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph) and promotes efficient DNA repair via the recruitment of DNA repair complexes containing MDC1. 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19234442). Its function as histone phosphatase may contribute to its function in transcription regulation during organogenesis (By similarity). Also has phosphatase activity with proteins phosphorylated on Ser and Thr residues (in vitro) (By similarity). Required for normal embryonic development of the craniofacial and trunk skeleton, kidneys and ears (By similarity). Together with SIX1, it plays an important role in hypaxial muscle development; in this it is functionally redundant with EYA2 (By similarity). {ECO:0000250|UniProtKB:P97767, ECO:0000269|PubMed:19234442}. |
Q99569 | PKP4 | S127 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99590 | SCAF11 | S963 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99611 | SEPHS2 | S109 | ochoa | Selenide, water dikinase 2 (EC 2.7.9.3) (Selenium donor protein 2) (Selenophosphate synthase 2) | Synthesizes selenophosphate from selenide and ATP. {ECO:0000250|UniProtKB:P49903}. |
Q99640 | PKMYT1 | S143 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q99700 | ATXN2 | S1213 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99719 | SEPTIN5 | S327 | ochoa|psp | Septin-5 (Cell division control-related protein 1) (CDCrel-1) (Peanut-like protein 1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in platelet secretion (By similarity). {ECO:0000250, ECO:0000305}. |
Q99873 | PRMT1 | S307 | psp | Protein arginine N-methyltransferase 1 (EC 2.1.1.319) (Histone-arginine N-methyltransferase PRMT1) (Interferon receptor 1-bound protein 4) | Arginine methyltransferase that methylates (mono and asymmetric dimethylation) the guanidino nitrogens of arginyl residues present in proteins such as ESR1, histone H2, H3 and H4, FMR1, ILF3, HNRNPA1, HNRNPD, NFATC2IP, SUPT5H, TAF15, EWS, HABP4, SERBP1, RBM15, FOXO1, CHTOP, MAP3K5/ASK1, MICU1 and NPRL2 (PubMed:10749851, PubMed:15741314, PubMed:16879614, PubMed:18951090, PubMed:22095282, PubMed:25284789, PubMed:26575292, PubMed:26876602, PubMed:27642082, PubMed:30765518, PubMed:31257072, PubMed:38006878). Constitutes the main enzyme that mediates monomethylation and asymmetric dimethylation of histone H4 'Arg-3' (H4R3me1 and H4R3me2a, respectively), a specific tag for epigenetic transcriptional activation. May be involved in the regulation of TAF15 transcriptional activity, act as an activator of estrogen receptor (ER)-mediated transactivation, play a key role in neurite outgrowth and act as a negative regulator of megakaryocytic differentiation, by modulating p38 MAPK pathway. Methylates RBM15, promoting ubiquitination and degradation of RBM15 (PubMed:26575292). Methylates MRE11 and TP53BP1, promoting the DNA damage response (PubMed:15741314, PubMed:16294045, PubMed:29651020). Methylates FOXO1 and retains it in the nucleus increasing its transcriptional activity (PubMed:18951090). Methylates CHTOP and this methylation is critical for its 5-hydroxymethylcytosine (5hmC)-binding activity (PubMed:25284789). Methylates MAP3K5/ASK1 at 'Arg-78' and 'Arg-80' which promotes association of MAP3K5 with thioredoxin and negatively regulates MAP3K5 association with TRAF2, inhibiting MAP3K5 stimulation and MAP3K5-induced activation of JNK (PubMed:22095282). Methylates H4R3 in genes involved in glioblastomagenesis in a CHTOP- and/or TET1-dependent manner (PubMed:25284789). Plays a role in regulating alternative splicing in the heart (By similarity). Methylates NPRL2 at 'Arg-78' leading to inhibition of its GTPase activator activity and then the GATOR1 complex and consequently inducing timely mTORC1 activation under methionine-sufficient conditions (PubMed:38006878). {ECO:0000250|UniProtKB:Q9JIF0, ECO:0000269|PubMed:10749851, ECO:0000269|PubMed:11387442, ECO:0000269|PubMed:11448779, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:15741314, ECO:0000269|PubMed:16294045, ECO:0000269|PubMed:16879614, ECO:0000269|PubMed:18320585, ECO:0000269|PubMed:18657504, ECO:0000269|PubMed:18773938, ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:20442406, ECO:0000269|PubMed:22095282, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:26876602, ECO:0000269|PubMed:27642082, ECO:0000269|PubMed:28040436, ECO:0000269|PubMed:29651020, ECO:0000269|PubMed:30765518, ECO:0000269|PubMed:31257072, ECO:0000269|PubMed:38006878}. |
Q9BQF6 | SENP7 | S92 | ochoa | Sentrin-specific protease 7 (EC 3.4.22.-) (SUMO-1-specific protease 2) (Sentrin/SUMO-specific protease SENP7) | Protease that acts as a positive regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS. Desumoylation of CGAS promotes DNA-binding activity of CGAS, subsequent oligomerization and activation (By similarity). Deconjugates SUMO2 and SUMO3 from targeted proteins, but not SUMO1 (PubMed:18799455). Catalyzes the deconjugation of poly-SUMO2 and poly-SUMO3 chains (PubMed:18799455). Has very low efficiency in processing full-length SUMO proteins to their mature forms (PubMed:18799455). {ECO:0000250|UniProtKB:Q8BUH8, ECO:0000269|PubMed:18799455}. |
Q9BQI6 | SLF1 | S919 | ochoa | SMC5-SMC6 complex localization factor protein 1 (Ankyrin repeat domain-containing protein 32) (BRCT domain-containing protein 1) (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of SLF2 and the SMC5-SMC6 complex to DNA lesions (PubMed:25931565, PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q9BRH9 | ZNF251 | S333 | ochoa | Zinc finger protein 251 | May be involved in transcriptional regulation. |
Q9BSA4 | TTYH2 | S504 | ochoa | Protein tweety homolog 2 (hTTY2) (Volume-regulated anion channel subunit TTYH2) | Calcium-independent, swelling-dependent volume-regulated anion channel (VRAC-swell) which plays a pivotal role in the process of regulatory volume decrease (RVD) in the brain through the efflux of anions like chloride and organic osmolytes like glutamate (By similarity). Probable large-conductance Ca(2+)-activated chloride channel (PubMed:15010458). {ECO:0000250|UniProtKB:Q3TH73, ECO:0000269|PubMed:15010458}. |
Q9BSJ8 | ESYT1 | S324 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BTW9 | TBCD | S805 | ochoa | Tubulin-specific chaperone D (Beta-tubulin cofactor D) (tfcD) (SSD-1) (Tubulin-folding cofactor D) | Tubulin-folding protein implicated in the first step of the tubulin folding pathway and required for tubulin complex assembly. Involved in the regulation of microtubule polymerization or depolymerization, it modulates microtubule dynamics by capturing GTP-bound beta-tubulin (TUBB). Its ability to interact with beta tubulin is regulated via its interaction with ARL2. Acts as a GTPase-activating protein (GAP) for ARL2. Induces microtubule disruption in absence of ARL2. Increases degradation of beta tubulin, when overexpressed in polarized cells. Promotes epithelial cell detachment, a process antagonized by ARL2. Induces tight adherens and tight junctions disassembly at the lateral cell membrane (PubMed:10722852, PubMed:10831612, PubMed:11847227, PubMed:20740604, PubMed:27666370, PubMed:28158450). Required for correct assembly and maintenance of the mitotic spindle, and proper progression of mitosis (PubMed:27666370). Involved in neuron morphogenesis (PubMed:27666374). {ECO:0000269|PubMed:10722852, ECO:0000269|PubMed:10831612, ECO:0000269|PubMed:11847227, ECO:0000269|PubMed:20740604, ECO:0000269|PubMed:27666370, ECO:0000269|PubMed:27666374, ECO:0000269|PubMed:28158450}. |
Q9BUB4 | ADAT1 | S227 | ochoa | tRNA-specific adenosine deaminase 1 (hADAT1) (EC 3.5.4.34) (tRNA-specific adenosine-37 deaminase) | Specifically deaminates adenosine-37 to inosine in tRNA-Ala. |
Q9BUB5 | MKNK1 | S437 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) | May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}. |
Q9BUH8 | BEGAIN | S534 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BVI0 | PHF20 | S248 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVR0 | HERC2P3 | S93 | ochoa | Putative HERC2-like protein 3 | None |
Q9BXL5 | HEMGN | S25 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BXS6 | NUSAP1 | S135 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BY12 | SCAPER | S86 | ochoa | S phase cyclin A-associated protein in the endoplasmic reticulum (S phase cyclin A-associated protein in the ER) (Zinc finger protein 291) | CCNA2/CDK2 regulatory protein that transiently maintains CCNA2 in the cytoplasm. {ECO:0000269|PubMed:17698606}. |
Q9BY89 | KIAA1671 | S1786 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYF1 | ACE2 | S425 | ochoa | Angiotensin-converting enzyme 2 (EC 3.4.17.23) (Angiotensin-converting enzyme homolog) (ACEH) (Angiotensin-converting enzyme-related carboxypeptidase) (ACE-related carboxypeptidase) (EC 3.4.17.-) (Metalloprotease MPROT15) [Cleaved into: Processed angiotensin-converting enzyme 2] | Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis (PubMed:27217402). Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II (PubMed:10924499, PubMed:10969042, PubMed:11815627, PubMed:14504186, PubMed:19021774). Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin (PubMed:10969042, PubMed:11815627). Also cleaves other biological peptides, such as apelins (apelin-13, [Pyr1]apelin-13, apelin-17, apelin-36), casomorphins (beta-casomorphin-7, neocasomorphin) and dynorphin A with high efficiency (PubMed:11815627, PubMed:27217402, PubMed:28293165). In addition, ACE2 C-terminus is homologous to collectrin and is responsible for the trafficking of the neutral amino acid transporter SL6A19 to the plasma membrane of gut epithelial cells via direct interaction, regulating its expression on the cell surface and its catalytic activity (PubMed:18424768, PubMed:19185582). {ECO:0000269|PubMed:10924499, ECO:0000269|PubMed:10969042, ECO:0000269|PubMed:11815627, ECO:0000269|PubMed:14504186, ECO:0000269|PubMed:18424768, ECO:0000269|PubMed:19021774, ECO:0000269|PubMed:19185582, ECO:0000269|PubMed:27217402}.; FUNCTION: (Microbial infection) Acts as a receptor for human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63. {ECO:0000269|PubMed:14647384, ECO:0000269|PubMed:15452268, ECO:0000269|PubMed:15791205, ECO:0000269|PubMed:15897467, ECO:0000269|PubMed:19901337, ECO:0000269|PubMed:24227843, ECO:0000269|PubMed:32142651, ECO:0000269|PubMed:32221306, ECO:0000269|PubMed:32225175, ECO:0000269|PubMed:33000221, ECO:0000269|PubMed:33082294, ECO:0000269|PubMed:33432067}.; FUNCTION: [Isoform 2]: Non-functional as a carboxypeptidase. {ECO:0000269|PubMed:33077916}.; FUNCTION: [Isoform 2]: (Microbial infection) Non-functional as a receptor for human coronavirus SARS-CoV-2. {ECO:0000269|PubMed:33077916, ECO:0000269|PubMed:33432184}. |
Q9BYW2 | SETD2 | S905 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BYX4 | IFIH1 | S490 | ochoa | Interferon-induced helicase C domain-containing protein 1 (EC 3.6.4.13) (Clinically amyopathic dermatomyositis autoantigen 140 kDa) (CADM-140 autoantigen) (Helicase with 2 CARD domains) (Helicard) (Interferon-induced with helicase C domain protein 1) (Melanoma differentiation-associated protein 5) (MDA-5) (Murabutide down-regulated protein) (RIG-I-like receptor 2) (RLR-2) (RNA helicase-DEAD box protein 116) | Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines (PubMed:28594402, PubMed:32169843, PubMed:33727702). Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length) (PubMed:22160685). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Responsible for detecting the Picornaviridae family members such as encephalomyocarditis virus (EMCV), mengo encephalomyocarditis virus (ENMG), and rhinovirus (PubMed:28606988). Detects coronavirus SARS-CoV-2 (PubMed:33440148, PubMed:33514628). Can also detect other viruses such as dengue virus (DENV), west Nile virus (WNV), and reovirus. Also involved in antiviral signaling in response to viruses containing a dsDNA genome, such as vaccinia virus. Plays an important role in amplifying innate immune signaling through recognition of RNA metabolites that are produced during virus infection by ribonuclease L (RNase L). May play an important role in enhancing natural killer cell function and may be involved in growth inhibition and apoptosis in several tumor cell lines. {ECO:0000269|PubMed:14645903, ECO:0000269|PubMed:19211564, ECO:0000269|PubMed:19656871, ECO:0000269|PubMed:21217758, ECO:0000269|PubMed:21742966, ECO:0000269|PubMed:22160685, ECO:0000269|PubMed:28594402, ECO:0000269|PubMed:28606988, ECO:0000269|PubMed:29117565, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:33514628, ECO:0000269|PubMed:33727702}. |
Q9BZ72 | PITPNM2 | S377 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9C004 | SPRY4 | S125 | ochoa | Protein sprouty homolog 4 (Spry-4) | Suppresses the insulin receptor and EGFR-transduced MAPK signaling pathway, but does not inhibit MAPK activation by a constitutively active mutant Ras (PubMed:12027893). Probably impairs the formation of GTP-Ras (PubMed:12027893). Inhibits Ras-independent, but not Ras-dependent, activation of RAF1 (PubMed:12717443). Represses integrin-mediated cell spreading via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:15584898). {ECO:0000269|PubMed:12027893, ECO:0000269|PubMed:12717443, ECO:0000269|PubMed:15584898}. |
Q9C040 | TRIM2 | S440 | ochoa | Tripartite motif-containing protein 2 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM2) (RING finger protein 86) (RING-type E3 ubiquitin transferase TRIM2) | UBE2D1-dependent E3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL and of phosphorylated BCL2L11. Plays a neuroprotective function. May play a role in neuronal rapid ischemic tolerance. Plays a role in antiviral immunity and limits New World arenavirus infection independently of its ubiquitin ligase activity (PubMed:24068738). {ECO:0000250|UniProtKB:Q9ESN6, ECO:0000269|PubMed:24068738}. |
Q9C0A6 | SETD5 | S1246 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0B5 | ZDHHC5 | S247 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0B9 | ZCCHC2 | S791 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9C0D2 | CEP295 | S1102 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9C0D7 | ZC3H12C | S760 | ochoa | Probable ribonuclease ZC3H12C (EC 3.1.-.-) (MCP-induced protein 3) (Zinc finger CCCH domain-containing protein 12C) | May function as RNase and regulate the levels of target RNA species. {ECO:0000305}. |
Q9C0I3 | CCSER1 | S600 | ochoa | Serine-rich coiled-coil domain-containing protein 1 (Coiled-coil serine-rich protein 1) | None |
Q9GZR7 | DDX24 | S60 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9GZU2 | PEG3 | S547 | ochoa | Paternally-expressed gene 3 protein (Zinc finger and SCAN domain-containing protein 24) | Induces apoptosis in cooperation with SIAH1A. Acts as a mediator between p53/TP53 and BAX in a neuronal death pathway that is activated by DNA damage. Acts synergistically with TRAF2 and inhibits TNF induced apoptosis through activation of NF-kappa-B (By similarity). Possesses a tumor suppressing activity in glioma cells. {ECO:0000250, ECO:0000269|PubMed:11260267}. |
Q9H093 | NUAK2 | S462 | ochoa | NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) | Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}. |
Q9H0E3 | SAP130 | S442 | ochoa | Histone deacetylase complex subunit SAP130 (130 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p130) | Acts as a transcriptional repressor. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404}. |
Q9H161 | ALX4 | S200 | ochoa | Homeobox protein aristaless-like 4 | Transcription factor involved in skull and limb development. Plays an essential role in craniofacial development, skin and hair follicle development. {ECO:0000269|PubMed:19692347}. |
Q9H190 | SDCBP2 | S24 | ochoa | Syntenin-2 (Similar to TACIP18) (SITAC) (Syndecan-binding protein 2) | Binds phosphatidylinositol 4,5-bisphosphate (PIP2). May play a role in the organization of nuclear PIP2, cell division and cell survival (PubMed:15961997). {ECO:0000269|PubMed:15961997}. |
Q9H1N7 | SLC35B3 | S56 | ochoa | Adenosine 3'-phospho 5'-phosphosulfate transporter 2 (3'-phosphoadenosine 5'-phosphosulfate transporter) (PAPS transporter 2) (Solute carrier family 35 member B3) | Probably functions as a 3'-phosphoadenylyl sulfate:adenosine 3',5'-bisphosphate antiporter at the Golgi membranes. Mediates the transport from the cytosol into the lumen of the Golgi of 3'-phosphoadenylyl sulfate/adenosine 3'-phospho 5'-phosphosulfate (PAPS), a universal sulfuryl donor for sulfation events that take place in that compartment. {ECO:0000269|PubMed:16492677}. |
Q9H2K8 | TAOK3 | S173 | ochoa | Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) | Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}. |
Q9H3D4 | TP63 | S51 | psp | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H3D4 | TP63 | S463 | ochoa | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H4G0 | EPB41L1 | S378 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H4H8 | FAM83D | S298 | ochoa | Protein FAM83D (Spindle protein CHICA) | Through the degradation of FBXW7, may act indirectly on the expression and downstream signaling of MTOR, JUN and MYC (PubMed:24344117). May play also a role in cell proliferation through activation of the ERK1/ERK2 signaling cascade (PubMed:25646692). May also be important for proper chromosome congression and alignment during mitosis through its interaction with KIF22 (PubMed:18485706). {ECO:0000269|PubMed:18485706, ECO:0000269|PubMed:24344117, ECO:0000269|PubMed:25646692}. |
Q9H582 | ZNF644 | S398 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H5J8 | TAF1D | S40 | ochoa | TATA box-binding protein-associated factor RNA polymerase I subunit D (RNA polymerase I-specific TBP-associated factor 41 kDa) (TAFI41) (TATA box-binding protein-associated factor 1D) (TBP-associated factor 1D) (Transcription initiation factor SL1/TIF-IB subunit D) | Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits. {ECO:0000269|PubMed:15970593, ECO:0000269|PubMed:17318177}. |
Q9H694 | BICC1 | S612 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H6R7 | WDCP | S690 | ochoa | WD repeat and coiled-coil-containing protein | None |
Q9H6X4 | TMEM134 | S70 | ochoa | Transmembrane protein 134 | None |
Q9H7T9 | AUNIP | S267 | ochoa | Aurora kinase A- and ninein-interacting protein (AIBp) | DNA-binding protein that accumulates at DNA double-strand breaks (DSBs) following DNA damage and promotes DNA resection and homologous recombination (PubMed:29042561). Serves as a sensor of DNA damage: binds DNA with a strong preference for DNA substrates that mimic structures generated at stalled replication forks, and anchors RBBP8/CtIP to DSB sites to promote DNA end resection and ensuing homologous recombination repair (PubMed:29042561). Inhibits non-homologous end joining (NHEJ) (PubMed:29042561). Required for the dynamic movement of AURKA at the centrosomes and spindle apparatus during the cell cycle (PubMed:20596670). {ECO:0000269|PubMed:20596670, ECO:0000269|PubMed:29042561}. |
Q9H7U1 | CCSER2 | S452 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H7Z3 | NRDE2 | S341 | ochoa | Nuclear exosome regulator NRDE2 (Protein NRDE2 homolog) | Protein of the nuclear speckles that regulates RNA degradation and export from the nucleus through its interaction with MTREX an essential factor directing various RNAs to exosomal degradation (PubMed:30842217). Changes the conformation of MTREX, precluding its association with the nuclear exosome and interaction with proteins required for its function in RNA exosomal degradation (PubMed:30842217). Negatively regulates, for instance, the degradation of mRNAs and lncRNAs by inhibiting their MTREX-mediated recruitment to nuclear exosome (PubMed:30842217). By preventing the degradation of RNAs in the nucleus, it promotes their export to the cytoplasm (PubMed:30842217). U5 snRNP-associated RNA splicing factor which is required for efficient splicing of CEP131 pre-mRNA and plays an important role in centrosome maturation, integrity and function during mitosis (PubMed:30538148). Suppresses intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites (PubMed:30538148). Plays a role in DNA damage response (PubMed:29902117). {ECO:0000269|PubMed:29902117, ECO:0000269|PubMed:30538148, ECO:0000269|PubMed:30842217}. |
Q9H8K7 | PAAT | S177 | ochoa | ATPase PAAT (EC 3.6.1.-) (Protein associated with ABC transporters) (PAAT) | ATPase that regulates mitochondrial ABC transporters ABCB7, ABCB8/MITOSUR and ABCB10 (PubMed:25063848). Regulates mitochondrial ferric concentration and heme biosynthesis and plays a role in the maintenance of mitochondrial homeostasis and cell survival (PubMed:25063848). {ECO:0000269|PubMed:25063848}. |
Q9H8K7 | PAAT | S424 | ochoa | ATPase PAAT (EC 3.6.1.-) (Protein associated with ABC transporters) (PAAT) | ATPase that regulates mitochondrial ABC transporters ABCB7, ABCB8/MITOSUR and ABCB10 (PubMed:25063848). Regulates mitochondrial ferric concentration and heme biosynthesis and plays a role in the maintenance of mitochondrial homeostasis and cell survival (PubMed:25063848). {ECO:0000269|PubMed:25063848}. |
Q9H8X2 | IPPK | S282 | ochoa | Inositol-pentakisphosphate 2-kinase (EC 2.7.1.158) (IPK1 homolog) (Inositol-1,3,4,5,6-pentakisphosphate 2-kinase) (Ins(1,3,4,5,6)P5 2-kinase) (InsP5 2-kinase) | Phosphorylates Ins(1,3,4,5,6)P5 at position 2 to form Ins(1,2,3,4,5,6)P6 (InsP6 or phytate). InsP6 is involved in many processes such as mRNA export, non-homologous end-joining, endocytosis, ion channel regulation. It also protects cells from TNF-alpha-induced apoptosis. {ECO:0000269|PubMed:12084730, ECO:0000269|PubMed:15967797}. |
Q9H9B1 | EHMT1 | S1048 | ochoa | Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}. |
Q9H9J4 | USP42 | S75 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HAN9 | NMNAT1 | S117 | ochoa | Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1 (NMN/NaMN adenylyltransferase 1) (EC 2.7.7.1) (EC 2.7.7.18) (Nicotinamide-nucleotide adenylyltransferase 1) (NMN adenylyltransferase 1) (Nicotinate-nucleotide adenylyltransferase 1) (NaMN adenylyltransferase 1) | Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP (PubMed:17402747). Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency (PubMed:17402747). Can use triazofurin monophosphate (TrMP) as substrate (PubMed:17402747). Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+) (PubMed:17402747). For the pyrophosphorolytic activity, prefers NAD(+) and NaAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively (PubMed:17402747). Involved in the synthesis of ATP in the nucleus, together with PARP1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). Also acts as a cofactor for glutamate and aspartate ADP-ribosylation by directing PARP1 catalytic activity to glutamate and aspartate residues on histones (By similarity). Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+) (PubMed:17402747). Protects against axonal degeneration following mechanical or toxic insults (By similarity). Neural protection does not correlate with cellular NAD(+) levels but may still require enzyme activity (By similarity). {ECO:0000250|UniProtKB:Q9EPA7, ECO:0000269|PubMed:17402747, ECO:0000269|PubMed:27257257}. |
Q9HAU0 | PLEKHA5 | S140 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HC35 | EML4 | S73 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HC35 | EML4 | S176 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HC77 | CPAP | S260 | ochoa | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HC77 | CPAP | S731 | ochoa | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCE3 | ZNF532 | S314 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCG7 | GBA2 | S47 | ochoa | Non-lysosomal glucosylceramidase (NLGase) (EC 3.2.1.45) (Beta-glucocerebrosidase 2) (Beta-glucosidase 2) (Bile acid beta-glucosidase GBA2) (Bile acid glucosyl transferase GBA2) (Cholesterol glucosyltransferase GBA2) (EC 2.4.1.-) (Cholesteryl-beta-glucosidase GBA2) (EC 3.2.1.-) (Glucosylceramidase 2) (Non-lysosomal cholesterol glycosyltransferase) (Non-lysosomal galactosylceramidase) (EC 3.2.1.46) (Non-lysosomal glycosylceramidase) | Non-lysosomal glucosylceramidase that catalyzes the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) to free glucose and ceramides (such as N-acylsphing-4-enine) (PubMed:17105727, PubMed:30308956, PubMed:32144204). GlcCers are membrane glycosphingolipids that have a wide intracellular distribution (By similarity). They are the main precursors of more complex glycosphingolipids that play a role in cellular growth, differentiation, adhesion, signaling, cytoskeletal dynamics and membrane properties (By similarity). Involved in the transglucosylation of cholesterol, transfers glucose from GlcCer to cholesterol, thereby modifying its water solubility and biological properties (PubMed:32144204). Under specific conditions, may catalyze the reverse reaction, transferring glucose from cholesteryl-3-beta-D-glucoside to ceramide (such as N-acylsphing-4-enine) (Probable). May play a role in the metabolism of bile acids (PubMed:11489889, PubMed:17080196, PubMed:9111029). Able to hydrolyze bile acid 3-O-glucosides as well as to produce bile acid-glucose conjugates thanks to a bile acid glucosyl transferase activity (PubMed:11489889, PubMed:17080196, PubMed:9111029). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the galactosyl transfer between GalCers and cholesterol in vitro with lower activity compared with their activity against GlcCers (PubMed:32144204). {ECO:0000250|UniProtKB:Q69ZF3, ECO:0000269|PubMed:11489889, ECO:0000269|PubMed:17080196, ECO:0000269|PubMed:17105727, ECO:0000269|PubMed:30308956, ECO:0000269|PubMed:32144204, ECO:0000269|PubMed:9111029, ECO:0000305|PubMed:32144204}. |
Q9HCI7 | MSL2 | S211 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9NPG3 | UBN1 | S734 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQT8 | KIF13B | S1481 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NRA8 | EIF4ENIF1 | S513 | ochoa|psp | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRA8 | EIF4ENIF1 | S951 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRI5 | DISC1 | S58 | psp | Disrupted in schizophrenia 1 protein | Involved in the regulation of multiple aspects of embryonic and adult neurogenesis (PubMed:19303846, PubMed:19502360). Required for neural progenitor proliferation in the ventrical/subventrical zone during embryonic brain development and in the adult dentate gyrus of the hippocampus (By similarity). Participates in the Wnt-mediated neural progenitor proliferation as a positive regulator by modulating GSK3B activity and CTNNB1 abundance (PubMed:19303846). Plays a role as a modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including neuron positioning, dendritic development and synapse formation (By similarity). Inhibits the activation of AKT-mTOR signaling upon interaction with CCDC88A (By similarity). Regulates the migration of early-born granule cell precursors toward the dentate gyrus during the hippocampal development (PubMed:19502360). Inhibits ATF4 transcription factor activity in neurons by disrupting ATF4 dimerization and DNA-binding (By similarity). Plays a role, together with PCNT, in the microtubule network formation (PubMed:18955030). {ECO:0000250|UniProtKB:Q811T9, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:19303846, ECO:0000269|PubMed:19502360}. |
Q9NRL3 | STRN4 | S167 | ochoa | Striatin-4 (Zinedin) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:32640226). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:32640226). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). Key regulator of the expanded Hippo signaling pathway by interacting and allowing the inhibition of MAP4K kinases by the STRIPAK complex (PubMed:32640226). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:32640226, ECO:0000305|PubMed:26876214}. |
Q9NRM7 | LATS2 | S1027 | ochoa | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NRZ9 | HELLS | S503 | ochoa|psp | Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) | Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}. |
Q9NS87 | KIF15 | S568 | ochoa | Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) | Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}. |
Q9NSC2 | SALL1 | S586 | ochoa | Sal-like protein 1 (Spalt-like transcription factor 1) (Zinc finger protein 794) (Zinc finger protein SALL1) (Zinc finger protein Spalt-1) (HSal1) (Sal-1) | Transcriptional repressor involved in organogenesis. Plays an essential role in ureteric bud invasion during kidney development. {ECO:0000250|UniProtKB:Q9ER74}. |
Q9NSC2 | SALL1 | S1119 | ochoa | Sal-like protein 1 (Spalt-like transcription factor 1) (Zinc finger protein 794) (Zinc finger protein SALL1) (Zinc finger protein Spalt-1) (HSal1) (Sal-1) | Transcriptional repressor involved in organogenesis. Plays an essential role in ureteric bud invasion during kidney development. {ECO:0000250|UniProtKB:Q9ER74}. |
Q9NSD4 | ZNF275 | S76 | ochoa | Zinc finger protein 275 | May be involved in transcriptional regulation. |
Q9NU22 | MDN1 | S4538 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NUU7 | DDX19A | S85 | ochoa | ATP-dependent RNA helicase DDX19A (EC 3.6.4.13) (DDX19-like protein) (DEAD box protein 19A) | ATP-dependent RNA helicase involved in mRNA export from the nucleus. Rather than unwinding RNA duplexes, DDX19 functions as a remodeler of ribonucleoprotein particles, whereby proteins bound to nuclear mRNA are dissociated and replaced by cytoplasmic mRNA binding proteins. {ECO:0000250|UniProtKB:Q9UMR2}. |
Q9NVF7 | FBXO28 | S344 | ochoa | F-box only protein 28 | Probably recognizes and binds to some phosphorylated proteins and promotes their ubiquitination and degradation. {ECO:0000250}. |
Q9NW97 | TMEM51 | S182 | ochoa | Transmembrane protein 51 | None |
Q9NWF9 | RNF216 | S419 | ochoa | E3 ubiquitin-protein ligase RNF216 (EC 2.3.2.27) (RING finger protein 216) (RING-type E3 ubiquitin transferase RNF216) (Triad domain-containing protein 3) (Ubiquitin-conjugating enzyme 7-interacting protein 1) (Zinc finger protein inhibiting NF-kappa-B) | [Isoform 1]: E3 ubiquitin ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their ubiquitination (PubMed:34998453). Plays a role in the regulation of antiviral responses by promoting the degradation of TRAF3, TLR4 and TLR9 (PubMed:15107846, PubMed:19893624). In turn, down-regulates NF-kappa-B and IRF3 activation as well as beta interferon production. Also participates in the regulation of autophagy by ubiquitinating BECN1 leading to its degradation and autophagy inhibition (PubMed:25484083). Plays a role in ARC-dependent synaptic plasticity by mediating ARC ubiquitination resulting in its rapid proteasomal degradation (PubMed:24945773). Plays aso an essential role in spermatogenesis and male fertility (By similarity). Mechanistically, regulates meiosis by promoting the degradation of PRKACB through the ubiquitin-mediated lysosome pathway (By similarity). Modulates the gonadotropin-releasing hormone signal pathway by affecting the stability of STAU2 that is required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite (By similarity). {ECO:0000250|UniProtKB:P58283, ECO:0000269|PubMed:15107846, ECO:0000269|PubMed:19893624, ECO:0000269|PubMed:24945773, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:34998453}.; FUNCTION: [Isoform 3]: Inhibits TNF and IL-1 mediated activation of NF-kappa-B. Promotes TNF and RIP mediated apoptosis. {ECO:0000269|PubMed:11854271}. |
Q9NWS1 | PARPBP | S154 | ochoa | PCNA-interacting partner (PARI) (PARP-1 binding protein) (PARP1-binding protein) (PARPBP) | Required to suppress inappropriate homologous recombination, thereby playing a central role DNA repair and in the maintenance of genomic stability. Antagonizes homologous recombination by interfering with the formation of the RAD51-DNA homologous recombination structure. Binds single-strand DNA and poly(A) homopolymers. Positively regulate the poly(ADP-ribosyl)ation activity of PARP1; however such function may be indirect. {ECO:0000269|PubMed:20931645, ECO:0000269|PubMed:22153967}. |
Q9NY74 | ETAA1 | S111 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYB0 | TERF2IP | S36 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NZJ5 | EIF2AK3 | S715 | ochoa|psp | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZN5 | ARHGEF12 | S309 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9P203 | BTBD7 | S722 | ochoa | BTB/POZ domain-containing protein 7 | Acts as a mediator of epithelial dynamics and organ branching by promoting cleft progression. Induced following accumulation of fibronectin in forming clefts, leading to local expression of the cell-scattering SNAIL2 and suppression of E-cadherin levels, thereby altering cell morphology and reducing cell-cell adhesion. This stimulates cell separation at the base of forming clefts by local, dynamic intercellular gap formation and promotes cleft progression (By similarity). {ECO:0000250}. |
Q9P209 | CEP72 | S237 | ochoa | Centrosomal protein of 72 kDa (Cep72) | Involved in the recruitment of key centrosomal proteins to the centrosome. Provides centrosomal microtubule-nucleation activity on the gamma-tubulin ring complexes (gamma-TuRCs) and has critical roles in forming a focused bipolar spindle, which is needed for proper tension generation between sister chromatids. Required for localization of KIZ, AKAP9 and gamma-tubulin ring complexes (gamma-TuRCs) (PubMed:19536135). Involved in centriole duplication. Required for CDK5RAP22, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). {ECO:0000269|PubMed:19536135, ECO:0000269|PubMed:26297806}. |
Q9P219 | CCDC88C | S1847 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P227 | ARHGAP23 | S517 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P2G1 | ANKIB1 | S304 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2P5 | HECW2 | S407 | ochoa | E3 ubiquitin-protein ligase HECW2 (EC 2.3.2.26) (HECT, C2 and WW domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECW2) (NEDD4-like E3 ubiquitin-protein ligase 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of TP73. Acts to stabilize TP73 and enhance activation of transcription by TP73 (PubMed:12890487). Involved in the regulation of mitotic metaphase/anaphase transition (PubMed:24163370). {ECO:0000269|PubMed:12890487, ECO:0000269|PubMed:24163370}. |
Q9UBC2 | EPS15L1 | S108 | ochoa | Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) | Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}. |
Q9UBN7 | HDAC6 | S22 | ochoa|psp | Protein deacetylase HDAC6 (EC 3.5.1.-) (E3 ubiquitin-protein ligase HDAC6) (EC 2.3.2.-) (Tubulin-lysine deacetylase HDAC6) (EC 3.5.1.-) | Deacetylates a wide range of non-histone substrates (PubMed:12024216, PubMed:18606987, PubMed:20308065, PubMed:24882211, PubMed:26246421, PubMed:30538141, PubMed:31857589, PubMed:30770470, PubMed:38534334, PubMed:39567688). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:12024216, PubMed:20308065, PubMed:26246421). Required for cilia disassembly via deacetylation of alpha-tubulin (PubMed:17604723, PubMed:26246421). Alpha-tubulin deacetylation results in destabilization of dynamic microtubules (By similarity). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Deacetylates SQSTM1 (PubMed:31857589). Deacetylates peroxiredoxins PRDX1 and PRDX2, decreasing their reducing activity (PubMed:18606987). Deacetylates antiviral protein RIGI in the presence of viral mRNAs which is required for viral RNA detection by RIGI (By similarity). Sequentially deacetylates and polyubiquitinates DNA mismatch repair protein MSH2 which leads to MSH2 degradation, reducing cellular sensitivity to DNA-damaging agents and decreasing cellular DNA mismatch repair activities (PubMed:24882211). Deacetylates DNA mismatch repair protein MLH1 which prevents recruitment of the MutL alpha complex (formed by the MLH1-PMS2 heterodimer) to the MutS alpha complex (formed by the MSH2-MSH6 heterodimer), leading to tolerance of DNA damage (PubMed:30770470). Deacetylates RHOT1/MIRO1 which blocks mitochondrial transport and mediates axon growth inhibition (By similarity). Deacetylates transcription factor SP1 which leads to increased expression of ENG, positively regulating angiogenesis (PubMed:38534334). Deacetylates KHDRBS1/SAM68 which regulates alternative splicing by inhibiting the inclusion of CD44 alternate exons (PubMed:26080397). Acts as a valine sensor by binding to valine through the primate-specific SE14 repeat region (PubMed:39567688). In valine deprivation conditions, translocates from the cytoplasm to the nucleus where it deacetylates TET2 which promotes TET2-dependent DNA demethylation, leading to DNA damage (PubMed:39567688). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:17846173). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and targets them to the aggresome, facilitating their clearance by autophagy (PubMed:17846173). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:D3ZVD8, ECO:0000250|UniProtKB:Q9Z2V5, ECO:0000269|PubMed:12024216, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18606987, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:24882211, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26246421, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:30770470, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:38534334, ECO:0000269|PubMed:39567688}.; FUNCTION: (Microbial infection) Deacetylates the SARS-CoV-2 N protein which promotes association of the viral N protein with human G3BP1, leading to disruption of cellular stress granule formation and facilitating viral replication. {ECO:0000269|PubMed:39135075}. |
Q9UEG4 | ZNF629 | S745 | ochoa | Zinc finger protein 629 (Zinc finger protein 65) | May be involved in transcriptional regulation. |
Q9UGI8 | TES | S168 | ochoa | Testin (TESS) | Scaffold protein that may play a role in cell adhesion, cell spreading and in the reorganization of the actin cytoskeleton. Plays a role in the regulation of cell proliferation. May act as a tumor suppressor. Inhibits tumor cell growth. {ECO:0000269|PubMed:11420696, ECO:0000269|PubMed:12571287, ECO:0000269|PubMed:12695497}. |
Q9UGN5 | PARP2 | S226 | ochoa | Poly [ADP-ribose] polymerase 2 (PARP-2) (hPARP-2) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 2) (ARTD2) (DNA ADP-ribosyltransferase PARP2) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 2) (ADPRT-2) (Poly[ADP-ribose] synthase 2) (pADPRT-2) (Protein poly-ADP-ribosyltransferase PARP2) (EC 2.4.2.-) | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:10364231, PubMed:25043379, PubMed:27471034, PubMed:30104678, PubMed:32028527, PubMed:32939087, PubMed:34108479, PubMed:34486521, PubMed:34874266). Mediates glutamate, aspartate or serine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:25043379, PubMed:30104678, PubMed:30321391). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:32939087). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed:25043379). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed:28190768, PubMed:32028527, PubMed:34108479, PubMed:34486521, PubMed:34874266). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:10364231, PubMed:32939087, PubMed:34108479). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly-ADP-ribose chains (PubMed:34732825, PubMed:34795260). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed:30104678). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed:30104678). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:27471034, PubMed:29361132). {ECO:0000269|PubMed:10364231, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30321391, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32939087, ECO:0000269|PubMed:34108479, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266}. |
Q9UGU0 | TCF20 | S513 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1322 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1522 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHR4 | BAIAP2L1 | S281 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UHV7 | MED13 | S848 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UHX1 | PUF60 | S112 | ochoa | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
Q9UJ83 | HACL1 | S192 | ochoa | 2-hydroxyacyl-CoA lyase 1 (EC 4.1.2.63) (2-hydroxyphytanoyl-CoA lyase) (2-HPCL) (Phytanoyl-CoA 2-hydroxylase 2) | Peroxisomal 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the fatty acid alpha-oxydation in a thiamine pyrophosphate (TPP)-dependent manner (PubMed:10468558, PubMed:21708296, PubMed:28289220). Involved in the degradation of 3-methyl-branched fatty acids like phytanic acid and the shortening of 2-hydroxy long-chain fatty acids (PubMed:10468558, PubMed:21708296, PubMed:28289220). Plays a significant role in the biosynthesis of heptadecanal in the liver (By similarity). {ECO:0000250|UniProtKB:Q9QXE0, ECO:0000269|PubMed:10468558, ECO:0000269|PubMed:21708296, ECO:0000269|PubMed:28289220}. |
Q9UJF2 | RASAL2 | S95 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJU2 | LEF1 | S166 | ochoa|psp | Lymphoid enhancer-binding factor 1 (LEF-1) (T cell-specific transcription factor 1-alpha) (TCF1-alpha) | Transcription factor that binds DNA in a sequence-specific manner (PubMed:2010090). Participates in the Wnt signaling pathway (By similarity). Activates transcription of target genes in the presence of CTNNB1 and EP300 (By similarity). PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1 (PubMed:11266540). Regulates T-cell receptor alpha enhancer function (PubMed:19653274). Required for IL17A expressing gamma-delta T-cell maturation and development, via binding to regulator loci of BLK to modulate expression (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, expression is repressed during the bell stage by MSX1-mediated inhibition of CTNNB1 signaling (By similarity). May play a role in hair cell differentiation and follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:P27782, ECO:0000269|PubMed:11266540, ECO:0000269|PubMed:19653274, ECO:0000269|PubMed:2010090}.; FUNCTION: [Isoform 1]: Transcriptionally activates MYC and CCND1 expression and enhances proliferation of pancreatic tumor cells. {ECO:0000269|PubMed:19653274}.; FUNCTION: [Isoform 3]: Lacks the CTNNB1 interaction domain and may therefore be an antagonist for Wnt signaling. {ECO:0000269|PubMed:11326276}.; FUNCTION: [Isoform 5]: Transcriptionally activates the fibronectin promoter, binds to and represses transcription from the E-cadherin promoter in a CTNNB1-independent manner, and is involved in reducing cellular aggregation and increasing cell migration of pancreatic cancer cells. {ECO:0000269|PubMed:19653274}. |
Q9UJV3 | MID2 | S116 | ochoa | Probable E3 ubiquitin-protein ligase MID2 (EC 2.3.2.27) (Midin-2) (Midline defect 2) (Midline-2) (RING finger protein 60) (RING-type E3 ubiquitin transferase MID2) (Tripartite motif-containing protein 1) | E3 ubiquitin ligase that plays a role in microtubule stabilization. Mediates the 'Lys-48'-linked polyubiquitination of LRRK2 to drive its localization to microtubules and its proteasomal degradation in neurons. This ubiquitination inhibits LRRK2 kinase activation by RAB29 (PubMed:35266954). {ECO:0000269|PubMed:35266954, ECO:0000303|PubMed:24115387}. |
Q9UJX6 | ANAPC2 | S534 | ochoa | Anaphase-promoting complex subunit 2 (APC2) (Cyclosome subunit 2) | Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:11739784, PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:11739784, PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BZQ7, ECO:0000269|PubMed:11739784, ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UKA9 | PTBP2 | S434 | ochoa | Polypyrimidine tract-binding protein 2 (Neural polypyrimidine tract-binding protein) (Neurally-enriched homolog of PTB) (PTB-like protein) | RNA-binding protein which binds to intronic polypyrimidine tracts and mediates negative regulation of exons splicing. May antagonize in a tissue-specific manner the ability of NOVA1 to activate exon selection. In addition to its function in pre-mRNA splicing, plays also a role in the regulation of translation. {ECO:0000250|UniProtKB:Q91Z31, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:12667457}.; FUNCTION: [Isoform 5]: Reduced affinity for RNA. {ECO:0000269|PubMed:12213192}. |
Q9UKJ3 | GPATCH8 | S1081 | ochoa | G patch domain-containing protein 8 | None |
Q9UKV3 | ACIN1 | S490 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULD4 | BRPF3 | S740 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULD5 | ZNF777 | S604 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9ULD6 | INTU | S674 | ochoa | Protein inturned (Inturned planar cell polarity effector homolog) (PDZ domain-containing protein 6) | Plays a key role in ciliogenesis and embryonic development. Regulator of cilia formation by controlling the organization of the apical actin cytoskeleton and the positioning of the basal bodies at the apical cell surface, which in turn is essential for the normal orientation of elongating ciliary microtubules. Plays a key role in definition of cell polarity via its role in ciliogenesis but not via conversion extension. Has an indirect effect on hedgehog signaling (By similarity). Proposed to function as core component of the CPLANE (ciliogenesis and planar polarity effectors) complex involved in the recruitment of peripheral IFT-A proteins to basal bodies (PubMed:27158779). Required for recruitment of CPLANE2 to the mother centriole (By similarity). Binds phosphatidylinositol 3-phosphate with highest affinity, followed by phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate (By similarity). {ECO:0000250|UniProtKB:Q059U7, ECO:0000250|UniProtKB:Q2I0E5, ECO:0000305|PubMed:27158779}. |
Q9ULE6 | PALD1 | S406 | ochoa | Paladin | None |
Q9ULG1 | INO80 | S1399 | ochoa | Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) | ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}. |
Q9ULH1 | ASAP1 | S1008 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULL1 | PLEKHG1 | S1326 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULU4 | ZMYND8 | S668 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULW0 | TPX2 | S293 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UMR2 | DDX19B | S86 | ochoa | ATP-dependent RNA helicase DDX19B (EC 3.6.4.13) (DEAD box RNA helicase DEAD5) (DEAD box protein 19B) | ATP-dependent RNA helicase involved in mRNA export from the nucleus (PubMed:10428971). Rather than unwinding RNA duplexes, DDX19B functions as a remodeler of ribonucleoprotein particles, whereby proteins bound to nuclear mRNA are dissociated and replaced by cytoplasmic mRNA binding proteins (PubMed:10428971). {ECO:0000269|PubMed:10428971}. |
Q9UMZ2 | SYNRG | S580 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UNA4 | POLI | S502 | ochoa | DNA polymerase iota (EC 2.7.7.7) (Eta2) (RAD30 homolog B) | Error-prone DNA polymerase specifically involved in DNA repair (PubMed:11013228, PubMed:11387224). Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls (PubMed:11013228, PubMed:11387224, PubMed:14630940, PubMed:15199127). Favors Hoogsteen base-pairing in the active site (PubMed:15254543). Inserts the correct base with high-fidelity opposite an adenosine template (PubMed:15254543). Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine (PubMed:11013228). May play a role in hypermutation of immunoglobulin genes (PubMed:12410315). Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but may not have lyase activity (PubMed:11251121, PubMed:14630940). {ECO:0000269|PubMed:11013228, ECO:0000269|PubMed:11251121, ECO:0000269|PubMed:11387224, ECO:0000269|PubMed:12410315, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:15199127, ECO:0000269|PubMed:15254543}. |
Q9UNN5 | FAF1 | S320 | ochoa | FAS-associated factor 1 (hFAF1) (UBX domain-containing protein 12) (UBX domain-containing protein 3A) | Ubiquitin-binding protein (PubMed:19722279). Required for the progression of DNA replication forks by targeting DNA replication licensing factor CDT1 for degradation (PubMed:26842564). Potentiates but cannot initiate FAS-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:P54731, ECO:0000269|PubMed:19722279, ECO:0000269|PubMed:26842564}. |
Q9UNX4 | WDR3 | S373 | ochoa | WD repeat-containing protein 3 | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}. |
Q9UPQ9 | TNRC6B | S1570 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPV0 | CEP164 | S1054 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9UPY6 | WASF3 | S235 | ochoa | Actin-binding protein WASF3 (Protein WAVE-3) (Verprolin homology domain-containing protein 3) (Wiskott-Aldrich syndrome protein family member 3) (WASP family protein member 3) | Downstream effector molecules involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:21834987}. |
Q9UPZ3 | HPS5 | S1058 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ35 | SRRM2 | S1271 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ49 | NEU3 | S310 | ochoa | Sialidase-3 (EC 3.2.1.18) (Ganglioside sialidasedis) (Membrane sialidase) (N-acetyl-alpha-neuraminidase 3) | Exo-alpha-sialidase that catalyzes the hydrolytic cleavage of the terminal sialic acid (N-acetylneuraminic acid, Neu5Ac) of a glycan moiety in the catabolism of glycolipids, glycoproteins and oligosacharides. Displays high catalytic efficiency for gangliosides including alpha-(2->3)-sialylated GD1a and GM3 and alpha-(2->8)-sialylated GD3 (PubMed:10405317, PubMed:10861246, PubMed:11298736, PubMed:12011038, PubMed:15847605, PubMed:20511247, PubMed:28646141). Plays a role in the regulation of transmembrane signaling through the modulation of ganglioside content of the lipid bilayer and by direct interaction with signaling receptors, such as EGFR (PubMed:17334392, PubMed:25922362). Desialylates EGFR and activates downstream signaling in proliferating cells (PubMed:25922362). Contributes to clathrin-mediated endocytosis by regulating sorting of endocytosed receptors to early and recycling endosomes (PubMed:26251452). {ECO:0000269|PubMed:10405317, ECO:0000269|PubMed:10861246, ECO:0000269|PubMed:11298736, ECO:0000269|PubMed:12011038, ECO:0000269|PubMed:15847605, ECO:0000269|PubMed:17334392, ECO:0000269|PubMed:20511247, ECO:0000269|PubMed:25922362, ECO:0000269|PubMed:26251452, ECO:0000269|PubMed:28646141}. |
Q9UQ80 | PA2G4 | S90 | ochoa | Proliferation-associated protein 2G4 (Cell cycle protein p38-2G4 homolog) (hG4-1) (ErbB3-binding protein 1) | May play a role in a ERBB3-regulated signal transduction pathway. Seems be involved in growth regulation. Acts a corepressor of the androgen receptor (AR) and is regulated by the ERBB3 ligand neuregulin-1/heregulin (HRG). Inhibits transcription of some E2F1-regulated promoters, probably by recruiting histone acetylase (HAT) activity. Binds RNA. Associates with 28S, 18S and 5.8S mature rRNAs, several rRNA precursors and probably U3 small nucleolar RNA. May be involved in regulation of intermediate and late steps of rRNA processing. May be involved in ribosome assembly. Mediates cap-independent translation of specific viral IRESs (internal ribosomal entry site) (By similarity). Regulates cell proliferation, differentiation, and survival. Isoform 1 suppresses apoptosis whereas isoform 2 promotes cell differentiation (By similarity). {ECO:0000250|UniProtKB:P50580, ECO:0000250|UniProtKB:Q6AYD3, ECO:0000269|PubMed:11268000, ECO:0000269|PubMed:12682367, ECO:0000269|PubMed:15064750, ECO:0000269|PubMed:15583694, ECO:0000269|PubMed:16832058}. |
Q9UQ84 | EXO1 | S623 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9UQF2 | MAPK8IP1 | S197 | psp | C-Jun-amino-terminal kinase-interacting protein 1 (JIP-1) (JNK-interacting protein 1) (Islet-brain 1) (IB-1) (JNK MAP kinase scaffold protein 1) (Mitogen-activated protein kinase 8-interacting protein 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. Required for JNK activation in response to excitotoxic stress. Cytoplasmic MAPK8IP1 causes inhibition of JNK-regulated activity by retaining JNK in the cytoplasm and inhibiting JNK phosphorylation of c-Jun. May also participate in ApoER2-specific reelin signaling. Directly, or indirectly, regulates GLUT2 gene expression and beta-cell function. Appears to have a role in cell signaling in mature and developing nerve terminals. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins. Functions as an anti-apoptotic protein and whose level seems to influence the beta-cell death or survival response. Acts as a scaffold protein that coordinates with SH3RF1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the activation of MAPK8/JNK1 and differentiation of CD8(+) T-cells. {ECO:0000250|UniProtKB:Q9WVI9}. |
Q9UQL6 | HDAC5 | S755 | psp | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9UQM7 | CAMK2A | S234 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}. |
Q9UQR0 | SCML2 | S267 | ochoa|psp | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9Y232 | CDYL | S149 | ochoa | Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) | [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}. |
Q9Y2D9 | ZNF652 | S204 | ochoa | Zinc finger protein 652 | Functions as a transcriptional repressor. {ECO:0000269|PubMed:16966434}. |
Q9Y2F5 | ICE1 | S533 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2F5 | ICE1 | S707 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2F5 | ICE1 | S925 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2F5 | ICE1 | S1470 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2G3 | ATP11B | S1145 | ochoa | Phospholipid-transporting ATPase IF (EC 7.6.2.1) (ATPase IR) (ATPase class VI type 11B) (P4-ATPase flippase complex alpha subunit ATP11B) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids, phosphatidylserines (PS) and phosphatidylethanolamines (PE), from the outer to the inner leaflet of intracellular membranes (PubMed:30018401). May contribute to the maintenance of membrane lipid asymmetry in endosome compartment (PubMed:30018401). {ECO:0000269|PubMed:30018401}. |
Q9Y2I7 | PIKFYVE | S76 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2I9 | TBC1D30 | S800 | ochoa | TBC1 domain family member 30 | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}. |
Q9Y2J2 | EPB41L3 | S962 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2L1 | DIS3 | S634 | ochoa | Exosome complex exonuclease RRP44 (EC 3.1.13.-) (EC 3.1.26.-) (Protein DIS3 homolog) (Ribosomal RNA-processing protein 44) | Putative catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. DIS3 has both 3'-5' exonuclease and endonuclease activities. {ECO:0000269|PubMed:19056938, ECO:0000269|PubMed:20531386}. |
Q9Y2L8 | ZKSCAN5 | S335 | ochoa | Zinc finger protein with KRAB and SCAN domains 5 (Zinc finger protein 95 homolog) (Zfp-95) | May be involved in transcriptional regulation. |
Q9Y2M0 | FAN1 | S126 | ochoa | Fanconi-associated nuclease 1 (EC 3.1.21.-) (EC 3.1.4.1) (FANCD2/FANCI-associated nuclease 1) (hFAN1) (Myotubularin-related protein 15) | Nuclease required for the repair of DNA interstrand cross-links (ICL) recruited at sites of DNA damage by monoubiquitinated FANCD2. Specifically involved in repair of ICL-induced DNA breaks by being required for efficient homologous recombination, probably in the resolution of homologous recombination intermediates (PubMed:20603015, PubMed:20603016, PubMed:20603073, PubMed:20671156, PubMed:24981866, PubMed:25430771). Not involved in DNA double-strand breaks resection (PubMed:20603015, PubMed:20603016). Acts as a 5'-3' exonuclease that anchors at a cut end of DNA and cleaves DNA successively at every third nucleotide, allowing to excise an ICL from one strand through flanking incisions. Probably keeps excising with 3'-flap annealing until it reaches and unhooks the ICL (PubMed:25430771). Acts at sites that have a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap (PubMed:25430771). Also has endonuclease activity toward 5'-flaps (PubMed:20603015, PubMed:20603016, PubMed:24981866). {ECO:0000269|PubMed:20603015, ECO:0000269|PubMed:20603016, ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:20671156, ECO:0000269|PubMed:24981866, ECO:0000269|PubMed:25135477, ECO:0000269|PubMed:25430771}. |
Q9Y2Q9 | MRPS28 | S87 | ochoa | Small ribosomal subunit protein bS1m (28S ribosomal protein S28, mitochondrial) (MRP-S28) (S28mt) (28S ribosomal protein S35, mitochondrial) (MRP-S35) (S35mt) | None |
Q9Y2W1 | THRAP3 | S408 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y305 | ACOT9 | S160 | ochoa | Acyl-coenzyme A thioesterase 9, mitochondrial (Acyl-CoA thioesterase 9) (EC 3.1.2.-) (EC 3.1.2.2) (Acyl-CoA thioester hydrolase 9) | Mitochondrial acyl-CoA thioesterase. Catalyzes the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoA), regulating their respective intracellular levels. Regulates both mitochondrial lipid and amino acid metabolism. {ECO:0000250|UniProtKB:Q9R0X4}. |
Q9Y3R0 | GRIP1 | S590 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
Q9Y490 | TLN1 | S425 | ochoa|psp | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S1588 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4F1 | FARP1 | S403 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 1 (Chondrocyte-derived ezrin-like protein) (FERM, RhoGEF and pleckstrin domain-containing protein 1) (Pleckstrin homology domain-containing family C member 2) (PH domain-containing family C member 2) | Functions as a guanine nucleotide exchange factor for RAC1. May play a role in semaphorin signaling. Plays a role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines, regulation of dendrite length and ultimately the formation of synapses (By similarity). {ECO:0000250}. |
Q9Y4J8 | DTNA | S662 | ochoa | Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) | May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors. |
Q9Y676 | MRPS18B | S49 | ochoa|psp | Small ribosomal subunit protein mS40 (28S ribosomal protein S18-2, mitochondrial) (MRP-S18-2) (28S ribosomal protein S18b, mitochondrial) (MRP-S18-b) (Mrps18-b) (S18mt-b) (Small ribosomal subunit protein bS18b) | None |
Q9Y6Q9 | NCOA3 | S214 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6Q9 | NCOA3 | S569 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6X0 | SETBP1 | S611 | ochoa | SET-binding protein (SEB) | None |
Q9Y6X2 | PIAS3 | S431 | ochoa | E3 SUMO-protein ligase PIAS3 (EC 2.3.2.-) (E3 SUMO-protein transferase PIAS3) (Protein inhibitor of activated STAT protein 3) | Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor. Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway and the steroid hormone signaling pathway. Involved in regulating STAT3 signaling via inhibiting STAT3 DNA-binding and suppressing cell growth. Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678, PubMed:9388184). Sumoylates CCAR2 which promotes its interaction with SIRT1 (PubMed:25406032). Diminishes the sumoylation of ZFHX3 by preventing the colocalization of ZFHX3 with SUMO1 in the nucleus (PubMed:24651376). {ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24651376, ECO:0000269|PubMed:25406032, ECO:0000269|PubMed:9388184}. |
P04843 | RPN1 | S385 | Sugiyama | Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 67 kDa subunit) (Ribophorin I) (RPN-I) (Ribophorin-1) | Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:31831667). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity (By similarity). {ECO:0000250|UniProtKB:E2RQ08, ECO:0000269|PubMed:31831667, ECO:0000269|PubMed:39567208}. |
P61916 | NPC2 | S40 | Sugiyama | NPC intracellular cholesterol transporter 2 (Epididymal secretory protein E1) (Human epididymis-specific protein 1) (He1) (Niemann-Pick disease type C2 protein) | Intracellular cholesterol transporter which acts in concert with NPC1 and plays an important role in the egress of cholesterol from the lysosomal compartment (PubMed:11125141, PubMed:15937921, PubMed:17018531, PubMed:18772377, PubMed:29580834). Unesterified cholesterol that has been released from LDLs in the lumen of the late endosomes/lysosomes is transferred by NPC2 to the cholesterol-binding pocket in the N-terminal domain of NPC1 (PubMed:17018531, PubMed:18772377, PubMed:27238017). May bind and mobilize cholesterol that is associated with membranes (PubMed:18823126). NPC2 binds cholesterol with a 1:1 stoichiometry (PubMed:17018531). Can bind a variety of sterols, including lathosterol, desmosterol and the plant sterols stigmasterol and beta-sitosterol (PubMed:17018531). The secreted form of NCP2 regulates biliary cholesterol secretion via stimulation of ABCG5/ABCG8-mediated cholesterol transport (By similarity). {ECO:0000250|UniProtKB:Q9Z0J0, ECO:0000269|PubMed:11125141, ECO:0000269|PubMed:15937921, ECO:0000269|PubMed:17018531, ECO:0000269|PubMed:18772377, ECO:0000269|PubMed:18823126, ECO:0000269|PubMed:27238017, ECO:0000269|PubMed:29580834}. |
Q96HE7 | ERO1A | S173 | Sugiyama | ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) | Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}. |
P13798 | APEH | S97 | Sugiyama | Acylamino-acid-releasing enzyme (AARE) (EC 3.4.19.1) (Acyl-peptide hydrolase) (APH) (Acylaminoacyl-peptidase) (Oxidized protein hydrolase) (OPH) | This enzyme catalyzes the hydrolysis of the N-terminal peptide bond of an N-acetylated peptide to generate an N-acetylated amino acid and a peptide with a free N-terminus (PubMed:10719179, PubMed:1740429, PubMed:2006156). It preferentially cleaves off Ac-Ala, Ac-Met and Ac-Ser (By similarity). Also, involved in the degradation of oxidized and glycated proteins (PubMed:10719179). {ECO:0000250|UniProtKB:P13676, ECO:0000269|PubMed:10719179, ECO:0000269|PubMed:1740429, ECO:0000269|PubMed:2006156}. |
P48506 | GCLC | S215 | Sugiyama | Glutamate--cysteine ligase catalytic subunit (EC 6.3.2.2) (GCS heavy chain) (Gamma-ECS) (Gamma-glutamylcysteine synthetase) | Catalyzes the ATP-dependent ligation of L-glutamate and L-cysteine and participates in the first and rate-limiting step in glutathione biosynthesis. {ECO:0000269|PubMed:9675072}. |
Q08493 | PDE4C | S641 | SIGNOR | 3',5'-cyclic-AMP phosphodiesterase 4C (EC 3.1.4.53) (DPDE1) (PDE21) (cAMP-specific phosphodiesterase 4C) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:17727341, ECO:0000269|PubMed:7843419}. |
Q8TDZ2 | MICAL1 | S447 | Sugiyama | [F-actin]-monooxygenase MICAL1 (EC 1.14.13.225) (EC 1.6.3.1) (Molecule interacting with CasL protein 1) (MICAL-1) (NEDD9-interacting protein with calponin homology and LIM domains) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization (PubMed:29343822). In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (PubMed:21864500, PubMed:26845023, PubMed:29343822). Acts as a cytoskeletal regulator that connects NEDD9 to intermediate filaments. Also acts as a negative regulator of apoptosis via its interaction with STK38 and STK38L; acts by antagonizing STK38 and STK38L activation by MST1/STK4. Involved in regulation of lamina-specific connectivity in the nervous system such as the development of lamina-restricted hippocampal connections. Through redox regulation of the actin cytoskeleton controls the intracellular distribution of secretory vesicles containing L1/neurofascin/NgCAM family proteins in neurons, thereby regulating their cell surface levels (By similarity). May act as Rab effector protein and play a role in vesicle trafficking. Promotes endosomal tubule extension by associating with RAB8 (RAB8A or RAB8B), RAB10 and GRAF (GRAF1/ARHGAP26 or GRAF2/ARHGAP10) on the endosomal membrane which may connect GRAFs to Rabs, thereby participating in neosynthesized Rab8-Rab10-Rab11-dependent protein export (PubMed:32344433). {ECO:0000250|UniProtKB:Q8VDP3, ECO:0000269|PubMed:18305261, ECO:0000269|PubMed:21864500, ECO:0000269|PubMed:26845023, ECO:0000269|PubMed:28230050, ECO:0000269|PubMed:29343822, ECO:0000269|PubMed:32344433, ECO:0000305|PubMed:27552051}. |
Q16288 | NTRK3 | S561 | Sugiyama | NT-3 growth factor receptor (EC 2.7.10.1) (GP145-TrkC) (Trk-C) (Neurotrophic tyrosine kinase receptor type 3) (TrkC tyrosine kinase) | Receptor tyrosine kinase involved in nervous system and probably heart development. Upon binding of its ligand NTF3/neurotrophin-3, NTRK3 autophosphorylates and activates different signaling pathways, including the phosphatidylinositol 3-kinase/AKT and the MAPK pathways, that control cell survival and differentiation. {ECO:0000269|PubMed:25196463}. |
Q99759 | MAP3K3 | S399 | Sugiyama | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q9Y2U5 | MAP3K2 | S393 | Sugiyama | Mitogen-activated protein kinase kinase kinase 2 (EC 2.7.11.25) (MAPK/ERK kinase kinase 2) (MEK kinase 2) (MEKK 2) | Component of a protein kinase signal transduction cascade. Regulates the JNK and ERK5 pathways by phosphorylating and activating MAP2K5 and MAP2K7 (By similarity). Plays a role in caveolae kiss-and-run dynamics. {ECO:0000250, ECO:0000269|PubMed:10713157, ECO:0000269|PubMed:16001074}. |
A0A0C4DFX4 | None | S330 | ochoa | Snf2 related CREBBP activator protein | None |
A3KN83 | SBNO1 | S693 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A4FU49 | SH3D21 | S227 | ochoa | SH3 domain-containing protein 21 | None |
A6H8Y1 | BDP1 | S1524 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NDB9 | PALM3 | S420 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A6NGC4 | TLCD2 | S235 | ochoa | TLC domain-containing protein 2 | Regulates the composition and fluidity of the plasma membrane (PubMed:30509349). Inhibits the incorporation of membrane-fluidizing phospholipids containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA) and thereby promotes membrane rigidity (PubMed:30509349). Does not appear to have any effect on LCPUFA synthesis (PubMed:30509349). {ECO:0000269|PubMed:30509349}. |
A6NI28 | ARHGAP42 | S811 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
H7C0S8 | None | S247 | ochoa | Argininosuccinate lyase (Calcitonin gene-related peptide-receptor component protein) (DNA-directed RNA polymerase III subunit RPC9) | Accessory protein for the calcitonin gene-related peptide (CGRP) receptor. It modulates CGRP responsiveness in a variety of tissues. {ECO:0000256|ARBA:ARBA00043924}.; FUNCTION: Catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine, an intermediate step reaction in the urea cycle mostly providing for hepatic nitrogen detoxification into excretable urea as well as de novo L-arginine synthesis in nonhepatic tissues. Essential regulator of intracellular and extracellular L-arginine pools. As part of citrulline-nitric oxide cycle, forms tissue-specific multiprotein complexes with argininosuccinate synthase ASS1, transport protein SLC7A1 and nitric oxide synthase NOS1, NOS2 or NOS3, allowing for cell-autonomous L-arginine synthesis while channeling extracellular L-arginine to nitric oxide synthesis pathway. {ECO:0000256|ARBA:ARBA00045522}.; FUNCTION: DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. With POLR3H/RPC8 forms a mobile stalk that protrudes from Pol III core and functions primarily in transcription initiation. Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000256|ARBA:ARBA00045808}. |
J3KQ70 | INO80B-WBP1 | S97 | ochoa | HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) | None |
O00139 | KIF2A | S604 | ochoa | Kinesin-like protein KIF2A (Kinesin-2) (hK2) | Plus end-directed microtubule-dependent motor required for normal brain development. May regulate microtubule dynamics during axonal growth. Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate. Required for normal spindle dynamics during mitosis. Promotes spindle turnover. Implicated in formation of bipolar mitotic spindles. Has microtubule depolymerization activity. {ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:30785839}. |
O00425 | IGF2BP3 | S481 | ochoa | Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2 mRNA-binding protein 3) (IMP-3) (IGF-II mRNA-binding protein 3) (KH domain-containing protein overexpressed in cancer) (hKOC) (VICKZ family member 3) | RNA-binding factor that may recruit target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation. Preferentially binds to N6-methyladenosine (m6A)-containing mRNAs and increases their stability (PubMed:29476152). Binds to the 3'-UTR of CD44 mRNA and stabilizes it, hence promotes cell adhesion and invadopodia formation in cancer cells. Binds to beta-actin/ACTB and MYC transcripts. Increases MYC mRNA stability by binding to the coding region instability determinant (CRD) and binding is enhanced by m6A-modification of the CRD (PubMed:29476152). Binds to the 5'-UTR of the insulin-like growth factor 2 (IGF2) mRNAs. {ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:23640942, ECO:0000269|PubMed:29476152}. |
O14686 | KMT2D | S1151 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O15061 | SYNM | S1202 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15169 | AXIN1 | S77 | ochoa|psp | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
O15240 | VGF | S253 | ochoa | Neurosecretory protein VGF [Cleaved into: Neuroendocrine regulatory peptide-1 (NERP-1); Neuroendocrine regulatory peptide-2 (NERP-2); VGF-derived peptide TLQP-21; VGF-derived peptide TLQP-62; Antimicrobial peptide VGF[554-577]] | [Neurosecretory protein VGF]: Secreted polyprotein that is packaged and proteolytically processed by prohormone convertases PCSK1 and PCSK2 in a cell-type-specific manner (By similarity). VGF and peptides derived from its processing play many roles in neurogenesis and neuroplasticity associated with learning, memory, depression and chronic pain (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Neuroendocrine regulatory peptide-1]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Suppresses presynaptic glutamatergic neurons connected to vasopressin neurons. {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [Neuroendocrine regulatory peptide-2]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Activates GABAergic interneurons which are inhibitory neurons of the nervous system and thereby suppresses presynaptic glutamatergic neurons (By similarity). Also stimulates feeding behavior in an orexin-dependent manner in the hypothalamus (By similarity). Functions as a positive regulator for the activation of orexin neurons resulting in elevated gastric acid secretion and gastric emptying (By similarity). {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [VGF-derived peptide TLQP-21]: Secreted multifunctional neuropeptide that binds to different cell receptors and thereby plays multiple physiological roles including modulation of energy expenditure, pain, response to stress, gastric regulation, glucose homeostasis as well as lipolysis (By similarity). Activates the G-protein-coupled receptor C3AR1 via a folding-upon-binding mechanism leading to enhanced lipolysis in adipocytes (By similarity). Interacts with C1QBP receptor in macrophages and microglia causing increased levels of intracellular calcium and hypersensitivity (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [VGF-derived peptide TLQP-62]: Plays a role in the regulation of memory formation and depression-related behaviors potentially by influencing synaptic plasticity and neurogenesis. Induces acute and transient activation of the NTRK2/TRKB receptor and subsequent CREB phosphorylation (By similarity). Also induces insulin secretion in insulinoma cells by increasing intracellular calcium mobilization (By similarity). {ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Antimicrobial peptide VGF[554-577]]: Has bactericidal activity against M.luteus, and antifungal activity against P. Pastoris. {ECO:0000269|PubMed:23250050}. |
O43294 | TGFB1I1 | S194 | ochoa | Transforming growth factor beta-1-induced transcript 1 protein (Androgen receptor coactivator 55 kDa protein) (Androgen receptor-associated protein of 55 kDa) (Hydrogen peroxide-inducible clone 5 protein) (Hic-5) | Functions as a molecular adapter coordinating multiple protein-protein interactions at the focal adhesion complex and in the nucleus. Links various intracellular signaling modules to plasma membrane receptors and regulates the Wnt and TGFB signaling pathways. May also regulate SLC6A3 and SLC6A4 targeting to the plasma membrane hence regulating their activity. In the nucleus, functions as a nuclear receptor coactivator regulating glucocorticoid, androgen, mineralocorticoid and progesterone receptor transcriptional activity. May play a role in the processes of cell growth, proliferation, migration, differentiation and senescence. May have a zinc-dependent DNA-binding activity. {ECO:0000269|PubMed:10075738, ECO:0000269|PubMed:11463817, ECO:0000269|PubMed:11856738, ECO:0000269|PubMed:12177201, ECO:0000269|PubMed:12445807, ECO:0000269|PubMed:12700349, ECO:0000269|PubMed:15211577, ECO:0000269|PubMed:15561701, ECO:0000269|PubMed:16141357, ECO:0000269|PubMed:16624805, ECO:0000269|PubMed:16803896, ECO:0000269|PubMed:16849583, ECO:0000269|PubMed:17166536, ECO:0000269|PubMed:17233630, ECO:0000269|PubMed:9032249}. |
O43303 | CCP110 | S372 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43314 | PPIP5K2 | S38 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43847 | NRDC | S106 | ochoa | Nardilysin (EC 3.4.24.61) (N-arginine dibasic convertase) (NRD convertase) (NRD-C) (Nardilysin convertase) | Cleaves peptide substrates on the N-terminus of arginine residues in dibasic pairs. Is a critical activator of BACE1- and ADAM17-mediated pro-neuregulin ectodomain shedding, involved in the positive regulation of axonal maturation and myelination. Required for proper functioning of 2-oxoglutarate dehydrogenase (OGDH) (By similarity). {ECO:0000250|UniProtKB:Q8BHG1}. |
O60303 | KATNIP | S253 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O75038 | PLCH2 | S605 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75069 | TMCC2 | S126 | ochoa | Transmembrane and coiled-coil domains protein 2 (Cerebral protein 11) | May be involved in the regulation of the proteolytic processing of the amyloid precursor protein (APP) possibly also implicating APOE. {ECO:0000269|PubMed:21593558}. |
O75151 | PHF2 | S474 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75154 | RAB11FIP3 | S451 | psp | Rab11 family-interacting protein 3 (FIP3) (FIP3-Rab11) (Rab11-FIP3) (Arfophilin-1) (EF hands-containing Rab-interacting protein) (Eferin) (MU-MB-17.148) | Downstream effector molecule for Rab11 GTPase which is involved in endocytic trafficking, cytokinesis and intracellular ciliogenesis by participating in membrane delivery (PubMed:15601896, PubMed:16148947, PubMed:17394487, PubMed:17628206, PubMed:18511905, PubMed:19327867, PubMed:20026645, PubMed:25673879, PubMed:26258637, PubMed:31204173). Recruited by Rab11 to endosomes where it links Rab11 to dynein motor complex (PubMed:20026645). The functional Rab11-RAB11FIP3-dynein complex regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endocytic recycling compartment (ERC) during interphase of cell cycle (PubMed:17394487, PubMed:20026645). Facilitates the interaction between dynein and dynactin and activates dynein processivity (PubMed:25035494). Binding with ASAP1 is needed to regulate the pericentrosomal localization of recycling endosomes (By similarity). The Rab11-RAB11FIP3 complex is also implicated in the transport during telophase of vesicles derived from recycling endosomes to the cleavage furrow via centrosome-anchored microtubules, where the vesicles function to deliver membrane during late cytokinesis and abscission (PubMed:15601896, PubMed:16148947). The recruitment of Rab11-RAB11FIP3-containing endosomes to the cleavage furrow and tethering to the midbody is co-mediated by RAB11FIP3 interaction with ARF6-exocyst and RACGAP1-MKLP1 tethering complexes (PubMed:17628206, PubMed:18511905). Also involved in the Rab11-Rabin8-Rab8 ciliogenesis cascade by facilitating the orderly assembly of a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which directs preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:26258637, PubMed:31204173). Also promotes the activity of Rab11 and ASAP1 in the ARF4-dependent Golgi-to-cilia transport of the sensory receptor rhodopsin (PubMed:25673879). Competes with WDR44 for binding to Rab11, which controls intracellular ciliogenesis pathway (PubMed:31204173). May play a role in breast cancer cell motility by regulating actin cytoskeleton (PubMed:19327867). {ECO:0000250|UniProtKB:Q8CHD8, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:16148947, ECO:0000269|PubMed:17394487, ECO:0000269|PubMed:17628206, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19327867, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26258637, ECO:0000269|PubMed:31204173}. |
O75312 | ZPR1 | S190 | ochoa | Zinc finger protein ZPR1 (Zinc finger protein 259) | Acts as a signaling molecule that communicates proliferative growth signals from the cytoplasm to the nucleus. It is involved in the positive regulation of cell cycle progression (PubMed:29851065). Plays a role for the localization and accumulation of the survival motor neuron protein SMN1 in sub-nuclear bodies, including gems and Cajal bodies. Induces neuron differentiation and stimulates axonal growth and formation of growth cone in spinal cord motor neurons. Plays a role in the splicing of cellular pre-mRNAs. May be involved in H(2)O(2)-induced neuronal cell death. {ECO:0000269|PubMed:11283611, ECO:0000269|PubMed:17068332, ECO:0000269|PubMed:22422766, ECO:0000269|PubMed:29851065}. |
O75363 | BCAS1 | S399 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75376 | NCOR1 | S158 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S224 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1383 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75410 | TACC1 | S316 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75420 | GIGYF1 | S368 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O75449 | KATNA1 | S170 | ochoa | Katanin p60 ATPase-containing subunit A1 (Katanin p60 subunit A1) (EC 5.6.1.1) (p60 katanin) | Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03023, ECO:0000269|PubMed:10751153, ECO:0000269|PubMed:11870226, ECO:0000269|PubMed:19287380}. |
O75533 | SF3B1 | S488 | ochoa | Splicing factor 3B subunit 1 (Pre-mRNA-splicing factor SF3b 155 kDa subunit) (SF3b155) (Spliceosome-associated protein 155) (SAP 155) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:27720643, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B1 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). {ECO:0000250|UniProtKB:Q99NB9, ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
O75575 | CRCP | S62 | ochoa | DNA-directed RNA polymerase III subunit RPC9 (RNA polymerase III subunit C9) (Calcitonin gene-related peptide-receptor component protein) (CGRP-RCP) (CGRP-receptor component protein) (CGRPRCP) (HsC17) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:20413673, PubMed:33558764, PubMed:34675218). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. With POLR3H/RPC8 forms a mobile stalk that protrudes from Pol III core and functions primarily in transcription initiation (By similarity) (PubMed:20413673, PubMed:33558764, PubMed:33558766, PubMed:34675218). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:Q9C0Z9, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:34675218}.; FUNCTION: Accessory protein for the calcitonin gene-related peptide (CGRP) receptor. It modulates CGRP responsiveness in a variety of tissues. {ECO:0000250|UniProtKB:O35427}. |
O75764 | TCEA3 | S115 | ochoa | Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
O75899 | GABBR2 | S884 | ochoa | Gamma-aminobutyric acid type B receptor subunit 2 (GABA-B receptor 2) (GABA-B-R2) (GABA-BR2) (GABABR2) (Gb2) (G-protein coupled receptor 51) (HG20) | Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2 (PubMed:15617512, PubMed:18165688, PubMed:22660477, PubMed:24305054, PubMed:9872316, PubMed:9872744). Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins (PubMed:18165688). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (PubMed:10075644, PubMed:10773016, PubMed:24305054). Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis (PubMed:10075644, PubMed:10773016, PubMed:10906333, PubMed:9872744). Plays a critical role in the fine-tuning of inhibitory synaptic transmission (PubMed:22660477, PubMed:9872744). Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials (PubMed:10075644, PubMed:22660477, PubMed:9872316, PubMed:9872744). Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception (Probable). {ECO:0000269|PubMed:10075644, ECO:0000269|PubMed:10328880, ECO:0000269|PubMed:15617512, ECO:0000269|PubMed:18165688, ECO:0000269|PubMed:22660477, ECO:0000269|PubMed:24305054, ECO:0000269|PubMed:9872316, ECO:0000269|PubMed:9872744, ECO:0000305}. |
O94818 | NOL4 | S248 | ochoa | Nucleolar protein 4 (Nucleolar-localized protein) | None |
O94913 | PCF11 | S370 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94929 | ABLIM3 | S282 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95139 | NDUFB6 | S55 | psp | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 (Complex I-B17) (CI-B17) (NADH-ubiquinone oxidoreductase B17 subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O95168 | NDUFB4 | S26 | ochoa | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 (Complex I-B15) (CI-B15) (NADH-ubiquinone oxidoreductase B15 subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
O95197 | RTN3 | S453 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95202 | LETM1 | S142 | ochoa | Mitochondrial proton/calcium exchanger protein (Electroneutral mitochondrial K(+)/H(+)exchanger) (KHE) (Leucine zipper-EF-hand-containing transmembrane protein 1) | Plays an important role in maintenance of mitochondrial morphology and in mediating either calcium or potassium/proton antiport (PubMed:18628306, PubMed:19797662, PubMed:24344246, PubMed:24898248, PubMed:29123128, PubMed:32139798, PubMed:36055214, PubMed:36321428). Mediates proton-dependent calcium efflux from mitochondrion (PubMed:19797662, PubMed:24344246, PubMed:29123128). Also functions as an electroneutral mitochondrial proton/potassium exchanger (PubMed:24898248, PubMed:36055214, PubMed:36321428). Crucial for the maintenance of mitochondrial tubular networks and for the assembly of the supercomplexes of the respiratory chain (PubMed:18628306, PubMed:36055214). Required for the maintenance of the tubular shape and cristae organization (PubMed:18628306, PubMed:32139798). {ECO:0000269|PubMed:18628306, ECO:0000269|PubMed:19797662, ECO:0000269|PubMed:24344246, ECO:0000269|PubMed:24898248, ECO:0000269|PubMed:29123128, ECO:0000269|PubMed:32139798, ECO:0000269|PubMed:36055214, ECO:0000269|PubMed:36321428}. |
O95251 | KAT7 | S506 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95425 | SVIL | S467 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95613 | PCNT | S2177 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95613 | PCNT | S2327 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
P00519 | ABL1 | S569 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P06401 | PGR | S554 | psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P08697 | SERPINF2 | S450 | ochoa | Alpha-2-antiplasmin (Alpha-2-AP) (Alpha-2-plasmin inhibitor) (Alpha-2-PI) (Serpin F2) | Serine protease inhibitor. The major targets of this inhibitor are plasmin and trypsin, but it also inactivates matriptase-3/TMPRSS7 and chymotrypsin. {ECO:0000269|PubMed:15853774}. |
P11137 | MAP2 | S654 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S1480 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P12036 | NEFH | S668 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12755 | SKI | S394 | ochoa | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P12883 | MYH7 | S680 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P15260 | IFNGR1 | S327 | ochoa | Interferon gamma receptor 1 (IFN-gamma receptor 1) (IFN-gamma-R1) (CDw119) (Interferon gamma receptor alpha-chain) (IFN-gamma-R-alpha) (CD antigen CD119) | Receptor subunit for interferon gamma/INFG that plays crucial roles in antimicrobial, antiviral, and antitumor responses by activating effector immune cells and enhancing antigen presentation (PubMed:20015550). Associates with transmembrane accessory factor IFNGR2 to form a functional receptor (PubMed:10986460, PubMed:2971451, PubMed:7615558, PubMed:7617032, PubMed:7673114). Upon ligand binding, the intracellular domain of IFNGR1 opens out to allow association of downstream signaling components JAK1 and JAK2. In turn, activated JAK1 phosphorylates IFNGR1 to form a docking site for STAT1. Subsequent phosphorylation of STAT1 leads to dimerization, translocation to the nucleus, and stimulation of target gene transcription (PubMed:28883123). STAT3 can also be activated in a similar manner although activation seems weaker. IFNGR1 intracellular domain phosphorylation also provides a docking site for SOCS1 that regulates the JAK-STAT pathway by competing with STAT1 binding to IFNGR1 (By similarity). {ECO:0000250|UniProtKB:P15261, ECO:0000269|PubMed:10986460, ECO:0000269|PubMed:20015550, ECO:0000269|PubMed:28883123, ECO:0000269|PubMed:2971451, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7617032, ECO:0000269|PubMed:7673114}. |
P15408 | FOSL2 | S200 | ochoa | Fos-related antigen 2 (FRA-2) | Controls osteoclast survival and size (By similarity). As a dimer with JUN, activates LIF transcription (By similarity). Activates CEBPB transcription in PGE2-activated osteoblasts (By similarity). {ECO:0000250|UniProtKB:P47930, ECO:0000250|UniProtKB:P51145}. |
P15822 | HIVEP1 | S537 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S1000 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S1158 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15880 | RPS2 | S264 | ochoa | Small ribosomal subunit protein uS5 (40S ribosomal protein S2) (40S ribosomal protein S4) (Protein LLRep3) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399). Plays a role in the assembly and function of the 40S ribosomal subunit (By similarity). Mutations in this protein affects the control of translational fidelity (By similarity). Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (By similarity). {ECO:0000250|UniProtKB:P25443, ECO:0000269|PubMed:23636399}. |
P16157 | ANK1 | S597 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P16949 | STMN1 | S25 | ochoa|psp | Stathmin (Leukemia-associated phosphoprotein p18) (Metablastin) (Oncoprotein 18) (Op18) (Phosphoprotein p19) (pp19) (Prosolin) (Protein Pr22) (pp17) | Involved in the regulation of the microtubule (MT) filament system by destabilizing microtubules. Prevents assembly and promotes disassembly of microtubules. Phosphorylation at Ser-16 may be required for axon formation during neurogenesis. Involved in the control of the learned and innate fear (By similarity). {ECO:0000250}. |
P16949 | STMN1 | S38 | ochoa|psp | Stathmin (Leukemia-associated phosphoprotein p18) (Metablastin) (Oncoprotein 18) (Op18) (Phosphoprotein p19) (pp19) (Prosolin) (Protein Pr22) (pp17) | Involved in the regulation of the microtubule (MT) filament system by destabilizing microtubules. Prevents assembly and promotes disassembly of microtubules. Phosphorylation at Ser-16 may be required for axon formation during neurogenesis. Involved in the control of the learned and innate fear (By similarity). {ECO:0000250}. |
P19474 | TRIM21 | S266 | ochoa | E3 ubiquitin-protein ligase TRIM21 (EC 2.3.2.27) (52 kDa Ro protein) (52 kDa ribonucleoprotein autoantigen Ro/SS-A) (RING finger protein 81) (Ro(SS-A)) (Sjoegren syndrome type A antigen) (SS-A) (Tripartite motif-containing protein 21) | E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2 (PubMed:16297862, PubMed:16316627, PubMed:16472766, PubMed:16880511, PubMed:18022694, PubMed:18361920, PubMed:18641315, PubMed:18845142, PubMed:19675099, PubMed:26347139). Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination (PubMed:16880511, PubMed:19675099). Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes (PubMed:16880511). A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B ('Thr-187' phosphorylated-form), thereby promoting its degradation by the proteasome (PubMed:16880511). Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling (PubMed:19675099). Negatively regulates IFN-beta production post-pathogen recognition by catalyzing polyubiquitin-mediated degradation of IRF3 (PubMed:18641315). Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway (PubMed:18022694). Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages (By similarity). Plays a role in the regulation of the cell cycle progression (PubMed:16880511). Enhances the decapping activity of DCP2 (PubMed:18361920). Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules (PubMed:1985094, PubMed:8666824). At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified (PubMed:8666824). The common feature of these proteins is their ability to bind HY RNAs.2 (PubMed:8666824). Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma (PubMed:26347139). Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy (PubMed:26347139). Also regulates autophagy through FIP200/RB1CC1 ubiquitination and subsequent decreased protein stability (PubMed:36359729). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through 'Lys-63'-linked ubiquitination of NMI (PubMed:26342464). During viral infection, promotes cell pyroptosis by mediating 'Lys-6'-linked ubiquitination of ISG12a/IFI27, facilitating its translocation into the mitochondria and subsequent CASP3 activation (PubMed:36426955). When up-regulated through the IFN/JAK/STAT signaling pathway, promotes 'Lys-27'-linked ubiquitination of MAVS, leading to the recruitment of TBK1 and up-regulation of innate immunity (PubMed:29743353). Mediates 'Lys-63'-linked polyubiquitination of G3BP1 in response to heat shock, leading to stress granule disassembly (PubMed:36692217). {ECO:0000250|UniProtKB:Q62191, ECO:0000269|PubMed:16297862, ECO:0000269|PubMed:16316627, ECO:0000269|PubMed:16472766, ECO:0000269|PubMed:16880511, ECO:0000269|PubMed:18022694, ECO:0000269|PubMed:18361920, ECO:0000269|PubMed:18641315, ECO:0000269|PubMed:18845142, ECO:0000269|PubMed:19675099, ECO:0000269|PubMed:1985094, ECO:0000269|PubMed:26342464, ECO:0000269|PubMed:26347139, ECO:0000269|PubMed:29743353, ECO:0000269|PubMed:36359729, ECO:0000269|PubMed:36426955, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:8666824}. |
P23497 | SP100 | S274 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P25054 | APC | S2064 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26358 | DNMT1 | S154 | ochoa|psp | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P27816 | MAP4 | S197 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28324 | ELK4 | S230 | ochoa | ETS domain-containing protein Elk-4 (Serum response factor accessory protein 1) (SAP-1) (SRF accessory protein 1) | Involved in both transcriptional activation and repression. Interaction with SIRT7 leads to recruitment and stabilization of SIRT7 at promoters, followed by deacetylation of histone H3 at 'Lys-18' (H3K18Ac) and subsequent transcription repression. Forms a ternary complex with the serum response factor (SRF). Requires DNA-bound SRF for ternary complex formation and makes extensive DNA contacts to the 5'side of SRF, but does not bind DNA autonomously. {ECO:0000269|PubMed:22722849}. |
P28715 | ERCC5 | S384 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P28749 | RBL1 | S650 | ochoa|psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P28749 | RBL1 | S749 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P29374 | ARID4A | S932 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29597 | TYK2 | S884 | ochoa | Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) | Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}. |
P30291 | WEE1 | S165 | ochoa|psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P31629 | HIVEP2 | S412 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31946 | YWHAB | S186 | psp | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
P31947 | SFN | S186 | psp | 14-3-3 protein sigma (Epithelial cell marker protein 1) (Stratifin) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binding generally results in the modulation of the activity of the binding partner (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Promotes cytosolic retention of GBP1 GTPase by binding to phosphorylated GBP1, thereby inhibiting the innate immune response (PubMed:37797010). Also acts as a TP53/p53-regulated inhibitor of G2/M progression (PubMed:9659898). When bound to KRT17, regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway (By similarity). Acts to maintain desmosome cell junction adhesion in epithelial cells via interacting with and sequestering PKP3 to the cytoplasm, thereby restricting its translocation to existing desmosome structures and therefore maintaining desmosome protein homeostasis (PubMed:24124604). Also acts to facilitate PKP3 exchange at desmosome plaques, thereby maintaining keratinocyte intercellular adhesion (PubMed:29678907). May also regulate MDM2 autoubiquitination and degradation and thereby activate p53/TP53 (PubMed:18382127). {ECO:0000250|UniProtKB:O70456, ECO:0000269|PubMed:15731107, ECO:0000269|PubMed:18382127, ECO:0000269|PubMed:22634725, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:28202711, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:37797010, ECO:0000269|PubMed:9659898}. |
P35612 | ADD2 | S530 | ochoa | Beta-adducin (Erythrocyte adducin subunit beta) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}. |
P36402 | TCF7 | S168 | ochoa | Transcription factor 7 (TCF-7) (T-cell-specific transcription factor 1) (T-cell factor 1) (TCF-1) | Transcriptional activator involved in T-cell lymphocyte differentiation. Necessary for the survival of CD4(+) CD8(+) immature thymocytes. Isoforms lacking the N-terminal CTNNB1 binding domain cannot fulfill this role. Binds to the T-lymphocyte-specific enhancer element (5'-WWCAAAG-3') found in the promoter of the CD3E gene. Represses expression of the T-cell receptor gamma gene in alpha-beta T-cell lineages (By similarity). Required for the development of natural killer receptor-positive lymphoid tissue inducer T-cells (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7 and CTNNB1. May also act as feedback transcriptional repressor of CTNNB1 and TCF7L2 target genes. {ECO:0000250|UniProtKB:Q00417}. |
P38398 | BRCA1 | S1009 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P40306 | PSMB10 | S230 | ochoa | Proteasome subunit beta type-10 (EC 3.4.25.1) (Low molecular mass protein 10) (Macropain subunit MECl-1) (Multicatalytic endopeptidase complex subunit MECl-1) (Proteasome MECl-1) (Proteasome subunit beta-2i) | The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. |
P41229 | KDM5C | S301 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P41240 | CSK | Y97 | ochoa | Tyrosine-protein kinase CSK (EC 2.7.10.2) (C-Src kinase) (Protein-tyrosine kinase CYL) | Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN, CSK or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane. Suppresses signaling by various surface receptors, including T-cell receptor (TCR) and B-cell receptor (BCR) by phosphorylating and maintaining inactive several positive effectors such as FYN or LCK. {ECO:0000269|PubMed:1639064, ECO:0000269|PubMed:9281320}. |
P42224 | STAT1 | S532 | ochoa | Signal transducer and activator of transcription 1-alpha/beta (Transcription factor ISGF-3 components p91/p84) | Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors (PubMed:12764129, PubMed:12855578, PubMed:15322115, PubMed:23940278, PubMed:34508746, PubMed:35568036, PubMed:9724754). Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426, PubMed:35568036). ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state (PubMed:28753426, PubMed:35568036). In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state (PubMed:8156998). Becomes activated in response to KITLG/SCF and KIT signaling (PubMed:15526160). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:19088846). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylated at Thr-749 by IKBKB which promotes binding of STAT1 to the 5'-TTTGAGGC-3' sequence in the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). Phosphorylation at Thr-749 also promotes binding of STAT1 to the 5'-TTTGAGTC-3' sequence in the IL12B promoter and activation of IL12B transcription (PubMed:32209697). Involved in food tolerance in small intestine: associates with the Gasdermin-D, p13 cleavage product (13 kDa GSDMD) and promotes transcription of CIITA, inducing type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:P42225, ECO:0000269|PubMed:12764129, ECO:0000269|PubMed:12855578, ECO:0000269|PubMed:15322115, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:23940278, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28753426, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35568036, ECO:0000269|PubMed:8156998, ECO:0000269|PubMed:9724754, ECO:0000303|PubMed:15526160}. |
P42566 | EPS15 | S221 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P46821 | MAP1B | S1312 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1881 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48551 | IFNAR2 | S400 | ochoa|psp | Interferon alpha/beta receptor 2 (IFN-R-2) (IFN-alpha binding protein) (IFN-alpha/beta receptor 2) (Interferon alpha binding protein) (Type I interferon receptor 2) | Together with IFNAR1, forms the heterodimeric receptor for type I interferons (including interferons alpha, beta, epsilon, omega and kappa) (PubMed:10049744, PubMed:10556041, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Type I interferon binding activates the JAK-STAT signaling cascade, resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response (PubMed:10049744, PubMed:17517919, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Mechanistically, type I interferon-binding brings the IFNAR1 and IFNAR2 subunits into close proximity with one another, driving their associated Janus kinases (JAKs) (TYK2 bound to IFNAR1 and JAK1 bound to IFNAR2) to cross-phosphorylate one another (PubMed:10556041, PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). The activated kinases phosphorylate specific tyrosine residues on the intracellular domains of IFNAR1 and IFNAR2, forming docking sites for the STAT transcription factors (STAT1, STAT2 and STAT) (PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). STAT proteins are then phosphorylated by the JAKs, promoting their translocation into the nucleus to regulate expression of interferon-regulated genes (PubMed:12105218, PubMed:28165510, PubMed:9121453). {ECO:0000269|PubMed:10049744, ECO:0000269|PubMed:10556041, ECO:0000269|PubMed:11682488, ECO:0000269|PubMed:12105218, ECO:0000269|PubMed:17517919, ECO:0000269|PubMed:21854986, ECO:0000269|PubMed:26424569, ECO:0000269|PubMed:28165510, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:7665574, ECO:0000269|PubMed:7759950, ECO:0000269|PubMed:8181059, ECO:0000269|PubMed:8798579, ECO:0000269|PubMed:8969169, ECO:0000269|PubMed:9121453}.; FUNCTION: [Isoform 3]: Potent inhibitor of type I IFN receptor activity. {ECO:0000269|PubMed:7759950}. |
P48552 | NRIP1 | S252 | ochoa | Nuclear receptor-interacting protein 1 (Nuclear factor RIP140) (Receptor-interacting protein 140) | Modulates transcriptional activation by steroid receptors such as NR3C1, NR3C2 and ESR1. Also modulates transcriptional repression by nuclear hormone receptors. Positive regulator of the circadian clock gene expression: stimulates transcription of BMAL1, CLOCK and CRY1 by acting as a coactivator for RORA and RORC. Involved in the regulation of ovarian function (By similarity). Plays a role in renal development (PubMed:28381549). {ECO:0000250|UniProtKB:Q8CBD1, ECO:0000269|PubMed:10364267, ECO:0000269|PubMed:11509661, ECO:0000269|PubMed:11518808, ECO:0000269|PubMed:12554755, ECO:0000269|PubMed:15060175, ECO:0000269|PubMed:21628546, ECO:0000269|PubMed:28381549, ECO:0000269|PubMed:7641693}. |
P49916 | LIG3 | S242 | ochoa | DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) | Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}. |
P50549 | ETV1 | S94 | ochoa|psp | ETS translocation variant 1 (Ets-related protein 81) | Transcriptional activator that binds to DNA sequences containing the consensus pentanucleotide 5'-CGGA[AT]-3' (PubMed:7651741). Required for olfactory dopaminergic neuron differentiation; may directly activate expression of tyrosine hydroxylase (TH) (By similarity). {ECO:0000250|UniProtKB:P41164, ECO:0000269|PubMed:7651741}. |
P51608 | MECP2 | S80 | ochoa|psp | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51955 | NEK2 | S184 | ochoa | Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) | Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}. |
P52701 | MSH6 | S292 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P53621 | COPA | S895 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P53814 | SMTN | S729 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54132 | BLM | S144 | ochoa|psp | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P63104 | YWHAZ | S184 | psp | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
P82675 | MRPS5 | S386 | ochoa | Small ribosomal subunit protein uS5m (28S ribosomal protein S5, mitochondrial) (MRP-S5) (S5mt) | None |
P85037 | FOXK1 | S213 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
P98171 | ARHGAP4 | S842 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
Q01664 | TFAP4 | S139 | ochoa|psp | Transcription factor AP-4 (Activating enhancer-binding protein 4) (Class C basic helix-loop-helix protein 41) (bHLHc41) | Transcription factor that activates both viral and cellular genes by binding to the symmetrical DNA sequence 5'-CAGCTG-3'. |
Q02952 | AKAP12 | S1328 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03135 | CAV1 | S80 | psp | Caveolin-1 | May act as a scaffolding protein within caveolar membranes (PubMed:11751885). Forms a stable heterooligomeric complex with CAV2 that targets to lipid rafts and drives caveolae formation. Mediates the recruitment of CAVIN proteins (CAVIN1/2/3/4) to the caveolae (PubMed:19262564). Interacts directly with G-protein alpha subunits and can functionally regulate their activity (By similarity). Involved in the costimulatory signal essential for T-cell receptor (TCR)-mediated T-cell activation. Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Recruits CTNNB1 to caveolar membranes and may regulate CTNNB1-mediated signaling through the Wnt pathway (By similarity). Negatively regulates TGFB1-mediated activation of SMAD2/3 by mediating the internalization of TGFBR1 from membrane rafts leading to its subsequent degradation (PubMed:25893292). Binds 20(S)-hydroxycholesterol (20(S)-OHC) (By similarity). {ECO:0000250|UniProtKB:P49817, ECO:0000269|PubMed:11751885, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:19262564, ECO:0000269|PubMed:25893292}. |
Q08050 | FOXM1 | S672 | ochoa|psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q08378 | GOLGA3 | S290 | ochoa | Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) | Golgi auto-antigen; probably involved in maintaining Golgi structure. |
Q08AD1 | CAMSAP2 | S1319 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q12765 | SCRN1 | S322 | ochoa | Secernin-1 | Regulates exocytosis in mast cells. Increases both the extent of secretion and the sensitivity of mast cells to stimulation with calcium (By similarity). {ECO:0000250}. |
Q12802 | AKAP13 | S2728 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12888 | TP53BP1 | S525 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13085 | ACACA | S344 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13127 | REST | S971 | ochoa | RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) | Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}. |
Q13129 | RLF | S1628 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13330 | MTA1 | S522 | ochoa|psp | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13342 | SP140 | S467 | ochoa | Nuclear body protein SP140 (Lymphoid-restricted homolog of Sp100) (LYSp100) (Nuclear autoantigen Sp-140) (Speckled 140 kDa) | Component of the nuclear body, also known as nuclear domain 10, PML oncogenic domain, and KR body (PubMed:8910577). May be involved in the pathogenesis of acute promyelocytic leukemia and viral infection (PubMed:8910577). May play a role in chromatin-mediated regulation of gene expression although it does not bind to histone H3 tails (PubMed:24267382). {ECO:0000269|PubMed:24267382, ECO:0000269|PubMed:8910577, ECO:0000303|PubMed:8910577}. |
Q13425 | SNTB2 | S233 | ochoa | Beta-2-syntrophin (59 kDa dystrophin-associated protein A1 basic component 2) (Syntrophin-3) (SNT3) (Syntrophin-like) (SNTL) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. May play a role in the regulation of secretory granules via its interaction with PTPRN. |
Q13428 | TCOF1 | S777 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13432 | UNC119 | S78 | ochoa | Protein unc-119 homolog A (Retinal protein 4) (hRG4) | Involved in synaptic functions in photoreceptor cells, the signal transduction in immune cells as a Src family kinase activator, endosome recycling, the uptake of bacteria and endocytosis, protein trafficking in sensory neurons and as lipid-binding chaperone with specificity for a diverse subset of myristoylated proteins. Specifically binds the myristoyl moiety of a subset of N-terminally myristoylated proteins and is required for their localization. Binds myristoylated GNAT1 and is required for G-protein localization and trafficking in sensory neurons. Probably plays a role in trafficking proteins in photoreceptor cells. Plays important roles in mediating Src family kinase signals for the completion of cytokinesis via RAB11A. {ECO:0000269|PubMed:12496276, ECO:0000269|PubMed:14757743, ECO:0000269|PubMed:19381274, ECO:0000269|PubMed:21642972, ECO:0000269|PubMed:22085962, ECO:0000269|PubMed:23535298, ECO:0000305|PubMed:22960633}. |
Q13523 | PRP4K | S328 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13541 | EIF4EBP1 | S65 | ochoa|psp | Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) (eIF4E-binding protein 1) (Phosphorylated heat- and acid-stable protein regulated by insulin 1) (PHAS-I) | Repressor of translation initiation that regulates EIF4E activity by preventing its assembly into the eIF4F complex: hypophosphorylated form competes with EIF4G1/EIF4G3 and strongly binds to EIF4E, leading to repress translation. In contrast, hyperphosphorylated form dissociates from EIF4E, allowing interaction between EIF4G1/EIF4G3 and EIF4E, leading to initiation of translation. Mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways. {ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22684010, ECO:0000269|PubMed:7935836}. |
Q13610 | PWP1 | S57 | ochoa | Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) | Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}. |
Q13796 | SHROOM2 | S1171 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q14004 | CDK13 | S525 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14207 | NPAT | S1151 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14789 | GOLGB1 | S3016 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q15052 | ARHGEF6 | S225 | ochoa|psp | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15181 | PPA1 | S30 | ochoa | Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase) | None |
Q15287 | RNPS1 | S27 | ochoa | RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) | Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}. |
Q15554 | TERF2 | S365 | ochoa|psp | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15652 | JMJD1C | S701 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15678 | PTPN14 | S314 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15788 | NCOA1 | S569 | ochoa|psp | Nuclear receptor coactivator 1 (NCoA-1) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 74) (bHLHe74) (Protein Hin-2) (RIP160) (Renal carcinoma antigen NY-REN-52) (Steroid receptor coactivator 1) (SRC-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:10449719, ECO:0000269|PubMed:12954634, ECO:0000269|PubMed:7481822, ECO:0000269|PubMed:9223281, ECO:0000269|PubMed:9223431, ECO:0000269|PubMed:9296499, ECO:0000269|PubMed:9427757}. |
Q16236 | NFE2L2 | S215 | ochoa|psp | Nuclear factor erythroid 2-related factor 2 (NF-E2-related factor 2) (NFE2-related factor 2) (Nrf-2) (Nuclear factor, erythroid derived 2, like 2) | Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles (PubMed:11035812, PubMed:19489739, PubMed:29018201, PubMed:31398338). In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex (PubMed:11035812, PubMed:15601839, PubMed:29018201). In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, heterodimerization with one of the small Maf proteins and binding to ARE elements of cytoprotective target genes (PubMed:19489739, PubMed:29590092). The NFE2L2/NRF2 pathway is also activated in response to selective autophagy: autophagy promotes interaction between KEAP1 and SQSTM1/p62 and subsequent inactivation of the BCR(KEAP1) complex, leading to NFE2L2/NRF2 nuclear accumulation and expression of cytoprotective genes (PubMed:20452972). The NFE2L2/NRF2 pathway is also activated during the unfolded protein response (UPR), contributing to redox homeostasis and cell survival following endoplasmic reticulum stress (By similarity). May also be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region (PubMed:7937919). Also plays an important role in the regulation of the innate immune response and antiviral cytosolic DNA sensing. It is a critical regulator of the innate immune response and survival during sepsis by maintaining redox homeostasis and restraint of the dysregulation of pro-inflammatory signaling pathways like MyD88-dependent and -independent and TNF-alpha signaling (By similarity). Suppresses macrophage inflammatory response by blocking pro-inflammatory cytokine transcription and the induction of IL6 (By similarity). Binds to the proximity of pro-inflammatory genes in macrophages and inhibits RNA Pol II recruitment. The inhibition is independent of the NRF2-binding motif and reactive oxygen species level (By similarity). Represses antiviral cytosolic DNA sensing by suppressing the expression of the adapter protein STING1 and decreasing responsiveness to STING1 agonists while increasing susceptibility to infection with DNA viruses (PubMed:30158636). Once activated, limits the release of pro-inflammatory cytokines in response to human coronavirus SARS-CoV-2 infection and to virus-derived ligands through a mechanism that involves inhibition of IRF3 dimerization. Also inhibits both SARS-CoV-2 replication, as well as the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism (PubMed:33009401). {ECO:0000250|UniProtKB:Q60795, ECO:0000269|PubMed:11035812, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:19489739, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:29018201, ECO:0000269|PubMed:29590092, ECO:0000269|PubMed:30158636, ECO:0000269|PubMed:31398338, ECO:0000269|PubMed:33009401, ECO:0000269|PubMed:7937919}. |
Q2KHM9 | KIAA0753 | S826 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2M2Z5 | KIZ | S317 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2T9K0 | TMEM44 | S333 | ochoa | Transmembrane protein 44 | None |
Q3MII6 | TBC1D25 | S140 | ochoa | TBC1 domain family member 25 | Acts as a GTPase-activating protein specific for RAB33B. Involved in the regulation of autophagosome maturation, the process in which autophagosomes fuse with endosomes and lysosomes. {ECO:0000269|PubMed:21383079}. |
Q4ZG55 | GREB1 | S1160 | ochoa | Protein GREB1 (Gene regulated in breast cancer 1 protein) | May play a role in estrogen-stimulated cell proliferation. Acts as a regulator of hormone-dependent cancer growth in breast and prostate cancers. |
Q5HYC2 | BRD10 | S594 | ochoa | Uncharacterized bromodomain-containing protein 10 | None |
Q5JSZ5 | PRRC2B | S980 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTH9 | RRP12 | S801 | ochoa | RRP12-like protein | None |
Q5JTW2 | CEP78 | S325 | ochoa | Centrosomal protein of 78 kDa (Cep78) | Centriole wall protein that localizes to mature centrioles and regulates centriole and cilia biogenesis (PubMed:27246242, PubMed:27588451, PubMed:28242748, PubMed:34259627). Involved in centrosome duplication: required for efficient PLK4 centrosomal localization and PLK4-induced overduplication of centrioles (PubMed:27246242). Involved in cilium biogenesis and controls cilium length (PubMed:27588451). Acts as a regulator of protein stability by preventing ubiquitination of centrosomal proteins, such as CCP110 and tektins (PubMed:28242748, PubMed:34259627). Associates with the EDVP complex, preventing ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Promotes deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5) via its interaction with USP16 (By similarity). {ECO:0000250|UniProtKB:Q6IRU7, ECO:0000269|PubMed:27246242, ECO:0000269|PubMed:27588451, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}. |
Q5T7B8 | KIF24 | S584 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T7N3 | KANK4 | S109 | ochoa | KN motif and ankyrin repeat domain-containing protein 4 (Ankyrin repeat domain-containing protein 38) | May be involved in the control of cytoskeleton formation by regulating actin polymerization. {ECO:0000269|PubMed:17996375}. |
Q5T8P6 | RBM26 | S795 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5TCZ1 | SH3PXD2A | S547 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5THK1 | PRR14L | S1391 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5U5R9 | HECTD2 | S78 | ochoa | Probable E3 ubiquitin-protein ligase HECTD2 (EC 2.3.2.26) (HECT domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECTD2) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:28584101}.; FUNCTION: (Microbial infection) Catalyzes ubiquitination of Botulinum neurotoxin A light chain (LC) of C.botulinum neurotoxin type A (BoNT/A). {ECO:0000269|PubMed:28584101}. |
Q5U623 | ATF7IP2 | S416 | ochoa | Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}. |
Q5UIP0 | RIF1 | S782 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VST9 | OBSCN | S238 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VTB9 | RNF220 | S201 | ochoa | E3 ubiquitin-protein ligase RNF220 (EC 2.3.2.27) (RING finger protein 220) (RING-type E3 ubiquitin transferase RNF220) | E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of SIN3B (By similarity). Independently of its E3 ligase activity, acts as a CTNNB1 stabilizer through USP7-mediated deubiquitination of CTNNB1 promoting Wnt signaling (PubMed:25266658, PubMed:33964137). Plays a critical role in the regulation of nuclear lamina (PubMed:33964137). {ECO:0000250|UniProtKB:Q6PDX6, ECO:0000269|PubMed:25266658, ECO:0000269|PubMed:33964137}. |
Q5VUA4 | ZNF318 | S214 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUB5 | FAM171A1 | S849 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VV52 | ZNF691 | S39 | ochoa | Zinc finger protein 691 | May be involved in transcriptional regulation. |
Q5VYS8 | TUT7 | S706 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5VZ89 | DENND4C | S1126 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5W0B1 | OBI1 | S461 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q5W0B1 | OBI1 | S553 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q63HK5 | TSHZ3 | S333 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q66K14 | TBC1D9B | S1138 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q68CQ4 | UTP25 | S273 | ochoa | U3 small nucleolar RNA-associated protein 25 homolog (Digestive organ expansion factor homolog) (UTP25 small subunit processor component) | Component of the ribosomal small subunit processome for the biogenesis of ribosomes, functions in pre-ribosomal RNA (pre-rRNA) processing (By similarity). Essential for embryonic development in part through the regulation of p53 pathway. Controls the expansion growth of digestive organs and liver (PubMed:23357851, PubMed:25007945, PubMed:27657329). Also involved in the sympathetic neuronal development (By similarity). Mediates, with CAPN3, the proteasome-independent degradation of p53/TP53 (PubMed:23357851, PubMed:27657329). {ECO:0000250|UniProtKB:Q6PEH4, ECO:0000269|PubMed:23357851, ECO:0000269|PubMed:25007945, ECO:0000269|PubMed:27657329}. |
Q68E01 | INTS3 | S500 | ochoa | Integrator complex subunit 3 (Int3) (SOSS complex subunit A) (Sensor of single-strand DNA complex subunit A) (SOSS-A) (Sensor of ssDNA subunit A) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS3 is involved in the post-termination step: INTS3 binds INTS7 in the open conformation of integrator complex and prevents the rebinding of Pol II to the integrator after termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}.; FUNCTION: Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint. The SOSS complex associates with single-stranded DNA at DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. The SOSS complex is required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. In the SOSS complex, it is required for the assembly of the complex and for stabilization of the complex at DNA damage sites. {ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501}. |
Q6DN90 | IQSEC1 | S225 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6IBW4 | NCAPH2 | S246 | ochoa | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6IE81 | JADE1 | S743 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6IN85 | PPP4R3A | S698 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6JBY9 | RCSD1 | S351 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6N021 | TET2 | S334 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NSJ2 | PHLDB3 | S254 | ochoa | Pleckstrin homology-like domain family B member 3 | None |
Q6NYC8 | PPP1R18 | S145 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6NYC8 | PPP1R18 | S224 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6P1R3 | MSANTD2 | S436 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6P5Z2 | PKN3 | S171 | ochoa | Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) | Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}. |
Q6P9H4 | CNKSR3 | S479 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6PH81 | C16orf87 | S50 | ochoa | UPF0547 protein C16orf87 | None |
Q6PJW8 | CNST | S436 | ochoa | Consortin | Required for targeting of connexins to the plasma membrane. {ECO:0000269|PubMed:19864490}. |
Q6T4R5 | NHS | S551 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UB99 | ANKRD11 | S860 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6XZF7 | DNMBP | S359 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZMQ8 | AATK | S946 | ochoa | Serine/threonine-protein kinase LMTK1 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase) (AATYK) (Brain apoptosis-associated tyrosine kinase) (CDK5-binding protein) (Lemur tyrosine kinase 1) (p35-binding protein) (p35BP) | May be involved in neuronal differentiation. {ECO:0000269|PubMed:10837911}. |
Q6ZRS2 | SRCAP | S349 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZSR9 | None | S300 | ochoa | Uncharacterized protein FLJ45252 | None |
Q6ZV73 | FGD6 | S205 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q6ZVD8 | PHLPP2 | S1229 | ochoa | PH domain leucine-rich repeat-containing protein phosphatase 2 (EC 3.1.3.16) (PH domain leucine-rich repeat-containing protein phosphatase-like) (PHLPP-like) | Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT1, 'Ser-660' of PRKCB isoform beta-II and 'Ser-657' of PRKCA. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and decreases cell proliferation. Also controls the phosphorylation of AKT3. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis (PubMed:20513427). Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation (PubMed:21986499). Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates RAF1 inhibiting its kinase activity (PubMed:24530606). {ECO:0000269|PubMed:17386267, ECO:0000269|PubMed:18162466, ECO:0000269|PubMed:19079341, ECO:0000269|PubMed:20513427, ECO:0000269|PubMed:21986499, ECO:0000269|PubMed:24530606}. |
Q6ZVF9 | GPRIN3 | S542 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q71RC2 | LARP4 | S180 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q76I76 | SSH2 | S618 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7RTP6 | MICAL3 | S1674 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z417 | NUFIP2 | S572 | ochoa | FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) | Binds RNA. {ECO:0000269|PubMed:12837692}. |
Q7Z5H3 | ARHGAP22 | S359 | ochoa|psp | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z5L2 | R3HCC1L | S42 | ochoa | Coiled-coil domain-containing protein R3HCC1L (Growth inhibition and differentiation-related protein 88) (Putative mitochondrial space protein 32.1) (R3H and coiled-coil domain-containing protein 1-like) | None |
Q7Z6I6 | ARHGAP30 | S822 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z7B0 | FILIP1 | S979 | ochoa | Filamin-A-interacting protein 1 (FILIP) | By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}. |
Q86SQ0 | PHLDB2 | S501 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86UP3 | ZFHX4 | S1533 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86US8 | SMG6 | S831 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86UT5 | NHERF4 | S436 | ochoa | Na(+)/H(+) exchange regulatory cofactor NHE-RF4 (NHERF-4) (Intestinal and kidney-enriched PDZ protein) (Natrium-phosphate cotransporter IIa C-terminal-associated protein 2) (Na/Pi cotransporter C-terminal-associated protein 2) (NaPi-Cap2) (PDZ domain-containing protein 2) (PDZ domain-containing protein 3) (Sodium-hydrogen exchanger regulatory factor 4) | Acts as a regulatory protein that associates with GUCY2C and negatively modulates its heat-stable enterotoxin-mediated activation (PubMed:11950846). Stimulates SLC9A3 activity in the presence of elevated calcium ions (PubMed:19088451). {ECO:0000269|PubMed:11950846, ECO:0000269|PubMed:19088451}. |
Q86V20 | SHLD2 | S70 | ochoa | Shieldin complex subunit 2 (Protein FAM35A) (RINN1-REV7-interacting novel NHEJ regulator 2) (Shield complex subunit 2) | Component of the shieldin complex, which plays an important role in repair of DNA double-stranded breaks (DSBs) (PubMed:29656893, PubMed:29789392). During G1 and S phase of the cell cycle, the complex functions downstream of TP53BP1 to promote non-homologous end joining (NHEJ) and suppress DNA end resection (PubMed:29656893, PubMed:29789392). Mediates various NHEJ-dependent processes including immunoglobulin class-switch recombination, and fusion of unprotected telomeres (PubMed:29656893). {ECO:0000269|PubMed:29656893, ECO:0000269|PubMed:29789392}. |
Q86X10 | RALGAPB | S921 | ochoa | Ral GTPase-activating protein subunit beta (p170) | Non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes which act as GTPase activators for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q86YC2 | PALB2 | S209 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YS7 | C2CD5 | S643 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q86YV5 | PRAG1 | S148 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q86YV5 | PRAG1 | S782 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IUC6 | TICAM1 | S212 | ochoa | TIR domain-containing adapter molecule 1 (TICAM-1) (Proline-rich, vinculin and TIR domain-containing protein B) (Putative NF-kappa-B-activating protein 502H) (Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta) (MyD88-3) (TIR domain-containing adapter protein inducing IFN-beta) | Involved in innate immunity against invading pathogens. Adapter used by TLR3, TLR4 (through TICAM2) and TLR5 to mediate NF-kappa-B and interferon-regulatory factor (IRF) activation, and to induce apoptosis (PubMed:12471095, PubMed:12539043, PubMed:14739303, PubMed:28747347, PubMed:35215908). Ligand binding to these receptors results in TRIF recruitment through its TIR domain (PubMed:12471095, PubMed:12539043, PubMed:14739303). Distinct protein-interaction motifs allow recruitment of the effector proteins TBK1, TRAF6 and RIPK1, which in turn, lead to the activation of transcription factors IRF3 and IRF7, NF-kappa-B and FADD respectively (PubMed:12471095, PubMed:12539043, PubMed:14739303). Phosphorylation by TBK1 on the pLxIS motif leads to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent immunity against invading pathogens (PubMed:25636800). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines (By similarity). {ECO:0000250|UniProtKB:Q80UF7, ECO:0000269|PubMed:12471095, ECO:0000269|PubMed:12539043, ECO:0000269|PubMed:14739303, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:35215908}. |
Q8IUF8 | RIOX2 | S47 | ochoa | Ribosomal oxygenase 2 (60S ribosomal protein L27a histidine hydroxylase) (Bifunctional lysine-specific demethylase and histidyl-hydroxylase MINA) (EC 1.14.11.79) (Histone lysine demethylase MINA) (MYC-induced nuclear antigen) (Mineral dust-induced gene protein) (Nucleolar protein 52) (Ribosomal oxygenase MINA) (ROX) | Oxygenase that can act as both a histone lysine demethylase and a ribosomal histidine hydroxylase. Is involved in the demethylation of trimethylated 'Lys-9' on histone H3 (H3K9me3), leading to an increase in ribosomal RNA expression. Also catalyzes the hydroxylation of 60S ribosomal protein L27a on 'His-39'. May play an important role in cell growth and survival. May be involved in ribosome biogenesis, most likely during the assembly process of pre-ribosomal particles. {ECO:0000269|PubMed:12091391, ECO:0000269|PubMed:14695334, ECO:0000269|PubMed:15534111, ECO:0000269|PubMed:15819408, ECO:0000269|PubMed:15897898, ECO:0000269|PubMed:17317935, ECO:0000269|PubMed:19502796, ECO:0000269|PubMed:23103944}. |
Q8IWB9 | TEX2 | S204 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IWR1 | TRIM59 | S308 | psp | Tripartite motif-containing protein 59 (EC 2.3.2.27) (RING finger protein 104) (Tumor suppressor TSBF-1) | E3 ubiquitin ligase involved in different processes such as development and immune response (PubMed:22588174, PubMed:30231667). Serves as a negative regulator for innate immune signaling pathways by suppressing RLR-induced activation of IRF3/7 and NF-kappa-B via interaction with adapter ECSIT (PubMed:22588174). Regulates autophagy through modulating both the transcription and the ubiquitination of BECN1 (PubMed:30231667). On the one hand, regulates the transcription of BECN1 through negatively modulating the NF-kappa-B pathway. On the other hand, regulates TRAF6-mediated 'Lys-63'-linked ubiquitination of BECN1, thus affecting the formation of the BECN1-PIK3C3 complex. In addition, mediates 'Lys-48'-linked ubiquitination of TRAF6 and thereby promotes TRAF6 proteasomal degradation (PubMed:30231667). Also acts as a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly and WASH1 'Lys-63'-linked ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q922Y2, ECO:0000269|PubMed:22588174, ECO:0000269|PubMed:30231667}. |
Q8IX07 | ZFPM1 | S84 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IXK0 | PHC2 | S751 | ochoa | Polyhomeotic-like protein 2 (hPH2) (Early development regulatory protein 2) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. |
Q8IXQ3 | C9orf40 | S69 | ochoa | Uncharacterized protein C9orf40 | None |
Q8IY92 | SLX4 | S383 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IYB3 | SRRM1 | S450 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZ40 | RCOR2 | S63 | ochoa | REST corepressor 2 | May act as a component of a corepressor complex that represses transcription. {ECO:0000305}. |
Q8IZT6 | ASPM | S222 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZW8 | TNS4 | S386 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N157 | AHI1 | S45 | ochoa | Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) | Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}. |
Q8N4X5 | AFAP1L2 | S408 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N5J2 | MINDY1 | S103 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-1 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-1) (Protein FAM63A) | Hydrolase that can specifically remove 'Lys-48'-linked conjugated ubiquitin from proteins. Has exodeubiquitinase activity and has a preference for long polyubiquitin chains. May play a regulatory role at the level of protein turnover. {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8N5Y2 | MSL3 | S367 | ochoa | MSL complex subunit 3 (Male-specific lethal 3 homolog) (Male-specific lethal-3 homolog 1) (Male-specific lethal-3 protein-like 1) (MSL3-like 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:20018852, PubMed:20657587, PubMed:20943666, PubMed:21217699, PubMed:30224647, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Acts as a histone reader that specifically recognizes and binds histone H4 monomethylated at 'Lys-20' (H4K20Me1) in a DNA-dependent manner and is proposed to be involved in chromosomal targeting of the MSL complex (PubMed:20657587, PubMed:20943666). May play a role X inactivation in females (PubMed:21217699). {ECO:0000250|UniProtKB:Q9D1P2, ECO:0000250|UniProtKB:Q9WVG9, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20657587, ECO:0000269|PubMed:20943666, ECO:0000269|PubMed:21217699, ECO:0000269|PubMed:30224647, ECO:0000269|PubMed:33837287}. |
Q8N9T8 | KRI1 | S639 | ochoa | Protein KRI1 homolog | None |
Q8N9U0 | TC2N | S168 | ochoa | Tandem C2 domains nuclear protein (Membrane targeting tandem C2 domain-containing protein 1) (Tandem C2 protein in nucleus) (Tac2-N) | None |
Q8ND04 | SMG8 | S469 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8NEN9 | PDZD8 | S989 | ochoa | PDZ domain-containing protein 8 (Sarcoma antigen NY-SAR-84/NY-SAR-104) | Molecular tethering protein that connects endoplasmic reticulum and mitochondria membranes (PubMed:29097544). PDZD8-dependent endoplasmic reticulum-mitochondria membrane tethering is essential for endoplasmic reticulum-mitochondria Ca(2+) transfer (PubMed:29097544). In neurons, involved in the regulation of dendritic Ca(2+) dynamics by regulating mitochondrial Ca(2+) uptake in neurons (PubMed:29097544). Plays an indirect role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). May inhibit herpes simplex virus 1 infection at an early stage (PubMed:21549406). {ECO:0000269|PubMed:21549406, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29097544}. |
Q8NEZ4 | KMT2C | S4034 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NF99 | ZNF397 | S236 | ochoa | Zinc finger protein 397 (Zinc finger and SCAN domain-containing protein 15) (Zinc finger protein 47) | Isoform 3 acts as a DNA-dependent transcriptional repressor. {ECO:0000269|PubMed:12801647}. |
Q8TBE0 | BAHD1 | S405 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TDJ6 | DMXL2 | S1857 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDX7 | NEK7 | S204 | ochoa|psp | Serine/threonine-protein kinase Nek7 (EC 2.7.11.34) (Never in mitosis A-related kinase 7) (NimA-related protein kinase 7) | Protein kinase which plays an important role in mitotic cell cycle progression (PubMed:17101132, PubMed:19941817, PubMed:31409757). Required for microtubule nucleation activity of the centrosome, robust mitotic spindle formation and cytokinesis (PubMed:17586473, PubMed:19414596, PubMed:19941817, PubMed:26522158, PubMed:31409757). Phosphorylates EML4 at 'Ser-146', promoting its dissociation from microtubules during mitosis which is required for efficient chromosome congression (PubMed:31409757). Phosphorylates RPS6KB1 (By similarity). Acts as an essential activator of the NLRP3 inflammasome assembly independently of its kinase activity (PubMed:26642356, PubMed:36442502, PubMed:39173637). Acts by unlocking NLRP3 following NLRP3 tranlocation into the microtubule organizing center (MTOC), relieving NLRP3 autoinhibition and promoting formation of the NLRP3:PYCARD complex, and activation of CASP1 (PubMed:26642356, PubMed:31189953, PubMed:36442502, PubMed:39173637). Serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division: interaction with NEK9 prevents interaction with NLRP3 and activation of the inflammasome during mitosis (PubMed:26642356, PubMed:31189953). {ECO:0000250|UniProtKB:D3ZBE5, ECO:0000269|PubMed:17101132, ECO:0000269|PubMed:17586473, ECO:0000269|PubMed:19414596, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158, ECO:0000269|PubMed:26642356, ECO:0000269|PubMed:31189953, ECO:0000269|PubMed:31409757, ECO:0000269|PubMed:36442502, ECO:0000269|PubMed:39173637}. |
Q8TE68 | EPS8L1 | S631 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8-like protein 1) (Epidermal growth factor receptor pathway substrate 8-related protein 1) (EPS8-related protein 1) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. {ECO:0000269|PubMed:14565974}. |
Q8TEQ0 | SNX29 | S372 | ochoa | Sorting nexin-29 (RUN domain-containing protein 2A) | None |
Q8TF72 | SHROOM3 | S1656 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WWI1 | LMO7 | S1026 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WYB5 | KAT6B | S1301 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q92536 | SLC7A6 | S30 | ochoa | Y+L amino acid transporter 2 (Cationic amino acid transporter, y+ system) (Solute carrier family 7 member 6) (y(+)L-type amino acid transporter 2) (Y+LAT2) (y+LAT-2) | Heterodimer with SLC3A2, that functions as an antiporter which operates as an efflux route by exporting cationic amino acids such as L-arginine from inside the cells in exchange with neutral amino acids like L-leucine, L-glutamine and isoleucine, plus sodium ions and may participate in nitric oxide synthesis (PubMed:10903140, PubMed:11311135, PubMed:14603368, PubMed:15756301, PubMed:16785209, PubMed:17329401, PubMed:19562367, PubMed:31705628, PubMed:9829974). Also exchanges L-arginine with L-lysine in a sodium-independent manner (PubMed:10903140). The transport mechanism is electroneutral and operates with a stoichiometry of 1:1 (PubMed:10903140). Contributes to ammonia-induced increase of L-arginine uptake in cerebral cortical astrocytes leading to ammonia-dependent increase of nitric oxide (NO) production via inducible nitric oxide synthase (iNOS) induction, and protein nitration (By similarity). May mediate transport of ornithine in retinal pigment epithelial (RPE) cells (PubMed:17197568). May also transport glycine betaine in a sodium dependent manner from the cumulus granulosa into the enclosed oocyte (By similarity). {ECO:0000250|UniProtKB:D3ZMM8, ECO:0000250|UniProtKB:Q8BGK6, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:14603368, ECO:0000269|PubMed:15756301, ECO:0000269|PubMed:16785209, ECO:0000269|PubMed:17197568, ECO:0000269|PubMed:17329401, ECO:0000269|PubMed:19562367, ECO:0000269|PubMed:31705628, ECO:0000269|PubMed:9829974}. |
Q92545 | TMEM131 | S1375 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92585 | MAML1 | S314 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92613 | JADE3 | S85 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92613 | JADE3 | S695 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92619 | ARHGAP45 | S592 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92738 | USP6NL | S595 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92750 | TAF4B | S314 | ochoa | Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) | Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}. |
Q92797 | SYMPK | S870 | ochoa | Symplekin | Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity. {ECO:0000269|PubMed:16230528, ECO:0000269|PubMed:20861839}. |
Q92879 | CELF1 | S179 | ochoa|psp | CUGBP Elav-like family member 1 (CELF-1) (50 kDa nuclear polyadenylated RNA-binding protein) (Bruno-like protein 2) (CUG triplet repeat RNA-binding protein 1) (CUG-BP1) (CUG-BP- and ETR-3-like factor 1) (Deadenylation factor CUG-BP) (Embryo deadenylation element-binding protein homolog) (EDEN-BP homolog) (RNA-binding protein BRUNOL-2) | RNA-binding protein implicated in the regulation of several post-transcriptional events. Involved in pre-mRNA alternative splicing, mRNA translation and stability. Mediates exon inclusion and/or exclusion in pre-mRNA that are subject to tissue-specific and developmentally regulated alternative splicing. Specifically activates exon 5 inclusion of cardiac isoforms of TNNT2 during heart remodeling at the juvenile to adult transition. Acts both as an activator and as a repressor of a pair of coregulated exons: promotes inclusion of the smooth muscle (SM) exon but exclusion of the non-muscle (NM) exon in actinin pre-mRNAs. Activates SM exon 5 inclusion by antagonizing the repressive effect of PTB. Promotes exclusion of exon 11 of the INSR pre-mRNA. Inhibits, together with HNRNPH1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Increases translation and controls the choice of translation initiation codon of CEBPB mRNA. Increases mRNA translation of CEBPB in aging liver (By similarity). Increases translation of CDKN1A mRNA by antagonizing the repressive effect of CALR3. Mediates rapid cytoplasmic mRNA deadenylation. Recruits the deadenylase PARN to the poly(A) tail of EDEN-containing mRNAs to promote their deadenylation. Required for completion of spermatogenesis (By similarity). Binds to (CUG)n triplet repeats in the 3'-UTR of transcripts such as DMPK and to Bruno response elements (BREs). Binds to muscle-specific splicing enhancer (MSE) intronic sites flanking the alternative exon 5 of TNNT2 pre-mRNA. Binds to AU-rich sequences (AREs or EDEN-like) localized in the 3'-UTR of JUN and FOS mRNAs. Binds to the IR RNA. Binds to the 5'-region of CDKN1A and CEBPB mRNAs. Binds with the 5'-region of CEBPB mRNA in aging liver. May be a specific regulator of miRNA biogenesis. Binds to primary microRNA pri-MIR140 and, with CELF2, negatively regulates the processing to mature miRNA (PubMed:28431233). {ECO:0000250, ECO:0000269|PubMed:10536163, ECO:0000269|PubMed:11124939, ECO:0000269|PubMed:11158314, ECO:0000269|PubMed:12649496, ECO:0000269|PubMed:12799066, ECO:0000269|PubMed:14726956, ECO:0000269|PubMed:16601207, ECO:0000269|PubMed:16946708, ECO:0000269|PubMed:28431233}. |
Q93074 | MED12 | S698 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q96A49 | SYAP1 | S269 | ochoa | Synapse-associated protein 1 (BSD domain-containing signal transducer and Akt interactor protein) (BSTA) | Plays a role in adipocyte differentiation by promoting mTORC2-mediated phosphorylation of AKT1 at 'Ser-473' after growth factor stimulation (PubMed:23300339). {ECO:0000269|PubMed:23300339}. |
Q96AP0 | ACD | S25 | psp | Adrenocortical dysplasia protein homolog (POT1 and TIN2-interacting protein) | Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends. Without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Promotes binding of POT1 to single-stranded telomeric DNA. Modulates the inhibitory effects of POT1 on telomere elongation. The ACD-POT1 heterodimer enhances telomere elongation by recruiting telomerase to telomeres and increasing its processivity. May play a role in organogenesis. {ECO:0000269|PubMed:15181449, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:16880378, ECO:0000269|PubMed:17237768, ECO:0000269|PubMed:20231318, ECO:0000269|PubMed:25205116, ECO:0000269|PubMed:25233904}. |
Q96BK5 | PINX1 | S161 | ochoa | PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) | Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}. |
Q96C57 | CUSTOS | S138 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96CB8 | INTS12 | S128 | ochoa | Integrator complex subunit 12 (Int12) (PHD finger protein 22) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}. |
Q96CC6 | RHBDF1 | S283 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96EV8 | DTNBP1 | S316 | ochoa | Dysbindin (Biogenesis of lysosome-related organelles complex 1 subunit 8) (BLOC-1 subunit 8) (Dysbindin-1) (Dystrobrevin-binding protein 1) (Hermansky-Pudlak syndrome 7 protein) (HPS7 protein) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway. {ECO:0000269|PubMed:15345706, ECO:0000269|PubMed:16837549, ECO:0000269|PubMed:17182842, ECO:0000269|PubMed:17989303, ECO:0000269|PubMed:19094965, ECO:0000269|PubMed:20180862, ECO:0000269|PubMed:20921223}. |
Q96HC4 | PDLIM5 | S332 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HI0 | SENP5 | S176 | ochoa | Sentrin-specific protease 5 (EC 3.4.22.-) (Sentrin/SUMO-specific protease SENP5) | Protease that catalyzes two essential functions in the SUMO pathway: processing of full-length SUMO3 to its mature form and deconjugation of SUMO2 and SUMO3 from targeted proteins. Has weak proteolytic activity against full-length SUMO1 or SUMO1 conjugates. Required for cell division. {ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:16738315}. |
Q96JB2 | COG3 | S546 | ochoa | Conserved oligomeric Golgi complex subunit 3 (COG complex subunit 3) (Component of oligomeric Golgi complex 3) (Vesicle-docking protein SEC34 homolog) (p94) | Involved in ER-Golgi transport (PubMed:11929878). Also involved in retrograde (Golgi to ER) transport (PubMed:37711075). {ECO:0000269|PubMed:11929878, ECO:0000269|PubMed:37711075}. |
Q96JM3 | CHAMP1 | S603 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96MY7 | FAM161B | S627 | ochoa | Protein FAM161B | None |
Q96RT1 | ERBIN | S569 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96S55 | WRNIP1 | S470 | ochoa | ATPase WRNIP1 (EC 3.6.1.-) (Werner helicase-interacting protein 1) | Functions as a modulator of initiation or reinitiation events during DNA polymerase delta-mediated DNA synthesis. In the presence of ATP, stimulation of DNA polymerase delta-mediated DNA synthesis is decreased. Also plays a role in the innate immune defense against viruses. Stabilizes the RIGI dsRNA interaction and promotes RIGI 'Lys-63'-linked polyubiquitination. In turn, RIGI transmits the signal through mitochondrial MAVS. {ECO:0000269|PubMed:15670210, ECO:0000269|PubMed:29053956}. |
Q96SN8 | CDK5RAP2 | S1074 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96T23 | RSF1 | S473 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T58 | SPEN | S847 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1194 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2126 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96TA1 | NIBAN2 | S725 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99567 | NUP88 | S517 | ochoa | Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) | Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}. |
Q99590 | SCAF11 | S608 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99697 | PITX2 | S40 | ochoa | Pituitary homeobox 2 (ALL1-responsive protein ARP1) (Homeobox protein PITX2) (Paired-like homeodomain transcription factor 2) (RIEG bicoid-related homeobox transcription factor) (Solurshin) | May play a role in myoblast differentiation. When unphosphorylated, associates with an ELAVL1-containing complex, which stabilizes cyclin mRNA and ensuring cell proliferation. Phosphorylation by AKT2 impairs this association, leading to CCND1 mRNA destabilization and progression towards differentiation. {ECO:0000250|UniProtKB:P97474}.; FUNCTION: [Isoform PTX2C]: Involved in the establishment of left-right asymmetry in the developing embryo. {ECO:0000250|UniProtKB:P97474}. |
Q99700 | ATXN2 | S784 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99741 | CDC6 | S419 | ochoa | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q9BRK3 | MXRA8 | S423 | ochoa | Matrix remodeling-associated protein 8 (Limitrin) | Transmembrane protein which can modulate activity of various signaling pathways, probably via binding to integrin ITGAV:ITGB3 (PubMed:22492581, PubMed:23386276). Mediates heterophilic cell-cell interactions in vitro (By similarity). Inhibits osteoclastogenesis downstream of TNFSF11/RANKL and CSF1, where it may function by attenuating signaling via integrin ITGB3 and MAP kinase p38 (By similarity). Plays a role in cartilage formation where it promotes proliferation and maturation of growth plate chondrocytes (By similarity). Stimulates formation of primary cilia in chondrocytes (By similarity). Enhances expression of genes involved in the hedgehog signaling pathway in chondrocytes, including the hedgehog signaling molecule IHH; may also promote signaling via the PTHLH/PTHrP pathway (By similarity). Plays a role in angiogenesis where it suppresses migration of endothelial cells and also promotes their apoptosis (PubMed:23386276). Inhibits VEGF-induced activation of AKT and p38 MAP kinase in endothelial cells (PubMed:23386276). Also inhibits VTN (vitronectin)-mediated integrin ITGAV:ITGB3 signaling and activation of PTK2/FAK (PubMed:23386276). May play a role in the maturation and maintenance of the blood-brain barrier (By similarity). {ECO:0000250|UniProtKB:Q9DBV4, ECO:0000269|PubMed:22492581, ECO:0000269|PubMed:23386276}.; FUNCTION: (Microbial infection) Contributes to arthritogenic alphavirus pathogenesis and acts as a receptor for these viruses. {ECO:0000269|PubMed:29769725, ECO:0000269|PubMed:31080063}. |
Q9BSJ6 | PIMREG | S195 | ochoa | Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) | During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}. |
Q9BTC0 | DIDO1 | S1617 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTC8 | MTA3 | S428 | ochoa | Metastasis-associated protein MTA3 | Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12705869, PubMed:16428440, PubMed:28977666). Plays a role in maintenance of the normal epithelial architecture through the repression of SNAI1 transcription in a histone deacetylase-dependent manner, and thus the regulation of E-cadherin levels (PubMed:12705869). Contributes to transcriptional repression by BCL6 (PubMed:15454082). {ECO:0000269|PubMed:12705869, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q9BUB4 | ADAT1 | S191 | ochoa | tRNA-specific adenosine deaminase 1 (hADAT1) (EC 3.5.4.34) (tRNA-specific adenosine-37 deaminase) | Specifically deaminates adenosine-37 to inosine in tRNA-Ala. |
Q9BV36 | MLPH | S223 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BW04 | SARG | S502 | ochoa | Specifically androgen-regulated gene protein | Putative androgen-specific receptor. {ECO:0000269|PubMed:15525603}. |
Q9BW91 | NUDT9 | S121 | ochoa | ADP-ribose pyrophosphatase, mitochondrial (EC 3.6.1.13) (ADP-ribose diphosphatase) (ADP-ribose phosphohydrolase) (Adenosine diphosphoribose pyrophosphatase) (ADPR-PPase) (Nucleoside diphosphate-linked moiety X motif 9) (Nudix motif 9) | Hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. {ECO:0000269|PubMed:11385575}. |
Q9BWN1 | PRR14 | S162 | ochoa | Proline-rich protein 14 | Functions in tethering peripheral heterochromatin to the nuclear lamina during interphase, possibly through the interaction with heterochromatin protein CBX5/HP1 alpha (PubMed:24209742). Might play a role in reattaching heterochromatin to the nuclear lamina at mitotic exit (PubMed:24209742). Promotes myoblast differentiation during skeletal myogenesis, possibly by stimulating transcription factor MyoD activity via binding to CBX5/HP1 alpha (PubMed:25906157). Involved in the positive regulation of the PI3K-Akt-mTOR signaling pathway and in promoting cell proliferation, possibly via binding to GRB2 (PubMed:27041574). {ECO:0000269|PubMed:24209742, ECO:0000269|PubMed:25906157, ECO:0000269|PubMed:27041574}. |
Q9BX69 | CARD6 | S119 | ochoa | Caspase recruitment domain-containing protein 6 | May be involved in apoptosis. |
Q9BXF6 | RAB11FIP5 | S188 | ochoa|psp | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXS5 | AP1M1 | S47 | ochoa | AP-1 complex subunit mu-1 (AP-mu chain family member mu1A) (Adaptor protein complex AP-1 subunit mu-1) (Adaptor-related protein complex 1 subunit mu-1) (Clathrin assembly protein complex 1 mu-1 medium chain 1) (Clathrin coat assembly protein AP47) (Clathrin coat-associated protein AP47) (Golgi adaptor HA1/AP1 adaptin mu-1 subunit) (Mu-adaptin 1) (Mu1A-adaptin) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. |
Q9C086 | INO80B | S97 | ochoa | INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) | Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}. |
Q9C0C7 | AMBRA1 | S52 | psp | Activating molecule in BECN1-regulated autophagy protein 1 (DDB1- and CUL4-associated factor 3) | Substrate-recognition component of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex involved in cell cycle control and autophagy (PubMed:20921139, PubMed:23524951, PubMed:24587252, PubMed:32333458, PubMed:33854232, PubMed:33854235, PubMed:33854239). The DCX(AMBRA1) complex specifically mediates the polyubiquitination of target proteins such as BECN1, CCND1, CCND2, CCND3, ELOC and ULK1 (PubMed:23524951, PubMed:33854232, PubMed:33854235, PubMed:33854239). Acts as an upstream master regulator of the transition from G1 to S cell phase: AMBRA1 specifically recognizes and binds phosphorylated cyclin-D (CCND1, CCND2 and CCND3), leading to cyclin-D ubiquitination by the DCX(AMBRA1) complex and subsequent degradation (PubMed:33854232, PubMed:33854235, PubMed:33854239). By controlling the transition from G1 to S phase and cyclin-D degradation, AMBRA1 acts as a tumor suppressor that promotes genomic integrity during DNA replication and counteracts developmental abnormalities and tumor growth (PubMed:33854232, PubMed:33854235, PubMed:33854239). AMBRA1 also regulates the cell cycle by promoting MYC dephosphorylation and degradation independently of the DCX(AMBRA1) complex: acts via interaction with the catalytic subunit of protein phosphatase 2A (PPP2CA), which enhances interaction between PPP2CA and MYC, leading to MYC dephosphorylation and degradation (PubMed:25438055, PubMed:25803737). Acts as a regulator of Cul5-RING (CRL5) E3 ubiquitin-protein ligase complexes by mediating ubiquitination and degradation of Elongin-C (ELOC) component of CRL5 complexes (PubMed:25499913, PubMed:30166453). Acts as a key regulator of autophagy by modulating the BECN1-PIK3C3 complex: controls protein turnover during neuronal development, and regulates normal cell survival and proliferation (PubMed:21358617). In normal conditions, AMBRA1 is tethered to the cytoskeleton via interaction with dyneins DYNLL1 and DYNLL2 (PubMed:20921139). Upon autophagy induction, AMBRA1 is released from the cytoskeletal docking site to induce autophagosome nucleation by mediating ubiquitination of proteins involved in autophagy (PubMed:20921139). The DCX(AMBRA1) complex mediates 'Lys-63'-linked ubiquitination of BECN1, increasing the association between BECN1 and PIK3C3 to promote PIK3C3 activity (By similarity). In collaboration with TRAF6, AMBRA1 mediates 'Lys-63'-linked ubiquitination of ULK1 following autophagy induction, promoting ULK1 stability and kinase activity (PubMed:23524951). Also activates ULK1 via interaction with TRIM32: TRIM32 stimulates ULK1 through unanchored 'Lys-63'-linked polyubiquitin chains (PubMed:31123703). Also acts as an activator of mitophagy via interaction with PRKN and LC3 proteins (MAP1LC3A, MAP1LC3B or MAP1LC3C); possibly by bringing damaged mitochondria onto autophagosomes (PubMed:21753002, PubMed:25215947). Also activates mitophagy by acting as a cofactor for HUWE1; acts by promoting HUWE1-mediated ubiquitination of MFN2 (PubMed:30217973). AMBRA1 is also involved in regulatory T-cells (Treg) differentiation by promoting FOXO3 dephosphorylation independently of the DCX(AMBRA1) complex: acts via interaction with PPP2CA, which enhances interaction between PPP2CA and FOXO3, leading to FOXO3 dephosphorylation and stabilization (PubMed:30513302). May act as a regulator of intracellular trafficking, regulating the localization of active PTK2/FAK and SRC (By similarity). Also involved in transcription regulation by acting as a scaffold for protein complexes at chromatin (By similarity). {ECO:0000250|UniProtKB:A2AH22, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:21753002, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24587252, ECO:0000269|PubMed:25215947, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25499913, ECO:0000269|PubMed:25803737, ECO:0000269|PubMed:30166453, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:30513302, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:32333458, ECO:0000269|PubMed:33854232, ECO:0000269|PubMed:33854235, ECO:0000269|PubMed:33854239}. |
Q9C0C9 | UBE2O | S115 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0C9 | UBE2O | S839 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0D2 | CEP295 | S1388 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9C0D5 | TANC1 | S214 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D6 | FHDC1 | S1012 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9GZP1 | NRSN2 | S171 | ochoa | Neurensin-2 | May play a role in maintenance and/or transport of vesicles. |
Q9H0E3 | SAP130 | S875 | ochoa | Histone deacetylase complex subunit SAP130 (130 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p130) | Acts as a transcriptional repressor. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404}. |
Q9H0E9 | BRD8 | S585 | ochoa | Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) | May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9H0X9 | OSBPL5 | S88 | ochoa | Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}. |
Q9H2D6 | TRIOBP | S1796 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2F5 | EPC1 | S488 | ochoa | Enhancer of polycomb homolog 1 | Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}. |
Q9H2Y7 | ZNF106 | S641 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H410 | DSN1 | S30 | ochoa | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H4I2 | ZHX3 | S577 | ochoa | Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) | Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}. |
Q9H501 | ESF1 | S198 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H694 | BICC1 | S43 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H6X5 | C19orf44 | S185 | ochoa | Uncharacterized protein C19orf44 | None |
Q9H9A7 | RMI1 | S292 | ochoa|psp | RecQ-mediated genome instability protein 1 (BLM-associated protein of 75 kDa) (BLAP75) (FAAP75) | Essential component of the RMI complex, a complex that plays an important role in the processing of homologous recombination intermediates to limit DNA crossover formation in cells. Promotes TOP3A binding to double Holliday junctions (DHJ) and hence stimulates TOP3A-mediated dissolution. Required for BLM phosphorylation during mitosis. Within the BLM complex, required for BLM and TOP3A stability. {ECO:0000269|PubMed:15775963, ECO:0000269|PubMed:16537486, ECO:0000269|PubMed:16595695}. |
Q9HAF1 | MEAF6 | S125 | ochoa | Chromatin modification-related protein MEAF6 (MYST/Esa1-associated factor 6) (Esa1-associated factor 6 homolog) (Protein EAF6 homolog) (hEAF6) (Sarcoma antigen NY-SAR-91) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A (PubMed:14966270). This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653, PubMed:24065767). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:18794358). {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767}. |
Q9HB65 | ELL3 | S278 | ochoa | RNA polymerase II elongation factor ELL3 | Enhancer-binding elongation factor that specifically binds enhancers in embryonic stem cells (ES cells), marks them, and is required for their future activation during stem cell specification. Does not only bind to enhancer regions of active genes, but also marks the enhancers that are in a poised or inactive state in ES cells and is required for establishing proper RNA polymerase II occupancy at developmentally regulated genes in a cohesin-dependent manner. Probably required for priming developmentally regulated genes for later recruitment of the super elongation complex (SEC), for transcriptional activation during differentiation. Required for recruitment of P-TEFb within SEC during differentiation. Probably preloaded on germ cell chromatin, suggesting that it may prime gene activation by marking enhancers as early as in the germ cells. Promoting epithelial-mesenchymal transition (EMT) (By similarity). Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). {ECO:0000250, ECO:0000269|PubMed:10882741, ECO:0000269|PubMed:22195968}. |
Q9HC52 | CBX8 | S352 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCG8 | CWC22 | S39 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCH5 | SYTL2 | S344 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCH5 | SYTL2 | S493 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCK8 | CHD8 | S2046 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9HCM4 | EPB41L5 | S517 | ochoa | Band 4.1-like protein 5 (Erythrocyte membrane protein band 4.1-like 5) | Plays a role in the formation and organization of tight junctions during the establishment of polarity in epithelial cells. {ECO:0000269|PubMed:17920587}. |
Q9NQC3 | RTN4 | S991 | ochoa | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
Q9NQW6 | ANLN | S182 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRS6 | SNX15 | S201 | ochoa | Sorting nexin-15 | May be involved in several stages of intracellular trafficking. Overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the TGN. {ECO:0000269|PubMed:11085978}. |
Q9NS28 | RGS18 | S76 | ochoa | Regulator of G-protein signaling 18 (RGS18) | Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i) alpha-1, G(i) alpha-2, G(i) alpha-3 and G(q) alpha. {ECO:0000269|PubMed:11042171, ECO:0000269|PubMed:11955952}. |
Q9NS87 | KIF15 | S1141 | ochoa | Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) | Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}. |
Q9NUA8 | ZBTB40 | S728 | ochoa | Zinc finger and BTB domain-containing protein 40 | May be involved in transcriptional regulation. |
Q9NVR5 | DNAAF2 | S641 | ochoa | Protein kintoun (Dynein assembly factor 2, axonemal) | Required for cytoplasmic pre-assembly of axonemal dyneins, thereby playing a central role in motility in cilia and flagella. Involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment. {ECO:0000255|HAMAP-Rule:MF_03069}. |
Q9NWS9 | ZNF446 | S137 | ochoa | Zinc finger protein 446 (Zinc finger protein with KRAB and SCAN domains 20) | May be involved in transcriptional regulation. |
Q9NYB0 | TERF2IP | S154 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NYV4 | CDK12 | S423 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZ63 | C9orf78 | S261 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9NZM3 | ITSN2 | S826 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9P2B4 | CTTNBP2NL | S285 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9P2D1 | CHD7 | S1874 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2M4 | TBC1D14 | S295 | ochoa | TBC1 domain family member 14 | Plays a role in the regulation of starvation-induced autophagosome formation (PubMed:22613832). Together with the TRAPPIII complex, regulates a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. {ECO:0000269|PubMed:22613832, ECO:0000269|PubMed:26711178}. |
Q9P2S5 | WRAP73 | S281 | ochoa | WD repeat-containing protein WRAP73 (WD repeat-containing protein 8) (WD repeat-containing protein antisense to TP73 gene) | The SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome. Required for the centrosomal localization of SSX2IP and normal mitotic bipolar spindle morphology (PubMed:26545777). Required for the targeting of centriole satellite proteins to centrosomes such as of PCM1, SSX2IP, CEP290 and PIBF1/CEP90. Required for ciliogenesis and involved in the removal of the CEP97:CCP110 complex from the mother centriole. Involved in ciliary vesicle formation at the mother centriole and required for the docking of vesicles to the basal body during ciliogenesis; may promote docking of RAB8A- and ARL13B-containing vesicles (PubMed:26675238). {ECO:0000269|PubMed:26545777, ECO:0000269|PubMed:26675238}. |
Q9UBP0 | SPAST | S597 | ochoa | Spastin (EC 5.6.1.1) (Spastic paraplegia 4 protein) | ATP-dependent microtubule severing protein that specifically recognizes and cuts microtubules that are polyglutamylated (PubMed:11809724, PubMed:15716377, PubMed:16219033, PubMed:17389232, PubMed:20530212, PubMed:22637577, PubMed:26875866). Preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold (PubMed:26875866). Severing activity is not dependent on tubulin acetylation or detyrosination (PubMed:26875866). Microtubule severing promotes reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. It is critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. SPAST is involved in abscission step of cytokinesis and nuclear envelope reassembly during anaphase in cooperation with the ESCRT-III complex (PubMed:19000169, PubMed:21310966, PubMed:26040712). Recruited at the midbody, probably by IST1, and participates in membrane fission during abscission together with the ESCRT-III complex (PubMed:21310966). Recruited to the nuclear membrane by IST1 and mediates microtubule severing, promoting nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Required for membrane traffic from the endoplasmic reticulum (ER) to the Golgi and endosome recycling (PubMed:23897888). Recruited by IST1 to endosomes and regulates early endosomal tubulation and recycling by mediating microtubule severing (PubMed:23897888). Probably plays a role in axon growth and the formation of axonal branches (PubMed:15716377). {ECO:0000255|HAMAP-Rule:MF_03021, ECO:0000269|PubMed:11809724, ECO:0000269|PubMed:15716377, ECO:0000269|PubMed:16219033, ECO:0000269|PubMed:17389232, ECO:0000269|PubMed:19000169, ECO:0000269|PubMed:20530212, ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:22637577, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:26875866}.; FUNCTION: [Isoform 1]: Involved in lipid metabolism by regulating the size and distribution of lipid droplets. {ECO:0000269|PubMed:25875445}. |
Q9UBW5 | BIN2 | S498 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UEG4 | ZNF629 | S761 | ochoa | Zinc finger protein 629 (Zinc finger protein 65) | May be involved in transcriptional regulation. |
Q9UGU0 | TCF20 | S583 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHB6 | LIMA1 | S490 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHI5 | SLC7A8 | S24 | ochoa | Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (hLAT2) (Solute carrier family 7 member 8) | Associates with SLC3A2 to form a functional heterodimeric complex that translocates small and large neutral amino acids with broad specificity and a stoichiometry of 1:1. Functions as amino acid antiporter mediating the influx of extracellular essential amino acids mainly in exchange with the efflux of highly concentrated intracellular amino acids (PubMed:10391915, PubMed:11311135, PubMed:11847106, PubMed:12716892, PubMed:15081149, PubMed:15918515, PubMed:29355479, PubMed:33298890, PubMed:34848541). Has relatively symmetrical selectivities but strongly asymmetrical substrate affinities at both the intracellular and extracellular sides of the transporter (PubMed:11847106). This asymmetry allows SLC7A8 to regulate intracellular amino acid pools (mM concentrations) by exchange with external amino acids (uM concentration range), equilibrating the relative concentrations of different amino acids across the plasma membrane instead of mediating their net uptake (PubMed:10391915, PubMed:11847106). May play an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney (PubMed:12716892). Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane (PubMed:15769744). Imports the thyroid hormone diiodothyronine (T2) and to a smaller extent triiodothyronine (T3) but not rT 3 or thyroxine (T4) (By similarity). Mediates the uptake of L-DOPA (By similarity). May participate in auditory function (By similarity). {ECO:0000250|UniProtKB:Q9QXW9, ECO:0000250|UniProtKB:Q9WVR6, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11847106, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15081149, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15918515, ECO:0000269|PubMed:29355479, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:34848541}. |
Q9UHK6 | AMACR | S324 | ochoa | Alpha-methylacyl-CoA racemase (EC 5.1.99.4) (2-methylacyl-CoA racemase) | Catalyzes the interconversion of (R)- and (S)-stereoisomers of alpha-methyl-branched-chain fatty acyl-CoA esters (PubMed:10655068, PubMed:11060359, PubMed:7649182). Acts only on coenzyme A thioesters, not on free fatty acids, and accepts as substrates a wide range of alpha-methylacyl-CoAs, including pristanoyl-CoA, trihydroxycoprostanoyl-CoA (an intermediate in bile acid synthesis), and arylpropionic acids like the anti-inflammatory drug ibuprofen (2-(4-isobutylphenyl)propionic acid) but neither 3-methyl-branched nor linear-chain acyl-CoAs (PubMed:10655068, PubMed:11060359, PubMed:7649182). {ECO:0000269|PubMed:10655068, ECO:0000269|PubMed:11060359, ECO:0000269|PubMed:7649182}. |
Q9UHV7 | MED13 | S890 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UI12 | ATP6V1H | S367 | ochoa | V-type proton ATPase subunit H (V-ATPase subunit H) (Nef-binding protein 1) (NBP1) (Protein VMA13 homolog) (V-ATPase 50/57 kDa subunits) (Vacuolar proton pump subunit H) (Vacuolar proton pump subunit SFD) | Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Subunit H is essential for V-ATPase activity, but not for the assembly of the complex (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes (PubMed:12032142). {ECO:0000250|UniProtKB:O46563, ECO:0000250|UniProtKB:P41807, ECO:0000269|PubMed:12032142, ECO:0000269|PubMed:33065002}. |
Q9UIS9 | MBD1 | S465 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UJF2 | RASAL2 | S35 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UK39 | NOCT | S96 | ochoa | Nocturnin (EC 3.1.3.108) (Carbon catabolite repression 4-like protein) | Phosphatase which catalyzes the conversion of NADP(+) to NAD(+) and of NADPH to NADH (PubMed:31147539). Shows a small preference for NADPH over NADP(+) (PubMed:31147539). Represses translation and promotes degradation of target mRNA molecules (PubMed:29860338). Plays an important role in post-transcriptional regulation of metabolic genes under circadian control (By similarity). Exerts a rhythmic post-transcriptional control of genes necessary for metabolic functions including nutrient absorption, glucose/insulin sensitivity, lipid metabolism, adipogenesis, inflammation and osteogenesis (By similarity). Plays an important role in favoring adipogenesis over osteoblastogenesis and acts as a key regulator of the adipogenesis/osteogenesis balance (By similarity). Promotes adipogenesis by facilitating PPARG nuclear translocation which activates its transcriptional activity (By similarity). Regulates circadian expression of NOS2 in the liver and negatively regulates the circadian expression of IGF1 in the bone (By similarity). Critical for proper development of early embryos (By similarity). {ECO:0000250|UniProtKB:O35710, ECO:0000269|PubMed:29860338, ECO:0000269|PubMed:31147539}. |
Q9UK61 | TASOR | S1193 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKV3 | ACIN1 | S386 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULJ3 | ZBTB21 | S516 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULL8 | SHROOM4 | S686 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9ULU4 | ZMYND8 | S698 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULV5 | HSF4 | S298 | psp | Heat shock factor protein 4 (HSF 4) (hHSF4) (Heat shock transcription factor 4) (HSTF 4) | Heat-shock transcription factor that specifically binds heat shock promoter elements (HSE) (PubMed:22587838, PubMed:23507146). Required for denucleation and organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light (By similarity). In this process, may regulate denucleation of lens fiber cells in part by activating DNASE2B transcription (By similarity). May be involved in DNA repair through the transcriptional regulation of RAD51 (PubMed:22587838). May up-regulate p53/TP53 protein in eye lens fiber cells, possibly through protein stabilization (PubMed:28981088). In the eye lens, controls the expression of alpha-crystallin B chain/CRYAB and consequently may be involved in the regulation of lysosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q5CZP2, ECO:0000250|UniProtKB:Q9R0L1, ECO:0000269|PubMed:22587838, ECO:0000269|PubMed:23507146, ECO:0000269|PubMed:28981088}.; FUNCTION: [Isoform HSF4A]: Transcriptional repressor. {ECO:0000269|PubMed:10488131}.; FUNCTION: [Isoform HSF4B]: Transcriptional activator. {ECO:0000269|PubMed:10488131, ECO:0000269|PubMed:16371476}. |
Q9UMS6 | SYNPO2 | S226 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UN79 | SOX13 | S83 | ochoa | Transcription factor SOX-13 (Islet cell antigen 12) (SRY (Sex determining region Y)-box 13) (Type 1 diabetes autoantigen ICA12) | Transcription factor that binds to DNA at the consensus sequence 5'-AACAAT-3' (PubMed:10871192). Binds to the proximal promoter region of the myelin protein MPZ gene, and may thereby be involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). Binds to and modifies the activity of TCF7/TCF1, thereby inhibiting transcription and modulates normal gamma-delta T-cell development and differentiation of IL17A expressing gamma-delta T-cells (By similarity). Regulates expression of BLK in the differentiation of IL17A expressing gamma-delta T-cells (By similarity). Promotes brown adipocyte differentiation (By similarity). Inhibitor of WNT signaling (PubMed:20028982). {ECO:0000250|UniProtKB:Q04891, ECO:0000269|PubMed:10871192, ECO:0000269|PubMed:20028982}. |
Q9UPQ0 | LIMCH1 | S681 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPR3 | SMG5 | S536 | ochoa | Nonsense-mediated mRNA decay factor SMG5 (EST1-like protein B) (LPTS-RP1) (LPTS-interacting protein) (SMG-5 homolog) (hSMG-5) | Plays a role in nonsense-mediated mRNA decay. Does not have RNase activity by itself. Promotes dephosphorylation of UPF1. Together with SMG7 is thought to provide a link to the mRNA degradation machinery involving exonucleolytic pathways, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation. Necessary for TERT activity. {ECO:0000269|PubMed:17053788}. |
Q9Y217 | MTMR6 | S561 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR6 (EC 3.1.3.95) (Myotubularin-related protein 6) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:19038970, PubMed:22647598). Binds with high affinity to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) but also to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 5-phosphate (PtdIns(5)P), phosphatidic acid and phosphatidylserine (PubMed:19038970). Negatively regulates ER-Golgi protein transport (By similarity). Probably in association with MTMR9, plays a role in the late stages of macropinocytosis by dephosphorylating phosphatidylinositol 3-phosphate in membrane ruffles (PubMed:24591580). Acts as a negative regulator of KCNN4/KCa3.1 channel activity in CD4(+) T-cells possibly by decreasing intracellular levels of phosphatidylinositol 3-phosphate (PubMed:15831468). Negatively regulates proliferation of reactivated CD4(+) T-cells (PubMed:16847315). In complex with MTMR9, negatively regulates DNA damage-induced apoptosis (PubMed:19038970, PubMed:22647598). The formation of the MTMR6-MTMR9 complex stabilizes both MTMR6 and MTMR9 protein levels (PubMed:19038970). {ECO:0000250|UniProtKB:A0A0G2JXT6, ECO:0000269|PubMed:15831468, ECO:0000269|PubMed:16847315, ECO:0000269|PubMed:19038970, ECO:0000269|PubMed:22647598, ECO:0000269|PubMed:24591580, ECO:0000305|PubMed:24591580}. |
Q9Y243 | AKT3 | S120 | ochoa|psp | RAC-gamma serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase Akt-3) (Protein kinase B gamma) (PKB gamma) (RAC-PK-gamma) (STK-2) | AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. {ECO:0000269|PubMed:18524868, ECO:0000269|PubMed:21191416}. |
Q9Y285 | FARSA | S193 | ochoa | Phenylalanine--tRNA ligase alpha subunit (EC 6.1.1.20) (CML33) (Phenylalanyl-tRNA synthetase alpha subunit) (PheRS) | None |
Q9Y2H5 | PLEKHA6 | S336 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2H9 | MAST1 | S789 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2I1 | NISCH | S1284 | ochoa | Nischarin (Imidazoline receptor 1) (I-1) (IR1) (Imidazoline receptor antisera-selected protein) (hIRAS) (Imidazoline-1 receptor) (I1R) (Imidazoline-1 receptor candidate protein) (I-1 receptor candidate protein) (I1R candidate protein) | Acts either as the functional imidazoline-1 receptor (I1R) candidate or as a membrane-associated mediator of the I1R signaling. Binds numerous imidazoline ligands that induces initiation of cell-signaling cascades triggering to cell survival, growth and migration. Its activation by the agonist rilmenidine induces an increase in phosphorylation of mitogen-activated protein kinases MAPK1 and MAPK3 in rostral ventrolateral medulla (RVLM) neurons that exhibited rilmenidine-evoked hypotension (By similarity). Blocking its activation with efaroxan abolished rilmenidine-induced mitogen-activated protein kinase phosphorylation in RVLM neurons (By similarity). Acts as a modulator of Rac-regulated signal transduction pathways (By similarity). Suppresses Rac1-stimulated cell migration by interacting with PAK1 and inhibiting its kinase activity (By similarity). Also blocks Pak-independent Rac signaling by interacting with RAC1 and inhibiting Rac1-stimulated NF-kB response element and cyclin D1 promoter activation (By similarity). Also inhibits LIMK1 kinase activity by reducing LIMK1 'Tyr-508' phosphorylation (By similarity). Inhibits Rac-induced cell migration and invasion in breast and colon epithelial cells (By similarity). Inhibits lamellipodia formation, when overexpressed (By similarity). Plays a role in protection against apoptosis. Involved in association with IRS4 in the enhancement of insulin activation of MAPK1 and MAPK3. When overexpressed, induces a redistribution of cell surface ITGA5 integrin to intracellular endosomal structures. {ECO:0000250, ECO:0000269|PubMed:10882231, ECO:0000269|PubMed:12868002, ECO:0000269|PubMed:15028619, ECO:0000269|PubMed:15028621, ECO:0000269|PubMed:15475348}. |
Q9Y2W1 | THRAP3 | S698 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2X9 | ZNF281 | S160 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y3S1 | WNK2 | S1818 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y478 | PRKAB1 | S182 | ochoa | 5'-AMP-activated protein kinase subunit beta-1 (AMPK subunit beta-1) (AMPKb) | Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). |
Q9Y4C1 | KDM3A | S445 | ochoa | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4F3 | MARF1 | S716 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y4G6 | TLN2 | S2172 | ochoa | Talin-2 | As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}. |
Q9Y6M1 | IGF2BP2 | S162 | ochoa | Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2 mRNA-binding protein 2) (IMP-2) (Hepatocellular carcinoma autoantigen p62) (IGF-II mRNA-binding protein 2) (VICKZ family member 2) | RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation (By similarity). Preferentially binds to N6-methyladenosine (m6A)-containing mRNAs and increases their stability (PubMed:29476152). Binds to the 5'-UTR of the insulin-like growth factor 2 (IGF2) mRNAs (PubMed:9891060). Binding is isoform-specific. Binds to beta-actin/ACTB and MYC transcripts. Increases MYC mRNA stability by binding to the coding region instability determinant (CRD) and binding is enhanced by m6A-modification of the CRD (PubMed:29476152). {ECO:0000250, ECO:0000269|PubMed:23640942, ECO:0000269|PubMed:29476152, ECO:0000269|PubMed:9891060}. |
Q9Y6Y0 | IVNS1ABP | S352 | ochoa | Influenza virus NS1A-binding protein (NS1-BP) (NS1-binding protein) (Aryl hydrocarbon receptor-associated protein 3) (Kelch-like protein 39) | Involved in many cell functions, including pre-mRNA splicing, the aryl hydrocarbon receptor (AHR) pathway, F-actin organization and protein ubiquitination. Plays a role in the dynamic organization of the actin skeleton as a stabilizer of actin filaments by association with F-actin through Kelch repeats (By similarity). Protects cells from cell death induced by actin destabilization (By similarity). Functions as modifier of the AHR/Aryl hydrocarbon receptor pathway increasing the concentration of AHR available to activate transcription (PubMed:16582008). In addition, functions as a negative regulator of BCR(KLHL20) E3 ubiquitin ligase complex to prevent ubiquitin-mediated proteolysis of PML and DAPK1, two tumor suppressors (PubMed:25619834). Inhibits pre-mRNA splicing (in vitro) (PubMed:9696811). May play a role in mRNA nuclear export (PubMed:30538201). {ECO:0000250|UniProtKB:Q920Q8, ECO:0000269|PubMed:16582008, ECO:0000269|PubMed:25619834, ECO:0000269|PubMed:30538201, ECO:0000269|PubMed:9696811}.; FUNCTION: (Microbial infection) Involved in the alternative splicing of influenza A virus M1 mRNA through interaction with HNRNPK, thereby facilitating the generation of viral M2 protein (PubMed:23825951, PubMed:9696811). The BTB and Kelch domains are required for splicing activity (PubMed:30538201). Promotes export of viral M mRNA and RNP via its interaction with mRNA export factor ALYREF (PubMed:30538201). {ECO:0000269|PubMed:23825951, ECO:0000269|PubMed:30538201, ECO:0000269|PubMed:9696811}. |
R4GMW8 | BIVM-ERCC5 | S838 | ochoa | DNA excision repair protein ERCC-5 | None |
O00444 | PLK4 | S179 | Sugiyama | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
P14625 | HSP90B1 | S552 | Sugiyama | Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) | ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}. |
O60674 | JAK2 | S1016 | Sugiyama | Tyrosine-protein kinase JAK2 (EC 2.7.10.2) (Janus kinase 2) (JAK-2) | Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin receptor (MPL/TPOR); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins (PubMed:15690087, PubMed:7615558, PubMed:9657743, PubMed:15899890). Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins (PubMed:15690087, PubMed:9618263). Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain (PubMed:9657743). Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. Part of a signaling cascade that is activated by increased cellular retinol and that leads to the activation of STAT5 (STAT5A or STAT5B) (PubMed:21368206). In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation (PubMed:20098430). Plays a role in cell cycle by phosphorylating CDKN1B (PubMed:21423214). Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin (PubMed:19783980). Up-regulates the potassium voltage-gated channel activity of KCNA3 (PubMed:25644777). {ECO:0000269|PubMed:12023369, ECO:0000269|PubMed:15690087, ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:21368206, ECO:0000269|PubMed:21423214, ECO:0000269|PubMed:25644777, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:9618263, ECO:0000269|PubMed:9657743}. |
P08253 | MMP2 | S365 | EPSD|PSP | 72 kDa type IV collagenase (EC 3.4.24.24) (72 kDa gelatinase) (Gelatinase A) (Matrix metalloproteinase-2) (MMP-2) (TBE-1) [Cleaved into: PEX] | Ubiquitinous metalloproteinase that is involved in diverse functions such as remodeling of the vasculature, angiogenesis, tissue repair, tumor invasion, inflammation, and atherosclerotic plaque rupture. As well as degrading extracellular matrix proteins, can also act on several nonmatrix proteins such as big endothelial 1 and beta-type CGRP promoting vasoconstriction. Also cleaves KISS at a Gly-|-Leu bond. Appears to have a role in myocardial cell death pathways. Contributes to myocardial oxidative stress by regulating the activity of GSK3beta. Cleaves GSK3beta in vitro. Involved in the formation of the fibrovascular tissues in association with MMP14.; FUNCTION: PEX, the C-terminal non-catalytic fragment of MMP2, possesses anti-angiogenic and anti-tumor properties and inhibits cell migration and cell adhesion to FGF2 and vitronectin. Ligand for integrinv/beta3 on the surface of blood vessels.; FUNCTION: [Isoform 2]: Mediates the proteolysis of CHUK/IKKA and initiates a primary innate immune response by inducing mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-kappaB, NFAT and IRF transcriptional pathways. |
P29597 | TYK2 | S1063 | Sugiyama | Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) | Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}. |
A0A0A6YYC7 | ZFP91-CNTF | S296 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 91 homolog) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000256|ARBA:ARBA00054990}. |
A0A0J9YX86 | GOLGA8Q | S77 | ochoa | Golgin A8 family member Q | None |
A0A1W2PNV4 | None | S26 | ochoa | Actin-related protein 2/3 complex subunit 1A | None |
A1L390 | PLEKHG3 | S423 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A2AJT9 | BCLAF3 | S402 | ochoa | BCLAF1 and THRAP3 family member 3 | None |
A2RUB6 | CCDC66 | S794 | ochoa | Coiled-coil domain-containing protein 66 | Microtubule-binding protein required for ciliogenesis (PubMed:28235840). May function in ciliogenesis by mediating the transport of proteins like BBS4 to the cilium, but also through the organization of the centriolar satellites (PubMed:28235840). Required for the assembly of signaling-competent cilia with proper structure and length (PubMed:36606424). Mediates this function in part by regulating transition zone assembly and basal body recruitment of the IFT-B complex (PubMed:36606424). Cooperates with the ciliopathy proteins CSPP1 and CEP104 during cilium length regulation (PubMed:36606424). Plays two important roles during cell division (PubMed:35849559). First, is required for mitotic progression via regulation of spindle assembly, organization and orientation, levels of spindle microtubules (MTs), kinetochore-fiber integrity, and chromosome alignment (PubMed:35849559). Second, functions during cytokinesis in part by regulating assembly and organization of central spindle and midbody MTs (PubMed:35849559). Plays a role in retina morphogenesis and/or homeostasis (By similarity). {ECO:0000250|UniProtKB:Q6NS45, ECO:0000269|PubMed:28235840, ECO:0000269|PubMed:35849559}. |
A2VDJ0 | TMEM131L | S1122 | ochoa | Transmembrane protein 131-like | [Isoform 1]: Membrane-associated form that antagonizes canonical Wnt signaling by triggering lysosome-dependent degradation of Wnt-activated LRP6. Regulates thymocyte proliferation. {ECO:0000269|PubMed:23690469}. |
A5YKK6 | CNOT1 | S1703 | ochoa | CCR4-NOT transcription complex subunit 1 (CCR4-associated factor 1) (Negative regulator of transcription subunit 1 homolog) (NOT1H) (hNOT1) | Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRNA 3'UTRs. Involved in degradation of AU-rich element (ARE)-containing mRNAs probably via association with ZFP36. Mediates the recruitment of the CCR4-NOT complex to miRNA targets and to the RISC complex via association with TNRC6A, TNRC6B or TNRC6C. Acts as a transcriptional repressor. Represses the ligand-dependent transcriptional activation by nuclear receptors. Involved in the maintenance of embryonic stem (ES) cell identity. Plays a role in rapid sperm motility via mediating timely mRNA turnover (By similarity). {ECO:0000250|UniProtKB:Q6ZQ08, ECO:0000269|PubMed:10637334, ECO:0000269|PubMed:16778766, ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:21976065, ECO:0000269|PubMed:21984185, ECO:0000269|PubMed:22367759, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:32354837}. |
A6H8Y1 | BDP1 | S938 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6H8Y1 | BDP1 | S1403 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6H8Y1 | BDP1 | S1781 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NHR9 | SMCHD1 | S67 | ochoa | Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMC hinge domain-containing protein 1) (EC 3.6.1.-) | Non-canonical member of the structural maintenance of chromosomes (SMC) protein family that plays a key role in epigenetic silencing by regulating chromatin architecture (By similarity). Promotes heterochromatin formation in both autosomes and chromosome X, probably by mediating the merge of chromatin compartments (By similarity). Plays a key role in chromosome X inactivation in females by promoting the spreading of heterochromatin (PubMed:23542155). Recruited to inactivated chromosome X by Xist RNA and acts by mediating the merge of chromatin compartments: promotes random chromatin interactions that span the boundaries of existing structures, leading to create a compartment-less architecture typical of inactivated chromosome X (By similarity). Required to facilitate Xist RNA spreading (By similarity). Also required for silencing of a subset of clustered autosomal loci in somatic cells, such as the DUX4 locus (PubMed:23143600). Has ATPase activity; may participate in structural manipulation of chromatin in an ATP-dependent manner as part of its role in gene expression regulation (PubMed:29748383). Also plays a role in DNA repair: localizes to sites of DNA double-strand breaks in response to DNA damage to promote the repair of DNA double-strand breaks (PubMed:24790221, PubMed:25294876). Acts by promoting non-homologous end joining (NHEJ) and inhibiting homologous recombination (HR) repair (PubMed:25294876). {ECO:0000250|UniProtKB:Q6P5D8, ECO:0000269|PubMed:23143600, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:24790221, ECO:0000269|PubMed:25294876, ECO:0000269|PubMed:29748383}. |
A6NKT7 | RGPD3 | S1535 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NMD2 | GOLGA8J | S77 | ochoa | Golgin subfamily A member 8J | None |
A6NMY6 | ANXA2P2 | S236 | ochoa | Putative annexin A2-like protein (Annexin A2 pseudogene 2) (Lipocortin II pseudogene) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. {ECO:0000250}. |
A7KAX9 | ARHGAP32 | S821 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S952 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A8K855 | EFCAB7 | S200 | ochoa | EF-hand calcium-binding domain-containing protein 7 | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling. Required for the localization of the EVC2:EVC subcomplex at the base of primary cilia. {ECO:0000250|UniProtKB:Q8VDY4}. |
A8K855 | EFCAB7 | S212 | ochoa | EF-hand calcium-binding domain-containing protein 7 | Component of the EvC complex that positively regulates ciliary Hedgehog (Hh) signaling. Required for the localization of the EVC2:EVC subcomplex at the base of primary cilia. {ECO:0000250|UniProtKB:Q8VDY4}. |
A8K979 | ERI2 | S478 | ochoa | ERI1 exoribonuclease 2 (EC 3.1.-.-) (Exonuclease domain-containing protein 1) | None |
A8MW92 | PHF20L1 | S395 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
B2RTY4 | MYO9A | S1299 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
B2RTY4 | MYO9A | S1358 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
H0YC42 | None | S171 | ochoa | Tumor protein D52 | None |
H3BQL2 | GOLGA8T | S77 | ochoa | Golgin subfamily A member 8T | None |
H3BSY2 | GOLGA8M | S77 | ochoa | Golgin subfamily A member 8M | None |
I3L0D1 | RBAK-RBAKDN | S78 | ochoa | HCG1647537, isoform CRA_b (RBAK-RBAKDN readthrough) | None |
I6L899 | GOLGA8R | S77 | ochoa | Golgin subfamily A member 8R | None |
O00139 | KIF2A | S75 | ochoa | Kinesin-like protein KIF2A (Kinesin-2) (hK2) | Plus end-directed microtubule-dependent motor required for normal brain development. May regulate microtubule dynamics during axonal growth. Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate. Required for normal spindle dynamics during mitosis. Promotes spindle turnover. Implicated in formation of bipolar mitotic spindles. Has microtubule depolymerization activity. {ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:30785839}. |
O00159 | MYO1C | S864 | ochoa | Unconventional myosin-Ic (Myosin I beta) (MMI-beta) (MMIb) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. Involved in glucose transporter recycling in response to insulin by regulating movement of intracellular GLUT4-containing vesicles to the plasma membrane. Component of the hair cell's (the sensory cells of the inner ear) adaptation-motor complex. Acts as a mediator of adaptation of mechanoelectrical transduction in stereocilia of vestibular hair cells. Binds phosphoinositides and links the actin cytoskeleton to cellular membranes. {ECO:0000269|PubMed:24636949}.; FUNCTION: [Isoform 3]: Involved in regulation of transcription. Associated with transcriptional active ribosomal genes. Appears to cooperate with the WICH chromatin-remodeling complex to facilitate transcription. Necessary for the formation of the first phosphodiester bond during transcription initiation. {ECO:0000250|UniProtKB:Q9WTI7}. |
O00213 | APBB1 | S347 | ochoa|psp | Amyloid beta precursor protein binding family B member 1 (Amyloid-beta A4 precursor protein-binding family B member 1) (Protein Fe65) | Transcription coregulator that can have both coactivator and corepressor functions (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469, PubMed:33938178). Adapter protein that forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). Plays a central role in the response to DNA damage by translocating to the nucleus and inducing apoptosis (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1 (PubMed:19234442). Required for histone H4 acetylation at double-strand breaks (DSBs) (PubMed:19234442). Its ability to specifically bind modified histones and chromatin modifying enzymes such as KAT5/TIP60, probably explains its transcription activation activity (PubMed:33938178). Functions in association with TSHZ3, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4 (PubMed:19343227). Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Plays a role in the maintenance of lens transparency (By similarity). May play a role in muscle cell strength (By similarity). Acts as a molecular adapter that functions in neurite outgrowth by activating the RAC1-ARF6 axis upon insulin treatment (PubMed:36250347). {ECO:0000250|UniProtKB:Q9QXJ1, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:18468999, ECO:0000269|PubMed:18922798, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:36250347}. |
O00257 | CBX4 | S291 | ochoa | E3 SUMO-protein ligase CBX4 (EC 2.3.2.-) (Chromobox protein homolog 4) (Polycomb 2 homolog) (Pc2) (hPc2) | E3 SUMO-protein ligase that catalyzes sumoylation of target proteins by promoting the transfer of SUMO from the E2 enzyme to the substrate (PubMed:12679040, PubMed:22825850). Involved in the sumoylation of HNRNPK, a p53/TP53 transcriptional coactivator, hence indirectly regulates p53/TP53 transcriptional activation resulting in p21/CDKN1A expression. Monosumoylates ZNF131 (PubMed:22825850). {ECO:0000269|PubMed:12679040, ECO:0000269|PubMed:22825850}.; FUNCTION: Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:12167701, PubMed:19636380, PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167701, PubMed:19636380, PubMed:21282530). Binds to histone H3 trimethylated at 'Lys-9' (H3K9me3) (By similarity). Plays a role in the lineage differentiation of the germ layers in embryonic development (By similarity). {ECO:0000250|UniProtKB:O55187, ECO:0000269|PubMed:12167701, ECO:0000269|PubMed:19636380, ECO:0000269|PubMed:21282530}. |
O00287 | RFXAP | S241 | ochoa | Regulatory factor X-associated protein (RFX-associated protein) (RFX DNA-binding complex 36 kDa subunit) | Part of the RFX complex that binds to the X-box of MHC II promoters. |
O00409 | FOXN3 | S85 | ochoa|psp | Forkhead box protein N3 (Checkpoint suppressor 1) | Acts as a transcriptional repressor. May be involved in DNA damage-inducible cell cycle arrests (checkpoints). {ECO:0000269|PubMed:16102918}. |
O00418 | EEF2K | S627 | ochoa | Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) | Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}. |
O00429 | DNM1L | S126 | ochoa | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00512 | BCL9 | S19 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O00562 | PITPNM1 | S896 | ochoa|psp | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
O00716 | E2F3 | S163 | ochoa | Transcription factor E2F3 (E2F-3) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity). {ECO:0000250|UniProtKB:O35261}. |
O00716 | E2F3 | S359 | ochoa | Transcription factor E2F3 (E2F-3) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity). {ECO:0000250|UniProtKB:O35261}. |
O14497 | ARID1A | S1944 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14513 | NCKAP5 | S128 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O14523 | C2CD2L | S468 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O14545 | TRAFD1 | S415 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14579 | COPE | S45 | ochoa | Coatomer subunit epsilon (Epsilon-coat protein) (Epsilon-COP) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated with ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
O14613 | CDC42EP2 | S31 | ochoa | Cdc42 effector protein 2 (Binder of Rho GTPases 1) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts in a CDC42-dependent manner. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
O14639 | ABLIM1 | S640 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14647 | CHD2 | S1386 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14654 | IRS4 | S1061 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14686 | KMT2D | S4849 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14715 | RGPD8 | S796 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S1534 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S1742 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14744 | PRMT5 | S310 | ochoa | Protein arginine N-methyltransferase 5 (PRMT5) (EC 2.1.1.320) (72 kDa ICln-binding protein) (Histone-arginine N-methyltransferase PRMT5) (Jak-binding protein 1) (Shk1 kinase-binding protein 1 homolog) (SKB1 homolog) (SKB1Hs) [Cleaved into: Protein arginine N-methyltransferase 5, N-terminally processed] | Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA (PubMed:10531356, PubMed:11152681, PubMed:11747828, PubMed:12411503, PubMed:15737618, PubMed:17709427, PubMed:20159986, PubMed:20810653, PubMed:21081503, PubMed:21258366, PubMed:21917714, PubMed:22269951). Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles (PubMed:11747828, PubMed:12411503, PubMed:17709427). Methylates SUPT5H and may regulate its transcriptional elongation properties (PubMed:12718890). May methylate the N-terminal region of MBD2 (PubMed:16428440). Mono- and dimethylates arginine residues of myelin basic protein (MBP) in vitro. May play a role in cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular proliferation. Methylates histone H2A and H4 'Arg-3' during germ cell development (By similarity). Methylates histone H3 'Arg-8', which may repress transcription (By similarity). Methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (By similarity). Methylates RPS10. Attenuates EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels. First, monomethylates EGFR; this enhances EGFR 'Tyr-1197' phosphorylation and PTPN6 recruitment, eventually leading to reduced SOS1 phosphorylation (PubMed:21258366, PubMed:21917714). Second, methylates RAF1 and probably BRAF, hence destabilizing these 2 signaling proteins and reducing their catalytic activity (PubMed:21917714). Required for induction of E-selectin and VCAM-1, on the endothelial cells surface at sites of inflammation. Methylates HOXA9 (PubMed:22269951). Methylates and regulates SRGAP2 which is involved in cell migration and differentiation (PubMed:20810653). Acts as a transcriptional corepressor in CRY1-mediated repression of the core circadian component PER1 by regulating the H4R3 dimethylation at the PER1 promoter (By similarity). Methylates GM130/GOLGA2, regulating Golgi ribbon formation (PubMed:20421892). Methylates H4R3 in genes involved in glioblastomagenesis in a CHTOP- and/or TET1-dependent manner (PubMed:25284789). Symmetrically methylates POLR2A, a modification that allows the recruitment to POLR2A of proteins including SMN1/SMN2 and SETX. This is required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). Along with LYAR, binds the promoter of gamma-globin HBG1/HBG2 and represses its expression (PubMed:25092918). Symmetrically methylates NCL (PubMed:21081503). Methylates p53/TP53; methylation might possibly affect p53/TP53 target gene specificity (PubMed:19011621). Involved in spliceosome maturation and mRNA splicing in prophase I spermatocytes through the catalysis of the symmetrical arginine dimethylation of SNRPB (small nuclear ribonucleoprotein-associated protein) and the interaction with tudor domain-containing protein TDRD6 (By similarity). {ECO:0000250|UniProtKB:Q8CIG8, ECO:0000269|PubMed:10531356, ECO:0000269|PubMed:11152681, ECO:0000269|PubMed:11747828, ECO:0000269|PubMed:12411503, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17709427, ECO:0000269|PubMed:19011621, ECO:0000269|PubMed:20159986, ECO:0000269|PubMed:20421892, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:21917714, ECO:0000269|PubMed:22269951, ECO:0000269|PubMed:25092918, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:26700805}. |
O14827 | RASGRF2 | S798 | ochoa | Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2) (Ras guanine nucleotide exchange factor 2) | Functions as a calcium-regulated nucleotide exchange factor activating both Ras and RAC1 through the exchange of bound GDP for GTP. Preferentially activates HRAS in vivo compared to RRAS based on their different types of prenylation. Functions in synaptic plasticity by contributing to the induction of long term potentiation. {ECO:0000269|PubMed:15128856}. |
O14867 | BACH1 | S445 | ochoa | Transcription regulator protein BACH1 (BTB and CNC homolog 1) (HA2303) | Transcriptional regulator that acts as a repressor or activator, depending on the context. Binds to NF-E2 DNA binding sites. Plays important roles in coordinating transcription activation and repression by MAFK (By similarity). Together with MAF, represses the transcription of genes under the control of the NFE2L2 oxidative stress pathway (PubMed:24035498). {ECO:0000250|UniProtKB:P97302, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:39504958}. |
O14879 | IFIT3 | S237 | ochoa | Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) (CIG49) (ISG-60) (Interferon-induced 60 kDa protein) (IFI-60K) (Interferon-induced protein with tetratricopeptide repeats 4) (IFIT-4) (Retinoic acid-induced gene G protein) (P60) (RIG-G) | IFN-induced antiviral protein which acts as an inhibitor of cellular as well as viral processes, cell migration, proliferation, signaling, and viral replication. Enhances MAVS-mediated host antiviral responses by serving as an adapter bridging TBK1 to MAVS which leads to the activation of TBK1 and phosphorylation of IRF3 and phosphorylated IRF3 translocates into nucleus to promote antiviral gene transcription. Exhibits an antiproliferative activity via the up-regulation of cell cycle negative regulators CDKN1A/p21 and CDKN1B/p27. Normally, CDKN1B/p27 turnover is regulated by COPS5, which binds CDKN1B/p27 in the nucleus and exports it to the cytoplasm for ubiquitin-dependent degradation. IFIT3 sequesters COPS5 in the cytoplasm, thereby increasing nuclear CDKN1B/p27 protein levels. Up-regulates CDKN1A/p21 by down-regulating MYC, a repressor of CDKN1A/p21. Can negatively regulate the apoptotic effects of IFIT2. {ECO:0000269|PubMed:17050680, ECO:0000269|PubMed:20686046, ECO:0000269|PubMed:21190939, ECO:0000269|PubMed:21642987, ECO:0000269|PubMed:21813773}. |
O14896 | IRF6 | S47 | ochoa | Interferon regulatory factor 6 (IRF-6) | Probable DNA-binding transcriptional activator. Key determinant of the keratinocyte proliferation-differentiation switch involved in appropriate epidermal development (By similarity). Plays a role in regulating mammary epithelial cell proliferation (By similarity). May regulate WDR65 transcription (By similarity). {ECO:0000250}. |
O15018 | PDZD2 | S850 | ochoa | PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] | None |
O15034 | RIMBP2 | S712 | ochoa | RIMS-binding protein 2 (RIM-BP2) | Plays a role in the synaptic transmission as bifunctional linker that interacts simultaneously with RIMS1, RIMS2, CACNA1D and CACNA1B. {ECO:0000250}. |
O15061 | SYNM | S653 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15061 | SYNM | S777 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15062 | ZBTB5 | S371 | ochoa | Zinc finger and BTB domain-containing protein 5 | May be involved in transcriptional regulation. |
O15164 | TRIM24 | S209 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15372 | EIF3H | S183 | ochoa|psp | Eukaryotic translation initiation factor 3 subunit H (eIF3h) (Eukaryotic translation initiation factor 3 subunit 3) (eIF-3-gamma) (eIF3 p40 subunit) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03007, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
O15400 | STX7 | S45 | ochoa | Syntaxin-7 | May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. |
O15417 | TNRC18 | S2471 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15446 | POLR1G | S205 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15446 | POLR1G | S285 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15488 | GYG2 | S468 | ochoa | Glycogenin-2 (GN-2) (GN2) (EC 2.4.1.186) | Glycogenin participates in the glycogen biosynthetic process along with glycogen synthase and glycogen branching enzyme. It catalyzes the formation of a short alpha (1,4)-glucosyl chain covalently attached via a glucose 1-O-tyrosyl linkage to internal tyrosine residues and these chains act as primers for the elongation reaction catalyzed by glycogen synthase. {ECO:0000269|PubMed:9346895, ECO:0000269|PubMed:9857012}. |
O43149 | ZZEF1 | S233 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43149 | ZZEF1 | S240 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43149 | ZZEF1 | S2044 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43164 | PJA2 | S282 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43242 | PSMD3 | S430 | ochoa | 26S proteasome non-ATPase regulatory subunit 3 (26S proteasome regulatory subunit RPN3) (26S proteasome regulatory subunit S3) (Proteasome subunit p58) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O43296 | ZNF264 | S155 | ochoa | Zinc finger protein 264 | May be involved in transcriptional regulation. |
O43303 | CCP110 | S366 | ochoa|psp | Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) | Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}. |
O43365 | HOXA3 | S148 | ochoa | Homeobox protein Hox-A3 (Homeobox protein Hox-1E) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
O43426 | SYNJ1 | S1439 | ochoa | Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) | Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}. |
O43491 | EPB41L2 | S908 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43524 | FOXO3 | S43 | ochoa | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43660 | PLRG1 | S391 | ochoa | Pleiotropic regulator 1 | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:28076346, PubMed:28502770). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing (PubMed:11101529, PubMed:11544257). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000305|PubMed:33509932}. |
O43683 | BUB1 | S661 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43684 | BUB3 | S211 | ochoa|psp | Mitotic checkpoint protein BUB3 | Has a dual function in spindle-assembly checkpoint signaling and in promoting the establishment of correct kinetochore-microtubule (K-MT) attachments. Promotes the formation of stable end-on bipolar attachments. Necessary for kinetochore localization of BUB1. Regulates chromosome segregation during oocyte meiosis. The BUB1/BUB3 complex plays a role in the inhibition of anaphase-promoting complex or cyclosome (APC/C) when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:18199686}. |
O43719 | HTATSF1 | S498 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O43933 | PEX1 | S354 | ochoa | Peroxisomal ATPase PEX1 (EC 3.6.4.-) (Peroxin-1) (Peroxisome biogenesis disorder protein 1) (Peroxisome biogenesis factor 1) | Component of the PEX1-PEX6 AAA ATPase complex, a protein dislocase complex that mediates the ATP-dependent extraction of the PEX5 receptor from peroxisomal membranes, an essential step for PEX5 recycling (PubMed:11439091, PubMed:16314507, PubMed:16854980, PubMed:21362118, PubMed:29884772). Specifically recognizes PEX5 monoubiquitinated at 'Cys-11', and pulls it out of the peroxisome lumen through the PEX2-PEX10-PEX12 retrotranslocation channel (PubMed:29884772). Extraction by the PEX1-PEX6 AAA ATPase complex is accompanied by unfolding of the TPR repeats and release of bound cargo from PEX5 (PubMed:29884772). {ECO:0000269|PubMed:11439091, ECO:0000269|PubMed:16314507, ECO:0000269|PubMed:16854980, ECO:0000269|PubMed:21362118, ECO:0000269|PubMed:29884772}. |
O60281 | ZNF292 | S1159 | ochoa | Zinc finger protein 292 | May be involved in transcriptional regulation. |
O60291 | MGRN1 | S106 | ochoa | E3 ubiquitin-protein ligase MGRN1 (EC 2.3.2.27) (Mahogunin RING finger protein 1) (RING finger protein 156) (RING-type E3 ubiquitin transferase MGRN1) | E3 ubiquitin-protein ligase. Mediates monoubiquitination at multiple sites of TSG101 in the presence of UBE2D1, but not of UBE2G1, nor UBE2H. Plays a role in the regulation of endosome-to-lysosome trafficking. Impairs MC1R- and MC4R-signaling by competing with GNAS-binding to MCRs and inhibiting agonist-induced cAMP production. Does not inhibit ADRB2-signaling. Does not promote MC1R ubiquitination. Acts also as a negative regulator of hedgehog signaling (By similarity). {ECO:0000250|UniProtKB:Q9D074, ECO:0000269|PubMed:17229889, ECO:0000269|PubMed:19703557, ECO:0000269|PubMed:19737927}. |
O60292 | SIPA1L3 | S100 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60303 | KATNIP | S777 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60437 | PPL | S830 | ochoa | Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}. |
O60437 | PPL | S1670 | ochoa | Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}. |
O60502 | OGA | S511 | ochoa | Protein O-GlcNAcase (OGA) (EC 3.2.1.169) (Beta-N-acetylglucosaminidase) (Beta-N-acetylhexosaminidase) (Beta-hexosaminidase) (Meningioma-expressed antigen 5) (N-acetyl-beta-D-glucosaminidase) (N-acetyl-beta-glucosaminidase) (Nuclear cytoplasmic O-GlcNAcase and acetyltransferase) (NCOAT) | [Isoform 1]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins (PubMed:11148210, PubMed:11788610, PubMed:20673219, PubMed:22365600, PubMed:24088714, PubMed:28939839, PubMed:37962578). Deglycosylates a large and diverse number of proteins, such as CRYAB, ELK1, GSDMD, LMNB1 and TAB1 (PubMed:28939839, PubMed:37962578). Can use p-nitrophenyl-beta-GlcNAc and 4-methylumbelliferone-GlcNAc as substrates but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro) (PubMed:20673219). Does not bind acetyl-CoA and does not have histone acetyltransferase activity (PubMed:24088714). {ECO:0000269|PubMed:11148210, ECO:0000269|PubMed:11788610, ECO:0000269|PubMed:20673219, ECO:0000269|PubMed:22365600, ECO:0000269|PubMed:24088714, ECO:0000269|PubMed:28939839, ECO:0000269|PubMed:37962578}.; FUNCTION: [Isoform 3]: Cleaves GlcNAc but not GalNAc from O-glycosylated proteins. Can use p-nitrophenyl-beta-GlcNAc as substrate but not p-nitrophenyl-beta-GalNAc or p-nitrophenyl-alpha-GlcNAc (in vitro), but has about six times lower specific activity than isoform 1. {ECO:0000269|PubMed:20673219}. |
O60503 | ADCY9 | S1273 | ochoa | Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) | Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}. |
O60673 | REV3L | S1724 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60716 | CTNND1 | S47 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60841 | EIF5B | S767 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60934 | NBN | S432 | ochoa|psp | Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) | Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}. |
O75061 | DNAJC6 | S112 | ochoa | Auxilin (EC 3.1.3.-) (DnaJ homolog subfamily C member 6) | May act as a protein phosphatase and/or a lipid phosphatase. Co-chaperone that recruits HSPA8/HSC70 to clathrin-coated vesicles (CCVs) and promotes the ATP-dependent dissociation of clathrin from CCVs and participates in clathrin-mediated endocytosis of synaptic vesicles and their recycling and also in intracellular trafficking (PubMed:18489706). Firstly, binds tightly to the clathrin cages, at a ratio of one DNAJC6 per clathrin triskelion. The HSPA8:ATP complex then binds to the clathrin-auxilin cage, initially at a ratio of one HSPA8 per triskelion leading to ATP hydrolysis stimulation and causing a conformational change in the HSPA8. This cycle is repeated three times to drive to a complex containing the clathrin-auxilin cage associated to three HSPA8:ADP complex. The ATP hydrolysis of the third HSPA8:ATP complex leads to a concerted dismantling of the cage into component triskelia. Then, dissociates from the released triskelia and be recycled to initiate another cycle of HSPA8's recruitment. Also acts during the early steps of clathrin-coated vesicle (CCV) formation through its interaction with the GTP bound form of DNM1 (By similarity). {ECO:0000250|UniProtKB:Q27974, ECO:0000269|PubMed:18489706}. |
O75132 | ZBED4 | S297 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75132 | ZBED4 | S1053 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75140 | DEPDC5 | S445 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75179 | ANKRD17 | S803 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75363 | BCAS1 | S314 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75376 | NCOR1 | S172 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1263 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75376 | NCOR1 | S1322 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75381 | PEX14 | S44 | ochoa | Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) | Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}. |
O75400 | PRPF40A | S151 | ochoa | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O75417 | POLQ | S952 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75417 | POLQ | S1651 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75448 | MED24 | S431 | ochoa | Mediator of RNA polymerase II transcription subunit 24 (Activator-recruited cofactor 100 kDa component) (ARC100) (Cofactor required for Sp1 transcriptional activation subunit 4) (CRSP complex subunit 4) (Mediator complex subunit 24) (Thyroid hormone receptor-associated protein 4) (Thyroid hormone receptor-associated protein complex 100 kDa component) (Trap100) (hTRAP100) (Vitamin D3 receptor-interacting protein complex 100 kDa component) (DRIP100) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:16595664}. |
O75467 | ZNF324 | S164 | ochoa | Zinc finger protein 324A (Zinc finger protein ZF5128) | May be involved in transcriptional regulation. May be involved in regulation of cell proliferation. {ECO:0000305|PubMed:11779640}. |
O75528 | TADA3 | S275 | ochoa | Transcriptional adapter 3 (ADA3 homolog) (hADA3) (STAF54) (Transcriptional adapter 3-like) (ADA3-like protein) | Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex. Also known as a coactivator for p53/TP53-dependent transcriptional activation. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:11707411, ECO:0000269|PubMed:19103755}. |
O75528 | TADA3 | S298 | ochoa | Transcriptional adapter 3 (ADA3 homolog) (hADA3) (STAF54) (Transcriptional adapter 3-like) (ADA3-like protein) | Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex. Also known as a coactivator for p53/TP53-dependent transcriptional activation. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:11707411, ECO:0000269|PubMed:19103755}. |
O75563 | SKAP2 | S203 | ochoa | Src kinase-associated phosphoprotein 2 (Pyk2/RAFTK-associated protein) (Retinoic acid-induced protein 70) (SKAP55 homolog) (SKAP-55HOM) (SKAP-HOM) (Src family-associated phosphoprotein 2) (Src kinase-associated phosphoprotein 55-related protein) (Src-associated adapter protein with PH and SH3 domains) | May be involved in B-cell and macrophage adhesion processes. In B-cells, may act by coupling the B-cell receptor (BCR) to integrin activation. May play a role in src signaling pathway. {ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:9837776}. |
O75717 | WDHD1 | S958 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75940 | SMNDC1 | S201 | ochoa | Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) | Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}. |
O76021 | RSL1D1 | S427 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O76039 | CDKL5 | S761 | ochoa | Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) | Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}. |
O94806 | PRKD3 | S364 | ochoa | Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) | Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}. |
O94885 | SASH1 | S320 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94913 | PCF11 | S372 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94915 | FRYL | S2272 | ochoa | Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) | Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}. |
O94988 | FAM13A | S856 | ochoa | Protein FAM13A | None |
O95067 | CCNB2 | S92 | ochoa | G2/mitotic-specific cyclin-B2 | Essential for the control of the cell cycle at the G2/M (mitosis) transition. |
O95071 | UBR5 | S578 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95071 | UBR5 | S1227 | ochoa|psp | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95096 | NKX2-2 | S199 | ochoa | Homeobox protein Nkx-2.2 (Homeobox protein NK-2 homolog B) | Transcriptional activator involved in the development of insulin-producting beta cells in the endocrine pancreas (By similarity). May also be involved in specifying diencephalic neuromeric boundaries, and in controlling the expression of genes that play a role in axonal guidance. Binds to elements within the NEUROD1 promoter (By similarity). {ECO:0000250|UniProtKB:P42586}. |
O95155 | UBE4B | S803 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95197 | RTN3 | S229 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95235 | KIF20A | S532 | ochoa|psp | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95259 | KCNH1 | S899 | ochoa | Voltage-gated delayed rectifier potassium channel KCNH1 (Ether-a-go-go potassium channel 1) (EAG channel 1) (h-eag) (hEAG1) (Potassium voltage-gated channel subfamily H member 1) (Voltage-gated potassium channel subunit Kv10.1) | Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel that mediates outward-rectifying potassium currents which, on depolarization, reaches a steady-state level and do not inactivate (PubMed:10880439, PubMed:11943152, PubMed:22732247, PubMed:25420144, PubMed:25556795, PubMed:25915598, PubMed:27005320, PubMed:27325704, PubMed:27618660, PubMed:30149017, PubMed:9738473). The activation kinetics depend on the prepulse potential and external divalent cation concentration (PubMed:11943152). With negative prepulses, the current activation is delayed and slowed down several fold, whereas more positive prepulses speed up activation (PubMed:11943152). The time course of activation is biphasic with a fast and a slowly activating current component (PubMed:11943152). Activates at more positive membrane potentials and exhibit a steeper activation curve (PubMed:11943152). Channel properties are modulated by subunit assembly (PubMed:11943152). Mediates IK(NI) current in myoblasts (PubMed:9738473). Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs) (PubMed:23881642). {ECO:0000269|PubMed:10880439, ECO:0000269|PubMed:11943152, ECO:0000269|PubMed:22732247, ECO:0000269|PubMed:23881642, ECO:0000269|PubMed:25420144, ECO:0000269|PubMed:25556795, ECO:0000269|PubMed:25915598, ECO:0000269|PubMed:27005320, ECO:0000269|PubMed:27325704, ECO:0000269|PubMed:27618660, ECO:0000269|PubMed:30149017, ECO:0000269|PubMed:9738473}. |
O95359 | TACC2 | S1796 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95396 | MOCS3 | S331 | ochoa | Adenylyltransferase and sulfurtransferase MOCS3 (Molybdenum cofactor synthesis protein 3) (Molybdopterin synthase sulfurylase) (MPT synthase sulfurylase) [Includes: Molybdopterin-synthase adenylyltransferase (EC 2.7.7.80) (Adenylyltransferase MOCS3) (Sulfur carrier protein MOCS2A adenylyltransferase); Molybdopterin-synthase sulfurtransferase (EC 2.8.1.11) (Sulfur carrier protein MOCS2A sulfurtransferase) (Sulfurtransferase MOCS3)] | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of cytosolic tRNA(Lys), tRNA(Glu) and tRNA(Gln) (PubMed:19017811, PubMed:22453920, PubMed:30817134). Also essential during biosynthesis of the molybdenum cofactor (PubMed:15073332, PubMed:22453920, PubMed:30817134). Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A (PubMed:15073332, PubMed:19017811, PubMed:22453920). Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus (PubMed:19017811, PubMed:22453920). The reaction probably involves hydrogen sulfide that is generated from the persulfide intermediate and that acts as a nucleophile towards URM1 and MOCS2A (PubMed:15073332, PubMed:22453920). Subsequently, a transient disulfide bond is formed (PubMed:15073332, PubMed:22453920). Does not use thiosulfate as sulfur donor; NFS1 acting as a sulfur donor for thiocarboxylation reactions (PubMed:18650437, PubMed:22453920). {ECO:0000255|HAMAP-Rule:MF_03049, ECO:0000269|PubMed:15073332, ECO:0000269|PubMed:18650437, ECO:0000269|PubMed:19017811, ECO:0000269|PubMed:22453920, ECO:0000269|PubMed:30817134}. |
O95402 | MED26 | S447 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95425 | SVIL | S319 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95425 | SVIL | S920 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95613 | PCNT | S1245 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95677 | EYA4 | S37 | ochoa | Protein phosphatase EYA4 (EC 3.1.3.48) (Eyes absent homolog 4) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1. Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. May be involved in development of the eye (By similarity). {ECO:0000250|UniProtKB:Q99502}. |
O95677 | EYA4 | S361 | ochoa | Protein phosphatase EYA4 (EC 3.1.3.48) (Eyes absent homolog 4) | Tyrosine phosphatase that specifically dephosphorylates 'Tyr-142' of histone H2AX (H2AXY142ph). 'Tyr-142' phosphorylation of histone H2AX plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress. Promotes efficient DNA repair by dephosphorylating H2AX, promoting the recruitment of DNA repair complexes containing MDC1. Its function as histone phosphatase probably explains its role in transcription regulation during organogenesis. May be involved in development of the eye (By similarity). {ECO:0000250|UniProtKB:Q99502}. |
O95758 | PTBP3 | S454 | ochoa | Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}. |
O95759 | TBC1D8 | S464 | ochoa | TBC1 domain family member 8 (AD 3) (Vascular Rab-GAP/TBC-containing protein) | May act as a GTPase-activating protein for Rab family protein(s). |
O95785 | WIZ | S1263 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95936 | EOMES | S596 | ochoa | Eomesodermin homolog (T-box brain protein 2) (T-brain-2) (TBR-2) | Functions as a transcriptional activator playing a crucial role during development. Functions in trophoblast differentiation and later in gastrulation, regulating both mesoderm delamination and endoderm specification. Plays a role in brain development being required for the specification and the proliferation of the intermediate progenitor cells and their progeny in the cerebral cortex (PubMed:17353897). Required for differentiation and migration of unipolar dendritic brush cells (PubMed:33488348). Also involved in the differentiation of CD8+ T-cells during immune response regulating the expression of lytic effector genes (PubMed:17566017). {ECO:0000269|PubMed:17353897, ECO:0000269|PubMed:17566017, ECO:0000269|PubMed:33488348}. |
O95997 | PTTG1 | S171 | ochoa|psp | Securin (Esp1-associated protein) (Pituitary tumor-transforming gene 1 protein) (Tumor-transforming protein 1) (hPTTG) | Regulatory protein, which plays a central role in chromosome stability, in the p53/TP53 pathway, and DNA repair. Probably acts by blocking the action of key proteins. During the mitosis, it blocks Separase/ESPL1 function, preventing the proteolysis of the cohesin complex and the subsequent segregation of the chromosomes. At the onset of anaphase, it is ubiquitinated, conducting to its destruction and to the liberation of ESPL1. Its function is however not limited to a blocking activity, since it is required to activate ESPL1. Negatively regulates the transcriptional activity and related apoptosis activity of TP53. The negative regulation of TP53 may explain the strong transforming capability of the protein when it is overexpressed. May also play a role in DNA repair via its interaction with Ku, possibly by connecting DNA damage-response pathways with sister chromatid separation. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11238996, ECO:0000269|PubMed:11371342, ECO:0000269|PubMed:12355087}. |
O96019 | ACTL6A | S233 | ochoa|psp | Actin-like protein 6A (53 kDa BRG1-associated factor A) (Actin-related protein Baf53a) (ArpNbeta) (BRG1-associated factor 53A) (BAF53A) (INO80 complex subunit K) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000250|UniProtKB:Q9Z2N8, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:15196461, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O96020 | CCNE2 | S21 | ochoa | G1/S-specific cyclin-E2 | Essential for the control of the cell cycle at the late G1 and early S phase. {ECO:0000269|PubMed:9840927, ECO:0000269|PubMed:9840943, ECO:0000269|PubMed:9858585}. |
O96028 | NSD2 | S121 | ochoa | Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) | Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}. |
P01042 | KNG1 | S275 | ochoa | Kininogen-1 (Alpha-2-thiol proteinase inhibitor) (Fitzgerald factor) (High molecular weight kininogen) (HMWK) (Williams-Fitzgerald-Flaujeac factor) [Cleaved into: Kininogen-1 heavy chain; T-kinin (Ile-Ser-Bradykinin); Bradykinin (Kallidin I); Lysyl-bradykinin (Kallidin II); Kininogen-1 light chain; Low molecular weight growth-promoting factor] | Kininogens are inhibitors of thiol proteases. HMW-kininogen plays an important role in blood coagulation by helping to position optimally prekallikrein and factor XI next to factor XII; HMW-kininogen inhibits the thrombin- and plasmin-induced aggregation of thrombocytes. LMW-kininogen inhibits the aggregation of thrombocytes. LMW-kininogen is in contrast to HMW-kininogen not involved in blood clotting.; FUNCTION: [Bradykinin]: The active peptide bradykinin is a potent vasodilatator that is released from HMW-kininogen shows a variety of physiological effects: (A) influence in smooth muscle contraction, (B) induction of hypotension, (C) natriuresis and diuresis, (D) decrease in blood glucose level, (E) it is a mediator of inflammation and causes (E1) increase in vascular permeability, (E2) stimulation of nociceptors (4E3) release of other mediators of inflammation (e.g. prostaglandins), (F) it has a cardioprotective effect (directly via bradykinin action, indirectly via endothelium-derived relaxing factor action). {ECO:0000305|PubMed:4322742, ECO:0000305|PubMed:6055465}. |
P01106 | MYC | S359 | psp | Myc proto-oncogene protein (Class E basic helix-loop-helix protein 39) (bHLHe39) (Proto-oncogene c-Myc) (Transcription factor p64) | Transcription factor that binds DNA in a non-specific manner, yet also specifically recognizes the core sequence 5'-CAC[GA]TG-3' (PubMed:24940000, PubMed:25956029). Activates the transcription of growth-related genes (PubMed:24940000, PubMed:25956029). Binds to the VEGFA promoter, promoting VEGFA production and subsequent sprouting angiogenesis (PubMed:24940000, PubMed:25956029). Regulator of somatic reprogramming, controls self-renewal of embryonic stem cells (By similarity). Functions with TAF6L to activate target gene expression through RNA polymerase II pause release (By similarity). Positively regulates transcription of HNRNPA1, HNRNPA2 and PTBP1 which in turn regulate splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). {ECO:0000250|UniProtKB:P01108, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25956029}. |
P05198 | EIF2S1 | S91 | ochoa | Eukaryotic translation initiation factor 2 subunit 1 (Eukaryotic translation initiation factor 2 subunit alpha) (eIF-2-alpha) (eIF-2A) (eIF-2alpha) (eIF2-alpha) | Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:16289705, PubMed:38340717). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S pre-initiation complex (43S PIC) (PubMed:16289705). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex (PubMed:16289705). In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (PubMed:16289705). EIF2S1/eIF2-alpha is a key component of the integrated stress response (ISR), required for adaptation to various stress: phosphorylation by metabolic-stress sensing protein kinases (EIF2AK1/HRI, EIF2AK2/PKR, EIF2AK3/PERK and EIF2AK4/GCN2) in response to stress converts EIF2S1/eIF2-alpha in a global protein synthesis inhibitor, leading to an attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:19131336, PubMed:33384352, PubMed:38340717). EIF2S1/eIF2-alpha also acts as an activator of mitophagy in response to mitochondrial damage: phosphorylation by EIF2AK1/HRI promotes relocalization to the mitochondrial surface, thereby triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000269|PubMed:16289705, ECO:0000269|PubMed:19131336, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:38340717}. |
P05455 | SSB | S92 | ochoa | Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) | Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}. |
P06132 | UROD | S61 | ochoa | Uroporphyrinogen decarboxylase (UPD) (URO-D) (EC 4.1.1.37) | Catalyzes the sequential decarboxylation of the four acetate side chains of uroporphyrinogen to form coproporphyrinogen and participates in the fifth step in the heme biosynthetic pathway (PubMed:11069625, PubMed:11719352, PubMed:14633982, PubMed:18004775, PubMed:21668429). Isomer I or isomer III of uroporphyrinogen may serve as substrate, but only coproporphyrinogen III can ultimately be converted to heme (PubMed:11069625, PubMed:11719352, PubMed:14633982, PubMed:21668429). In vitro also decarboxylates pentacarboxylate porphyrinogen I (PubMed:12071824). {ECO:0000269|PubMed:11069625, ECO:0000269|PubMed:11719352, ECO:0000269|PubMed:12071824, ECO:0000269|PubMed:14633982, ECO:0000269|PubMed:18004775, ECO:0000269|PubMed:21668429}. |
P07197 | NEFM | S615 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07197 | NEFM | S667 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07197 | NEFM | S680 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07339 | CTSD | S350 | ochoa | Cathepsin D (EC 3.4.23.5) [Cleaved into: Cathepsin D light chain; Cathepsin D heavy chain] | Acid protease active in intracellular protein breakdown. Plays a role in APP processing following cleavage and activation by ADAM30 which leads to APP degradation (PubMed:27333034). Involved in the pathogenesis of several diseases such as breast cancer and possibly Alzheimer disease. {ECO:0000269|PubMed:27333034}. |
P07355 | ANXA2 | S236 | ochoa | Annexin A2 (Annexin II) (Annexin-2) (Calpactin I heavy chain) (Calpactin-1 heavy chain) (Chromobindin-8) (Lipocortin II) (Placental anticoagulant protein IV) (PAP-IV) (Protein I) (p36) | Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9 (PubMed:18799458, PubMed:22848640, PubMed:24808179). Binds to endosomes damaged by phagocytosis of particulate wear debris and participates in endosomal membrane stabilization, thereby limiting NLRP3 inflammasome activation (By similarity). Required for endothelial cell surface plasmin generation and may support fibrinolytic surveillance and neoangiogenesis (By similarity). {ECO:0000250|UniProtKB:P07356, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22848640, ECO:0000269|PubMed:24808179}.; FUNCTION: (Microbial infection) Binds M.pneumoniae CARDS toxin, probably serves as one receptor for this pathogen. When ANXA2 is down-regulated by siRNA, less toxin binds to human cells and less vacuolization (a symptom of M.pneumoniae infection) is seen. {ECO:0000269|PubMed:25139904}. |
P07814 | EPRS1 | S547 | ochoa | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P08237 | PFKM | S667 | ochoa | ATP-dependent 6-phosphofructokinase, muscle type (ATP-PFK) (PFK-M) (EC 2.7.1.11) (6-phosphofructokinase type A) (Phosphofructo-1-kinase isozyme A) (PFK-A) (Phosphohexokinase) | Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. |
P08567 | PLEK | S57 | ochoa | Pleckstrin (Platelet 47 kDa protein) (p47) | Major protein kinase C substrate of platelets. |
P08631 | HCK | S45 | ochoa | Tyrosine-protein kinase HCK (EC 2.7.10.2) (Hematopoietic cell kinase) (Hemopoietic cell kinase) (p59-HCK/p60-HCK) (p59Hck) (p61Hck) | Non-receptor tyrosine-protein kinase found in hematopoietic cells that transmits signals from cell surface receptors and plays an important role in the regulation of innate immune responses, including neutrophil, monocyte, macrophage and mast cell functions, phagocytosis, cell survival and proliferation, cell adhesion and migration. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as FCGR1A and FCGR2A, but also CSF3R, PLAUR, the receptors for IFNG, IL2, IL6 and IL8, and integrins, such as ITGB1 and ITGB2. During the phagocytic process, mediates mobilization of secretory lysosomes, degranulation, and activation of NADPH oxidase to bring about the respiratory burst. Plays a role in the release of inflammatory molecules. Promotes reorganization of the actin cytoskeleton and actin polymerization, formation of podosomes and cell protrusions. Inhibits TP73-mediated transcription activation and TP73-mediated apoptosis. Phosphorylates CBL in response to activation of immunoglobulin gamma Fc region receptors. Phosphorylates ADAM15, BCR, ELMO1, FCGR2A, GAB1, GAB2, RAPGEF1, STAT5B, TP73, VAV1 and WAS. {ECO:0000269|PubMed:10092522, ECO:0000269|PubMed:10779760, ECO:0000269|PubMed:10973280, ECO:0000269|PubMed:11741929, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:12411494, ECO:0000269|PubMed:15010462, ECO:0000269|PubMed:15952790, ECO:0000269|PubMed:15998323, ECO:0000269|PubMed:17310994, ECO:0000269|PubMed:17535448, ECO:0000269|PubMed:19114024, ECO:0000269|PubMed:19903482, ECO:0000269|PubMed:20452982, ECO:0000269|PubMed:21338576, ECO:0000269|PubMed:7535819, ECO:0000269|PubMed:8132624, ECO:0000269|PubMed:9406996, ECO:0000269|PubMed:9407116}. |
P09017 | HOXC4 | S33 | ochoa | Homeobox protein Hox-C4 (Homeobox protein CP19) (Homeobox protein Hox-3E) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P0C7X2 | ZNF688 | S131 | ochoa | Zinc finger protein 688 | May be involved in transcriptional regulation. |
P0CJ92 | GOLGA8H | S77 | ochoa | Golgin subfamily A member 8H | None |
P0DJD0 | RGPD1 | S1519 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD0 | RGPD1 | S1725 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S1527 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DJD1 | RGPD2 | S1733 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10071 | GLI3 | S45 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10071 | GLI3 | S445 | ochoa | Transcriptional activator GLI3 (GLI3 form of 190 kDa) (GLI3-190) (GLI3 full-length protein) (GLI3FL) [Cleaved into: Transcriptional repressor GLI3R (GLI3 C-terminally truncated form) (GLI3 form of 83 kDa) (GLI3-83)] | Has a dual function as a transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, and plays a role in limb development. The full-length GLI3 form (GLI3FL) after phosphorylation and nuclear translocation, acts as an activator (GLI3A) while GLI3R, its C-terminally truncated form, acts as a repressor. A proper balance between the GLI3 activator and the repressor GLI3R, rather than the repressor gradient itself or the activator/repressor ratio gradient, specifies limb digit number and identity. In concert with TRPS1, plays a role in regulating the size of the zone of distal chondrocytes, in restricting the zone of PTHLH expression in distal cells and in activating chondrocyte proliferation. Binds to the minimal GLI-consensus sequence 5'-GGGTGGTC-3'. {ECO:0000269|PubMed:10693759, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:17764085}. |
P10242 | MYB | S599 | ochoa | Transcriptional activator Myb (Proto-oncogene c-Myb) | Transcriptional activator; DNA-binding protein that specifically recognize the sequence 5'-YAAC[GT]G-3'. Plays an important role in the control of proliferation and differentiation of hematopoietic progenitor cells. |
P10721 | KIT | S891 | psp | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P10809 | HSPD1 | S70 | ochoa|psp | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P10827 | THRA | S21 | ochoa | Thyroid hormone receptor alpha (Nuclear receptor subfamily 1 group A member 1) (V-erbA-related protein 7) (EAR-7) (c-erbA-1) (c-erbA-alpha) | [Isoform Alpha-1]: Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine. {ECO:0000269|PubMed:12699376, ECO:0000269|PubMed:14673100, ECO:0000269|PubMed:18237438, ECO:0000269|PubMed:19926848}.; FUNCTION: [Isoform Alpha-2]: Does not bind thyroid hormone and functions as a weak dominant negative inhibitor of thyroid hormone action. {ECO:0000269|PubMed:8910441}. |
P11137 | MAP2 | S315 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S1155 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S1534 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11940 | PABPC1 | S599 | ochoa | Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) | Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
P12036 | NEFH | S526 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S540 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S560 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S614 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12270 | TPR | S379 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P13056 | NR2C1 | S215 | ochoa | Nuclear receptor subfamily 2 group C member 1 (Orphan nuclear receptor TR2) (Testicular receptor 2) | Orphan nuclear receptor. Binds the IR7 element in the promoter of its own gene in an autoregulatory negative feedback mechanism. Primarily repressor of a broad range of genes. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Together with NR2C2, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription. Also activator of OCT4 gene expression. May be involved in stem cell proliferation and differentiation. Mediator of retinoic acid-regulated preadipocyte proliferation. {ECO:0000269|PubMed:12093804, ECO:0000269|PubMed:17010934}. |
P13995 | MTHFD2 | S149 | ochoa | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial [Includes: NAD-dependent methylenetetrahydrofolate dehydrogenase (EC 1.5.1.15); Methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9)] | Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. {ECO:0000269|PubMed:16100107}. |
P14316 | IRF2 | S155 | ochoa | Interferon regulatory factor 2 (IRF-2) | Specifically binds to the upstream regulatory region of type I IFN and IFN-inducible MHC class I genes (the interferon consensus sequence (ICS)) and represses those genes. Also acts as an activator for several genes including H4 and IL7. Constitutively binds to the ISRE promoter to activate IL7. Involved in cell cycle regulation through binding the site II (HiNF-M) promoter region of H4 and activating transcription during cell growth. Antagonizes IRF1 transcriptional activation. {ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:18514056, ECO:0000269|PubMed:9540062}. |
P15822 | HIVEP1 | S479 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15822 | HIVEP1 | S577 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15976 | GATA1 | S116 | ochoa | Erythroid transcription factor (Eryf1) (GATA-binding factor 1) (GATA-1) (GF-1) (NF-E1 DNA-binding protein) | Transcriptional activator or repressor which serves as a general switch factor for erythroid development (PubMed:35030251). It binds to DNA sites with the consensus sequence 5'-[AT]GATA[AG]-3' within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS (PubMed:24245781). {ECO:0000269|PubMed:22235304, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:35030251}. |
P16152 | CBR1 | S151 | ochoa | Carbonyl reductase [NADPH] 1 (EC 1.1.1.184) (15-hydroxyprostaglandin dehydrogenase [NADP(+)]) (EC 1.1.1.196, EC 1.1.1.197) (20-beta-hydroxysteroid dehydrogenase) (Alcohol dehydrogenase [NAD(P)+] CBR1) (EC 1.1.1.71) (NADPH-dependent carbonyl reductase 1) (Prostaglandin 9-ketoreductase) (PG-9-KR) (Prostaglandin-E(2) 9-reductase) (EC 1.1.1.189) (Short chain dehydrogenase/reductase family 21C member 1) | NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol (PubMed:15799708, PubMed:17344335, PubMed:17912391, PubMed:18449627, PubMed:18826943, PubMed:1921984, PubMed:7005231). Can convert prostaglandin E to prostaglandin F2-alpha (By similarity). Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione (PubMed:17344335, PubMed:18826943). In addition, participates in the glucocorticoid metabolism by catalyzing the NADPH-dependent cortisol/corticosterone into 20beta-dihydrocortisol (20b-DHF) or 20beta-corticosterone (20b-DHB), which are weak agonists of NR3C1 and NR3C2 in adipose tissue (PubMed:28878267). {ECO:0000250|UniProtKB:Q28960, ECO:0000269|PubMed:15799708, ECO:0000269|PubMed:17344335, ECO:0000269|PubMed:17912391, ECO:0000269|PubMed:18449627, ECO:0000269|PubMed:18826943, ECO:0000269|PubMed:1921984, ECO:0000269|PubMed:28878267, ECO:0000269|PubMed:7005231}. |
P18031 | PTPN1 | S352 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) | Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}. |
P18583 | SON | S283 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18858 | LIG1 | S819 | ochoa | DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) | DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}. |
P18887 | XRCC1 | S151 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19525 | EIF2AK2 | S456 | ochoa|psp | Interferon-induced, double-stranded RNA-activated protein kinase (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 2) (eIF-2A protein kinase 2) (Interferon-inducible RNA-dependent protein kinase) (P1/eIF-2A protein kinase) (Protein kinase RNA-activated) (PKR) (Protein kinase R) (Tyrosine-protein kinase EIF2AK2) (EC 2.7.10.2) (p68 kinase) | IFN-induced dsRNA-dependent serine/threonine-protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) and plays a key role in the innate immune response to viral infection (PubMed:18835251, PubMed:19189853, PubMed:19507191, PubMed:21072047, PubMed:21123651, PubMed:22381929, PubMed:22948139, PubMed:23229543). Inhibits viral replication via the integrated stress response (ISR): EIF2S1/eIF-2-alpha phosphorylation in response to viral infection converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, resulting to a shutdown of cellular and viral protein synthesis, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4 (PubMed:19189853, PubMed:21123651, PubMed:22948139, PubMed:23229543). Exerts its antiviral activity on a wide range of DNA and RNA viruses including hepatitis C virus (HCV), hepatitis B virus (HBV), measles virus (MV) and herpes simplex virus 1 (HHV-1) (PubMed:11836380, PubMed:19189853, PubMed:19840259, PubMed:20171114, PubMed:21710204, PubMed:23115276, PubMed:23399035). Also involved in the regulation of signal transduction, apoptosis, cell proliferation and differentiation: phosphorylates other substrates including p53/TP53, PPP2R5A, DHX9, ILF3, IRS1 and the HHV-1 viral protein US11 (PubMed:11836380, PubMed:19229320, PubMed:22214662). In addition to serine/threonine-protein kinase activity, also has tyrosine-protein kinase activity and phosphorylates CDK1 at 'Tyr-4' upon DNA damage, facilitating its ubiquitination and proteasomal degradation (PubMed:20395957). Either as an adapter protein and/or via its kinase activity, can regulate various signaling pathways (p38 MAP kinase, NF-kappa-B and insulin signaling pathways) and transcription factors (JUN, STAT1, STAT3, IRF1, ATF3) involved in the expression of genes encoding pro-inflammatory cytokines and IFNs (PubMed:22948139, PubMed:23084476, PubMed:23372823). Activates the NF-kappa-B pathway via interaction with IKBKB and TRAF family of proteins and activates the p38 MAP kinase pathway via interaction with MAP2K6 (PubMed:10848580, PubMed:15121867, PubMed:15229216). Can act as both a positive and negative regulator of the insulin signaling pathway (ISP) (PubMed:20685959). Negatively regulates ISP by inducing the inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) at 'Ser-312' and positively regulates ISP via phosphorylation of PPP2R5A which activates FOXO1, which in turn up-regulates the expression of insulin receptor substrate 2 (IRS2) (PubMed:20685959). Can regulate NLRP3 inflammasome assembly and the activation of NLRP3, NLRP1, AIM2 and NLRC4 inflammasomes (PubMed:22801494). Plays a role in the regulation of the cytoskeleton by binding to gelsolin (GSN), sequestering the protein in an inactive conformation away from actin (By similarity). {ECO:0000250|UniProtKB:Q03963, ECO:0000269|PubMed:10848580, ECO:0000269|PubMed:11836380, ECO:0000269|PubMed:15121867, ECO:0000269|PubMed:15229216, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:19189853, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:19507191, ECO:0000269|PubMed:19840259, ECO:0000269|PubMed:20171114, ECO:0000269|PubMed:20395957, ECO:0000269|PubMed:20685959, ECO:0000269|PubMed:21072047, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:21710204, ECO:0000269|PubMed:22214662, ECO:0000269|PubMed:22381929, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:22948139, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:23115276, ECO:0000269|PubMed:23229543, ECO:0000269|PubMed:23372823, ECO:0000269|PubMed:23399035, ECO:0000269|PubMed:32197074}. |
P20823 | HNF1A | S93 | ochoa | Hepatocyte nuclear factor 1-alpha (HNF-1-alpha) (HNF-1A) (Liver-specific transcription factor LF-B1) (LFB1) (Transcription factor 1) (TCF-1) | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:10966642, PubMed:12453420). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). {ECO:0000250|UniProtKB:P22361, ECO:0000269|PubMed:10966642, ECO:0000269|PubMed:12453420}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with NR5A2 to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:38018242}. |
P20929 | NEB | S2182 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P21817 | RYR1 | S2000 | ochoa | Ryanodine receptor 1 (RYR-1) (RyR1) (Skeletal muscle calcium release channel) (Skeletal muscle ryanodine receptor) (Skeletal muscle-type ryanodine receptor) (Type 1 ryanodine receptor) | Cytosolic calcium-activated calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667, PubMed:18268335, PubMed:18650434, PubMed:26115329). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity). {ECO:0000250|UniProtKB:E9PZQ0, ECO:0000269|PubMed:18268335, ECO:0000269|PubMed:18650434, ECO:0000269|PubMed:26115329, ECO:0000305|PubMed:11741831, ECO:0000305|PubMed:16163667}. |
P22670 | RFX1 | S949 | ochoa | MHC class II regulatory factor RFX1 (Enhancer factor C) (EF-C) (Regulatory factor X 1) (RFX) (Transcription factor RFX1) | Regulatory factor essential for MHC class II genes expression. Binds to the X boxes of MHC class II genes. Also binds to an inverted repeat (ENH1) required for hepatitis B virus genes expression and to the most upstream element (alpha) of the RPL30 promoter. |
P23193 | TCEA1 | S100 | ochoa | Transcription elongation factor A protein 1 (Transcription elongation factor S-II protein 1) (Transcription elongation factor TFIIS.o) | Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus. |
P23415 | GLRA1 | S408 | psp | Glycine receptor subunit alpha-1 (Glycine receptor 48 kDa subunit) (Glycine receptor strychnine-binding subunit) | Subunit of heteromeric glycine-gated chloride channels (PubMed:14551753, PubMed:23994010, PubMed:25730860, PubMed:37821459). Plays an important role in the down-regulation of neuronal excitability (PubMed:8298642, PubMed:9009272). Contributes to the generation of inhibitory postsynaptic currents (PubMed:25445488). Channel activity is potentiated by ethanol (PubMed:25973519). Potentiation of channel activity by intoxicating levels of ethanol contribute to the sedative effects of ethanol (By similarity). {ECO:0000250|UniProtKB:Q64018, ECO:0000269|PubMed:14551753, ECO:0000269|PubMed:16144831, ECO:0000269|PubMed:2155780, ECO:0000269|PubMed:22715885, ECO:0000269|PubMed:22973015, ECO:0000269|PubMed:23994010, ECO:0000269|PubMed:25445488, ECO:0000269|PubMed:25730860, ECO:0000269|PubMed:25973519, ECO:0000269|PubMed:7920629, ECO:0000269|PubMed:7925268, ECO:0000269|PubMed:9009272, ECO:0000305|PubMed:8298642}. |
P23511 | NFYA | S320 | psp | Nuclear transcription factor Y subunit alpha (CAAT box DNA-binding protein subunit A) (Nuclear transcription factor Y subunit A) (NF-YA) | Component of the sequence-specific heterotrimeric transcription factor (NF-Y) which specifically recognizes a 5'-CCAAT-3' box motif found in the promoters of its target genes. NF-Y can function as both an activator and a repressor, depending on its interacting cofactors. NF-YA positively regulates the transcription of the core clock component BMAL1. {ECO:0000269|PubMed:12741956}. |
P24928 | POLR2A | S27 | ochoa | DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) | Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}. |
P25054 | APC | S1042 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2621 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25205 | MCM3 | S611 | ochoa | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P25325 | MPST | S225 | ochoa | 3-mercaptopyruvate sulfurtransferase (MST) (EC 2.8.1.2) | Transfer of a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity. Detoxifies cyanide and is required for thiosulfate biosynthesis. Acts as an antioxidant. In combination with cysteine aminotransferase (CAT), contributes to the catabolism of cysteine and is an important producer of hydrogen sulfide in the brain, retina and vascular endothelial cells. Hydrogen sulfide H(2)S is an important synaptic modulator, signaling molecule, smooth muscle contractor and neuroprotectant. Its production by the 3MST/CAT pathway is regulated by calcium ions. {ECO:0000250|UniProtKB:P97532}. |
P25490 | YY1 | S247 | ochoa|psp | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P26038 | MSN | S74 | ochoa | Moesin (Membrane-organizing extension spike protein) | Ezrin-radixin-moesin (ERM) family protein that connects the actin cytoskeleton to the plasma membrane and thereby regulates the structure and function of specific domains of the cell cortex. Tethers actin filaments by oscillating between a resting and an activated state providing transient interactions between moesin and the actin cytoskeleton (PubMed:10212266). Once phosphorylated on its C-terminal threonine, moesin is activated leading to interaction with F-actin and cytoskeletal rearrangement (PubMed:10212266). These rearrangements regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction (PubMed:12387735, PubMed:15039356). The role of moesin is particularly important in immunity acting on both T and B-cells homeostasis and self-tolerance, regulating lymphocyte egress from lymphoid organs (PubMed:9298994, PubMed:9616160). Modulates phagolysosomal biogenesis in macrophages (By similarity). Also participates in immunologic synapse formation (PubMed:27405666). {ECO:0000250|UniProtKB:P26041, ECO:0000269|PubMed:10212266, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:15039356, ECO:0000269|PubMed:27405666, ECO:0000269|PubMed:9298994, ECO:0000269|PubMed:9616160}. |
P26358 | DNMT1 | S127 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P26368 | U2AF2 | S79 | ochoa | Splicing factor U2AF 65 kDa subunit (U2 auxiliary factor 65 kDa subunit) (hU2AF(65)) (hU2AF65) (U2 snRNP auxiliary factor large subunit) | Plays a role in pre-mRNA splicing and 3'-end processing (PubMed:17024186). By recruiting PRPF19 and the PRP19C/Prp19 complex/NTC/Nineteen complex to the RNA polymerase II C-terminal domain (CTD), and thereby pre-mRNA, may couple transcription to splicing (PubMed:21536736). Induces cardiac troponin-T (TNNT2) pre-mRNA exon inclusion in muscle. Regulates the TNNT2 exon 5 inclusion through competition with MBNL1. Binds preferentially to a single-stranded structure within the polypyrimidine tract of TNNT2 intron 4 during spliceosome assembly. Required for the export of mRNA out of the nucleus, even if the mRNA is encoded by an intron-less gene. Represses the splicing of MAPT/Tau exon 10. Positively regulates pre-mRNA 3'-end processing by recruiting the CFIm complex to cleavage and polyadenylation signals (PubMed:17024186). {ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:19470458, ECO:0000269|PubMed:19574390, ECO:0000269|PubMed:21536736}. |
P27448 | MARK3 | S215 | ochoa|psp | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P27816 | MAP4 | S624 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P27987 | ITPKB | S544 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P28290 | ITPRID2 | S803 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28290 | ITPRID2 | S1063 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29374 | ARID4A | S1140 | ochoa|psp | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29590 | PML | S403 | ochoa|psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30038 | ALDH4A1 | S44 | ochoa | Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial (P5C dehydrogenase) (EC 1.2.1.88) (Aldehyde dehydrogenase family 4 member A1) (L-glutamate gamma-semialdehyde dehydrogenase) | Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes. {ECO:0000269|PubMed:22516612}. |
P30305 | CDC25B | S321 | ochoa|psp | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31629 | HIVEP2 | S1089 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31641 | SLC6A6 | S25 | ochoa | Sodium- and chloride-dependent taurine transporter (Solute carrier family 6 member 6) | Mediates sodium- and chloride-dependent transport of taurine (PubMed:31345061, PubMed:31903486, PubMed:8010975, PubMed:8382624, PubMed:8654117). Mediates transport of beta-alanine (PubMed:8010975). Can also mediate transport of hypotaurine and gamma-aminobutyric acid (GABA) (By similarity). {ECO:0000250|UniProtKB:O35316, ECO:0000269|PubMed:31345061, ECO:0000269|PubMed:31903486, ECO:0000269|PubMed:8010975, ECO:0000269|PubMed:8382624, ECO:0000269|PubMed:8654117}.; FUNCTION: Sodium-dependent taurine and beta-alanine transporter. Chloride ions are necessary for optimal uptake. {ECO:0000269|PubMed:31345061, ECO:0000269|PubMed:31903486, ECO:0000269|PubMed:8382624}. |
P31689 | DNAJA1 | S335 | ochoa | DnaJ homolog subfamily A member 1 (DnaJ protein homolog 2) (HSDJ) (Heat shock 40 kDa protein 4) (Heat shock protein J2) (HSJ-2) (Human DnaJ protein 2) (hDj-2) | Co-chaperone for HSPA8/Hsc70 (PubMed:10816573). Stimulates ATP hydrolysis, but not the folding of unfolded proteins mediated by HSPA1A (in vitro) (PubMed:24318877). Plays a role in protein transport into mitochondria via its role as co-chaperone. Functions as a co-chaperone for HSPA1B and negatively regulates the translocation of BAX from the cytosol to mitochondria in response to cellular stress, thereby protecting cells against apoptosis (PubMed:14752510). Promotes apoptosis in response to cellular stress mediated by exposure to anisomycin or UV (PubMed:24512202). {ECO:0000269|PubMed:10816573, ECO:0000269|PubMed:14752510, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24512202, ECO:0000269|PubMed:9192730}. |
P33991 | MCM4 | S357 | ochoa | DNA replication licensing factor MCM4 (EC 3.6.4.12) (CDC21 homolog) (P1-CDC21) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:16899510, PubMed:25661590, PubMed:32453425, PubMed:9305914). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P34903 | GABRA3 | S442 | ochoa | Gamma-aminobutyric acid receptor subunit alpha-3 (GABA(A) receptor subunit alpha-3) (GABAAR subunit alpha-3) | Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:16412217, PubMed:29053855). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:16412217, PubMed:29053855). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (PubMed:16412217, PubMed:29053855). {ECO:0000250|UniProtKB:P14867, ECO:0000269|PubMed:16412217, ECO:0000269|PubMed:29053855}. |
P34932 | HSPA4 | S780 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P35228 | NOS2 | S67 | ochoa | Nitric oxide synthase, inducible (EC 1.14.13.39) (Hepatocyte NOS) (HEP-NOS) (Inducible NO synthase) (Inducible NOS) (iNOS) (NOS type II) (Peptidyl-cysteine S-nitrosylase NOS2) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body (PubMed:7504305, PubMed:7531687, PubMed:7544004, PubMed:7682706). In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (PubMed:25417112). Involved in inflammation, enhances the synthesis of pro-inflammatory mediators such as IL6 and IL8 (PubMed:19688109). {ECO:0000250|UniProtKB:P29477, ECO:0000269|PubMed:19688109, ECO:0000269|PubMed:25417112, ECO:0000269|PubMed:7504305, ECO:0000269|PubMed:7531687, ECO:0000269|PubMed:7544004, ECO:0000269|PubMed:7682706}. |
P35611 | ADD1 | S645 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35712 | SOX6 | S98 | ochoa | Transcription factor SOX-6 | Transcription factor that plays a key role in several developmental processes, including neurogenesis, chondrocytes differentiation and cartilage formation (Probable). Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX5, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene, and is thereby involved in the differentiation of oligodendroglia in the developing spinal tube. Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). {ECO:0000250|UniProtKB:P40645, ECO:0000305|PubMed:32442410}. |
P35916 | FLT4 | S953 | ochoa | Vascular endothelial growth factor receptor 3 (VEGFR-3) (EC 2.7.10.1) (Fms-like tyrosine kinase 4) (FLT-4) (Tyrosine-protein kinase receptor FLT4) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development. Promotes proliferation, survival and migration of endothelial cells, and regulates angiogenic sprouting. Signaling by activated FLT4 leads to enhanced production of VEGFC, and to a lesser degree VEGFA, thereby creating a positive feedback loop that enhances FLT4 signaling. Modulates KDR signaling by forming heterodimers. The secreted isoform 3 may function as a decoy receptor for VEGFC and/or VEGFD and play an important role as a negative regulator of VEGFC-mediated lymphangiogenesis and angiogenesis. Binding of vascular growth factors to isoform 1 or isoform 2 leads to the activation of several signaling cascades; isoform 2 seems to be less efficient in signal transduction, because it has a truncated C-terminus and therefore lacks several phosphorylation sites. Mediates activation of the MAPK1/ERK2, MAPK3/ERK1 signaling pathway, of MAPK8 and the JUN signaling pathway, and of the AKT1 signaling pathway. Phosphorylates SHC1. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Promotes phosphorylation of MAPK8 at 'Thr-183' and 'Tyr-185', and of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:11532940, ECO:0000269|PubMed:15102829, ECO:0000269|PubMed:15474514, ECO:0000269|PubMed:16076871, ECO:0000269|PubMed:16452200, ECO:0000269|PubMed:17210781, ECO:0000269|PubMed:19610651, ECO:0000269|PubMed:19779139, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20431062, ECO:0000269|PubMed:20445537, ECO:0000269|PubMed:21273538, ECO:0000269|PubMed:7675451, ECO:0000269|PubMed:8700872, ECO:0000269|PubMed:9435229}. |
P36578 | RPL4 | S295 | ochoa | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P38398 | BRCA1 | S114 | ochoa|psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38398 | BRCA1 | S632 | ochoa|psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P38432 | COIL | S184 | psp | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P39880 | CUX1 | S1270 | ochoa|psp | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P41182 | BCL6 | S260 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P41182 | BCL6 | S366 | ochoa | B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) | Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}. |
P41212 | ETV6 | S323 | ochoa | Transcription factor ETV6 (ETS translocation variant 6) (ETS-related protein Tel1) (Tel) | Transcriptional repressor; binds to the DNA sequence 5'-CCGGAAGT-3'. Plays a role in hematopoiesis and malignant transformation. {ECO:0000269|PubMed:25581430}. |
P41218 | MNDA | S227 | ochoa | Myeloid cell nuclear differentiation antigen | May act as a transcriptional activator/repressor in the myeloid lineage. Plays a role in the granulocyte/monocyte cell-specific response to interferon. Stimulates the DNA binding of the transcriptional repressor protein YY1. |
P41229 | KDM5C | S1359 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P41970 | ELK3 | S115 | ochoa | ETS domain-containing protein Elk-3 (ETS-related protein ERP) (ETS-related protein NET) (Serum response factor accessory protein 2) (SAP-2) (SRF accessory protein 2) | May be a negative regulator of transcription, but can activate transcription when coexpressed with Ras, Src or Mos. Forms a ternary complex with the serum response factor and the ETS and SRF motifs of the Fos serum response element. |
P42345 | MTOR | S1166 | ochoa | Serine/threonine-protein kinase mTOR (EC 2.7.11.1) (FK506-binding protein 12-rapamycin complex-associated protein 1) (FKBP12-rapamycin complex-associated protein) (Mammalian target of rapamycin) (mTOR) (Mechanistic target of rapamycin) (Rapamycin and FKBP12 target 1) (Rapamycin target protein 1) (Tyrosine-protein kinase mTOR) (EC 2.7.10.2) | Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:31601708, PubMed:32561715, PubMed:34519269, PubMed:37751742). MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins (PubMed:15268862, PubMed:15467718, PubMed:17517883, PubMed:18372248, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:30171069, PubMed:29236692, PubMed:37751742). Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2) (PubMed:15268862, PubMed:15467718, PubMed:18497260, PubMed:18925875, PubMed:20516213, PubMed:21576368, PubMed:21659604, PubMed:23429704, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084, PubMed:29150432, PubMed:29236692, PubMed:31112131, PubMed:34519269). This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E) (PubMed:24403073, PubMed:29236692). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4 (PubMed:12087098, PubMed:12150925, PubMed:18925875, PubMed:29150432, PubMed:29236692). Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex (PubMed:23429703, PubMed:23429704). Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor (PubMed:20516213). Activates dormant ribosomes by mediating phosphorylation of SERBP1, leading to SERBP1 inactivation and reactivation of translation (PubMed:36691768). In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1 (PubMed:23426360). To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A (By similarity). In the same time, mTORC1 inhibits catabolic pathways: negatively regulates autophagy through phosphorylation of ULK1 (PubMed:32561715). Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1 (PubMed:32561715). Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP (PubMed:20537536). Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions (PubMed:30704899). Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA (PubMed:23524951, PubMed:25438055). mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor (PubMed:21659604). Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules (PubMed:12231510). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:24403073, PubMed:31695197). The non-canonical mTORC1 complex, which acts independently of RHEB, specifically mediates phosphorylation of MiT/TFE factors MITF, TFEB and TFE3 in the presence of nutrients, promoting their cytosolic retention and inactivation (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:24448649, PubMed:32612235, PubMed:36608670). The mTORC1 complex regulates pyroptosis in macrophages by promoting GSDMD oligomerization (PubMed:34289345). MTOR phosphorylates RPTOR which in turn inhibits mTORC1 (By similarity). As part of the mTORC2 complex, MTOR transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15467718, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:15268862, PubMed:15467718, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:21376236, PubMed:24670654, PubMed:29424687, PubMed:29567957). mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:18925875). mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B (PubMed:15268862). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). May also regulate insulin signaling by acting as a tyrosine protein kinase that catalyzes phosphorylation of IGF1R and INSR; additional evidence are however required to confirm this result in vivo (PubMed:26584640). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity). Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks (By similarity). {ECO:0000250|UniProtKB:Q9JLN9, ECO:0000269|PubMed:12087098, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12231510, ECO:0000269|PubMed:12718876, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15545625, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:17517883, ECO:0000269|PubMed:18372248, ECO:0000269|PubMed:18497260, ECO:0000269|PubMed:18762023, ECO:0000269|PubMed:18925875, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:21376236, ECO:0000269|PubMed:21576368, ECO:0000269|PubMed:21659604, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23426360, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:23429704, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:24670654, ECO:0000269|PubMed:25438055, ECO:0000269|PubMed:25799227, ECO:0000269|PubMed:26018084, ECO:0000269|PubMed:26584640, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29424687, ECO:0000269|PubMed:29567957, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30704899, ECO:0000269|PubMed:31112131, ECO:0000269|PubMed:31601708, ECO:0000269|PubMed:31695197, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:34519269, ECO:0000269|PubMed:35926713, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:36691768, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:37751742}. |
P42677 | RPS27 | S27 | ochoa|psp | Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) | Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}. |
P42694 | HELZ | S248 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P42694 | HELZ | S1317 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P42702 | LIFR | S1077 | ochoa|psp | Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) | Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells. |
P42858 | HTT | S118 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42858 | HTT | S1870 | ochoa|psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43405 | SYK | S350 | ochoa | Tyrosine-protein kinase SYK (EC 2.7.10.2) (Spleen tyrosine kinase) (p72-Syk) | Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immunoreceptors like the B-cell receptor (BCR). Regulates several biological processes including innate and adaptive immunity, cell adhesion, osteoclast maturation, platelet activation and vascular development (PubMed:12387735, PubMed:33782605). Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine-phosphorylated ITAM domains. The association with the receptor can also be indirect and mediated by adapter proteins containing ITAM or partial hemITAM domains. The phosphorylation of the ITAM domains is generally mediated by SRC subfamily kinases upon engagement of the receptor. More rarely signal transduction via SYK could be ITAM-independent. Direct downstream effectors phosphorylated by SYK include DEPTOR, VAV1, PLCG1, PI-3-kinase, LCP2 and BLNK (PubMed:12456653, PubMed:15388330, PubMed:34634301, PubMed:8657103). Initially identified as essential in B-cell receptor (BCR) signaling, it is necessary for the maturation of B-cells most probably at the pro-B to pre-B transition (PubMed:12456653). Activated upon BCR engagement, it phosphorylates and activates BLNK an adapter linking the activated BCR to downstream signaling adapters and effectors. It also phosphorylates and activates PLCG1 and the PKC signaling pathway. It also phosphorylates BTK and regulates its activity in B-cell antigen receptor (BCR)-coupled signaling. In addition to its function downstream of BCR also plays a role in T-cell receptor signaling. Also plays a crucial role in the innate immune response to fungal, bacterial and viral pathogens. It is for instance activated by the membrane lectin CLEC7A. Upon stimulation by fungal proteins, CLEC7A together with SYK activates immune cells inducing the production of ROS. Also activates the inflammasome and NF-kappa-B-mediated transcription of chemokines and cytokines in presence of pathogens. Regulates neutrophil degranulation and phagocytosis through activation of the MAPK signaling cascade (By similarity). Required for the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). Also mediates the activation of dendritic cells by cell necrosis stimuli. Also involved in mast cells activation. Involved in interleukin-3/IL3-mediated signaling pathway in basophils (By similarity). Also functions downstream of receptors mediating cell adhesion (PubMed:12387735). Relays for instance, integrin-mediated neutrophils and macrophages activation and P-selectin receptor/SELPG-mediated recruitment of leukocytes to inflammatory loci. Also plays a role in non-immune processes. It is for instance involved in vascular development where it may regulate blood and lymphatic vascular separation. It is also required for osteoclast development and function. Functions in the activation of platelets by collagen, mediating PLCG2 phosphorylation and activation. May be coupled to the collagen receptor by the ITAM domain-containing FCER1G. Also activated by the membrane lectin CLEC1B that is required for activation of platelets by PDPN/podoplanin. Involved in platelet adhesion being activated by ITGB3 engaged by fibrinogen. Together with CEACAM20, enhances production of the cytokine CXCL8/IL-8 via the NFKB pathway and may thus have a role in the intestinal immune response (By similarity). {ECO:0000250|UniProtKB:P48025, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:12456653, ECO:0000269|PubMed:15123770, ECO:0000269|PubMed:15388330, ECO:0000269|PubMed:19909739, ECO:0000269|PubMed:33782605, ECO:0000269|PubMed:34634301, ECO:0000269|PubMed:8657103, ECO:0000269|PubMed:9535867}. |
P45985 | MAP2K4 | S90 | ochoa | Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}. |
P46013 | MKI67 | S1679 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1983 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2528 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46087 | NOP2 | S67 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46100 | ATRX | S1527 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46821 | MAP1B | S91 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1378 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1501 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2271 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46939 | UTRN | S295 | ochoa|psp | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P46939 | UTRN | S1405 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48380 | RFX3 | S155 | ochoa | Transcription factor RFX3 (Regulatory factor X 3) | Transcription factor required for ciliogenesis and islet cell differentiation during endocrine pancreas development. Essential for the differentiation of nodal monocilia and left-right asymmetry specification during embryogenesis. Required for the biogenesis of motile cilia by governing growth and beating efficiency of motile cells. Also required for ciliated ependymal cell differentiation. Regulates the expression of genes involved in ciliary assembly (DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary motility (DNAH11, DNAH9 and DNAH5) (By similarity). Together with RFX6, participates in the differentiation of 4 of the 5 islet cell types during endocrine pancreas development, with the exception of pancreatic PP (polypeptide-producing) cells. Regulates transcription by forming a heterodimer with another RFX protein and binding to the X-box in the promoter of target genes (PubMed:20148032). Represses transcription of MAP1A in non-neuronal cells but not in neuronal cells (PubMed:12411430). {ECO:0000250|UniProtKB:P48381, ECO:0000269|PubMed:12411430, ECO:0000269|PubMed:20148032}. |
P48382 | RFX5 | S185 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P48551 | IFNAR2 | S384 | ochoa|psp | Interferon alpha/beta receptor 2 (IFN-R-2) (IFN-alpha binding protein) (IFN-alpha/beta receptor 2) (Interferon alpha binding protein) (Type I interferon receptor 2) | Together with IFNAR1, forms the heterodimeric receptor for type I interferons (including interferons alpha, beta, epsilon, omega and kappa) (PubMed:10049744, PubMed:10556041, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Type I interferon binding activates the JAK-STAT signaling cascade, resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response (PubMed:10049744, PubMed:17517919, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Mechanistically, type I interferon-binding brings the IFNAR1 and IFNAR2 subunits into close proximity with one another, driving their associated Janus kinases (JAKs) (TYK2 bound to IFNAR1 and JAK1 bound to IFNAR2) to cross-phosphorylate one another (PubMed:10556041, PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). The activated kinases phosphorylate specific tyrosine residues on the intracellular domains of IFNAR1 and IFNAR2, forming docking sites for the STAT transcription factors (STAT1, STAT2 and STAT) (PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). STAT proteins are then phosphorylated by the JAKs, promoting their translocation into the nucleus to regulate expression of interferon-regulated genes (PubMed:12105218, PubMed:28165510, PubMed:9121453). {ECO:0000269|PubMed:10049744, ECO:0000269|PubMed:10556041, ECO:0000269|PubMed:11682488, ECO:0000269|PubMed:12105218, ECO:0000269|PubMed:17517919, ECO:0000269|PubMed:21854986, ECO:0000269|PubMed:26424569, ECO:0000269|PubMed:28165510, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:7665574, ECO:0000269|PubMed:7759950, ECO:0000269|PubMed:8181059, ECO:0000269|PubMed:8798579, ECO:0000269|PubMed:8969169, ECO:0000269|PubMed:9121453}.; FUNCTION: [Isoform 3]: Potent inhibitor of type I IFN receptor activity. {ECO:0000269|PubMed:7759950}. |
P48553 | TRAPPC10 | S683 | ochoa | Trafficking protein particle complex subunit 10 (Epilepsy holoprosencephaly candidate 1 protein) (EHOC-1) (Protein GT334) (Trafficking protein particle complex subunit TMEM1) (Transport protein particle subunit TMEM1) (TRAPP subunit TMEM1) | Specific subunit of the TRAPP (transport protein particle) II complex, a highly conserved vesicle tethering complex that functions in late Golgi trafficking as a membrane tether. {ECO:0000269|PubMed:11805826, ECO:0000269|PubMed:31467083, ECO:0000269|PubMed:35298461}. |
P48651 | PTDSS1 | S425 | ochoa | Phosphatidylserine synthase 1 (PSS-1) (PtdSer synthase 1) (EC 2.7.8.29) (Serine-exchange enzyme I) | Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine (PubMed:19014349, PubMed:24241535). Catalyzes mainly the conversion of phosphatidylcholine (PubMed:19014349, PubMed:24241535). Also converts, in vitro and to a lesser extent, phosphatidylethanolamine (PubMed:19014349, PubMed:24241535). {ECO:0000269|PubMed:19014349, ECO:0000269|PubMed:24241535}. |
P48651 | PTDSS1 | S442 | ochoa | Phosphatidylserine synthase 1 (PSS-1) (PtdSer synthase 1) (EC 2.7.8.29) (Serine-exchange enzyme I) | Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine (PubMed:19014349, PubMed:24241535). Catalyzes mainly the conversion of phosphatidylcholine (PubMed:19014349, PubMed:24241535). Also converts, in vitro and to a lesser extent, phosphatidylethanolamine (PubMed:19014349, PubMed:24241535). {ECO:0000269|PubMed:19014349, ECO:0000269|PubMed:24241535}. |
P49116 | NR2C2 | S19 | ochoa | Nuclear receptor subfamily 2 group C member 2 (Orphan nuclear receptor TAK1) (Orphan nuclear receptor TR4) (Testicular receptor 4) | Orphan nuclear receptor that can act as a repressor or activator of transcription. An important repressor of nuclear receptor signaling pathways such as retinoic acid receptor, retinoid X, vitamin D3 receptor, thyroid hormone receptor and estrogen receptor pathways. May regulate gene expression during the late phase of spermatogenesis. Together with NR2C1, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription including that of GATA1. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Plays a fundamental role in early embryonic development and embryonic stem cells. Required for normal spermatogenesis and cerebellum development. Appears to be important for neurodevelopmentally regulated behavior (By similarity). Activates transcriptional activity of LHCG. Antagonist of PPARA-mediated transactivation. {ECO:0000250, ECO:0000269|PubMed:10347174, ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:17974920, ECO:0000269|PubMed:7779113, ECO:0000269|PubMed:9556573}. |
P49321 | NASP | S344 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49321 | NASP | S726 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49406 | MRPL19 | S77 | ochoa | Large ribosomal subunit protein bL19m (39S ribosomal protein L15, mitochondrial) (L15mt) (MRP-L15) (39S ribosomal protein L19, mitochondrial) (L19mt) (MRP-L19) | None |
P49643 | PRIM2 | S404 | ochoa | DNA primase large subunit (DNA primase 58 kDa subunit) (p58) | Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}. |
P49756 | RBM25 | S653 | ochoa | RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) | RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}. |
P49792 | RANBP2 | S1400 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S2510 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49796 | RGS3 | S496 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P49815 | TSC2 | S540 | psp | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P49903 | SEPHS1 | S342 | ochoa | Selenide, water dikinase 1 (EC 2.7.9.3) (Selenium donor protein 1) (Selenophosphate synthase 1) | Synthesizes selenophosphate from selenide and ATP. {ECO:0000269|PubMed:7665581}. |
P49915 | GMPS | S332 | ochoa | GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) (GMP synthetase) (Glutamine amidotransferase) | Catalyzes the conversion of xanthine monophosphate (XMP) to GMP in the presence of glutamine and ATP through an adenyl-XMP intermediate. {ECO:0000269|PubMed:8089153}. |
P49959 | MRE11 | S275 | ochoa | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P50613 | CDK7 | S164 | ochoa|psp | Cyclin-dependent kinase 7 (EC 2.7.11.22) (EC 2.7.11.23) (39 kDa protein kinase) (p39 Mo15) (CDK-activating kinase 1) (Cell division protein kinase 7) (Serine/threonine-protein kinase 1) (TFIIH basal transcription factor complex kinase subunit) | Serine/threonine kinase involved in cell cycle control and in RNA polymerase II-mediated RNA transcription (PubMed:9852112, PubMed:19136461, PubMed:26257281, PubMed:28768201). Cyclin-dependent kinases (CDKs) are activated by the binding to a cyclin and mediate the progression through the cell cycle. Each different complex controls a specific transition between 2 subsequent phases in the cell cycle. Required for both activation and complex formation of CDK1/cyclin-B during G2-M transition, and for activation of CDK2/cyclins during G1-S transition (but not complex formation). CDK7 is the catalytic subunit of the CDK-activating kinase (CAK) complex. Phosphorylates SPT5/SUPT5H, SF1/NR5A1, POLR2A, p53/TP53, CDK1, CDK2, CDK4, CDK6 and CDK11B/CDK11 (PubMed:9372954, PubMed:9840937, PubMed:19136461, PubMed:26257281, PubMed:28768201). Initiates transcription by RNA polymerase II by mediating phosphorylation of POLR2A at 'Ser-5' of the repetitive C-terminal domain (CTD) when POLR2A is in complex with DNA, promoting dissociation from DNA and initiation (PubMed:19136461, PubMed:26257281, PubMed:28768201). CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation, thus regulating cell cycle progression. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the CTD of POLR2A, allowing its escape from the promoter and elongation of the transcripts (PubMed:9852112). Its expression and activity are constant throughout the cell cycle. Upon DNA damage, triggers p53/TP53 activation by phosphorylation, but is inactivated in turn by p53/TP53; this feedback loop may lead to an arrest of the cell cycle and of the transcription, helping in cell recovery, or to apoptosis. Required for DNA-bound peptides-mediated transcription and cellular growth inhibition. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:11113184, ECO:0000269|PubMed:16327805, ECO:0000269|PubMed:17373709, ECO:0000269|PubMed:17386261, ECO:0000269|PubMed:17901130, ECO:0000269|PubMed:19015234, ECO:0000269|PubMed:19071173, ECO:0000269|PubMed:19136461, ECO:0000269|PubMed:19450536, ECO:0000269|PubMed:19667075, ECO:0000269|PubMed:20360007, ECO:0000269|PubMed:26257281, ECO:0000269|PubMed:28768201, ECO:0000269|PubMed:9372954, ECO:0000269|PubMed:9840937, ECO:0000269|PubMed:9852112}. |
P50616 | TOB1 | S205 | ochoa | Protein Tob1 (Transducer of erbB-2 1) | Anti-proliferative protein; the function is mediated by association with deadenylase subunits of the CCR4-NOT complex (PubMed:23236473, PubMed:8632892). Mediates CPEB3-accelerated mRNA deadenylation by binding to CPEB3 and recruiting CNOT7 which leads to target mRNA deadenylation and decay (PubMed:21336257). {ECO:0000269|PubMed:21336257, ECO:0000269|PubMed:23236473, ECO:0000269|PubMed:8632892}. |
P50747 | HLCS | S147 | ochoa | Biotin--protein ligase (EC 6.3.4.-) (Biotin apo-protein ligase) [Includes: Biotin--[methylmalonyl-CoA-carboxytransferase] ligase (EC 6.3.4.9); Biotin--[propionyl-CoA-carboxylase [ATP-hydrolyzing]] ligase (EC 6.3.4.10) (Holocarboxylase synthetase) (HCS); Biotin--[methylcrotonoyl-CoA-carboxylase] ligase (EC 6.3.4.11); Biotin--[acetyl-CoA-carboxylase] ligase (EC 6.3.4.15)] | Biotin--protein ligase catalyzing the biotinylation of the 4 biotin-dependent carboxylases acetyl-CoA-carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and methylcrotonyl-CoA carboxylase. {ECO:0000269|PubMed:10590022, ECO:0000269|PubMed:7753853, ECO:0000269|PubMed:7842009}. |
P50851 | LRBA | S1118 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P50914 | RPL14 | S139 | ochoa | Large ribosomal subunit protein eL14 (60S ribosomal protein L14) (CAG-ISL 7) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P50991 | CCT4 | S184 | ochoa | T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P51003 | PAPOLA | S660 | ochoa | Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) | Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}. |
P51784 | USP11 | S733 | ochoa | Ubiquitin carboxyl-terminal hydrolase 11 (EC 3.4.19.12) (Deubiquitinating enzyme 11) (Ubiquitin thioesterase 11) (Ubiquitin-specific-processing protease 11) | Protease that can remove conjugated ubiquitin from target proteins and polyubiquitin chains (PubMed:12084015, PubMed:15314155, PubMed:17897950, PubMed:19874889, PubMed:20233726, PubMed:24724799, PubMed:28992046). Inhibits the degradation of target proteins by the proteasome (PubMed:12084015). Cleaves preferentially 'Lys-6' and 'Lys-63'-linked ubiquitin chains. Has lower activity with 'Lys-11' and 'Lys-33'-linked ubiquitin chains, and extremely low activity with 'Lys-27', 'Lys-29' and 'Lys-48'-linked ubiquitin chains (in vitro) (PubMed:24724799). Plays a role in the regulation of pathways leading to NF-kappa-B activation (PubMed:17897950, PubMed:19874889). Plays a role in the regulation of DNA repair after double-stranded DNA breaks (PubMed:15314155, PubMed:20233726). Acts as a chromatin regulator via its association with the Polycomb group (PcG) multiprotein PRC1-like complex; may act by deubiquitinating components of the PRC1-like complex (PubMed:20601937). Promotes cell proliferation by deubiquitinating phosphorylated E2F1 (PubMed:28992046). {ECO:0000269|PubMed:15314155, ECO:0000269|PubMed:17897950, ECO:0000269|PubMed:18408009, ECO:0000269|PubMed:19874889, ECO:0000269|PubMed:20233726, ECO:0000269|PubMed:24724799, ECO:0000269|PubMed:28992046}. |
P51787 | KCNQ1 | S409 | ochoa|psp | Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) | Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}. |
P51788 | CLCN2 | S731 | ochoa | Chloride channel protein 2 (ClC-2) | Voltage-gated and osmosensitive chloride channel. Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Displays inward rectification currents activated upon membrane hyperpolarization and extracellular hypotonicity (PubMed:16155254, PubMed:17567819, PubMed:19191339, PubMed:23632988, PubMed:29403011, PubMed:29403012, PubMed:36964785, PubMed:38345841). Contributes to chloride conductance involved in neuron excitability. In hippocampal neurons, generates a significant part of resting membrane conductance and provides an additional chloride efflux pathway to prevent chloride accumulation in dendrites upon GABA receptor activation. In glia, associates with the auxiliary subunit HEPACAM/GlialCAM at astrocytic processes and myelinated fiber tracts where it may regulate transcellular chloride flux buffering extracellular chloride and potassium concentrations (PubMed:19191339, PubMed:22405205, PubMed:23707145). Regulates aldosterone production in adrenal glands. The opening of CLCN2 channels at hyperpolarized membrane potentials in the glomerulosa causes cell membrane depolarization, activation of voltage-gated calcium channels and increased expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis (PubMed:29403011, PubMed:29403012). Contributes to chloride conductance in retinal pigment epithelium involved in phagocytosis of shed photoreceptor outer segments and photoreceptor renewal (PubMed:36964785). Conducts chloride currents at the basolateral membrane of epithelial cells with a role in chloride reabsorption rather than secretion (By similarity) (PubMed:16155254). Permeable to small monovalent anions with chloride > thiocyanate > bromide > nitrate > iodide ion selectivity (By similarity) (PubMed:29403012). {ECO:0000250|UniProtKB:P35525, ECO:0000250|UniProtKB:Q9R0A1, ECO:0000269|PubMed:16155254, ECO:0000269|PubMed:17567819, ECO:0000269|PubMed:19191339, ECO:0000269|PubMed:22405205, ECO:0000269|PubMed:23632988, ECO:0000269|PubMed:23707145, ECO:0000269|PubMed:29403011, ECO:0000269|PubMed:29403012, ECO:0000269|PubMed:36964785, ECO:0000269|PubMed:38345841}. |
P51825 | AFF1 | S307 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P51826 | AFF3 | S878 | ochoa | AF4/FMR2 family member 3 (Lymphoid nuclear protein related to AF4) (Protein LAF-4) | Putative transcription activator that may function in lymphoid development and oncogenesis. Binds, in vitro, to double-stranded DNA. |
P52179 | MYOM1 | S113 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52272 | HNRNPM | S701 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52569 | SLC7A2 | S446 | ochoa | Cationic amino acid transporter 2 (CAT-2) (CAT2) (Low affinity cationic amino acid transporter 2) (Solute carrier family 7 member 2) | Functions as a permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine); the affinity for its substrates differs between isoforms created by alternative splicing (PubMed:28684763, PubMed:9174363). May play a role in classical or alternative activation of macrophages via its role in arginine transport (By similarity). {ECO:0000250|UniProtKB:P18581, ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 1]: Functions as a permease that mediates the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). Shows a much higher affinity for L-arginine and L-homoarginine than isoform 2. {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}.; FUNCTION: [Isoform 2]: Functions as a low-affinity, high capacity permease involved in the transport of the cationic amino acids (L-arginine, L-lysine, L-ornithine and L-homoarginine). {ECO:0000269|PubMed:28684763, ECO:0000269|PubMed:9174363}. |
P52948 | NUP98 | S934 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P53004 | BLVRA | S211 | ochoa | Biliverdin reductase A (BVR A) (EC 1.3.1.24) (Biliverdin-IX alpha-reductase) | Reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IXalpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor (PubMed:10858451, PubMed:7929092, PubMed:8424666, PubMed:8631357). Does not reduce bilirubin IXbeta (PubMed:10858451). Uses the reactants NADH or NADPH depending on the pH; NADH is used at the acidic pH range (6-6.9) and NADPH at the alkaline range (8.5-8.7) (PubMed:7929092, PubMed:8424666, PubMed:8631357). NADPH, however, is the probable reactant in biological systems (PubMed:7929092). {ECO:0000269|PubMed:10858451, ECO:0000269|PubMed:7929092, ECO:0000269|PubMed:8424666, ECO:0000269|PubMed:8631357}. |
P53007 | SLC25A1 | S156 | ochoa | Tricarboxylate transport protein, mitochondrial (Citrate transport protein) (CTP) (Mitochondrial citrate carrier) (CIC) (Solute carrier family 25 member 1) (Tricarboxylate carrier protein) | Mitochondrial electroneutral antiporter that exports citrate from the mitochondria into the cytosol in exchange for malate (PubMed:26870663, PubMed:29031613, PubMed:29238895, PubMed:39881208). Also able to mediate the exchange of citrate for isocitrate, phosphoenolpyruvate, cis-aconitate and to a lesser extent trans-aconitate, maleate and succinate (PubMed:29031613). In the cytoplasm, citrate plays important roles in fatty acid and sterol synthesis, regulation of glycolysis, protein acetylation, and other physiopathological processes (PubMed:29031613, PubMed:29238895, PubMed:39881208). {ECO:0000269|PubMed:26870663, ECO:0000269|PubMed:29031613, ECO:0000269|PubMed:29238895, ECO:0000269|PubMed:39881208}. |
P53621 | COPA | S1193 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P53804 | TTC3 | S456 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P53804 | TTC3 | S1927 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P54646 | PRKAA2 | S176 | ochoa | 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK subunit alpha-2) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (PubMed:7959015). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). Involved in insulin receptor/INSR internalization (PubMed:25687571). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation (By similarity). Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1 (By similarity). Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration (PubMed:36017701). Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation (PubMed:28552616). Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:Q09137, ECO:0000250|UniProtKB:Q8BRK8, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36017701, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:7959015, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
P54750 | PDE1A | S487 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1A (Cam-PDE 1A) (EC 3.1.4.17) (61 kDa Cam-PDE) (hCam-1) | Calcium/calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cGMP and cAMP, which are key regulators of many important physiological processes. Has a higher efficiency with cGMP compared to cAMP. {ECO:0000269|PubMed:8557689}. |
P55060 | CSE1L | S103 | ochoa | Exportin-2 (Exp2) (Cellular apoptosis susceptibility protein) (Chromosome segregation 1-like protein) (Importin-alpha re-exporter) | Export receptor for importin-alpha. Mediates importin-alpha re-export from the nucleus to the cytoplasm after import substrates (cargos) have been released into the nucleoplasm. In the nucleus binds cooperatively to importin-alpha and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the importin-alpha from the export receptor. CSE1L/XPO2 then return to the nuclear compartment and mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:9323134}. |
P55884 | EIF3B | S239 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P57721 | PCBP3 | S201 | ochoa | Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}. |
P57737 | CORO7 | S775 | ochoa | Coronin-7 (Crn7) (70 kDa WD repeat tumor rejection antigen homolog) | F-actin regulator involved in anterograde Golgi to endosome transport: upon ubiquitination via 'Lys-33'-linked ubiquitin chains by the BCR(KLHL20) E3 ubiquitin ligase complex, interacts with EPS15 and localizes to the trans-Golgi network, where it promotes actin polymerization, thereby facilitating post-Golgi trafficking. May play a role in the maintenance of the Golgi apparatus morphology. {ECO:0000269|PubMed:16905771, ECO:0000269|PubMed:24768539}. |
P57740 | NUP107 | S734 | ochoa | Nuclear pore complex protein Nup107 (107 kDa nucleoporin) (Nucleoporin Nup107) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:12552102, PubMed:15229283, PubMed:30179222). Required for the assembly of peripheral proteins into the NPC (PubMed:12552102, PubMed:15229283). May anchor NUP62 to the NPC (PubMed:15229283). Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:12552102, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:30179222}. |
P57772 | EEFSEC | S537 | ochoa | Selenocysteine-specific elongation factor (EC 3.6.5.-) (Elongation factor sec) (Eukaryotic elongation factor, selenocysteine-tRNA-specific) | Translation factor required for the incorporation of the rare amino acid selenocysteine encoded by UGA codons (PubMed:27708257, PubMed:35709277). Replaces the eRF1-eRF3-GTP ternary complex for the insertion of selenocysteine directed by the UGA codon (PubMed:27708257, PubMed:35709277). Insertion of selenocysteine at UGA codons is mediated by SECISBP2 and EEFSEC: SECISBP2 (1) specifically binds the SECIS sequence once the 80S ribosome encounters an in-frame UGA codon and (2) contacts the RPS27A/eS31 of the 40S ribosome before ribosome stalling (PubMed:35709277). (3) GTP-bound EEFSEC then delivers selenocysteinyl-tRNA(Sec) to the 80S ribosome and adopts a preaccommodated state conformation (PubMed:35709277). (4) After GTP hydrolysis, EEFSEC dissociates from the assembly, selenocysteinyl-tRNA(Sec) accommodates, and peptide bond synthesis and selenoprotein elongation occur (PubMed:35709277). {ECO:0000269|PubMed:27708257, ECO:0000269|PubMed:35709277}. |
P60983 | GMFB | S53 | psp | Glia maturation factor beta (GMF-beta) | This protein causes differentiation of brain cells, stimulation of neural regeneration, and inhibition of proliferation of tumor cells. |
P61086 | UBE2K | S159 | ochoa | Ubiquitin-conjugating enzyme E2 K (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme K) (Huntingtin-interacting protein 2) (HIP-2) (Ubiquitin carrier protein) (Ubiquitin-conjugating enzyme E2-25 kDa) (Ubiquitin-conjugating enzyme E2(25K)) (Ubiquitin-conjugating enzyme E2-25K) (Ubiquitin-protein ligase) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro, in the presence or in the absence of BRCA1-BARD1 E3 ubiquitin-protein ligase complex, catalyzes the synthesis of 'Lys-48'-linked polyubiquitin chains. Does not transfer ubiquitin directly to but elongates monoubiquitinated substrate protein. Mediates the selective degradation of short-lived and abnormal proteins, such as the endoplasmic reticulum-associated degradation (ERAD) of misfolded lumenal proteins. Ubiquitinates huntingtin. May mediate foam cell formation by the suppression of apoptosis of lipid-bearing macrophages through ubiquitination and subsequence degradation of p53/TP53. Proposed to be involved in ubiquitination and proteolytic processing of NF-kappa-B; in vitro supports ubiquitination of NFKB1. In case of infection by cytomegaloviruses may be involved in the US11-dependent degradation of MHC class I heavy chains following their export from the ER to the cytosol. In case of viral infections may be involved in the HPV E7 protein-dependent degradation of RB1. {ECO:0000269|PubMed:10634809, ECO:0000269|PubMed:10675012, ECO:0000269|PubMed:16714285, ECO:0000269|PubMed:16868077, ECO:0000269|PubMed:17873885, ECO:0000269|PubMed:19906396, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:8702625}. |
P78312 | FAM193A | S1144 | ochoa | Protein FAM193A (Protein IT14) | None |
P78316 | NOP14 | S96 | ochoa | Nucleolar protein 14 (Nucleolar complex protein 14) | Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}. |
P78332 | RBM6 | S891 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78347 | GTF2I | S668 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
P78364 | PHC1 | S664 | ochoa | Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}. |
P78559 | MAP1A | S1600 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P81274 | GPSM2 | S541 | ochoa | G-protein-signaling modulator 2 (Mosaic protein LGN) | Plays an important role in mitotic spindle pole organization via its interaction with NUMA1 (PubMed:11781568, PubMed:15632202, PubMed:21816348). Required for cortical dynein-dynactin complex recruitment during metaphase (PubMed:22327364). Plays a role in metaphase spindle orientation (PubMed:22327364). Also plays an important role in asymmetric cell divisions (PubMed:21816348). Has guanine nucleotide dissociation inhibitor (GDI) activity towards G(i) alpha proteins, such as GNAI1 and GNAI3, and thereby regulates their activity (By similarity). {ECO:0000250|UniProtKB:Q8VDU0, ECO:0000269|PubMed:11781568, ECO:0000269|PubMed:15632202, ECO:0000269|PubMed:21816348, ECO:0000269|PubMed:22327364}. |
P86452 | ZBED6 | S381 | ochoa | Zinc finger BED domain-containing protein 6 | Transcriptional repressor which binds to the consensus sequence 5'-GCTCGC-3', transcription regulation may be tissue-specific (By similarity). Regulates the expression of target genes such as: IGF2, PGAP6/TMEM8, ENHO, and PIANP (By similarity). Acts as a transcriptional repressor of growth factor IGF2, thereby negatively regulating postnatal growth of muscles and internal organs, especially in females (By similarity). Negatively regulates myoblast differentiation and myoblast mitochondrial activity via its regulation of IGF2 transcription (By similarity). Negatively regulates the cell cycle of myoblasts, potentially via transcriptional regulation of the E2F family of transcription factors such as: E2F1 and E2F2 (By similarity). Positively regulates the cell cycle and survival of pancreatic beta cells (PubMed:24043816). Binds to the CDH2 gene and may directly repress CDH2 transcription (By similarity). Probably by controlling CDH2 expression, regulates pancreatic beta cell adhesion, and formation of cell-to-cell junctions between pancreatic beta cells and neural crest stem cells (By similarity). May also play a role in embryonic beta cell differentiation (By similarity). May play a role in insulin sensitivity and glucose clearance (By similarity). {ECO:0000250|UniProtKB:D2EAC2, ECO:0000269|PubMed:24043816}. |
Q00013 | MPP1 | S243 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q01484 | ANK2 | S1891 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2315 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01581 | HMGCS1 | S495 | ochoa | Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMG-CoA synthase) (EC 2.3.3.10) (3-hydroxy-3-methylglutaryl coenzyme A synthase) | Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is converted by HMG-CoA reductase (HMGCR) into mevalonate, a precursor for cholesterol synthesis. {ECO:0000269|PubMed:7913309}. |
Q01658 | DR1 | S67 | ochoa | Protein Dr1 (Down-regulator of transcription 1) (Negative cofactor 2-beta) (NC2-beta) (TATA-binding protein-associated phosphoprotein) | The association of the DR1/DRAP1 heterodimer with TBP results in a functional repression of both activated and basal transcription of class II genes. This interaction precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Can bind to DNA on its own. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:8670811}. |
Q01804 | OTUD4 | S443 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q01860 | POU5F1 | S111 | psp | POU domain, class 5, transcription factor 1 (Octamer-binding protein 3) (Oct-3) (Octamer-binding protein 4) (Oct-4) (Octamer-binding transcription factor 3) (OTF-3) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3'). Forms a trimeric complex with SOX2 or SOX15 on DNA and controls the expression of a number of genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206. Critical for early embryogenesis and for embryonic stem cell pluripotency. {ECO:0000269|PubMed:18035408}. |
Q01954 | BNC1 | S338 | ochoa | Zinc finger protein basonuclin-1 | Transcriptional activator (By similarity). It is likely involved in the regulation of keratinocytes terminal differentiation in squamous epithelia and hair follicles (PubMed:8034748). Required for the maintenance of spermatogenesis (By similarity). It is involved in the positive regulation of oocyte maturation, probably acting through the control of BMP15 levels and regulation of AKT signaling cascade (PubMed:30010909). May also play a role in the early development of embryos (By similarity). {ECO:0000250|UniProtKB:O35914, ECO:0000269|PubMed:30010909, ECO:0000269|PubMed:8034748}. |
Q01974 | ROR2 | S569 | ochoa | Tyrosine-protein kinase transmembrane receptor ROR2 (EC 2.7.10.1) (Neurotrophic tyrosine kinase, receptor-related 2) | Tyrosine-protein kinase receptor which may be involved in the early formation of the chondrocytes. It seems to be required for cartilage and growth plate development (By similarity). Phosphorylates YWHAB, leading to induction of osteogenesis and bone formation (PubMed:17717073). In contrast, has also been shown to have very little tyrosine kinase activity in vitro. May act as a receptor for wnt ligand WNT5A which may result in the inhibition of WNT3A-mediated signaling (PubMed:25029443). {ECO:0000250|UniProtKB:Q9Z138, ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:25029443}. |
Q02040 | AKAP17A | S537 | ochoa | A-kinase anchor protein 17A (AKAP-17A) (721P) (B-lymphocyte antigen) (Protein XE7) (Protein kinase A-anchoring protein 17A) (PRKA17A) (Splicing factor, arginine/serine-rich 17A) | Splice factor regulating alternative splice site selection for certain mRNA precursors. Mediates regulation of pre-mRNA splicing in a PKA-dependent manner. {ECO:0000269|PubMed:16982639, ECO:0000269|PubMed:19840947}. |
Q02224 | CENPE | S2605 | psp | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q02446 | SP4 | S757 | ochoa | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q02952 | AKAP12 | S253 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S514 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | S351 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S73 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04637 | EIF4G1 | S314 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q04656 | ATP7A | S427 | ochoa | Copper-transporting ATPase 1 (EC 7.2.2.8) (Copper pump 1) (Menkes disease-associated protein) | ATP-driven copper (Cu(+)) ion pump that plays an important role in intracellular copper ion homeostasis (PubMed:10419525, PubMed:11092760, PubMed:28389643). Within a catalytic cycle, acquires Cu(+) ion from donor protein on the cytoplasmic side of the membrane and delivers it to acceptor protein on the lumenal side. The transfer of Cu(+) ion across the membrane is coupled to ATP hydrolysis and is associated with a transient phosphorylation that shifts the pump conformation from inward-facing to outward-facing state (PubMed:10419525, PubMed:19453293, PubMed:19917612, PubMed:28389643, PubMed:31283225). Under physiological conditions, at low cytosolic copper concentration, it is localized at the trans-Golgi network (TGN) where it transfers Cu(+) ions to cuproenzymes of the secretory pathway (PubMed:11092760, PubMed:28389643). Upon elevated cytosolic copper concentrations, it relocalizes to the plasma membrane where it is responsible for the export of excess Cu(+) ions (PubMed:10419525, PubMed:28389643). May play a dual role in neuron function and survival by regulating cooper efflux and neuronal transmission at the synapse as well as by supplying Cu(+) ions to enzymes such as PAM, TYR and SOD3 (By similarity) (PubMed:28389643). In the melanosomes of pigmented cells, provides copper cofactor to TYR to form an active TYR holoenzyme for melanin biosynthesis (By similarity). {ECO:0000250|UniProtKB:Q64430, ECO:0000269|PubMed:10419525, ECO:0000269|PubMed:11092760, ECO:0000269|PubMed:19453293, ECO:0000269|PubMed:19917612, ECO:0000269|PubMed:28389643, ECO:0000269|PubMed:31283225}. |
Q04727 | TLE4 | S208 | ochoa | Transducin-like enhancer protein 4 (Grg-4) (Groucho-related protein 4) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by PAX5, and by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Essential for the transcriptional repressor activity of SIX3 during retina and lens development and for SIX3 transcriptional auto-repression (By similarity). Involved in transcriptional repression of GNRHR and enhances MSX1-mediated transcriptional repression of CGA/alpha-GSU (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q62441}. |
Q04727 | TLE4 | S269 | ochoa | Transducin-like enhancer protein 4 (Grg-4) (Groucho-related protein 4) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by PAX5, and by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Essential for the transcriptional repressor activity of SIX3 during retina and lens development and for SIX3 transcriptional auto-repression (By similarity). Involved in transcriptional repression of GNRHR and enhances MSX1-mediated transcriptional repression of CGA/alpha-GSU (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q62441}. |
Q05D32 | CTDSPL2 | S165 | ochoa | CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) | Probable phosphatase. {ECO:0000250}. |
Q06413 | MEF2C | S110 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q06587 | RING1 | S38 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q07864 | POLE | S1204 | ochoa | DNA polymerase epsilon catalytic subunit A (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase II subunit A) | Catalytic component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in chromosomal DNA replication (By similarity). Required during synthesis of the leading DNA strands at the replication fork, binds at/or near replication origins and moves along DNA with the replication fork (By similarity). Has 3'-5' proofreading exonuclease activity that corrects errors arising during DNA replication (By similarity). Involved in DNA synthesis during DNA repair (PubMed:20227374, PubMed:27573199). Along with DNA polymerase POLD1 and DNA polymerase POLK, has a role in excision repair (NER) synthesis following UV irradiation (PubMed:20227374). {ECO:0000250|UniProtKB:P21951, ECO:0000269|PubMed:10801849, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:27573199}. |
Q07866 | KLC1 | S162 | ochoa | Kinesin light chain 1 (KLC 1) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}. |
Q08174 | PCDH1 | S918 | ochoa | Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) | May be involved in cell-cell interaction processes and in cell adhesion. |
Q08379 | GOLGA2 | S953 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q08499 | PDE4D | S348 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q08999 | RBL2 | S639 | ochoa|psp | Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) | Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor. |
Q08AD1 | CAMSAP2 | S931 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q08J23 | NSUN2 | S473 | ochoa | RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) | RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}. |
Q09666 | AHNAK | S93 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S511 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S2397 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S3426 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S4986 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5099 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0ZGT2 | NEXN | S357 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q10587 | TEF | S170 | ochoa | Thyrotroph embryonic factor | Transcription factor that binds to and transactivates the TSHB promoter. Binds to a minimal DNA-binding sequence 5'-[TC][AG][AG]TTA[TC][AG]-3'. |
Q12802 | AKAP13 | S352 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S1231 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S1300 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12846 | STX4 | S36 | ochoa | Syntaxin-4 (Renal carcinoma antigen NY-REN-31) | Plasma membrane t-SNARE that mediates docking of transport vesicles (By similarity). Necessary for the translocation of SLC2A4 from intracellular vesicles to the plasma membrane (By similarity). In neurons, recruited at neurite tips to membrane domains rich in the phospholipid 1-oleoyl-2-palmitoyl-PC (OPPC) which promotes neurite tip surface expression of the dopamine transporter SLC6A3/DAT by facilitating fusion of SLC6A3-containing transport vesicles with the plasma membrane (By similarity). Together with STXB3 and VAMP2, may also play a role in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes and in docking of synaptic vesicles at presynaptic active zones (By similarity). Required for normal hearing (PubMed:36355422). {ECO:0000250|UniProtKB:P70452, ECO:0000250|UniProtKB:Q08850, ECO:0000269|PubMed:36355422}. |
Q12888 | TP53BP1 | S294 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S765 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12904 | AIMP1 | S232 | ochoa | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q12912 | IRAG2 | S131 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q12923 | PTPN13 | S1033 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12959 | DLG1 | S158 | psp | Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) | Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}. |
Q13017 | ARHGAP5 | S1202 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13023 | AKAP6 | S1073 | ochoa | A-kinase anchor protein 6 (AKAP-6) (A-kinase anchor protein 100 kDa) (AKAP 100) (Protein kinase A-anchoring protein 6) (PRKA6) (mAKAP) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the nuclear membrane or sarcoplasmic reticulum. May act as an adapter for assembling multiprotein complexes. |
Q13029 | PRDM2 | S796 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13105 | ZBTB17 | S357 | ochoa | Zinc finger and BTB domain-containing protein 17 (Myc-interacting zinc finger protein 1) (Miz-1) (Zinc finger protein 151) (Zinc finger protein 60) | Transcription factor that can function as an activator or repressor depending on its binding partners, and by targeting negative regulators of cell cycle progression. Plays a critical role in early lymphocyte development, where it is essential to prevent apoptosis in lymphoid precursors, allowing them to survive in response to IL7 and undergo proper lineage commitment. Has been shown to bind to the promoters of adenovirus major late protein and cyclin D1 and activate transcription. Required for early embryonic development during gastrulation. Represses RB1 transcription; this repression can be blocked by interaction with ZBTB49 isoform 3/ZNF509S1 (PubMed:25245946). {ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:25245946, ECO:0000269|PubMed:9308237, ECO:0000269|PubMed:9312026}. |
Q13131 | PRKAA1 | S187 | ochoa | 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
Q13177 | PAK2 | S75 | ochoa | Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}. |
Q13233 | MAP3K1 | S1157 | ochoa | Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) | Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}. |
Q13310 | PABPC4 | S608 | ochoa | Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) | Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}. |
Q13342 | SP140 | S291 | ochoa | Nuclear body protein SP140 (Lymphoid-restricted homolog of Sp100) (LYSp100) (Nuclear autoantigen Sp-140) (Speckled 140 kDa) | Component of the nuclear body, also known as nuclear domain 10, PML oncogenic domain, and KR body (PubMed:8910577). May be involved in the pathogenesis of acute promyelocytic leukemia and viral infection (PubMed:8910577). May play a role in chromatin-mediated regulation of gene expression although it does not bind to histone H3 tails (PubMed:24267382). {ECO:0000269|PubMed:24267382, ECO:0000269|PubMed:8910577, ECO:0000303|PubMed:8910577}. |
Q13352 | ITGB3BP | S33 | ochoa|psp | Centromere protein R (CENP-R) (Beta-3-endonexin) (Integrin beta-3-binding protein) (Nuclear receptor-interacting factor 3) | Transcription coregulator that can have both coactivator and corepressor functions. Isoform 1, but not other isoforms, is involved in the coactivation of nuclear receptors for retinoid X (RXRs) and thyroid hormone (TRs) in a ligand-dependent fashion. In contrast, it does not coactivate nuclear receptors for retinoic acid, vitamin D, progesterone receptor, nor glucocorticoid. Acts as a coactivator for estrogen receptor alpha. Acts as a transcriptional corepressor via its interaction with the NFKB1 NF-kappa-B subunit, possibly by interfering with the transactivation domain of NFKB1. Induces apoptosis in breast cancer cells, but not in other cancer cells, via a caspase-2 mediated pathway that involves mitochondrial membrane permeabilization but does not require other caspases. May also act as an inhibitor of cyclin A-associated kinase. Also acts a component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:11713274, ECO:0000269|PubMed:12244126, ECO:0000269|PubMed:15082778, ECO:0000269|PubMed:15254226, ECO:0000269|PubMed:16622420}. |
Q13415 | ORC1 | S311 | ochoa | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13522 | PPP1R1A | S47 | ochoa | Protein phosphatase 1 regulatory subunit 1A (Protein phosphatase inhibitor 1) (I-1) (IPP-1) | Inhibitor of protein-phosphatase 1. This protein may be important in hormonal control of glycogen metabolism. Hormones that elevate intracellular cAMP increase I-1 activity in many tissues. I-1 activation may impose cAMP control over proteins that are not directly phosphorylated by PKA. Following a rise in intracellular calcium, I-1 is inactivated by calcineurin (or PP2B). Does not inhibit type-2 phosphatases. |
Q13523 | PRP4K | S241 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S257 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13523 | PRP4K | S277 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13557 | CAMK2D | S472 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q13614 | MTMR2 | S58 | ochoa|psp | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR2 (EC 3.1.3.95) (Myotubularin-related protein 2) (Phosphatidylinositol-3-phosphate phosphatase) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:11733541, PubMed:12668758, PubMed:14690594, PubMed:21372139). Regulates the level of these phosphoinositides critical for various biological processes including autophagy initiation and autophagosome maturation (PubMed:35580604). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:12668758, ECO:0000269|PubMed:14690594, ECO:0000269|PubMed:21372139, ECO:0000269|PubMed:35580604}. |
Q13625 | TP53BP2 | S783 | ochoa | Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) | Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}. |
Q13772 | NCOA4 | S492 | ochoa | Nuclear receptor coactivator 4 (NCoA-4) (Androgen receptor coactivator 70 kDa protein) (70 kDa AR-activator) (70 kDa androgen receptor coactivator) (Androgen receptor-associated protein of 70 kDa) (Ferritin cargo receptor NCOA4) (Ret-activating protein ELE1) | Cargo receptor for the autophagic turnover of the iron-binding ferritin complex, playing a central role in iron homeostasis (PubMed:25327288, PubMed:26436293). Acts as an adapter for delivery of ferritin to lysosomes and autophagic degradation of ferritin, a process named ferritinophagy (PubMed:25327288, PubMed:26436293). Targets the iron-binding ferritin complex to autolysosomes following starvation or iron depletion (PubMed:25327288). Ensures efficient erythropoiesis, possibly by regulating hemin-induced erythroid differentiation (PubMed:26436293). In some studies, has been shown to enhance the androgen receptor AR transcriptional activity as well as acting as ligand-independent coactivator of the peroxisome proliferator-activated receptor (PPAR) gamma (PubMed:10347167, PubMed:8643607). Another study shows only weak behavior as a coactivator for the androgen receptor and no alteration of the ligand responsiveness of the AR (PubMed:10517667). Binds to DNA replication origins, binding is not restricted to sites of active transcription and may likely be independent from the nuclear receptor transcriptional coactivator function (PubMed:24910095). May inhibit activation of DNA replication origins, possibly by obstructing DNA unwinding via interaction with the MCM2-7 complex (PubMed:24910095). {ECO:0000269|PubMed:10347167, ECO:0000269|PubMed:10517667, ECO:0000269|PubMed:24910095, ECO:0000269|PubMed:25327288, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:8643607}. |
Q13772 | NCOA4 | S507 | ochoa | Nuclear receptor coactivator 4 (NCoA-4) (Androgen receptor coactivator 70 kDa protein) (70 kDa AR-activator) (70 kDa androgen receptor coactivator) (Androgen receptor-associated protein of 70 kDa) (Ferritin cargo receptor NCOA4) (Ret-activating protein ELE1) | Cargo receptor for the autophagic turnover of the iron-binding ferritin complex, playing a central role in iron homeostasis (PubMed:25327288, PubMed:26436293). Acts as an adapter for delivery of ferritin to lysosomes and autophagic degradation of ferritin, a process named ferritinophagy (PubMed:25327288, PubMed:26436293). Targets the iron-binding ferritin complex to autolysosomes following starvation or iron depletion (PubMed:25327288). Ensures efficient erythropoiesis, possibly by regulating hemin-induced erythroid differentiation (PubMed:26436293). In some studies, has been shown to enhance the androgen receptor AR transcriptional activity as well as acting as ligand-independent coactivator of the peroxisome proliferator-activated receptor (PPAR) gamma (PubMed:10347167, PubMed:8643607). Another study shows only weak behavior as a coactivator for the androgen receptor and no alteration of the ligand responsiveness of the AR (PubMed:10517667). Binds to DNA replication origins, binding is not restricted to sites of active transcription and may likely be independent from the nuclear receptor transcriptional coactivator function (PubMed:24910095). May inhibit activation of DNA replication origins, possibly by obstructing DNA unwinding via interaction with the MCM2-7 complex (PubMed:24910095). {ECO:0000269|PubMed:10347167, ECO:0000269|PubMed:10517667, ECO:0000269|PubMed:24910095, ECO:0000269|PubMed:25327288, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:8643607}. |
Q13796 | SHROOM2 | S779 | ochoa | Protein Shroom2 (Apical-like protein) (Protein APXL) | May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}. |
Q13813 | SPTAN1 | S1413 | ochoa | Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. |
Q13823 | GNL2 | S234 | ochoa | Nucleolar GTP-binding protein 2 (Autoantigen NGP-1) | GTPase that associates with pre-60S ribosomal subunits in the nucleolus and is required for their nuclear export and maturation (PubMed:32669547). May promote cell proliferation possibly by increasing p53/TP53 protein levels, and consequently those of its downstream product CDKN1A/p21, and decreasing RPL23A protein levels (PubMed:26203195). {ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}. |
Q13823 | GNL2 | S389 | ochoa | Nucleolar GTP-binding protein 2 (Autoantigen NGP-1) | GTPase that associates with pre-60S ribosomal subunits in the nucleolus and is required for their nuclear export and maturation (PubMed:32669547). May promote cell proliferation possibly by increasing p53/TP53 protein levels, and consequently those of its downstream product CDKN1A/p21, and decreasing RPL23A protein levels (PubMed:26203195). {ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}. |
Q13895 | BYSL | S414 | ochoa | Bystin | Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos. {ECO:0000269|PubMed:17360433, ECO:0000269|PubMed:17381424}. |
Q13905 | RAPGEF1 | S23 | ochoa | Rap guanine nucleotide exchange factor 1 (CRK SH3-binding GNRP) (Guanine nucleotide-releasing factor 2) (Protein C3G) | Guanine nucleotide-releasing protein that binds to SH3 domain of CRK and GRB2/ASH. Transduces signals from CRK to activate RAS. Involved in cell branching and adhesion mediated by BCAR1-CRK-RAPGEF1 signaling and activation of RAP1 (PubMed:12432078). Plays a role in the establishment of basal endothelial barrier function. Plays a role in nerve growth factor (NGF)-induced sustained activation of Rap1 and neurite outgrowth. {ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:7806500}. |
Q13972 | RASGRF1 | S857 | ochoa | Ras-specific guanine nucleotide-releasing factor 1 (Ras-GRF1) (Guanine nucleotide-releasing protein) (GNRP) (Ras-specific nucleotide exchange factor CDC25) | Promotes the exchange of Ras-bound GDP by GTP. {ECO:0000269|PubMed:11389730}. |
Q13976 | PRKG1 | S273 | ochoa | cGMP-dependent protein kinase 1 (cGK 1) (cGK1) (EC 2.7.11.12) (cGMP-dependent protein kinase I) (cGKI) | Serine/threonine protein kinase that acts as a key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes involved in several aspects of the CNS like axon guidance, hippocampal and cerebellar learning, circadian rhythm and nociception. Smooth muscle relaxation is mediated through lowering of intracellular free calcium, by desensitization of contractile proteins to calcium, and by decrease in the contractile state of smooth muscle or in platelet activation. Regulates intracellular calcium levels via several pathways: phosphorylates IRAG1 and inhibits IP3-induced Ca(2+) release from intracellular stores, phosphorylation of KCNMA1 (BKCa) channels decreases intracellular Ca(2+) levels, which leads to increased opening of this channel. PRKG1 phosphorylates the canonical transient receptor potential channel (TRPC) family which inactivates the associated inward calcium current. Another mode of action of NO/cGMP/PKGI signaling involves PKGI-mediated inactivation of the Ras homolog gene family member A (RhoA). Phosphorylation of RHOA by PRKG1 blocks the action of this protein in myriad processes: regulation of RHOA translocation; decreasing contraction; controlling vesicle trafficking, reduction of myosin light chain phosphorylation resulting in vasorelaxation. Activation of PRKG1 by NO signaling also alters gene expression in a number of tissues. In smooth muscle cells, increased cGMP and PRKG1 activity influence expression of smooth muscle-specific contractile proteins, levels of proteins in the NO/cGMP signaling pathway, down-regulation of the matrix proteins osteopontin and thrombospondin-1 to limit smooth muscle cell migration and phenotype. Regulates vasodilator-stimulated phosphoprotein (VASP) functions in platelets and smooth muscle. {ECO:0000269|PubMed:10567269, ECO:0000269|PubMed:11162591, ECO:0000269|PubMed:11723116, ECO:0000269|PubMed:12082086, ECO:0000269|PubMed:14608379, ECO:0000269|PubMed:15194681, ECO:0000269|PubMed:16990611, ECO:0000269|PubMed:8182057}. |
Q14004 | CDK13 | S664 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14164 | IKBKE | S664 | ochoa | Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I-kappa-B kinase epsilon) (IKK-E) (IKK-epsilon) (IkBKE) (EC 2.7.11.10) (Inducible I kappa-B kinase) (IKK-i) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to viral infection, through the activation of the type I IFN, NF-kappa-B and STAT signaling. Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling. Following activation of viral RNA sensors, such as RIG-I-like receptors, associates with DDX3X and phosphorylates interferon regulatory factors (IRFs), IRF3 and IRF7, as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRF3 leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNB. In order to establish such an antiviral state, IKBKE forms several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including IPS1/MAVS, TANK, AZI2/NAP1 or TBKBP1/SINTBAD can be recruited to the IKBKE-containing-complexes. Activated by polyubiquitination in response to TNFA and interleukin-1, regulates the NF-kappa-B signaling pathway through, at least, the phosphorylation of CYLD. Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. In addition, is also required for the induction of a subset of ISGs which displays antiviral activity, may be through the phosphorylation of STAT1 at 'Ser-708'. Phosphorylation of STAT1 at 'Ser-708' also seems to promote the assembly and DNA binding of ISGF3 (STAT1:STAT2:IRF9) complexes compared to GAF (STAT1:STAT1) complexes, in this way regulating the balance between type I and type II IFN responses. Protects cells against DNA damage-induced cell death. Also plays an important role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Phosphorylates AKT1. {ECO:0000269|PubMed:17568778, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:19153231, ECO:0000269|PubMed:20188669, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:22532683, ECO:0000269|PubMed:23453969, ECO:0000269|PubMed:23478265}. |
Q14191 | WRN | S1133 | ochoa|psp | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14207 | NPAT | S779 | ochoa|psp | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14494 | NFE2L1 | S379 | psp | Endoplasmic reticulum membrane sensor NFE2L1 (Locus control region-factor 1) (LCR-F1) (Nuclear factor erythroid 2-related factor 1) (NF-E2-related factor 1) (NFE2-related factor 1) (Nuclear factor, erythroid derived 2, like 1) (Protein NRF1, p120 form) (Transcription factor 11) (TCF-11) [Cleaved into: Transcription factor NRF1 (Protein NRF1, p110 form)] | [Endoplasmic reticulum membrane sensor NFE2L1]: Endoplasmic reticulum membrane sensor that translocates into the nucleus in response to various stresses to act as a transcription factor (PubMed:20932482, PubMed:24448410). Constitutes a precursor of the transcription factor NRF1 (By similarity). Able to detect various cellular stresses, such as cholesterol excess, oxidative stress or proteasome inhibition (PubMed:20932482). In response to stress, it is released from the endoplasmic reticulum membrane following cleavage by the protease DDI2 and translocates into the nucleus to form the transcription factor NRF1 (By similarity). Acts as a key sensor of cholesterol excess: in excess cholesterol conditions, the endoplasmic reticulum membrane form of the protein directly binds cholesterol via its CRAC motif, preventing cleavage and release of the transcription factor NRF1, thereby allowing expression of genes promoting cholesterol removal, such as CD36 (By similarity). Involved in proteasome homeostasis: in response to proteasome inhibition, it is released from the endoplasmic reticulum membrane, translocates to the nucleus and activates expression of genes encoding proteasome subunits (PubMed:20932482). {ECO:0000250|UniProtKB:Q61985, ECO:0000269|PubMed:20932482, ECO:0000269|PubMed:24448410}.; FUNCTION: [Transcription factor NRF1]: CNC-type bZIP family transcription factor that translocates to the nucleus and regulates expression of target genes in response to various stresses (PubMed:8932385, PubMed:9421508). Heterodimerizes with small-Maf proteins (MAFF, MAFG or MAFK) and binds DNA motifs including the antioxidant response elements (AREs), which regulate expression of genes involved in oxidative stress response (PubMed:8932385, PubMed:9421508). Activates or represses expression of target genes, depending on the context (PubMed:8932385, PubMed:9421508). Plays a key role in cholesterol homeostasis by acting as a sensor of cholesterol excess: in low cholesterol conditions, translocates into the nucleus and represses expression of genes involved in defense against cholesterol excess, such as CD36 (By similarity). In excess cholesterol conditions, the endoplasmic reticulum membrane form of the protein directly binds cholesterol via its CRAC motif, preventing cleavage and release of the transcription factor NRF1, thereby allowing expression of genes promoting cholesterol removal (By similarity). Critical for redox balance in response to oxidative stress: acts by binding the AREs motifs on promoters and mediating activation of oxidative stress response genes, such as GCLC, GCLM, GSS, MT1 and MT2 (By similarity). Plays an essential role during fetal liver hematopoiesis: probably has a protective function against oxidative stress and is involved in lipid homeostasis in the liver (By similarity). Involved in proteasome homeostasis: in response to proteasome inhibition, mediates the 'bounce-back' of proteasome subunits by translocating into the nucleus and activating expression of genes encoding proteasome subunits (PubMed:20932482). Also involved in regulating glucose flux (By similarity). Together with CEBPB; represses expression of DSPP during odontoblast differentiation (PubMed:15308669). In response to ascorbic acid induction, activates expression of SP7/Osterix in osteoblasts. {ECO:0000250|UniProtKB:Q61985, ECO:0000269|PubMed:15308669, ECO:0000269|PubMed:20932482, ECO:0000269|PubMed:8932385, ECO:0000269|PubMed:9421508}. |
Q14562 | DHX8 | S460 | ochoa | ATP-dependent RNA helicase DHX8 (EC 3.6.4.13) (DEAH box protein 8) (RNA helicase HRH1) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). Facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome (PubMed:8608946). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:8608946}. |
Q14596 | NBR1 | S590 | ochoa | Next to BRCA1 gene 1 protein (Cell migration-inducing gene 19 protein) (Membrane component chromosome 17 surface marker 2) (Neighbor of BRCA1 gene 1 protein) (Protein 1A1-3B) | Ubiquitin-binding autophagy adapter that participates in different processes including host defense or intracellular homeostasis (PubMed:24692539, PubMed:33577621). Possesses a double function during the selective autophagy by acting as a shuttle bringing ubiquitinated proteins to autophagosomes and also by participating in the formation of protein aggregates (PubMed:24879152, PubMed:34471133). Plays a role in the regulation of the innate immune response by modulating type I interferon production and targeting ubiquitinated IRF3 for autophagic degradation (PubMed:35914352). In response to oxidative stress, promotes an increase in SQSTM1 levels, phosphorylation, and body formation by preventing its autophagic degradation (By similarity). In turn, activates the KEAP1-NRF2/NFE2L2 antioxidant pathway (By similarity). Also plays non-autophagy role by mediating the shuttle of IL-12 to late endosome for subsequent secretion (By similarity). {ECO:0000250|UniProtKB:P97432, ECO:0000269|PubMed:19250911, ECO:0000269|PubMed:24692539, ECO:0000269|PubMed:24879152, ECO:0000269|PubMed:33577621, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:35914352}. |
Q14641 | INSL4 | S90 | ochoa | Early placenta insulin-like peptide (EPIL) (Insulin-like peptide 4) (Placentin) [Cleaved into: Early placenta insulin-like peptide B chain; Early placenta insulin-like peptide A chain] | May play an important role in trophoblast development and in the regulation of bone formation. |
Q14667 | BLTP2 | S2094 | ochoa | Bridge-like lipid transfer protein family member 2 (Antigen MLAA-22) (Breast cancer-overexpressed gene 1 protein) (Protein hobbit homolog) | Tube-forming lipid transport protein which binds to phosphatidylinositols and affects phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) distribution. {ECO:0000250|UniProtKB:Q9VZS7}. |
Q14669 | TRIP12 | S267 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14669 | TRIP12 | S1036 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14671 | PUM1 | S19 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14674 | ESPL1 | S1545 | ochoa|psp | Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) | Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}. |
Q14721 | KCNB1 | S800 | psp | Potassium voltage-gated channel subfamily B member 1 (Delayed rectifier potassium channel 1) (DRK1) (h-DRK1) (Voltage-gated potassium channel subunit Kv2.1) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain (PubMed:23161216). Plays also a role in the regulation of exocytosis independently of its electrical function (By similarity). Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization (PubMed:10484328, PubMed:12560340, PubMed:1283219, PubMed:19074135, PubMed:19717558, PubMed:24901643, PubMed:8081723). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB2; channel properties depend on the type of alpha subunits that are part of the channel (By similarity). Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally diverse range of channel complexes (PubMed:10484328, PubMed:11852086, PubMed:12060745, PubMed:19074135, PubMed:19717558, PubMed:24901643). Heterotetrameric channel activity formed with KCNS3 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). Channel properties are also modulated by cytoplasmic ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Major contributor to the slowly inactivating delayed-rectifier voltage-gated potassium current in neurons of the central nervous system, sympathetic ganglion neurons, neuroendocrine cells, pancreatic beta cells, cardiomyocytes and smooth muscle cells. Mediates the major part of the somatodendritic delayed-rectifier potassium current in hippocampal and cortical pyramidal neurons and sympathetic superior cervical ganglion (CGC) neurons that acts to slow down periods of firing, especially during high frequency stimulation. Plays a role in the induction of long-term potentiation (LTP) of neuron excitability in the CA3 layer of the hippocampus (By similarity). Contributes to the regulation of glucose-induced action potential amplitude and duration in pancreatic beta cells, hence limiting calcium influx and insulin secretion (PubMed:23161216). Plays a role in the regulation of resting membrane potential and contraction in hypoxia-treated pulmonary artery smooth muscle cells. May contribute to the regulation of the duration of both the action potential of cardiomyocytes and the heart ventricular repolarization QT interval. Contributes to the pronounced pro-apoptotic potassium current surge during neuronal apoptotic cell death in response to oxidative injury. May confer neuroprotection in response to hypoxia/ischemic insults by suppressing pyramidal neurons hyperexcitability in hippocampal and cortical regions (By similarity). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to the cell surface membrane, presumably by forming heterotetrameric channels with these subunits (PubMed:12060745). Plays a role in the calcium-dependent recruitment and release of fusion-competent vesicles from the soma of neurons, neuroendocrine and glucose-induced pancreatic beta cells by binding key components of the fusion machinery in a pore-independent manner (By similarity). {ECO:0000250|UniProtKB:P15387, ECO:0000250|UniProtKB:Q03717, ECO:0000269|PubMed:10484328, ECO:0000269|PubMed:11852086, ECO:0000269|PubMed:12060745, ECO:0000269|PubMed:12560340, ECO:0000269|PubMed:1283219, ECO:0000269|PubMed:19074135, ECO:0000269|PubMed:19717558, ECO:0000269|PubMed:23161216, ECO:0000269|PubMed:24901643, ECO:0000269|PubMed:8081723}. |
Q14738 | PPP2R5D | S109 | ochoa | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. |
Q14789 | GOLGB1 | S3010 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14807 | KIF22 | S140 | ochoa | Kinesin-like protein KIF22 (Kinesin-like DNA-binding protein) (Kinesin-like protein 4) | Kinesin family member that is involved in spindle formation and the movements of chromosomes during mitosis and meiosis. Binds to microtubules and to DNA (By similarity). Plays a role in congression of laterally attached chromosomes in NDC80-depleted cells (PubMed:25743205). {ECO:0000250|UniProtKB:Q9I869, ECO:0000269|PubMed:25743205}. |
Q14807 | KIF22 | S581 | ochoa | Kinesin-like protein KIF22 (Kinesin-like DNA-binding protein) (Kinesin-like protein 4) | Kinesin family member that is involved in spindle formation and the movements of chromosomes during mitosis and meiosis. Binds to microtubules and to DNA (By similarity). Plays a role in congression of laterally attached chromosomes in NDC80-depleted cells (PubMed:25743205). {ECO:0000250|UniProtKB:Q9I869, ECO:0000269|PubMed:25743205}. |
Q14814 | MEF2D | S98 | ochoa|psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q14966 | ZNF638 | S1243 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14980 | NUMA1 | S271 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14995 | NR1D2 | S242 | ochoa | Nuclear receptor subfamily 1 group D member 2 (Orphan nuclear hormone receptor BD73) (Rev-erb alpha-related receptor) (RVR) (Rev-erb-beta) (V-erbA-related protein 1-related) (EAR-1R) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1 and CLOCK. Also regulates genes involved in metabolic functions, including lipid metabolism and the inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nuclegotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and also negatively regulates the expression of NR1D1. Regulates lipid and energy homeostasis in the skeletal muscle via repression of genes involved in lipid metabolism and myogenesis including: CD36, FABP3, FABP4, UCP3, SCD1 and MSTN. Regulates hepatic lipid metabolism via the repression of APOC3. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). In addition to its activity as a repressor, can also act as a transcriptional activator. Acts as a transcriptional activator of the sterol regulatory element-binding protein 1 (SREBF1) and the inflammatory mediator interleukin-6 (IL6) in the skeletal muscle (By similarity). Plays a role in the regulation of circadian sleep/wake cycle; essential for maintaining wakefulness during the dark phase or active period (By similarity). Key regulator of skeletal muscle mitochondrial function; negatively regulates the skeletal muscle expression of core clock genes and genes involved in mitochondrial biogenesis, fatty acid beta-oxidation and lipid metabolism (By similarity). May play a role in the circadian control of neutrophilic inflammation in the lung (By similarity). {ECO:0000250|UniProtKB:Q60674, ECO:0000269|PubMed:17892483, ECO:0000269|PubMed:17996965}. |
Q14997 | PSME4 | S1121 | ochoa | Proteasome activator complex subunit 4 (Proteasome activator PA200) (Protein BLM10 homolog) (Blm10) (hBlm10) | Associated component of the proteasome that specifically recognizes acetylated histones and promotes ATP- and ubiquitin-independent degradation of core histones during spermatogenesis and DNA damage response. Recognizes and binds acetylated histones via its bromodomain-like (BRDL) region and activates the proteasome by opening the gated channel for substrate entry. Binds to the core proteasome via its C-terminus, which occupies the same binding sites as the proteasomal ATPases, opening the closed structure of the proteasome via an active gating mechanism. Component of the spermatoproteasome, a form of the proteasome specifically found in testis: binds to acetylated histones and promotes degradation of histones, thereby participating actively to the exchange of histones during spermatogenesis. Also involved in DNA damage response in somatic cells, by promoting degradation of histones following DNA double-strand breaks. {ECO:0000269|PubMed:12093752, ECO:0000269|PubMed:18845680, ECO:0000269|PubMed:22550082, ECO:0000269|PubMed:23706739}. |
Q14BN4 | SLMAP | S452 | ochoa | Sarcolemmal membrane-associated protein (Sarcolemmal-associated protein) | Associates with the striatin-interacting phosphatase and kinase (STRIPAK) core complex, forming the extended (SIKE1:SLMAP)STRIPAK complex (PubMed:29063833, PubMed:30622739). The (SIKE1:SLMAP)STRIPAK complex dephosphorylates STK3 leading to the inhibition of Hippo signaling and the control of cell growth (PubMed:29063833, PubMed:30622739). May play a role during myoblast fusion (By similarity). {ECO:0000250|UniProtKB:Q3URD3, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739}. |
Q15032 | R3HDM1 | S88 | ochoa | R3H domain-containing protein 1 | None |
Q15047 | SETDB1 | S1066 | ochoa|psp | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15113 | PCOLCE | S309 | ochoa | Procollagen C-endopeptidase enhancer 1 (Procollagen COOH-terminal proteinase enhancer 1) (PCPE-1) (Procollagen C-proteinase enhancer 1) (Type 1 procollagen C-proteinase enhancer protein) (Type I procollagen COOH-terminal proteinase enhancer) | Binds to the C-terminal propeptide of type I procollagen and enhances procollagen C-proteinase activity.; FUNCTION: C-terminal processed part of PCPE (CT-PCPE) may have an metalloproteinase inhibitory activity. |
Q15269 | PWP2 | S711 | ochoa | Periodic tryptophan protein 2 homolog | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}. |
Q15349 | RPS6KA2 | S546 | ochoa | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Q15464 | SHB | S388 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q155Q3 | DIXDC1 | S261 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q15643 | TRIP11 | S1891 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q15648 | MED1 | S1401 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15652 | JMJD1C | S601 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S617 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S2053 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15796 | SMAD2 | S245 | ochoa|psp | Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) | Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}. |
Q15797 | SMAD1 | S132 | ochoa | Mothers against decapentaplegic homolog 1 (MAD homolog 1) (Mothers against DPP homolog 1) (JV4-1) (Mad-related protein 1) (SMAD family member 1) (SMAD 1) (Smad1) (hSMAD1) (Transforming growth factor-beta-signaling protein 1) (BSP-1) | Transcriptional modulator that plays a role in various cellular processes, including embryonic development, cell differentiation, and tissue homeostasis (PubMed:9335504). Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form a heteromeric complex which translocates into the nucleus acting as transcription factor (PubMed:33667543). In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network (PubMed:33667543). SMAD1/OAZ1/PSMB4 complex mediates the degradation of the CREBBP/EP300 repressor SNIP1. Positively regulates BMP4-induced expression of odontogenic development regulator MSX1 following IPO7-mediated nuclear import (By similarity). {ECO:0000250|UniProtKB:P70340, ECO:0000269|PubMed:12097147, ECO:0000269|PubMed:33667543, ECO:0000269|PubMed:9335504}. |
Q15911 | ZFHX3 | S1347 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q15916 | ZBTB6 | S202 | ochoa | Zinc finger and BTB domain-containing protein 6 (Zinc finger protein 482) (Zinc finger protein with interaction domain) | May be involved in transcriptional regulation. |
Q16181 | SEPTIN7 | S334 | ochoa | Septin-7 (CDC10 protein homolog) | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}. |
Q16204 | CCDC6 | S254 | ochoa | Coiled-coil domain-containing protein 6 (Papillary thyroid carcinoma-encoded protein) (Protein H4) | None |
Q16512 | PKN1 | S603 | ochoa | Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) | PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}. |
Q16514 | TAF12 | S51 | ochoa | Transcription initiation factor TFIID subunit 12 (Transcription initiation factor TFIID 20/15 kDa subunits) (TAFII-20/TAFII-15) (TAFII20/TAFII15) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). Component of the TATA-binding protein-free TAF complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:10373431, PubMed:7729427, PubMed:8598932, PubMed:8663456, PubMed:9674425, PubMed:9885574). {ECO:0000269|PubMed:10373431, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:7729427, ECO:0000269|PubMed:8598932, ECO:0000269|PubMed:8663456, ECO:0000269|PubMed:9674425, ECO:0000269|PubMed:9885574}. |
Q16621 | NFE2 | S346 | psp | Transcription factor NF-E2 45 kDa subunit (Leucine zipper protein NF-E2) (Nuclear factor, erythroid-derived 2 45 kDa subunit) (p45 NF-E2) | Component of the NF-E2 complex essential for regulating erythroid and megakaryocytic maturation and differentiation. Binds to the hypersensitive site 2 (HS2) of the beta-globin control region (LCR). This subunit (NFE2) recognizes the TCAT/C sequence of the AP-1-like core palindrome present in a number of erythroid and megakaryocytic gene promoters. Requires MAFK or other small MAF proteins for binding to the NF-E2 motif. May play a role in all aspects of hemoglobin production from globin and heme synthesis to procurement of iron. {ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:16287851}. |
Q16649 | NFIL3 | S182 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16665 | HIF1A | S451 | ochoa|psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16799 | RTN1 | S480 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q16836 | HADH | S290 | ochoa | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial (HCDH) (EC 1.1.1.35) (Medium and short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase) (Short-chain 3-hydroxyacyl-CoA dehydrogenase) | Mitochondrial fatty acid beta-oxidation enzyme that catalyzes the third step of the beta-oxidation cycle for medium and short-chain 3-hydroxy fatty acyl-CoAs (C4 to C10) (PubMed:10231530, PubMed:11489939, PubMed:16725361). Plays a role in the control of insulin secretion by inhibiting the activation of glutamate dehydrogenase 1 (GLUD1), an enzyme that has an important role in regulating amino acid-induced insulin secretion (By similarity). Plays a role in the maintenance of normal spermatogenesis through the reduction of fatty acid accumulation in the testes (By similarity). {ECO:0000250|UniProtKB:Q61425, ECO:0000269|PubMed:10231530, ECO:0000269|PubMed:11489939, ECO:0000269|PubMed:16725361}. |
Q16890 | TPD52L1 | S144 | ochoa | Tumor protein D53 (hD53) (Tumor protein D52-like 1) | None |
Q17R89 | ARHGAP44 | S793 | ochoa | Rho GTPase-activating protein 44 (NPC-A-10) (Rho-type GTPase-activating protein RICH2) (RhoGAP interacting with CIP4 homologs protein 2) (RICH-2) | GTPase-activating protein (GAP) that stimulates the GTPase activity of Rho-type GTPases. Thereby, controls Rho-type GTPases cycling between their active GTP-bound and inactive GDP-bound states. Acts as a GAP at least for CDC42 and RAC1 (PubMed:11431473). In neurons, is involved in dendritic spine formation and synaptic plasticity in a specific RAC1-GAP activity (By similarity). Limits the initiation of exploratory dendritic filopodia. Recruited to actin-patches that seed filopodia, binds specifically to plasma membrane sections that are deformed inward by acto-myosin mediated contractile forces. Acts through GAP activity on RAC1 to reduce actin polymerization necessary for filopodia formation (By similarity). In association with SHANK3, promotes GRIA1 exocytosis from recycling endosomes and spine morphological changes associated to long-term potentiation (By similarity). {ECO:0000250|UniProtKB:F1LQX4, ECO:0000250|UniProtKB:Q5SSM3, ECO:0000269|PubMed:11431473}. |
Q17R98 | ZNF827 | S689 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q1ED39 | KNOP1 | S48 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q1ED39 | KNOP1 | S132 | ochoa | Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) | None |
Q27J81 | INF2 | S351 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2LD37 | BLTP1 | S3835 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M1K9 | ZNF423 | S604 | ochoa | Zinc finger protein 423 (Olf1/EBF-associated zinc finger protein) (hOAZ) (Smad- and Olf-interacting zinc finger protein) | Transcription factor that can both act as an activator or a repressor depending on the context. Plays a central role in BMP signaling and olfactory neurogenesis. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved in terminal olfactory receptor neurons differentiation; this interaction preventing EBF1 to bind DNA and activate olfactory-specific genes. Involved in olfactory neurogenesis by participating in a developmental switch that regulates the transition from differentiation to maturation in olfactory receptor neurons. Controls proliferation and differentiation of neural precursors in cerebellar vermis formation. {ECO:0000269|PubMed:10660046}. |
Q2M1K9 | ZNF423 | S1054 | ochoa | Zinc finger protein 423 (Olf1/EBF-associated zinc finger protein) (hOAZ) (Smad- and Olf-interacting zinc finger protein) | Transcription factor that can both act as an activator or a repressor depending on the context. Plays a central role in BMP signaling and olfactory neurogenesis. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved in terminal olfactory receptor neurons differentiation; this interaction preventing EBF1 to bind DNA and activate olfactory-specific genes. Involved in olfactory neurogenesis by participating in a developmental switch that regulates the transition from differentiation to maturation in olfactory receptor neurons. Controls proliferation and differentiation of neural precursors in cerebellar vermis formation. {ECO:0000269|PubMed:10660046}. |
Q2M2I8 | AAK1 | S327 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2TAK8 | PWWP3A | S540 | ochoa | PWWP domain-containing DNA repair factor 3A (PWWP3A) (Mutated melanoma-associated antigen 1) (MUM-1) (PWWP domain-containing protein MUM1) (Protein expandere) | Involved in the DNA damage response pathway by contributing to the maintenance of chromatin architecture. Recruited to the vicinity of DNA breaks by TP53BP1 and plays an accessory role to facilitate damage-induced chromatin changes and promoting chromatin relaxation. Required for efficient DNA repair and cell survival following DNA damage. {ECO:0000269|PubMed:20347427}. |
Q2TAZ0 | ATG2A | S765 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q3B820 | FAM161A | S462 | ochoa | Protein FAM161A | Involved in ciliogenesis. {ECO:0000269|PubMed:22940612}. |
Q3KQU3 | MAP7D1 | S280 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KQU3 | MAP7D1 | S517 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KR37 | GRAMD1B | S88 | ochoa | Protein Aster-B (GRAM domain-containing protein 1B) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}. |
Q3KR37 | GRAMD1B | S274 | ochoa | Protein Aster-B (GRAM domain-containing protein 1B) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis in the adrenal gland and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q80TI0}. |
Q3T8J9 | GON4L | S206 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S346 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3T8J9 | GON4L | S1902 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q49A26 | GLYR1 | S167 | ochoa | Cytokine-like nuclear factor N-PAC (NPAC) (3-hydroxyisobutyrate dehydrogenase-like protein) (Glyoxylate reductase 1 homolog) (Nuclear protein NP60) (Nuclear protein of 60 kDa) (Nucleosome-destabilizing factor) (hNDF) (Putative oxidoreductase GLYR1) | Cytokine-like nuclear factor with chromatin gene reader activity involved in chromatin modification and regulation of gene expression (PubMed:23260659, PubMed:30970244). Acts as a nucleosome-destabilizing factor that is recruited to genes during transcriptional activation (PubMed:29759984, PubMed:30970244). Recognizes and binds histone H3 without a preference for specific epigenetic markers and also binds DNA (PubMed:20850016, PubMed:30970244). Interacts with KDM1B and promotes its histone demethylase activity by facilitating the capture of H3 tails, they form a multifunctional enzyme complex that modifies transcribed chromatin and facilitates Pol II transcription through nucleosomes (PubMed:23260659, PubMed:29759984, PubMed:30970244). Stimulates the acetylation of 'Lys-56' of nucleosomal histone H3 (H3K56ac) by EP300 (PubMed:29759984). With GATA4, co-binds a defined set of heart development genes and coregulates their expression during cardiomyocyte differentiation (PubMed:35182466). Regulates p38 MAP kinase activity by mediating stress activation of MAPK14/p38alpha and specifically regulating MAPK14 signaling (PubMed:16352664). Indirectly promotes phosphorylation of MAPK14 and activation of ATF2 (PubMed:16352664). The phosphorylation of MAPK14 requires upstream activity of MAP2K4 and MAP2K6 (PubMed:16352664). {ECO:0000269|PubMed:16352664, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:23260659, ECO:0000269|PubMed:29759984, ECO:0000269|PubMed:30970244, ECO:0000269|PubMed:35182466}. |
Q49AM3 | TTC31 | S278 | ochoa | Tetratricopeptide repeat protein 31 (TPR repeat protein 31) | None |
Q4AC94 | C2CD3 | S1595 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4G0N4 | NADK2 | S367 | ochoa|psp | NAD kinase 2, mitochondrial (EC 2.7.1.23) (Mitochondrial NAD kinase) (NAD kinase domain-containing protein 1, mitochondrial) | Mitochondrial NAD(+) kinase that phosphorylates NAD(+) to yield NADP(+). Can use both ATP or inorganic polyphosphate as the phosphoryl donor. Also has weak NADH kinase activity in vitro; however NADH kinase activity is much weaker than the NAD(+) kinase activity and may not be relevant in vivo. {ECO:0000269|PubMed:23212377}. |
Q4G163 | FBXO43 | S121 | ochoa | F-box only protein 43 (Endogenous meiotic inhibitor 2) | Required to establish and maintain the arrest of oocytes at the second meiotic metaphase until fertilization. Acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. Probably recognizes and binds to some phosphorylated proteins and promotes their ubiquitination and degradation (PubMed:34052850, PubMed:34595750). Plays a vital role in modulating the ubiquitilation of CCNB1 and CDK1 during gametogenesis. {ECO:0000250|UniProtKB:Q8CDI2, ECO:0000269|PubMed:34052850, ECO:0000269|PubMed:34595750}. |
Q4J6C6 | PREPL | S410 | ochoa | Prolyl endopeptidase-like (EC 3.4.21.-) (Prolylendopeptidase-like) | Serine peptidase whose precise substrate specificity remains unclear (PubMed:16143824, PubMed:16385448, PubMed:28726805). Does not cleave peptides after a arginine or lysine residue (PubMed:16143824). Regulates trans-Golgi network morphology and sorting by regulating the membrane binding of the AP-1 complex (PubMed:23321636). May play a role in the regulation of synaptic vesicle exocytosis (PubMed:24610330). {ECO:0000269|PubMed:16143824, ECO:0000269|PubMed:16385448, ECO:0000269|PubMed:23321636, ECO:0000269|PubMed:24610330, ECO:0000269|PubMed:28726805}. |
Q4KMZ1 | IQCC | S196 | ochoa | IQ domain-containing protein C | None |
Q4KMZ1 | IQCC | S257 | ochoa | IQ domain-containing protein C | None |
Q4KMZ1 | IQCC | S438 | ochoa | IQ domain-containing protein C | None |
Q4L180 | FILIP1L | S1076 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q4L235 | AASDH | S724 | ochoa | Beta-alanine-activating enzyme (EC 6.2.1.-) (Acyl-CoA synthetase family member 4) (Protein NRPS998) | Covalently binds beta-alanine in an ATP-dependent manner to form a thioester bond with its phosphopantetheine group and transfers it to an, as yet, unknown acceptor. May be required for a post-translational protein modification or for post-transcriptional modification of an RNA. {ECO:0000250|UniProtKB:Q80WC9}. |
Q4LE39 | ARID4B | S675 | ochoa | AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) | Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}. |
Q4VCS5 | AMOT | S808 | ochoa | Angiomotin | Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}. |
Q504Q3 | PAN2 | S791 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q52LW3 | ARHGAP29 | S190 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q52LW3 | ARHGAP29 | S913 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q53ET0 | CRTC2 | S90 | ochoa | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q562F6 | SGO2 | S1089 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q567U6 | CCDC93 | S305 | ochoa | Coiled-coil domain-containing protein 93 | Component of the commander complex that is essential for endosomal recycling of transmembrane cargos; the commander complex is composed of composed of the CCC subcomplex and the retriever subcomplex (PubMed:37172566, PubMed:38459129). Component of the CCC complex, which is involved in the regulation of endosomal recycling of surface proteins, including integrins, signaling receptor and channels (PubMed:37172566, PubMed:38459129). The CCC complex associates with SNX17, retriever and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGA5:ITGB1 (PubMed:25355947, PubMed:28892079). Involved in copper-dependent ATP7A trafficking between the trans-Golgi network and vesicles in the cell periphery; the function is proposed to depend on its association within the CCC complex and cooperation with the WASH complex on early endosomes and is dependent on its interaction with WASHC2C (PubMed:25355947). {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079, ECO:0000269|PubMed:37172566, ECO:0000269|PubMed:38459129}.; FUNCTION: (Microbial infection) The CCC complex, in collaboration with the heterotrimeric retriever complex, mediates the exit of human papillomavirus to the cell surface. {ECO:0000269|PubMed:28892079}. |
Q58EX2 | SDK2 | S2019 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5BKX6 | SLC45A4 | S389 | ochoa | Solute carrier family 45 member 4 | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}. |
Q5EBL4 | RILPL1 | S346 | ochoa | RILP-like protein 1 (Rab-interacting lysosomal-like protein 1) | Plays a role in the regulation of cell shape and polarity (By similarity). Plays a role in cellular protein transport, including protein transport away from primary cilia (By similarity). Neuroprotective protein, which acts by sequestring GAPDH in the cytosol and prevent the apoptotic function of GAPDH in the nucleus (By similarity). Competes with SIAH1 for binding GAPDH (By similarity). Does not regulate lysosomal morphology and distribution (PubMed:14668488). Binds to RAB10 following LRRK2-mediated RAB10 phosphorylation which leads to inhibition of ciliogenesis (PubMed:30398148). {ECO:0000250|UniProtKB:D3ZUQ0, ECO:0000250|UniProtKB:Q9JJC6, ECO:0000269|PubMed:14668488, ECO:0000269|PubMed:30398148}. |
Q5FBB7 | SGO1 | S256 | ochoa | Shugoshin 1 (Serologically defined breast cancer antigen NY-BR-85) (Shugoshin-like 1) | Plays a central role in chromosome cohesion during mitosis by preventing premature dissociation of cohesin complex from centromeres after prophase, when most of cohesin complex dissociates from chromosomes arms. May act by preventing phosphorylation of the STAG2 subunit of cohesin complex at the centromere, ensuring cohesin persistence at centromere until cohesin cleavage by ESPL1/separase at anaphase. Essential for proper chromosome segregation during mitosis and this function requires interaction with PPP2R1A. Its phosphorylated form is necessary for chromosome congression and for the proper attachment of spindle microtubule to the kinetochore. Necessary for kinetochore localization of PLK1 and CENPF. May play a role in the tension sensing mechanism of the spindle-assembly checkpoint by regulating PLK1 kinetochore affinity. Isoform 3 plays a role in maintaining centriole cohesion involved in controlling spindle pole integrity. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000269|PubMed:15604152, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:15737064, ECO:0000269|PubMed:16580887, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:20739936}. |
Q5FWF5 | ESCO1 | S523 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5H8A4 | PIGG | S639 | ochoa | GPI ethanolamine phosphate transferase 2, catalytic subunit (EC 2.-.-.-) (GPI7 homolog) (hGPI7) (Phosphatidylinositol-glycan biosynthesis class G protein) (PIG-G) | Catalytic subunit of the ethanolamine phosphate transferase 2 complex that transfers an ethanolamine phosphate (EtNP) from a phosphatidylethanolamine (PE) to the 6-OH position of the second alpha-1,6-linked mannose of a 6-PEtn-alpha-D-Man-(1->2)-alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H7) intermediate to generate a 6-PEtn-alpha-D-Man-(1->2)-6-PEtn-alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H8) and participates in the eleventh step of the glycosylphosphatidylinositol-anchor biosynthesis. {ECO:0000269|PubMed:15632136, ECO:0000269|PubMed:26996948, ECO:0000269|PubMed:33763700, ECO:0000269|PubMed:34113002}. |
Q5HYI7 | MTX3 | S284 | ochoa | Metaxin-3 | Could function in transport of proteins into the mitochondrion. {ECO:0000250}. |
Q5JSZ5 | PRRC2B | S853 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTD0 | TJAP1 | S345 | ochoa | Tight junction-associated protein 1 (Protein incorporated later into tight junctions) (Tight junction protein 4) | Plays a role in regulating the structure of the Golgi apparatus. {ECO:0000250|UniProtKB:Q9DCD5}. |
Q5JTV8 | TOR1AIP1 | S79 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JVF3 | PCID2 | S45 | ochoa | PCI domain-containing protein 2 (CSN12-like protein) | Required for B-cell survival through the regulation of the expression of cell-cycle checkpoint MAD2L1 protein during B cell differentiation (By similarity). As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:22307388). Binds and stabilizes BRCA2 and is thus involved in the control of R-loop-associated DNA damage and transcription-associated genomic instability (PubMed:24896180). Blocks the activity of the SRCAP chromatin remodeling complex by interacting with SRCAP complex member ZNHIT1 and inhibiting its interaction with the complex (By similarity). This prevents the deposition of histone variant H2AZ1/H2A.Z at the nucleosomes of key lymphoid fate regulator genes which suppresses their expression and restricts lymphoid lineage commitment (By similarity). {ECO:0000250|UniProtKB:Q8BFV2, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:24896180, ECO:0000305|PubMed:23591820}. |
Q5JVL4 | EFHC1 | S524 | ochoa | EF-hand domain-containing protein 1 (Myoclonin-1) | Microtubule inner protein (MIP) part of the dynein-decorated doublet microtubules (DMTs) in cilia axoneme, which is required for motile cilia beating (PubMed:36191189). Microtubule-associated protein which regulates cell division and neuronal migration during cortical development (PubMed:19734894, PubMed:28370826). Necessary for radial and tangential cell migration during brain development, possibly acting as a regulator of cell morphology and process formation during migration (PubMed:22926142). May enhance calcium influx through CACNA1E and stimulate programmed cell death (PubMed:15258581, PubMed:19734894, PubMed:22926142, PubMed:28370826). {ECO:0000269|PubMed:15258581, ECO:0000269|PubMed:19734894, ECO:0000269|PubMed:22926142, ECO:0000269|PubMed:28370826, ECO:0000269|PubMed:36191189}. |
Q5JWR5 | DOP1A | S2421 | ochoa | Protein DOP1A | May be involved in protein traffic between late Golgi and early endosomes. {ECO:0000250|UniProtKB:Q03921}. |
Q5SVZ6 | ZMYM1 | S336 | ochoa | Zinc finger MYM-type protein 1 | None |
Q5SW79 | CEP170 | S930 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1198 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T0Z8 | C6orf132 | S906 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1R4 | HIVEP3 | S682 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S77 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T2T1 | MPP7 | S64 | ochoa | MAGUK p55 subfamily member 7 | Acts as an important adapter that promotes epithelial cell polarity and tight junction formation via its interaction with DLG1. Involved in the assembly of protein complexes at sites of cell-cell contact. {ECO:0000269|PubMed:17332497}. |
Q5T3J3 | LRIF1 | S176 | ochoa | Ligand-dependent nuclear receptor-interacting factor 1 (HP1-binding protein enriched in inactive X chromosome protein 1) (HBiX1) (Receptor-interacting factor 1) | Together with SMCHD1, involved in chromosome X inactivation in females by promoting the compaction of heterochromatin (PubMed:23542155). Also able to repress the ligand-induced transcriptional activity of retinoic acid receptor alpha (RARA), possibly through direct recruitment of histone deacetylases (PubMed:17455211). Also required for silencing of the DUX4 locus in somatic cells (PubMed:32467133). {ECO:0000269|PubMed:17455211, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:32467133}. |
Q5T481 | RBM20 | S1120 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T4F4 | ZFYVE27 | S245 | ochoa | Protrudin (Spastic paraplegia 33 protein) (Zinc finger FYVE domain-containing protein 27) | Key regulator of RAB11-dependent vesicular trafficking during neurite extension through polarized membrane transport (PubMed:17082457). Promotes axonal elongation and contributes to the establishment of neuronal cell polarity (By similarity). Involved in nerve growth factor-induced neurite formation in VAPA-dependent manner (PubMed:19289470). Contributes to both the formation and stabilization of the tubular ER network (PubMed:24668814). Involved in ER morphogenesis by regulating the sheet-to-tubule balance and possibly the density of tubule interconnections (PubMed:23969831). Acts as an adapter protein and facilitates the interaction of KIF5A with VAPA, VAPB, SURF4, RAB11A, RAB11B and RTN3 and the ZFYVE27-KIF5A complex contributes to the transport of these proteins in neurons. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a KIF5A/B-dependent manner (PubMed:21976701). {ECO:0000250|UniProtKB:Q3TXX3, ECO:0000269|PubMed:17082457, ECO:0000269|PubMed:19289470, ECO:0000269|PubMed:21976701, ECO:0000269|PubMed:23969831, ECO:0000269|PubMed:24668814}. |
Q5T4S7 | UBR4 | S4117 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5C0 | STXBP5 | S902 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T5P2 | KIAA1217 | S1650 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T7W7 | TSTD2 | S283 | ochoa | Thiosulfate sulfurtransferase/rhodanese-like domain-containing protein 2 (Rhodanese domain-containing protein 2) | None |
Q5TAX3 | TUT4 | S131 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TAX3 | TUT4 | S296 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TC79 | ZBTB37 | S188 | ochoa | Zinc finger and BTB domain-containing protein 37 | May be involved in transcriptional regulation. |
Q5TC82 | RC3H1 | S779 | ochoa | Roquin-1 (Roquin) (EC 2.3.2.27) (RING finger and C3H zinc finger protein 1) (RING finger and CCCH-type zinc finger domain-containing protein 1) (RING finger protein 198) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF, TNFRSF4 and in many more mRNAs (PubMed:25026078, PubMed:31636267). Cleaves translationally inactive mRNAs harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-independent manner (By similarity). Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs (By similarity). In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity (By similarity). In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression (By similarity). Also recognizes CDE in its own mRNA and in that of paralogous RC3H2, possibly leading to feedback loop regulation (By similarity). Recognizes and binds mRNAs containing a hexaloop stem-loop motif, called alternative decay element (ADE) (By similarity). Together with ZC3H12A, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Able to interact with double-stranded RNA (dsRNA) (PubMed:25026078, PubMed:25504471). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406, PubMed:31636267). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2A, UBE2B, UBE2D2, UBE2F, UBE2G1, UBE2G2 and UBE2L3 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). {ECO:0000250|UniProtKB:Q4VGL6, ECO:0000269|PubMed:25026078, ECO:0000269|PubMed:25504471, ECO:0000269|PubMed:25697406, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:31636267}. |
Q5TC84 | OGFRL1 | S330 | ochoa | Opioid growth factor receptor-like protein 1 | None |
Q5TF21 | MTCL3 | S569 | ochoa | Microtubule cross-linking factor 3 | None |
Q5TH69 | ARFGEF3 | S538 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5THK1 | PRR14L | S600 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5THK1 | PRR14L | S1029 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5THK1 | PRR14L | S1485 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5U623 | ATF7IP2 | S488 | ochoa | Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}. |
Q5UIP0 | RIF1 | S1454 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2260 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S2393 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VT06 | CEP350 | S105 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S1653 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2460 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT52 | RPRD2 | S665 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VT97 | SYDE2 | S626 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VTB9 | RNF220 | S173 | ochoa | E3 ubiquitin-protein ligase RNF220 (EC 2.3.2.27) (RING finger protein 220) (RING-type E3 ubiquitin transferase RNF220) | E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of SIN3B (By similarity). Independently of its E3 ligase activity, acts as a CTNNB1 stabilizer through USP7-mediated deubiquitination of CTNNB1 promoting Wnt signaling (PubMed:25266658, PubMed:33964137). Plays a critical role in the regulation of nuclear lamina (PubMed:33964137). {ECO:0000250|UniProtKB:Q6PDX6, ECO:0000269|PubMed:25266658, ECO:0000269|PubMed:33964137}. |
Q5VUA4 | ZNF318 | S1420 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S1971 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2030 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S2101 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VWN6 | TASOR2 | S685 | ochoa | Protein TASOR 2 | None |
Q5VYS8 | TUT7 | S172 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5VZL5 | ZMYM4 | S306 | ochoa | Zinc finger MYM-type protein 4 (Zinc finger protein 262) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q5VZP5 | STYXL2 | S1054 | ochoa | Serine/threonine/tyrosine-interacting-like protein 2 (Inactive dual specificity phosphatase 27) | May be required for myofiber maturation. {ECO:0000250|UniProtKB:F1QWM2}. |
Q5W0V3 | FHIP2A | S549 | ochoa | FHF complex subunit HOOK interacting protein 2A (FHIP2A) | Required for proper functioning of the nervous system. {ECO:0000269|PubMed:31353455}. |
Q5XKL5 | BTBD8 | S866 | ochoa | BTB/POZ domain-containing protein 8 (AP2-interacting clathrin-endocytosis) (APache) | Involved in clathrin-mediated endocytosis at the synapse. Plays a role in neuronal development and in synaptic vesicle recycling in mature neurons, a process required for normal synaptic transmission. {ECO:0000250|UniProtKB:Q80TK0}. |
Q63HK5 | TSHZ3 | S584 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HK5 | TSHZ3 | S837 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HK5 | TSHZ3 | S1023 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q63HN8 | RNF213 | S1128 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q63HN8 | RNF213 | S2904 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S352 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q68DQ2 | CRYBG3 | S629 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S716 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68DQ2 | CRYBG3 | S2086 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68E01 | INTS3 | S995 | ochoa | Integrator complex subunit 3 (Int3) (SOSS complex subunit A) (Sensor of single-strand DNA complex subunit A) (SOSS-A) (Sensor of ssDNA subunit A) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Within the integrator complex, INTS3 is involved in the post-termination step: INTS3 binds INTS7 in the open conformation of integrator complex and prevents the rebinding of Pol II to the integrator after termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}.; FUNCTION: Component of the SOSS complex, a multiprotein complex that functions downstream of the MRN complex to promote DNA repair and G2/M checkpoint. The SOSS complex associates with single-stranded DNA at DNA lesions and influences diverse endpoints in the cellular DNA damage response including cell-cycle checkpoint activation, recombinational repair and maintenance of genomic stability. The SOSS complex is required for efficient homologous recombination-dependent repair of double-strand breaks (DSBs) and ATM-dependent signaling pathways. In the SOSS complex, it is required for the assembly of the complex and for stabilization of the complex at DNA damage sites. {ECO:0000269|PubMed:19605351, ECO:0000269|PubMed:19683501}. |
Q69YH5 | CDCA2 | S98 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6GPH4 | XAF1 | S253 | ochoa | XIAP-associated factor 1 (BIRC4-binding protein) | Seems to function as a negative regulator of members of the IAP (inhibitor of apoptosis protein) family. Inhibits anti-caspase activity of BIRC4. Induces cleavage and inactivation of BIRC4 independent of caspase activation. Mediates TNF-alpha-induced apoptosis and is involved in apoptosis in trophoblast cells. May inhibit BIRC4 indirectly by activating the mitochondrial apoptosis pathway. After translocation to mitochondria, promotes translocation of BAX to mitochondria and cytochrome c release from mitochondria. Seems to promote the redistribution of BIRC4 from the cytoplasm to the nucleus, probably independent of BIRC4 inactivation which seems to occur in the cytoplasm. The BIRC4-XAF1 complex mediates down-regulation of BIRC5/survivin; the process requires the E3 ligase activity of BIRC4. Seems to be involved in cellular sensitivity to the proapoptotic actions of TRAIL. May be a tumor suppressor by mediating apoptosis resistance of cancer cells. {ECO:0000269|PubMed:11175744, ECO:0000269|PubMed:12029096, ECO:0000269|PubMed:16432762, ECO:0000269|PubMed:17329253, ECO:0000269|PubMed:17613533}. |
Q6GYQ0 | RALGAPA1 | S1004 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6IE81 | JADE1 | S293 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6IE81 | JADE1 | S392 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6IE81 | JADE1 | S603 | ochoa | Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}. |
Q6JBY9 | RCSD1 | S68 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6KC79 | NIPBL | S318 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S912 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S1160 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6MZP7 | LIN54 | S635 | ochoa | Protein lin-54 homolog (CXC domain-containing protein 1) | Component of the DREAM complex, a multiprotein complex that can both act as a transcription activator or repressor depending on the context (PubMed:17531812, PubMed:17671431). In G0 phase, the complex binds to more than 800 promoters and is required for repression of E2F target genes (PubMed:17531812, PubMed:17671431). In S phase, the complex selectively binds to the promoters of G2/M genes whose products are required for mitosis and participates in their cell cycle dependent activation (PubMed:17531812, PubMed:17671431). In the complex, acts as a DNA-binding protein that binds the promoter of CDK1 in a sequence-specific manner (PubMed:19725879). Specifically recognizes the consensus motif 5'-TTYRAA-3' in target DNA (PubMed:27465258). {ECO:0000269|PubMed:17531812, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:19725879, ECO:0000269|PubMed:27465258}. |
Q6N021 | TET2 | S75 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NYC8 | PPP1R18 | S530 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6NZY4 | ZCCHC8 | S557 | ochoa | Zinc finger CCHC domain-containing protein 8 (TRAMP-like complex RNA-binding factor ZCCHC8) | Scaffolding subunit of the trimeric nuclear exosome targeting (NEXT) complex that is involved in the surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. May be involved in pre-mRNA splicing (Probable). It is required for 3'-end maturation of telomerase RNA component (TERC), TERC 3'-end targeting to the nuclear RNA exosome, and for telomerase function (PubMed:31488579). {ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:31488579, ECO:0000305|PubMed:16263084}. |
Q6P0N0 | MIS18BP1 | S541 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P0Q8 | MAST2 | S846 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P1L5 | FAM117B | S457 | ochoa | Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) | None |
Q6P3S1 | DENND1B | S690 | ochoa | DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) | Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}. |
Q6P4F7 | ARHGAP11A | S638 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6P4R8 | NFRKB | S176 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6P9H4 | CNKSR3 | S325 | ochoa | Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) | Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}. |
Q6PGN9 | PSRC1 | S22 | ochoa|psp | Proline/serine-rich coiled-coil protein 1 | Required for normal progression through mitosis. Required for normal congress of chromosomes at the metaphase plate, and for normal rate of chromosomal segregation during anaphase. Plays a role in the regulation of mitotic spindle dynamics. Increases the rate of turnover of microtubules on metaphase spindles, and contributes to the generation of normal tension across sister kinetochores. Recruits KIF2A and ANKRD53 to the mitotic spindle and spindle poles. May participate in p53/TP53-regulated growth suppression. {ECO:0000269|PubMed:18411309, ECO:0000269|PubMed:19738423, ECO:0000269|PubMed:26820536}. |
Q6PGQ7 | BORA | S299 | ochoa | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PIF6 | MYO7B | S1582 | ochoa | Unconventional myosin-VIIb | Myosins are actin-based motor molecules with ATPase activity. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length (PubMed:24725409, PubMed:26812018, PubMed:32209652). May link the complex to the actin core bundle of microvilli. {ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018, ECO:0000269|PubMed:32209652, ECO:0000305|PubMed:24725409, ECO:0000305|PubMed:26812018}. |
Q6PJQ5 | FOXR2 | S139 | ochoa | Forkhead box protein R2 (Forkhead box protein N6) | None |
Q6T4R5 | NHS | S1176 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6T4R5 | NHS | S1434 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UX15 | LAYN | S280 | ochoa | Layilin | Receptor for hyaluronate. {ECO:0000269|PubMed:11294894}. |
Q6WBX8 | RAD9B | S282 | ochoa | Cell cycle checkpoint control protein RAD9B (DNA repair exonuclease rad9 homolog B) (hRAD9B) | None |
Q6WCQ1 | MPRIP | S619 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6WCQ1 | MPRIP | S891 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q6YP21 | KYAT3 | S76 | ochoa | Kynurenine--oxoglutarate transaminase 3 (EC 2.6.1.7) (Cysteine-S-conjugate beta-lyase 2) (EC 4.4.1.13) (Kynurenine aminotransferase 3) (Kynurenine aminotransferase III) (KATIII) (Kynurenine--glyoxylate transaminase) (EC 2.6.1.63) (Kynurenine--oxoglutarate transaminase III) | Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA), an intermediate in the tryptophan catabolic pathway which is also a broad spectrum antagonist of the three ionotropic excitatory amino acid receptors among others. May catalyze the beta-elimination of S-conjugates and Se-conjugates of L-(seleno)cysteine, resulting in the cleavage of the C-S or C-Se bond. Has transaminase activity towards L-kynurenine, tryptophan, phenylalanine, serine, cysteine, methionine, histidine, glutamine and asparagine with glyoxylate as an amino group acceptor (in vitro). Has lower activity with 2-oxoglutarate as amino group acceptor (in vitro). {ECO:0000250|UniProtKB:Q71RI9}. |
Q6ZNB6 | NFXL1 | S356 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZNB6 | NFXL1 | S648 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q6ZSZ6 | TSHZ1 | S544 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZSZ6 | TSHZ1 | S880 | ochoa | Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q6ZU35 | CRACD | S53 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZU52 | KIAA0408 | S420 | ochoa | Uncharacterized protein KIAA0408 | None |
Q6ZUM4 | ARHGAP27 | S486 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q6ZV73 | FGD6 | S62 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q6ZVF9 | GPRIN3 | S583 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q70CQ2 | USP34 | S3406 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q70SY1 | CREB3L2 | S69 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q70SY1 | CREB3L2 | S93 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q70SY1 | CREB3L2 | S191 | ochoa | Cyclic AMP-responsive element-binding protein 3-like protein 2 (cAMP-responsive element-binding protein 3-like protein 2) (BBF2 human homolog on chromosome 7) [Cleaved into: Processed cyclic AMP-responsive element-binding protein 3-like protein 2] | Transcription factor involved in unfolded protein response (UPR). In the absence of endoplasmic reticulum (ER) stress, inserted into ER membranes, with N-terminal DNA-binding and transcription activation domains oriented toward the cytosolic face of the membrane. In response to ER stress, transported to the Golgi, where it is cleaved in a site-specific manner by resident proteases S1P/MBTPS1 and S2P/MBTPS2. The released N-terminal cytosolic domain is translocated to the nucleus to effect transcription of specific target genes. Plays a critical role in chondrogenesis by activating the transcription of SEC23A, which promotes the transport and secretion of cartilage matrix proteins, and possibly that of ER biogenesis-related genes (By similarity). In a neuroblastoma cell line, protects cells from ER stress-induced death (PubMed:17178827). In vitro activates transcription of target genes via direct binding to the CRE site (PubMed:17178827). {ECO:0000250|UniProtKB:Q8BH52, ECO:0000269|PubMed:17178827}. |
Q71F56 | MED13L | S923 | ochoa | Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. |
Q71UM5 | RPS27L | S27 | ochoa|psp | Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) | None |
Q76L83 | ASXL2 | S395 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q76L83 | ASXL2 | S524 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7KZI7 | MARK2 | S212 | ochoa|psp | Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}. |
Q7L8L6 | FASTKD5 | S95 | ochoa | FAST kinase domain-containing protein 5, mitochondrial | Plays an important role in the processing of non-canonical mitochondrial mRNA precursors (PubMed:25683715). {ECO:0000269|PubMed:25683715}. |
Q7L9B9 | EEPD1 | S110 | ochoa | Endonuclease/exonuclease/phosphatase family domain-containing protein 1 | None |
Q7Z2Z1 | TICRR | S292 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z333 | SETX | S947 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z333 | SETX | S1621 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z3F1 | GPR155 | S841 | ochoa | Lysosomal cholesterol signaling protein (LYCHOS) (G-protein coupled receptor PGR22) | Cholesterol-binding protein that acts as a regulator of mTORC1 signaling pathway (PubMed:36007018). Acts as a sensor of cholesterol to signal cholesterol sufficiency to mTORC1: in presence of cholesterol, binds cholesterol, leading to disruption of the interaction between the GATOR1 and KICSTOR complexes and promotion of mTORC1 signaling (PubMed:36007018, PubMed:39358511). Upon cholesterol starvation, GPR155/LYCHOS is unable to perturb the association between GATOR1 and KICSTOR, leading to mTORC1 signaling inhibition (PubMed:36007018). Binds indole-3-acetic acid and may play a role in tryptophan metabolism (PubMed:39358511). {ECO:0000269|PubMed:36007018, ECO:0000269|PubMed:39358511}. |
Q7Z3J3 | RGPD4 | S1535 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3K3 | POGZ | S1338 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3T8 | ZFYVE16 | S900 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z478 | DHX29 | S192 | ochoa | ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) | ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}. |
Q7Z4H7 | HAUS6 | S914 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z569 | BRAP | S97 | ochoa | BRCA1-associated protein (EC 2.3.2.27) (BRAP2) (Impedes mitogenic signal propagation) (IMP) (RING finger protein 52) (RING-type E3 ubiquitin transferase BRAP2) (Renal carcinoma antigen NY-REN-63) | Negatively regulates MAP kinase activation by limiting the formation of Raf/MEK complexes probably by inactivation of the KSR1 scaffold protein. Also acts as a Ras responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination resulting in the release of inhibition of Raf/MEK complex formation. May also act as a cytoplasmic retention protein with a role in regulating nuclear transport. {ECO:0000269|PubMed:14724641, ECO:0000303|PubMed:10777491}. |
Q7Z589 | EMSY | S1136 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z5J4 | RAI1 | S1431 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5L2 | R3HCC1L | S688 | ochoa | Coiled-coil domain-containing protein R3HCC1L (Growth inhibition and differentiation-related protein 88) (Putative mitochondrial space protein 32.1) (R3H and coiled-coil domain-containing protein 1-like) | None |
Q7Z699 | SPRED1 | S304 | ochoa | Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) | Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}. |
Q7Z6B7 | SRGAP1 | S999 | ochoa | SLIT-ROBO Rho GTPase-activating protein 1 (srGAP1) (Rho GTPase-activating protein 13) | GTPase-activating protein for RhoA and Cdc42 small GTPases. Together with CDC42 seems to be involved in the pathway mediating the repulsive signaling of Robo and Slit proteins in neuronal migration. SLIT2, probably through interaction with ROBO1, increases the interaction of SRGAP1 with ROBO1 and inactivates CDC42. {ECO:0000269|PubMed:11672528}. |
Q7Z6E9 | RBBP6 | S1179 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6E9 | RBBP6 | S1535 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6I6 | ARHGAP30 | S678 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q86TC9 | MYPN | S101 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TC9 | MYPN | S867 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TU7 | SETD3 | S21 | ochoa | Actin-histidine N-methyltransferase (EC 2.1.1.85) (Protein-L-histidine N-tele-methyltransferase) (SET domain-containing protein 3) (hSETD3) | Protein-histidine N-methyltransferase that specifically mediates 3-methylhistidine (tele-methylhistidine) methylation of actin at 'His-73' (PubMed:30526847, PubMed:30626964, PubMed:30785395, PubMed:31388018, PubMed:31993215). Histidine methylation of actin is required for smooth muscle contraction of the laboring uterus during delivery (PubMed:30626964). Does not have protein-lysine N-methyltransferase activity and probably only catalyzes histidine methylation of actin (PubMed:30626964, PubMed:30785395, PubMed:31388018). {ECO:0000269|PubMed:30526847, ECO:0000269|PubMed:30626964, ECO:0000269|PubMed:30785395, ECO:0000269|PubMed:31388018, ECO:0000269|PubMed:31993215}. |
Q86U42 | PABPN1 | S150 | ochoa | Polyadenylate-binding protein 2 (PABP-2) (Poly(A)-binding protein 2) (Nuclear poly(A)-binding protein 1) (Poly(A)-binding protein II) (PABII) (Polyadenylate-binding nuclear protein 1) | Involved in the 3'-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product (By similarity). Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and also controls the poly(A) tail length (By similarity). Increases the affinity of poly(A) polymerase for RNA (By similarity). Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with SKIP to synergistically activate E-box-mediated transcription through MYOD1 and may regulate the expression of muscle-specific genes (PubMed:11371506). Binds to poly(A) and to poly(G) with high affinity (By similarity). May protect the poly(A) tail from degradation (By similarity). Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters (PubMed:27871484). {ECO:0000250|UniProtKB:Q28165, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:27871484}. |
Q86V21 | AACS | S412 | ochoa | Acetoacetyl-CoA synthetase (EC 6.2.1.16) (Acyl-CoA synthetase family member 1) (Protein sur-5 homolog) | Converts acetoacetate to acetoacetyl-CoA in the cytosol (By similarity). Ketone body-utilizing enzyme, responsible for the synthesis of cholesterol and fatty acids (By similarity). {ECO:0000250|UniProtKB:Q9D2R0, ECO:0000250|UniProtKB:Q9JMI1}. |
Q86VI3 | IQGAP3 | S539 | ochoa | Ras GTPase-activating-like protein IQGAP3 | None |
Q86VP1 | TAX1BP1 | S508 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86VQ1 | GLCCI1 | S303 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86W56 | PARG | S291 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86WB0 | ZC3HC1 | S62 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XD5 | FAM131B | S297 | ochoa | Protein FAM131B | None |
Q86XJ1 | GAS2L3 | S570 | ochoa | GAS2-like protein 3 (Growth arrest-specific protein 2-like 3) | Cytoskeletal linker protein. May promote and stabilize the formation of the actin and microtubule network. {ECO:0000269|PubMed:21561867}. |
Q86XL3 | ANKLE2 | S866 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86XP3 | DDX42 | S96 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86XR7 | TICAM2 | S26 | ochoa | TIR domain-containing adapter molecule 2 (TICAM-2) (Putative NF-kappa-B-activating protein 502) (TRIF-related adapter molecule) (Toll-like receptor adaptor protein 3) (Toll/interleukin-1 receptor domain-containing protein) (MyD88-4) | Functions as a sorting adapter in different signaling pathways to facilitate downstream signaling leading to type I interferon induction (PubMed:16603631, PubMed:16757566, PubMed:25385819, PubMed:25825441). In TLR4 signaling, physically bridges TLR4 and TICAM1 and functionally transmits signal to TICAM1 in early endosomes after endocytosis of TLR4. In TLR2 signaling, physically bridges TLR2 and MYD88 and is required for the TLR2-dependent movement of MYD88 to endosomes following ligand engagement (PubMed:25385819). Involved in IL-18 signaling and is proposed to function as a sorting adapter for MYD88 in IL-18 signaling during adaptive immune response (PubMed:22685567). Forms a complex with RAB11FIP2 that is recruited to the phagosomes to promote the activation of the actin-regulatory GTPases RAC1 and CDC42 and subsequent phagocytosis of Gram-negative bacteria (PubMed:30883606). {ECO:0000269|PubMed:16603631, ECO:0000269|PubMed:16757566, ECO:0000269|PubMed:22685567, ECO:0000269|PubMed:25385819, ECO:0000269|PubMed:25825441, ECO:0000269|PubMed:30883606}.; FUNCTION: [Isoform 2]: Proposed to inhibit LPS-TLR4 signaling at the late endosome by interaction with isoform 1 thereby disrupting the association of isoform 1 with TICAM1. May be involved in TLR4 degradation in late endosomes. |
Q86Y07 | VRK2 | S438 | ochoa | Serine/threonine-protein kinase VRK2 (EC 2.7.11.1) (Vaccinia-related kinase 2) | Serine/threonine kinase that regulates several signal transduction pathways (PubMed:14645249, PubMed:16495336, PubMed:16704422, PubMed:17709393, PubMed:18286207, PubMed:18617507, PubMed:20679487). Isoform 1 modulates the stress response to hypoxia and cytokines, such as interleukin-1 beta (IL1B) and this is dependent on its interaction with MAPK8IP1, which assembles mitogen-activated protein kinase (MAPK) complexes (PubMed:17709393). Inhibition of signal transmission mediated by the assembly of MAPK8IP1-MAPK complexes reduces JNK phosphorylation and JUN-dependent transcription (PubMed:18286207). Phosphorylates 'Thr-18' of p53/TP53, histone H3, and may also phosphorylate MAPK8IP1 (PubMed:16704422). Phosphorylates BANF1 and disrupts its ability to bind DNA and reduces its binding to LEM domain-containing proteins (PubMed:16495336). Down-regulates the transactivation of transcription induced by ERBB2, HRAS, BRAF, and MEK1 (PubMed:20679487). Blocks the phosphorylation of ERK in response to ERBB2 and HRAS (PubMed:20679487). Can also phosphorylate the following substrates that are commonly used to establish in vitro kinase activity: casein, MBP and histone H2B, but it is not sure that this is physiologically relevant (PubMed:14645249). {ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:16704422, ECO:0000269|PubMed:17709393, ECO:0000269|PubMed:18286207, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:20679487}.; FUNCTION: [Isoform 2]: Phosphorylates 'Thr-18' of p53/TP53, as well as histone H3. Reduces p53/TP53 ubiquitination by MDM2, promotes p53/TP53 acetylation by EP300 and thereby increases p53/TP53 stability and activity. {ECO:0000269|PubMed:16704422}. |
Q86YA3 | ZGRF1 | S877 | ochoa | 5'-3' DNA helicase ZGRF1 (EC 5.6.2.3) (GRF-type zinc finger domain-containing protein 1) | 5'-3' DNA helicase which is recruited to sites of DNA damage and promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination (HR) (PubMed:32640219, PubMed:34552057). Promotes HR by directly stimulating RAD51-mediated strand exchange activity (PubMed:32640219). Not required to load RAD51 at sites of DNA damage but promotes recombinational repair after RAD51 recruitment (PubMed:32640219). Also promotes HR by positively regulating EXO1-mediated DNA end resection of double-strand breaks (PubMed:34552057). Required for recruitment of replication protein RPA2 to DNA damage sites (PubMed:34552057). Promotes the initiation of the G2/M checkpoint but not its maintenance (PubMed:34552057). Catalyzes Holliday junction branch migration and dissociation of D-loops and DNA flaps (PubMed:32640219). {ECO:0000269|PubMed:32640219, ECO:0000269|PubMed:34552057}. |
Q86YN6 | PPARGC1B | S638 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q8IUD2 | ERC1 | S1005 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IV63 | VRK3 | S59 | ochoa | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IVF2 | AHNAK2 | S593 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S1112 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S2179 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4419 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4966 | ochoa | Protein AHNAK2 | None |
Q8IVL0 | NAV3 | S940 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVT2 | MISP | S575 | ochoa|psp | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IW35 | CEP97 | S413 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IW40 | DNAAF19 | S91 | ochoa | Dynein axonemal assembly factor 19 (Coiled-coil domain-containing protein 103) | Dynein-attachment factor required for cilia motility. {ECO:0000269|PubMed:22581229}. |
Q8IWA0 | WDR75 | S672 | ochoa | WD repeat-containing protein 75 (U3 small nucleolar RNA-associated protein 17 homolog) | Ribosome biogenesis factor. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I. {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q8IWJ2 | GCC2 | S1649 | ochoa | GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) | Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}. |
Q8IWU2 | LMTK2 | S886 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IWY8 | ZSCAN29 | S561 | ochoa | Zinc finger and SCAN domain-containing protein 29 (Zinc finger protein 690) | May be involved in transcriptional regulation. |
Q8IWZ8 | SUGP1 | S181 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX21 | SLF2 | S109 | ochoa | SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) | Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}. |
Q8IY37 | DHX37 | S242 | ochoa | Probable ATP-dependent RNA helicase DHX37 (EC 3.6.4.13) (DEAH box protein 37) | ATP-binding RNA helicase that plays a role in maturation of the small ribosomal subunit in ribosome biogenesis (PubMed:30582406). Required for the release of the U3 snoRNP from pre-ribosomal particles (PubMed:30582406). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Plays a role in early testis development (PubMed:31287541, PubMed:31337883). Probably also plays a role in brain development (PubMed:31256877). {ECO:0000269|PubMed:30582406, ECO:0000269|PubMed:31256877, ECO:0000269|PubMed:31287541, ECO:0000269|PubMed:31337883, ECO:0000269|PubMed:34516797}. |
Q8IY47 | KBTBD2 | S300 | ochoa | Kelch repeat and BTB domain-containing protein 2 (BTB and kelch domain-containing protein 1) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of the insulin signaling pathway, modulating insulin sensitivity by limiting PIK3R1/p85alpha abundance in adipocytes. Targets PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), for 'Lys-48'-linked polyubiquitination and proteasome-mediated degradation. {ECO:0000269|PubMed:27708159}. |
Q8IYB3 | SRRM1 | S260 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IYB7 | DIS3L2 | S503 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IYD8 | FANCM | S1437 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYH5 | ZZZ3 | S49 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYI8 | ZNF440 | S513 | ochoa | Zinc finger protein 440 | May be involved in transcriptional regulation. |
Q8IYP9 | ZDHHC23 | S252 | ochoa | Palmitoyltransferase ZDHHC23 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 23) (DHHC-23) (zDHHC23) | Palmitoyltransferase that could catalyze the addition of palmitate onto various protein substrates and be involved in a variety of cellular processes (Probable). Palmitoyltransferase that mediates palmitoylation of KCNMA1, regulating localization of KCNMA1 to the plasma membrane. May be involved in NOS1 regulation and targeting to the synaptic membrane. {ECO:0000269|PubMed:22399288, ECO:0000305|PubMed:22399288}. |
Q8IYX8 | CEP57L1 | S49 | ochoa | Centrosomal protein CEP57L1 (Centrosomal protein 57kDa-like protein 1) (Centrosomal protein of 57 kDa-related protein) (Cep57R) (Cep57-related protein) | Centrosomal protein which may be required for microtubule attachment to centrosomes. {ECO:0000250}. |
Q8IZD2 | KMT2E | S845 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZD4 | DCP1B | S283 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8IZT6 | ASPM | S435 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N0Z3 | SPICE1 | S477 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N0Z3 | SPICE1 | S640 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N108 | MIER1 | S488 | ochoa | Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) | Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}. |
Q8N163 | CCAR2 | S124 | ochoa | Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}. |
Q8N1B4 | VPS52 | S355 | ochoa | Vacuolar protein sorting-associated protein 52 homolog (SAC2 suppressor of actin mutations 2-like protein) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of the cycling of mannose 6-phosphate receptors between the TGN and endosomes, this cycling is necessary for proper lysosomal sorting of acid hydrolases such as CTSD (PubMed:15878329, PubMed:18367545). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:15878329, ECO:0000269|PubMed:18367545, ECO:0000269|PubMed:25799061}. |
Q8N264 | ARHGAP24 | S402 | psp | Rho GTPase-activating protein 24 (Filamin-A-associated RhoGAP) (FilGAP) (RAC1- and CDC42-specific GTPase-activating protein of 72 kDa) (RC-GAP72) (Rho-type GTPase-activating protein 24) (RhoGAP of 73 kDa) (Sarcoma antigen NY-SAR-88) (p73RhoGAP) | Rho GTPase-activating protein involved in cell polarity, cell morphology and cytoskeletal organization. Acts as a GTPase activator for the Rac-type GTPase by converting it to an inactive GDP-bound state. Controls actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity. Able to suppress RAC1 and CDC42 activity in vitro. Overexpression induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Isoform 2 is a vascular cell-specific GAP involved in modulation of angiogenesis. {ECO:0000269|PubMed:15302923, ECO:0000269|PubMed:15611138, ECO:0000269|PubMed:16862148}. |
Q8N3D4 | EHBP1L1 | S964 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N3F8 | MICALL1 | S414 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3K9 | CMYA5 | S2123 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N4X5 | AFAP1L2 | S165 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N5H7 | SH2D3C | S196 | ochoa | SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) | Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}. |
Q8N6H7 | ARFGAP2 | S146 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8N7W2 | BEND7 | S260 | ochoa | BEN domain-containing protein 7 | None |
Q8N8E3 | CEP112 | S173 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8N9B5 | JMY | S713 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8N9N5 | BANP | S90 | ochoa | Protein BANP (BEN domain-containing protein 1) (Btg3-associated nuclear protein) (Scaffold/matrix-associated region-1-binding protein) | Controls V(D)J recombination during T-cell development by repressing T-cell receptor (TCR) beta enhancer function (By similarity). Binds to scaffold/matrix attachment region beta (S/MARbeta), an ATC-rich DNA sequence located upstream of the TCR beta enhancer (By similarity). Represses cyclin D1 transcription by recruiting HDAC1 to its promoter, thereby diminishing H3K9ac, H3S10ph and H4K8ac levels (PubMed:16166625). Promotes TP53 activation, which causes cell cycle arrest (By similarity). Plays a role in the regulation of alternative splicing (PubMed:26080397). Binds to CD44 pre-mRNA and negatively regulates the inclusion of CD44 proximal variable exons v2-v6 but has no effect on distal variable exons v7-v10 (PubMed:26080397). {ECO:0000250|UniProtKB:Q8VBU8, ECO:0000269|PubMed:16166625, ECO:0000269|PubMed:26080397}. |
Q8N9T8 | KRI1 | S480 | ochoa | Protein KRI1 homolog | None |
Q8NA72 | POC5 | S109 | ochoa | Centrosomal protein POC5 (Protein of centriole 5) (hPOC5) | Essential for the assembly of the distal half of centrioles, required for centriole elongation (PubMed:19349582, PubMed:32946374). Acts as a negative regulator of centriole elongation (PubMed:37934472). {ECO:0000269|PubMed:19349582, ECO:0000269|PubMed:32946374, ECO:0000269|PubMed:37934472}. |
Q8NAP3 | ZBTB38 | S130 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NAP3 | ZBTB38 | S297 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NCN4 | RNF169 | S388 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8NCN4 | RNF169 | S403 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8NDI1 | EHBP1 | S295 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDX5 | PHC3 | S263 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NDX5 | PHC3 | S315 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NEF9 | SRFBP1 | S203 | ochoa | Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) | May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}. |
Q8NEL9 | DDHD1 | S790 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEZ4 | KMT2C | S1493 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S2828 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NEZ4 | KMT2C | S4006 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NF50 | DOCK8 | S139 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NF99 | ZNF397 | S182 | ochoa | Zinc finger protein 397 (Zinc finger and SCAN domain-containing protein 15) (Zinc finger protein 47) | Isoform 3 acts as a DNA-dependent transcriptional repressor. {ECO:0000269|PubMed:12801647}. |
Q8NFC6 | BOD1L1 | S2475 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFF5 | FLAD1 | S563 | ochoa | FAD synthase (EC 2.7.7.2) (FAD pyrophosphorylase) (FMN adenylyltransferase) (Flavin adenine dinucleotide synthase) [Includes: Molybdenum cofactor biosynthesis protein-like region; FAD synthase region] | Catalyzes the adenylation of flavin mononucleotide (FMN) to form flavin adenine dinucleotide (FAD) coenzyme. {ECO:0000269|PubMed:16643857, ECO:0000269|PubMed:27259049}. |
Q8NG31 | KNL1 | S956 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NG31 | KNL1 | S1732 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NG31 | KNL1 | S1773 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NHL6 | LILRB1 | S576 | ochoa | Leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1) (Leukocyte immunoglobulin-like receptor 1) (CD85 antigen-like family member J) (Immunoglobulin-like transcript 2) (ILT-2) (Monocyte/macrophage immunoglobulin-like receptor 7) (MIR-7) (CD antigen CD85j) | Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C, HLA-G and HLA-F alleles (PubMed:16455647, PubMed:28636952). Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of FCER1A signaling and serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions (PubMed:11907092, PubMed:9285411, PubMed:9842885). Recognizes HLA-G in complex with B2M/beta-2 microglobulin and a nonamer self-peptide (PubMed:16455647). Upon interaction with peptide-bound HLA-G-B2M complex, triggers secretion of growth-promoting factors by decidual NK cells (PubMed:19304799, PubMed:29262349). Reprograms B cells toward an immune suppressive phenotype (PubMed:24453251). {ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:16455647, ECO:0000269|PubMed:19304799, ECO:0000269|PubMed:24453251, ECO:0000269|PubMed:28636952, ECO:0000269|PubMed:29262349, ECO:0000269|PubMed:9285411, ECO:0000269|PubMed:9842885}. |
Q8NHM5 | KDM2B | S497 | ochoa | Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) | Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}. |
Q8NHY3 | GAS2L2 | S662 | ochoa | GAS2-like protein 2 (GAS2-related protein on chromosome 17) (Growth arrest-specific protein 2-like 2) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). Enhances ADORA2-mediated adenylyl cyclase activation by acting as a scaffold to recruit trimeric G-protein complexes to ADORA2A (By similarity). Regulates ciliary orientation and performance in cells located in the airway (PubMed:30665704). {ECO:0000250|UniProtKB:Q5SSG4, ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950, ECO:0000269|PubMed:30665704}. |
Q8NI27 | THOC2 | S1520 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TAV0 | FAM76A | S202 | ochoa | Protein FAM76A | None |
Q8TBB1 | LNX1 | S441 | ochoa | E3 ubiquitin-protein ligase LNX (EC 2.3.2.27) (Ligand of Numb-protein X 1) (Numb-binding protein 1) (PDZ domain-containing RING finger protein 2) (RING-type E3 ubiquitin transferase LNX) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of NUMB. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of isoform p66 and isoform p72 of NUMB, but not that of isoform p71 or isoform p65. {ECO:0000250|UniProtKB:O70263}.; FUNCTION: Isoform 2 provides an endocytic scaffold for IGSF5/JAM4. {ECO:0000250|UniProtKB:O70263}. |
Q8TC05 | MDM1 | S263 | ochoa | Nuclear protein MDM1 | Microtubule-binding protein that negatively regulates centriole duplication. Binds to and stabilizes microtubules (PubMed:26337392). {ECO:0000269|PubMed:26337392}. |
Q8TC44 | POC1B | S398 | ochoa | POC1 centriolar protein homolog B (Pix1) (Proteome of centriole protein 1B) (WD repeat-containing protein 51B) | Plays an important role in centriole assembly and/or stability and ciliogenesis (PubMed:20008567, PubMed:32060285). Involved in early steps of centriole duplication, as well as in the later steps of centriole length control (PubMed:19109428). Acts in concert with POC1A to ensure centriole integrity and proper mitotic spindle formation (PubMed:32060285). Required for primary cilia formation, ciliary length and also cell proliferation (PubMed:23015594). Required for retinal integrity (PubMed:25044745). Acts as a positive regulator of centriole elongation (PubMed:37934472). {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:20008567, ECO:0000269|PubMed:23015594, ECO:0000269|PubMed:25044745, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:37934472}. |
Q8TC90 | CCER1 | S226 | ochoa | Coiled-coil domain-containing glutamate-rich protein 1 | Regulator of histone epigenetic modifications and chromatin compaction into the sperm head, required for histone-to-protamine (HTP) transition. HTP is a key event in which somatic histones are first replaced by testis-specific histone variants, then transition proteins (TNPs) are incorporated into the spermatid nucleus, and finally protamines (PRMs) replace the TNPs to promote chromatin condensation. {ECO:0000250|UniProtKB:Q9CQL2}. |
Q8TCN5 | ZNF507 | S884 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8TDB6 | DTX3L | S221 | ochoa | E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) | E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}. |
Q8TDC3 | BRSK1 | S384 | ochoa | Serine/threonine-protein kinase BRSK1 (EC 2.7.11.1) (Brain-selective kinase 1) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 1) (BR serine/threonine-protein kinase 1) (Serine/threonine-protein kinase SAD-B) (Synapses of Amphids Defective homolog 1) (SAD1 homolog) (hSAD1) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. In neurons, localizes to synaptic vesicles and plays a role in neurotransmitter release, possibly by phosphorylating RIMS1. Also acts as a positive regulator of centrosome duplication by mediating phosphorylation of gamma-tubulin (TUBG1 and TUBG2) at 'Ser-131', leading to translocation of gamma-tubulin and its associated proteins to the centrosome. Involved in the UV-induced DNA damage checkpoint response, probably by inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15150265, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311}. |
Q8TE68 | EPS8L1 | S676 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8-like protein 1) (Epidermal growth factor receptor pathway substrate 8-related protein 1) (EPS8-related protein 1) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. {ECO:0000269|PubMed:14565974}. |
Q8TEH3 | DENND1A | S523 | ochoa | DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) | Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8TEK3 | DOT1L | S390 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TER5 | ARHGEF40 | S255 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TEW0 | PARD3 | S692 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S730 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF68 | ZNF384 | S214 | ochoa | Zinc finger protein 384 (CAG repeat protein 1) (CAS-interacting zinc finger protein) (Nuclear matrix transcription factor 4) (Nuclear matrix protein 4) (Trinucleotide repeat-containing gene 1 protein) | Transcription factor that binds the consensus DNA sequence [GC]AAAAA. Seems to bind and regulate the promoters of MMP1, MMP3, MMP7 and COL1A1 (By similarity). {ECO:0000250}. |
Q8TF72 | SHROOM3 | S443 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WTR7 | ZNF473 | S157 | ochoa | Zinc finger protein 473 (Zinc finger protein 100 homolog) (Zfp-100) | Involved in histone 3'-end pre-mRNA processing by associating with U7 snRNP and interacting with SLBP/pre-mRNA complex. Increases histone 3'-end pre-mRNA processing but has no effect on U7 snRNP levels, when overexpressed. Required for cell cycle progression from G1 to S phases. {ECO:0000269|PubMed:11782445, ECO:0000269|PubMed:16714279, ECO:0000269|PubMed:16914750}. |
Q8WTW3 | COG1 | S459 | ochoa | Conserved oligomeric Golgi complex subunit 1 (COG complex subunit 1) (Component of oligomeric Golgi complex 1) | Required for normal Golgi function. {ECO:0000250}. |
Q8WUA2 | PPIL4 | S178 | ochoa | Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) | PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}. |
Q8WUY3 | PRUNE2 | S682 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S2416 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WVM7 | STAG1 | S756 | ochoa | Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. |
Q8WVM8 | SCFD1 | S303 | ochoa|psp | Sec1 family domain-containing protein 1 (SLY1 homolog) (Sly1p) (Syntaxin-binding protein 1-like 2) | Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with COG4. Involved in vesicular transport between the endoplasmic reticulum and the Golgi (By similarity). {ECO:0000250}. |
Q8WW38 | ZFPM2 | S400 | ochoa | Zinc finger protein ZFPM2 (Friend of GATA protein 2) (FOG-2) (Friend of GATA 2) (hFOG-2) (Zinc finger protein 89B) (Zinc finger protein multitype 2) | Transcription regulator that plays a central role in heart morphogenesis and development of coronary vessels from epicardium, by regulating genes that are essential during cardiogenesis. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA4, GATA5 and GATA6. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. Also required in gonadal differentiation, possibly be regulating expression of SRY. Probably acts a corepressor of NR2F2 (By similarity). {ECO:0000250, ECO:0000269|PubMed:10438528}. |
Q8WWH5 | TRUB1 | S101 | ochoa | Pseudouridylate synthase TRUB1 (EC 5.4.99.-) (TruB pseudouridine synthase homolog 1) (tRNA pseudouridine 55 synthase TRUB1) (Psi55 synthase TRUB1) (EC 5.4.99.25) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs and tRNAs (PubMed:28073919, PubMed:31477916, PubMed:32926445). Mediates pseudouridylation of mRNAs with the consensus sequence 5'-GUUCNANNC-3', harboring a stem-loop structure (PubMed:28073919, PubMed:31477916). Constitutes the major pseudouridine synthase acting on mRNAs (PubMed:28073919). Also catalyzes pseudouridylation of some tRNAs, including synthesis of pseudouridine(55) from uracil-55, in the psi GC loop of a subset of tRNAs (PubMed:32926445, PubMed:33023933). Promotes the processing of pri-let-7 microRNAs (pri-miRNAs) independently of its RNA pseudouridylate synthase activity (PubMed:32926445). Acts by binding to the stem-loop structure on pri-let-7, preventing LIN28-binding (LIN28A and/or LIN28B), thereby enhancing the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation (PubMed:32926445). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:32926445, ECO:0000269|PubMed:33023933}. |
Q8WWI1 | LMO7 | S407 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWI1 | LMO7 | S1129 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWN9 | IPCEF1 | S326 | ochoa | Interactor protein for cytohesin exchange factors 1 (Phosphoinositide-binding protein PIP3-E) | Enhances the promotion of guanine-nucleotide exchange by PSCD2 on ARF6 in a concentration-dependent manner. {ECO:0000250}. |
Q8WX93 | PALLD | S979 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXG6 | MADD | S1059 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WXG6 | MADD | S1270 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WXH0 | SYNE2 | S4136 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH2 | JPH3 | S457 | ochoa | Junctophilin-3 (JP-3) (Junctophilin type 3) (Trinucleotide repeat-containing gene 22 protein) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain-specific and appears to have an active role in certain neurons involved in motor coordination and memory. |
Q8WXI2 | CNKSR2 | S390 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WXI2 | CNKSR2 | S505 | ochoa | Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) | May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}. |
Q8WXX7 | AUTS2 | S856 | ochoa | Autism susceptibility gene 2 protein | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}. |
Q8WY36 | BBX | S183 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q8WYB5 | KAT6B | S889 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYB5 | KAT6B | S1048 | ochoa | Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) | Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}. |
Q8WYP5 | AHCTF1 | S528 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S1283 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYP5 | AHCTF1 | S2212 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYQ5 | DGCR8 | S95 | ochoa|psp | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q92499 | DDX1 | S481 | ochoa | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q92576 | PHF3 | S1014 | ochoa | PHD finger protein 3 | None |
Q92585 | MAML1 | S45 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92604 | LPGAT1 | S233 | ochoa | Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 (2-acylglycerophosphocholine O-acyltransferase) (EC 2.3.1.62) (Acyl-CoA:monoacylglycerol acyltransferase LPGAT1) (EC 2.3.1.22) (Lysophospholipid acyltransferase 7) (LPLAT7) (EC 2.3.1.-) (Stearoyl-CoA:1-lyso-2-acyl-PE acyltransferase) | Lysophospholipid acyltransferase involved in fatty acyl chain remodeling of glycerophospholipids in the endoplasmic reticulum membrane (By similarity). Selectively catalyzes the transfer and esterification of saturated long-chain fatty acids from acyl-CoA to the sn-1 position of 1-lyso-2-acyl phosphatidylethanolamines (1-lyso-PE, LPE), with a preference for stearoyl CoA over palmitoyl CoA as acyl donor (PubMed:36049524). Acts in concert with an unknown phospholipase A1 to convert palmitate phosphatidylethanolamine (PE) species into stearate ones. Provides substrates to the PE methylation pathway, controlling stearate/palmitate composition of PE and phosphatidylcholine (PC) species with an overall impact on de novo hepatic lipid synthesis, body fat content and life span (By similarity). Can acylate lysophosphatidylglycerols (LPG) using various saturated fatty acyl-CoAs as acyl donors (PubMed:15485873). Can also acylate monoacylglycerols with a preference for 2-monoacylglycerols over 1-monoacylglycerols (By similarity). Has no activity toward lysophosphatidic acids (LPA) (By similarity). {ECO:0000250|UniProtKB:Q91YX5, ECO:0000269|PubMed:15485873, ECO:0000269|PubMed:36049524}. |
Q92610 | ZNF592 | S322 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92616 | GCN1 | S2276 | ochoa | Stalled ribosome sensor GCN1 (GCN1 eIF-2-alpha kinase activator homolog) (GCN1-like protein 1) (General control of amino-acid synthesis 1-like protein 1) (Translational activator GCN1) (HsGCN1) | Ribosome collision sensor that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:32610081, PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Directly binds to the ribosome and acts as a sentinel for colliding ribosomes: activated following ribosome stalling and promotes recruitment of RNF14, which directly ubiquitinates EEF1A1/eEF1A, leading to its degradation (PubMed:36638793, PubMed:37951215, PubMed:37951216). In addition to EEF1A1/eEF1A, the RNF14-RNF25 translation quality control pathway mediates degradation of ETF1/eRF1 and ubiquitination of ribosomal protein (PubMed:36638793, PubMed:37651229). GCN1 also acts as a positive activator of the integrated stress response (ISR) by mediating activation of EIF2AK4/GCN2 in response to amino acid starvation (By similarity). Interaction with EIF2AK4/GCN2 on translating ribosomes stimulates EIF2AK4/GCN2 kinase activity, leading to phosphorylation of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) (By similarity). EIF2S1/eIF-2-alpha phosphorylation converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (By similarity). {ECO:0000250|UniProtKB:E9PVA8, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q92674 | CENPI | S284 | ochoa | Centromere protein I (CENP-I) (FSH primary response protein 1) (Follicle-stimulating hormone primary response protein) (Interphase centromere complex protein 19) (Leucine-rich primary response protein 1) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Required for the localization of CENPF, MAD1L1 and MAD2 (MAD2L1 or MAD2L2) to kinetochores. Involved in the response of gonadal tissues to follicle-stimulating hormone. {ECO:0000269|PubMed:12640463, ECO:0000269|PubMed:16622420}. |
Q92738 | USP6NL | S716 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92747 | ARPC1A | S26 | ochoa | Actin-related protein 2/3 complex subunit 1A (SOP2-like protein) | Probably functions as a component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. {ECO:0000305|PubMed:8978670}. |
Q92766 | RREB1 | S36 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92766 | RREB1 | S42 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92766 | RREB1 | S1225 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92783 | STAM | S156 | ochoa | Signal transducing adapter molecule 1 (STAM-1) | Involved in intracellular signal transduction mediated by cytokines and growth factors. Upon IL-2 and GM-CSL stimulation, it plays a role in signaling leading to DNA synthesis and MYC induction. May also play a role in T-cell development. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with HGS (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.; FUNCTION: (Microbial infection) Plays an important role in Dengue virus entry. {ECO:0000269|PubMed:29742433}. |
Q92794 | KAT6A | S678 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92794 | KAT6A | S1136 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92817 | EVPL | S906 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92817 | EVPL | S1263 | ochoa | Envoplakin (210 kDa cornified envelope precursor protein) (210 kDa paraneoplastic pemphigus antigen) (p210) | Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. |
Q92995 | USP13 | S630 | ochoa | Ubiquitin carboxyl-terminal hydrolase 13 (EC 3.4.19.12) (Deubiquitinating enzyme 13) (Isopeptidase T-3) (ISOT-3) (Ubiquitin thioesterase 13) (Ubiquitin-specific-processing protease 13) | Deubiquitinase that mediates deubiquitination of target proteins such as BECN1, MITF, SKP2 and USP10 and is involved in various processes such as autophagy, endoplasmic reticulum-associated degradation (ERAD), cell cycle progression or DNA damage response (PubMed:21571647, PubMed:32772043, PubMed:33592542). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes. Alternatively, forms with NEDD4 a deubiquitination complex, which subsequently stabilizes VPS34 to promote autophagy (PubMed:32101753). Also deubiquitinates USP10, an essential regulator of p53/TP53 stability. In turn, PIK3C3/VPS34-containing complexes regulate USP13 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13. Recruited by nuclear UFD1 and mediates deubiquitination of SKP2, thereby regulating endoplasmic reticulum-associated degradation (ERAD). Also regulates ERAD through the deubiquitination of UBL4A a component of the BAG6/BAT3 complex. Mediates stabilization of SIAH2 independently of deubiquitinase activity: binds ubiquitinated SIAH2 and acts by impairing SIAH2 autoubiquitination. Regulates the cell cycle progression by stabilizing cell cycle proteins such as SKP2 and AURKB (PubMed:32772043). In addition, plays an important role in maintaining genomic stability and in DNA replication checkpoint activation via regulation of RAP80 and TOPBP1 (PubMed:33592542). Deubiquitinates the multifunctional protein HMGB1 and subsequently drives its nucleocytoplasmic localization and its secretion (PubMed:36585612). Positively regulates type I and type II interferon signalings by deubiquitinating STAT1 but negatively regulates antiviral response by deubiquitinating STING1 (PubMed:23940278, PubMed:28534493). {ECO:0000269|PubMed:17653289, ECO:0000269|PubMed:21571647, ECO:0000269|PubMed:21659512, ECO:0000269|PubMed:21811243, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:22216260, ECO:0000269|PubMed:24424410, ECO:0000269|PubMed:28534493, ECO:0000269|PubMed:32101753, ECO:0000269|PubMed:32772043, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:36585612}. |
Q93045 | STMN2 | S73 | psp | Stathmin-2 (Superior cervical ganglion-10 protein) (Protein SCG10) | Regulator of microtubule stability. When phosphorylated by MAPK8, stabilizes microtubules and consequently controls neurite length in cortical neurons. In the developing brain, negatively regulates the rate of exit from multipolar stage and retards radial migration from the ventricular zone (By similarity). {ECO:0000250}. |
Q93074 | MED12 | S688 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q969G3 | SMARCE1 | S136 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (BRG1-associated factor 57) (BAF57) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Required for the coactivation of estrogen responsive promoters by SWI/SNF complexes and the SRC/p160 family of histone acetyltransferases (HATs). Also specifically interacts with the CoREST corepressor resulting in repression of neuronal specific gene promoters in non-neuronal cells. {ECO:0000250|UniProtKB:O54941, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q969R5 | L3MBTL2 | S683 | ochoa | Lethal(3)malignant brain tumor-like protein 2 (H-l(3)mbt-like protein 2) (L(3)mbt-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins maintain the transcriptionally repressive state of genes, probably via a modification of chromatin, rendering it heritably changed in its expressibility. Its association with a chromatin-remodeling complex suggests that it may contribute to prevent expression of genes that trigger the cell into mitosis. Binds to monomethylated and dimethylated 'Lys-20' on histone H4. Binds histone H3 peptides that are monomethylated or dimethylated on 'Lys-4', 'Lys-9' or 'Lys-27'. {ECO:0000269|PubMed:19233876}. |
Q969X0 | RILPL2 | S107 | ochoa | RILP-like protein 2 (Rab-interacting lysosomal protein-like 2) (p40phox-binding protein) | Involved in cell shape and neuronal morphogenesis, positively regulating the establishment and maintenance of dendritic spines (By similarity). Plays a role in cellular protein transport, including protein transport away from primary cilia (By similarity). May function via activation of RAC1 and PAK1 (By similarity). {ECO:0000250|UniProtKB:Q6AYA0, ECO:0000250|UniProtKB:Q99LE1}. |
Q96A65 | EXOC4 | S738 | ochoa | Exocyst complex component 4 (Exocyst complex component Sec8) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. {ECO:0000250|UniProtKB:Q62824}. |
Q96AY2 | EME1 | S111 | ochoa | Structure-specific endonuclease subunit EME1 (Crossover junction endonuclease EME1) (Essential meiotic structure-specific endonuclease 1) (MMS4 homolog) (hMMS4) | Non-catalytic subunit of the structure-specific, heterodimeric DNA endonuclease MUS81-EME1 which is involved in the maintenance of genome stability. In the complex, EME1 is required for DNA cleavage, participating in DNA recognition and bending (PubMed:12686547, PubMed:12721304, PubMed:14617801, PubMed:17289582, PubMed:24733841, PubMed:24813886, PubMed:35290797, PubMed:39015284). MUS81-EME1 cleaves 3'-flaps and nicked Holliday junctions, and exhibit limited endonuclease activity with 5' flaps and nicked double-stranded DNAs (PubMed:24733841, PubMed:35290797). Active during prometaphase, MUS81-EME1 resolves mitotic recombination intermediates, including Holliday junctions, which form during homologous recombination (PubMed:14617801, PubMed:24813886). {ECO:0000269|PubMed:12686547, ECO:0000269|PubMed:12721304, ECO:0000269|PubMed:14617801, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:24733841, ECO:0000269|PubMed:24813886, ECO:0000269|PubMed:35290797, ECO:0000269|PubMed:39015284}. |
Q96B01 | RAD51AP1 | S139 | ochoa | RAD51-associated protein 1 (HsRAD51AP1) (RAD51-interacting protein) | Structure-specific DNA-binding protein involved in DNA repair by promoting RAD51-mediated homologous recombination (PubMed:17996710, PubMed:17996711, PubMed:20871616, PubMed:25288561, PubMed:26323318). Acts by stimulating D-Loop formation by RAD51: specifically enhances joint molecule formation through its structure-specific DNA interaction and its interaction with RAD51 (PubMed:17996710, PubMed:17996711). Binds single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures: has a strong preference for branched-DNA structures that are obligatory intermediates during joint molecule formation (PubMed:17996710, PubMed:17996711, PubMed:22375013, PubMed:9396801). Cooperates with WDR48/UAF1 to stimulate RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during homologous recombination and DNA repair (PubMed:27239033, PubMed:27463890, PubMed:32350107). WDR48/UAF1 and RAD51AP1 also have a coordinated role in DNA-binding to promote USP1-mediated deubiquitination of FANCD2 (PubMed:31253762). Also involved in meiosis by promoting DMC1-mediated homologous meiotic recombination (PubMed:21307306). Key mediator of alternative lengthening of telomeres (ALT) pathway, a homology-directed repair mechanism of telomere elongation that controls proliferation in aggressive cancers, by stimulating homologous recombination (PubMed:31400850). May also bind RNA; additional evidences are however required to confirm RNA-binding in vivo (PubMed:9396801). {ECO:0000269|PubMed:17996710, ECO:0000269|PubMed:17996711, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:21307306, ECO:0000269|PubMed:22375013, ECO:0000269|PubMed:25288561, ECO:0000269|PubMed:26323318, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31400850, ECO:0000269|PubMed:32350107, ECO:0000269|PubMed:9396801}. |
Q96BU1 | S100PBP | S187 | ochoa | S100P-binding protein (S100P-binding protein Riken) | None |
Q96BY6 | DOCK10 | S292 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96C92 | ENTR1 | S86 | ochoa | Endosome-associated-trafficking regulator 1 (Antigen NY-CO-3) (Serologically defined colon cancer antigen 3) | Endosome-associated protein that plays a role in membrane receptor sorting, cytokinesis and ciliogenesis (PubMed:23108400, PubMed:25278552, PubMed:27767179). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). Involved in the regulation of cytokinesis; the function may involve PTPN13 and GIT1 (PubMed:23108400). Plays a role in the formation of cilia (PubMed:27767179). Involved in cargo protein localization, such as PKD2, at primary cilia (PubMed:27767179). Involved in the presentation of the tumor necrosis factor (TNF) receptor TNFRSF1A on the cell surface, and hence in the modulation of the TNF-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:A2AIW0, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25278552, ECO:0000269|PubMed:27767179}. |
Q96CJ1 | EAF2 | S144 | ochoa | ELL-associated factor 2 (Testosterone-regulated apoptosis inducer and tumor suppressor protein) | Acts as a transcriptional transactivator of TCEA1 elongation activity (By similarity). Acts as a transcriptional transactivator of ELL and ELL2 elongation activities. Potent inducer of apoptosis in prostatic and non-prostatic cell lines. Inhibits prostate tumor growth in vivo. {ECO:0000250, ECO:0000269|PubMed:12446457, ECO:0000269|PubMed:12907652, ECO:0000269|PubMed:16006523}. |
Q96CS3 | FAF2 | S355 | ochoa | FAS-associated factor 2 (UBX domain-containing protein 3B) (UBX domain-containing protein 8) | Plays an important role in endoplasmic reticulum-associated degradation (ERAD) that mediates ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins (PubMed:18711132, PubMed:24215460). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Involved in inhibition of lipid droplet degradation by binding to phospholipase PNPL2 and inhibiting its activity by promoting dissociation of PNPL2 from its endogenous activator, ABHD5 which inhibits the rate of triacylglycerol hydrolysis (PubMed:23297223). Involved in stress granule disassembly: associates with ubiquitinated G3BP1 in response to heat shock, thereby promoting interaction between ubiquitinated G3BP1 and VCP, followed by G3BP1 extraction from stress granules and stress granule disassembly (PubMed:34739333). {ECO:0000269|PubMed:18711132, ECO:0000269|PubMed:23297223, ECO:0000269|PubMed:24215460, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:34739333}. |
Q96CW5 | TUBGCP3 | S515 | ochoa | Gamma-tubulin complex component 3 (GCP-3) (hGCP3) (Gamma-ring complex protein 104 kDa) (h104p) (hGrip104) (Spindle pole body protein Spc98 homolog) (hSpc98) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:38305685, PubMed:38609661, PubMed:39321809, PubMed:9566967). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809, ECO:0000269|PubMed:9566967}. |
Q96E14 | RMI2 | S112 | psp | RecQ-mediated genome instability protein 2 (hRMI2) (BLM-associated protein of 18 kDa) (BLAP18) | Essential component of the RMI complex, a complex that plays an important role in the processing of homologous recombination intermediates. It is required to regulate sister chromatid segregation and to limit DNA crossover. Essential for the stability, localization, and function of BLM, TOP3A, and complexes containing BLM. In the RMI complex, it is required to target BLM to chromatin and stress-induced nuclear foci and mitotic phosphorylation of BLM. {ECO:0000269|PubMed:18923082, ECO:0000269|PubMed:18923083, ECO:0000269|PubMed:27977684}. |
Q96E22 | NUS1 | S168 | ochoa | Dehydrodolichyl diphosphate synthase complex subunit NUS1 (EC 2.5.1.87) (Cis-prenyltransferase subunit NgBR) (Nogo-B receptor) (NgBR) (Nuclear undecaprenyl pyrophosphate synthase 1 homolog) | With DHDDS, forms the dehydrodolichyl diphosphate synthase (DDS) complex, an essential component of the dolichol monophosphate (Dol-P) biosynthetic machinery (PubMed:21572394, PubMed:25066056, PubMed:28842490, PubMed:32817466, PubMed:33077723). Both subunits contribute to enzymatic activity, i.e. condensation of multiple copies of isopentenyl pyrophosphate (IPP) to farnesyl pyrophosphate (FPP) to produce dehydrodolichyl diphosphate (Dedol-PP), a precursor of dolichol phosphate which is utilized as a sugar carrier in protein glycosylation in the endoplasmic reticulum (ER) (PubMed:21572394, PubMed:25066056, PubMed:28842490, PubMed:32817466, PubMed:33077723). Synthesizes long-chain polyprenols, mostly of C95 and C100 chain length (PubMed:32817466). Regulates the glycosylation and stability of nascent NPC2, thereby promoting trafficking of LDL-derived cholesterol (PubMed:21572394). Acts as a specific receptor for the N-terminus of Nogo-B, a neural and cardiovascular regulator (PubMed:16835300). {ECO:0000269|PubMed:16835300, ECO:0000269|PubMed:21572394, ECO:0000269|PubMed:25066056, ECO:0000269|PubMed:28842490, ECO:0000269|PubMed:32817466, ECO:0000269|PubMed:33077723}. |
Q96ED9 | HOOK2 | S163 | ochoa | Protein Hook homolog 2 (h-hook2) (hHK2) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). Contributes to the establishment and maintenance of centrosome function. May function in the positioning or formation of aggresomes, which are pericentriolar accumulations of misfolded proteins, proteasomes and chaperones. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:17140400, ECO:0000269|PubMed:17540036, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q96F24 | NRBF2 | S268 | ochoa | Nuclear receptor-binding factor 2 (NRBF-2) (Comodulator of PPAR and RXR) | May modulate transcriptional activation by target nuclear receptors. Can act as transcriptional activator (in vitro). {ECO:0000269|PubMed:15610520}.; FUNCTION: Involved in starvation-induced autophagy probably by its association with PI3K complex I (PI3KC3-C1). However, effects has been described variably. Involved in the induction of starvation-induced autophagy (PubMed:24785657). Stabilizes PI3KC3-C1 assembly and enhances ATG14-linked lipid kinase activity of PIK3C3 (By similarity). Proposed to negatively regulate basal and starvation-induced autophagy and to inhibit PIK3C3 activity by modulating interactions in PI3KC3-C1 (PubMed:25086043). May be involved in autophagosome biogenesis (PubMed:25086043). May play a role in neural progenitor cell survival during differentiation (By similarity). {ECO:0000250|UniProtKB:Q8VCQ3, ECO:0000269|PubMed:24785657, ECO:0000269|PubMed:25086043}. |
Q96FF9 | CDCA5 | S209 | ochoa|psp | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96FI4 | NEIL1 | S207 | ochoa|psp | Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) | Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}. |
Q96FI4 | NEIL1 | S306 | ochoa|psp | Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) | Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}. |
Q96FJ0 | STAMBPL1 | S25 | ochoa | AMSH-like protease (AMSH-LP) (EC 3.4.19.-) (STAM-binding protein-like 1) | Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:18758443, PubMed:35114100). Acts as a positive regulator of the TORC1 signaling pathway by mediating 'Lys-63'-linked deubiquitination of SESN2, thereby inhibiting SESN2-interaction with the GATOR2 complex (PubMed:35114100). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:18758443). {ECO:0000269|PubMed:18758443, ECO:0000269|PubMed:35114100}. |
Q96FZ2 | HMCES | S50 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96G25 | MED8 | S82 | ochoa | Mediator of RNA polymerase II transcription subunit 8 (Activator-recruited cofactor 32 kDa component) (ARC32) (Mediator complex subunit 8) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. May play a role as a target recruitment subunit in E3 ubiquitin-protein ligase complexes and thus in ubiquitination and subsequent proteasomal degradation of target proteins. |
Q96GX5 | MASTL | S370 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96HH9 | GRAMD2B | S49 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96I24 | FUBP3 | S296 | ochoa | Far upstream element-binding protein 3 (FUSE-binding protein 3) | May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. |
Q96JG6 | VPS50 | S498 | ochoa | Syndetin (Coiled-coil domain-containing protein 132) (EARP/GARPII complex subunit VPS50) | Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane. Within the EARP complex, required to tether the complex to recycling endosomes. Not involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:25799061}. |
Q96JM2 | ZNF462 | S1611 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96JM3 | CHAMP1 | S87 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S108 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JP5 | ZFP91 | S296 | ochoa | E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 757) (Zinc finger protein 91 homolog) (Zfp-91) | Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000269|PubMed:12738986, ECO:0000269|PubMed:20682767}. |
Q96JQ2 | CLMN | S449 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96JQ2 | CLMN | S526 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96JQ2 | CLMN | S619 | ochoa | Calmin (Calponin-like transmembrane domain protein) | None |
Q96L34 | MARK4 | S218 | ochoa | MAP/microtubule affinity-regulating kinase 4 (EC 2.7.11.1) (MAP/microtubule affinity-regulating kinase-like 1) | Serine/threonine-protein kinase (PubMed:14594945, PubMed:15009667, PubMed:23184942, PubMed:23666762). Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:14594945, PubMed:23666762). Also phosphorylates the microtubule-associated proteins MAP2 and MAP4 (PubMed:14594945). Involved in regulation of the microtubule network, causing reorganization of microtubules into bundles (PubMed:14594945, PubMed:25123532). Required for the initiation of axoneme extension during cilium assembly (PubMed:23400999). Regulates the centrosomal location of ODF2 and phosphorylates ODF2 in vitro (PubMed:23400999). Plays a role in cell cycle progression, specifically in the G1/S checkpoint (PubMed:25123532). Reduces neuronal cell survival (PubMed:15009667). Plays a role in energy homeostasis by regulating satiety and metabolic rate (By similarity). Promotes adipogenesis by activating JNK1 and inhibiting the p38MAPK pathway, and triggers apoptosis by activating the JNK1 pathway (By similarity). Phosphorylates mTORC1 complex member RPTOR and acts as a negative regulator of the mTORC1 complex, probably due to disruption of the interaction between phosphorylated RPTOR and the RRAGA/RRAGC heterodimer which is required for mTORC1 activation (PubMed:23184942). Involved in NLRP3 positioning along microtubules by mediating NLRP3 recruitment to microtubule organizing center (MTOC) upon inflammasome activation (PubMed:28656979). {ECO:0000250|UniProtKB:Q8CIP4, ECO:0000269|PubMed:14594945, ECO:0000269|PubMed:15009667, ECO:0000269|PubMed:23184942, ECO:0000269|PubMed:23400999, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:25123532, ECO:0000269|PubMed:28656979}. |
Q96LB3 | IFT74 | S300 | ochoa | Intraflagellar transport protein 74 homolog (Capillary morphogenesis gene 1 protein) (CMG-1) (Coiled-coil domain-containing protein 2) | Component of the intraflagellar transport (IFT) complex B: together with IFT81, forms a tubulin-binding module that specifically mediates transport of tubulin within the cilium (PubMed:23990561). Binds beta-tubulin via its basic region (PubMed:23990561). Required for ciliogenesis (PubMed:23990561). Essential for flagellogenesis during spermatogenesis (PubMed:33689014). {ECO:0000269|PubMed:23990561, ECO:0000269|PubMed:33689014}. |
Q96M11 | HYLS1 | S179 | ochoa | Centriolar and ciliogenesis-associated protein HYLS1 (Hydrolethalus syndrome protein 1) | Plays a role in ciliogenesis. {ECO:0000250|UniProtKB:A0A1L8ER70, ECO:0000250|UniProtKB:Q95X94}. |
Q96M89 | CCDC138 | S49 | ochoa | Coiled-coil domain-containing protein 138 | None |
Q96P47 | AGAP3 | S121 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 (AGAP-3) (CRAM-associated GTPase) (CRAG) (Centaurin-gamma-3) (Cnt-g3) (MR1-interacting protein) (MRIP-1) | GTPase-activating protein for the ADP ribosylation factor family (Potential). GTPase which may be involved in the degradation of expanded polyglutamine proteins through the ubiquitin-proteasome pathway. {ECO:0000269|PubMed:16461359, ECO:0000305}. |
Q96PE3 | INPP4A | S487 | ochoa | Inositol polyphosphate-4-phosphatase type I A (Inositol polyphosphate 4-phosphatase type I) (Type I inositol 3,4-bisphosphate 4-phosphatase) (EC 3.1.3.66) | Catalyzes the hydrolysis of the 4-position phosphate of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) (PubMed:15716355, PubMed:20463662). Also catalyzes inositol 1,3,4-trisphosphate and inositol 1,4-bisphosphate (By similarity). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (By similarity) (PubMed:30071275). May protect neurons from excitotoxic cell death by regulating the synaptic localization of cell surface N-methyl-D-aspartate-type glutamate receptors (NMDARs) and NMDAR-mediated excitatory postsynaptic current (By similarity). {ECO:0000250|UniProtKB:Q62784, ECO:0000250|UniProtKB:Q9EPW0, ECO:0000269|PubMed:15716355, ECO:0000269|PubMed:20463662, ECO:0000269|PubMed:30071275}.; FUNCTION: [Isoform 4]: Displays no 4-phosphatase activity for PtdIns(3,4)P2, Ins(3,4)P2, or Ins(1,3,4)P3. {ECO:0000269|PubMed:9295334}. |
Q96PY6 | NEK1 | S874 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PZ2 | FAM111A | S62 | ochoa | Serine protease FAM111A (EC 3.4.21.-) | Single-stranded DNA-binding serine protease that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (PubMed:32165630). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde (PubMed:32165630). Protects replication fork from stalling by removing DPCs, such as covalently trapped topoisomerase 1 (TOP1) adducts on DNA lesion, or poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors (PubMed:32165630). Required for PCNA loading on replication sites (PubMed:24561620). Promotes S-phase entry and DNA synthesis (PubMed:24561620). Also acts as a restriction factor for some viruses including SV40 polyomavirus and vaccinia virus (PubMed:23093934, PubMed:37607234). Mechanistically, affects nuclear barrier function during viral replication by mediating the disruption of the nuclear pore complex (NPC) via its protease activity (PubMed:33369867, PubMed:37607234). In turn, interacts with vaccinia virus DNA-binding protein OPG079 in the cytoplasm and promotes its degradation without the need of its protease activity but through autophagy (PubMed:37607234). {ECO:0000269|PubMed:24561620, ECO:0000269|PubMed:32165630, ECO:0000269|PubMed:37607234}. |
Q96Q05 | TRAPPC9 | S569 | ochoa | Trafficking protein particle complex subunit 9 (NIK- and IKBKB-binding protein) (Tularik gene 1 protein) | Functions as an activator of NF-kappa-B through increased phosphorylation of the IKK complex. May function in neuronal cells differentiation. May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000269|PubMed:15951441}. |
Q96Q89 | KIF20B | S1740 | ochoa | Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) | Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}. |
Q96QB1 | DLC1 | S557 | psp | Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) | Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}. |
Q96QC0 | PPP1R10 | S313 | ochoa | Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) | Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}. |
Q96QU8 | XPO6 | S224 | ochoa | Exportin-6 (Exp6) (Ran-binding protein 20) | Mediates the nuclear export of actin and profilin-actin complexes in somatic cells. {ECO:0000269|PubMed:14592989}. |
Q96R06 | SPAG5 | S197 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96R06 | SPAG5 | S249 | ochoa|psp | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RL1 | UIMC1 | S653 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96S38 | RPS6KC1 | S423 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96SB4 | SRPK1 | S311 | ochoa | SRSF protein kinase 1 (EC 2.7.11.1) (SFRS protein kinase 1) (Serine/arginine-rich protein-specific kinase 1) (SR-protein-specific kinase 1) | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation. {ECO:0000269|PubMed:10049757, ECO:0000269|PubMed:10390541, ECO:0000269|PubMed:11509566, ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:14555757, ECO:0000269|PubMed:15034300, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:16209947, ECO:0000269|PubMed:18155240, ECO:0000269|PubMed:18687337, ECO:0000269|PubMed:19240134, ECO:0000269|PubMed:19477182, ECO:0000269|PubMed:19886675, ECO:0000269|PubMed:20708644, ECO:0000269|PubMed:8208298, ECO:0000269|PubMed:9237760}. |
Q96SK2 | TMEM209 | S228 | ochoa | Transmembrane protein 209 | Nuclear envelope protein which in association with NUP205, may be involved in nuclear transport of various nuclear proteins in addition to MYC. {ECO:0000269|PubMed:22719065}. |
Q96ST3 | SIN3A | S940 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q96T17 | MAP7D2 | S650 | ochoa | MAP7 domain-containing protein 2 | Microtubule-stabilizing protein that plays a role in the control of cell motility and neurite outgrowth via direct binding to the microtubule (By similarity). Acts as a critical cofactor for kinesin transport. In the proximal axon, regulates kinesin-1 family members, KIF5A, KIF5B and KIF5C recruitment to microtubules and contributes to kinesin-1-mediated transport in the axons (By similarity). {ECO:0000250|UniProtKB:A2AG50, ECO:0000250|UniProtKB:D4A4L4}. |
Q96T58 | SPEN | S1287 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S1392 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99460 | PSMD1 | S315 | ochoa | 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
Q99490 | AGAP2 | S818 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99496 | RNF2 | S41 | ochoa | E3 ubiquitin-protein ligase RING2 (EC 2.3.2.27) (Huntingtin-interacting protein 2-interacting protein 3) (HIP2-interacting protein 3) (Protein DinG) (RING finger protein 1B) (RING1b) (RING finger protein 2) (RING finger protein BAP-1) (RING-type E3 ubiquitin transferase RING2) | E3 ubiquitin-protein ligase that mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), thereby playing a central role in histone code and gene regulation (PubMed:15386022, PubMed:16359901, PubMed:21772249, PubMed:25355358, PubMed:25519132, PubMed:26151332, PubMed:33864376). H2AK119Ub gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. May be involved in the initiation of both imprinted and random X inactivation (By similarity). Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:16359901, PubMed:26151332). PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility (PubMed:26151332). E3 ubiquitin-protein ligase activity is enhanced by BMI1/PCGF4 (PubMed:21772249). Acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity (Probable). Association with the chromosomal DNA is cell-cycle dependent. In resting B- and T-lymphocytes, interaction with AURKB leads to block its activity, thereby maintaining transcription in resting lymphocytes (By similarity). Also acts as a negative regulator of autophagy by mediating ubiquitination of AMBRA1, leading to its subsequent degradation (By similarity). {ECO:0000250|UniProtKB:Q9CQJ4, ECO:0000269|PubMed:11513855, ECO:0000269|PubMed:15386022, ECO:0000269|PubMed:16359901, ECO:0000269|PubMed:16714294, ECO:0000269|PubMed:20696397, ECO:0000269|PubMed:21772249, ECO:0000269|PubMed:25355358, ECO:0000269|PubMed:25519132, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:33864376, ECO:0000305}. |
Q99550 | MPHOSPH9 | S267 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99550 | MPHOSPH9 | S937 | ochoa | M-phase phosphoprotein 9 | Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}. |
Q99569 | PKP4 | S75 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99590 | SCAF11 | S776 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99618 | CDCA3 | S199 | ochoa | Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) | F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}. |
Q99666 | RGPD5 | S796 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99666 | RGPD5 | S1534 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99666 | RGPD5 | S1742 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99676 | ZNF184 | S199 | ochoa | Zinc finger protein 184 | May be involved in transcriptional regulation. |
Q99698 | LYST | S867 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99700 | ATXN2 | S758 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99700 | ATXN2 | S772 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99717 | SMAD5 | S133 | ochoa | Mothers against decapentaplegic homolog 5 (MAD homolog 5) (Mothers against DPP homolog 5) (JV5-1) (SMAD family member 5) (SMAD 5) (Smad5) (hSmad5) | Transcriptional regulator that plays a role in various cellular processes including embryonic development, cell differentiation, angiogenesis and tissue homeostasis (PubMed:12064918, PubMed:16516194). Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form a heteromeric complex which translocates into the nucleus acting as transcription factor (PubMed:9442019). In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network (PubMed:33510867). Non-phosphorylated SMAD5 has a cytoplasmic role in energy metabolism regulation by promoting mitochondrial respiration and glycolysis in response to cytoplasmic pH changes (PubMed:28675158). Mechanistically, interacts with hexokinase 1/HK1 and thereby accelerates glycolysis (PubMed:28675158). {ECO:0000269|PubMed:12064918, ECO:0000269|PubMed:16516194, ECO:0000269|PubMed:28675158, ECO:0000269|PubMed:33510867, ECO:0000269|PubMed:9442019}. |
Q99728 | BARD1 | S251 | psp | BRCA1-associated RING domain protein 1 (BARD-1) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase BARD1) | E3 ubiquitin-protein ligase. The BRCA1-BARD1 heterodimer specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Plays a central role in the control of the cell cycle in response to DNA damage. Acts by mediating ubiquitin E3 ligase activity that is required for its tumor suppressor function. Also forms a heterodimer with CSTF1/CSTF-50 to modulate mRNA processing and RNAP II stability by inhibiting pre-mRNA 3' cleavage. {ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:20351172}. |
Q99735 | MGST2 | S43 | ochoa | Microsomal glutathione S-transferase 2 (Microsomal GST-2) (EC 2.5.1.18) (Glutathione peroxidase MGST2) (EC 1.11.1.-) (Leukotriene C4 synthase MGST2) (EC 4.4.1.20) (Microsomal glutathione S-transferase II) (Microsomal GST-II) | Catalyzes several different glutathione-dependent reactions (PubMed:23409838, PubMed:26066610, PubMed:26656251, PubMed:8703034, PubMed:9278457). Catalyzes the glutathione-dependent reduction of lipid hydroperoxides, such as 5-HPETE (PubMed:23409838, PubMed:9278457). Has glutathione transferase activity, toward xenobiotic electrophiles, such as 1-chloro-2, 4-dinitrobenzene (CDNB) (PubMed:23409838, PubMed:8703034). Also catalyzes the conjugation of leukotriene A4 with reduced glutathione to form leukotriene C4 (LTC4) (PubMed:23409838, PubMed:26656251). Involved in oxidative DNA damage induced by ER stress and anticancer agents by activating LTC4 biosynthetic machinery in nonimmune cells (PubMed:26656251). {ECO:0000269|PubMed:23409838, ECO:0000269|PubMed:26066610, ECO:0000269|PubMed:26656251, ECO:0000269|PubMed:8703034, ECO:0000269|PubMed:9278457}. |
Q99747 | NAPG | S284 | ochoa | Gamma-soluble NSF attachment protein (SNAP-gamma) (N-ethylmaleimide-sensitive factor attachment protein gamma) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. |
Q99814 | EPAS1 | S696 | psp | Endothelial PAS domain-containing protein 1 (EPAS-1) (Basic-helix-loop-helix-PAS protein MOP2) (Class E basic helix-loop-helix protein 73) (bHLHe73) (HIF-1-alpha-like factor) (HLF) (Hypoxia-inducible factor 2-alpha) (HIF-2-alpha) (HIF2-alpha) (Member of PAS protein 2) (PAS domain-containing protein 2) | Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97481}. |
Q99933 | BAG1 | S223 | ochoa | BAG family molecular chaperone regulator 1 (BAG-1) (Bcl-2-associated athanogene 1) | Co-chaperone for HSP70 and HSC70 chaperone proteins. Acts as a nucleotide-exchange factor (NEF) promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release. Nucleotide release is mediated via its binding to the nucleotide-binding domain (NBD) of HSPA8/HSC70 where as the substrate release is mediated via its binding to the substrate-binding domain (SBD) of HSPA8/HSC70 (PubMed:24318877, PubMed:27474739, PubMed:9873016). Inhibits the pro-apoptotic function of PPP1R15A, and has anti-apoptotic activity (PubMed:12724406). Markedly increases the anti-cell death function of BCL2 induced by various stimuli (PubMed:9305631). Involved in the STUB1-mediated proteasomal degradation of ESR1 in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). {ECO:0000250|UniProtKB:B0K019, ECO:0000269|PubMed:12724406, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:9305631, ECO:0000269|PubMed:9873016}. |
Q99958 | FOXC2 | S219 | ochoa|psp | Forkhead box protein C2 (Forkhead-related protein FKHL14) (Mesenchyme fork head protein 1) (MFH-1 protein) (Transcription factor FKH-14) | Transcriptional activator. {ECO:0000269|PubMed:9169153}. |
Q99990 | VGLL1 | S84 | psp | Transcription cofactor vestigial-like protein 1 (Vgl-1) (Protein TONDU) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000269|PubMed:10518497}. |
Q9BQI3 | EIF2AK1 | S498 | ochoa | Eukaryotic translation initiation factor 2-alpha kinase 1 (EC 2.7.11.1) (Heme-controlled repressor) (HCR) (Heme-regulated eukaryotic initiation factor eIF-2-alpha kinase) (Heme-regulated inhibitor) (hHRI) (Hemin-sensitive initiation factor 2-alpha kinase) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress conditions (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). Key activator of the integrated stress response (ISR) required for adaptation to various stress, such as heme deficiency, oxidative stress, osmotic shock, mitochondrial dysfunction and heat shock (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707, PubMed:37327776). Acts as a key sensor of heme-deficiency: in normal conditions, binds hemin via a cysteine thiolate and histidine nitrogenous coordination, leading to inhibit the protein kinase activity (By similarity). This binding occurs with moderate affinity, allowing it to sense the heme concentration within the cell: heme depletion relieves inhibition and stimulates kinase activity, activating the ISR (By similarity). Thanks to this unique heme-sensing capacity, plays a crucial role to shut off protein synthesis during acute heme-deficient conditions (By similarity). In red blood cells (RBCs), controls hemoglobin synthesis ensuring a coordinated regulation of the synthesis of its heme and globin moieties (By similarity). It thereby plays an essential protective role for RBC survival in anemias of iron deficiency (By similarity). Iron deficiency also triggers activation by full-length DELE1 (PubMed:37327776). Also activates the ISR in response to mitochondrial dysfunction: HRI/EIF2AK1 protein kinase activity is activated upon binding to the processed form of DELE1 (S-DELE1), thereby promoting the ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707). Also acts as an activator of mitophagy in response to mitochondrial damage: catalyzes phosphorylation of eIF-2-alpha (EIF2S1) following activation by S-DELE1, thereby promoting mitochondrial localization of EIF2S1, triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000250|UniProtKB:Q9Z2R9, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:32197074, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:38340717}. |
Q9BRK5 | SDF4 | S209 | ochoa | 45 kDa calcium-binding protein (Cab45) (Stromal cell-derived factor 4) (SDF-4) | May regulate calcium-dependent activities in the endoplasmic reticulum lumen or post-ER compartment. {ECO:0000250}.; FUNCTION: Isoform 5 may be involved in the exocytosis of zymogens by pancreatic acini. |
Q9BRR8 | GPATCH1 | S715 | ochoa | G patch domain-containing protein 1 (Evolutionarily conserved G-patch domain-containing protein) | None |
Q9BRT9 | GINS4 | S123 | ochoa | DNA replication complex GINS protein SLD5 (GINS complex subunit 4) [Cleaved into: DNA replication complex GINS protein SLD5, N-terminally processed] | Required for correct functioning of the GINS complex, a complex that plays an essential role in the initiation of DNA replication, and progression of DNA replication forks (PubMed:17417653, PubMed:28414293). GINS complex is a core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). {ECO:0000269|PubMed:17417653, ECO:0000269|PubMed:28414293, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232}. |
Q9BSG1 | ZNF2 | S119 | ochoa | Zinc finger protein 2 (Zinc finger protein 2.2) (Zinc finger protein 661) | May be involved in transcriptional regulation. |
Q9BSJ8 | ESYT1 | S1034 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BSL1 | UBAC1 | S332 | ochoa | Ubiquitin-associated domain-containing protein 1 (UBA domain-containing protein 1) (Glialblastoma cell differentiation-related protein 1) (Kip1 ubiquitination-promoting complex protein 2) | Non-catalytic component of the KPC complex, a E3 ubiquitin-protein ligase complex that mediates polyubiquitination of target proteins, such as CDKN1B and NFKB1 (PubMed:15531880, PubMed:15746103, PubMed:16227581, PubMed:25860612). The KPC complex catalyzes polyubiquitination and proteasome-mediated degradation of CDKN1B during G1 phase of the cell cycle (PubMed:15531880, PubMed:15746103). The KPC complex also acts as a key regulator of the NF-kappa-B signaling by promoting maturation of the NFKB1 component of NF-kappa-B by catalyzing ubiquitination of the NFKB1 p105 precursor (PubMed:25860612). Within the KPC complex, UBAC1 acts as an adapter that promotes the transfer of target proteins that have been polyubiquitinated by RNF123/KPC1 to the 26S proteasome (PubMed:16227581). {ECO:0000269|PubMed:15531880, ECO:0000269|PubMed:15746103, ECO:0000269|PubMed:16227581, ECO:0000269|PubMed:25860612}. |
Q9BTC0 | DIDO1 | S805 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BTE3 | MCMBP | S298 | ochoa | Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) | Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}. |
Q9BUB5 | MKNK1 | S221 | ochoa | MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) | May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}. |
Q9BUH8 | BEGAIN | S167 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BVI0 | PHF20 | S569 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BW71 | HIRIP3 | S125 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW72 | HIGD2A | S25 | ochoa | HIG1 domain family member 2A, mitochondrial (RCF1 homolog B) (RCF1b) | Proposed subunit of cytochrome c oxidase (COX, complex IV), which is the terminal component of the mitochondrial respiratory chain that catalyzes the reduction of oxygen to water. May be involved in cytochrome c oxidase activity. May play a role in the assembly of respiratory supercomplexes. {ECO:0000269|PubMed:22342701}. |
Q9BWF2 | TRAIP | S295 | ochoa | E3 ubiquitin-protein ligase TRAIP (EC 2.3.2.27) (RING finger protein 206) (TRAF-interacting protein) | E3 ubiquitin ligase required to protect genome stability in response to replication stress (PubMed:25335891, PubMed:26595769, PubMed:26711499, PubMed:26781088, PubMed:27462463, PubMed:31545170). Acts as a key regulator of interstrand cross-link repair, which takes place when both strands of duplex DNA are covalently tethered together, thereby blocking replication and transcription (By similarity). Controls the choice between the two pathways of replication-coupled interstrand-cross-link repair by mediating ubiquitination of MCM7 subunit of the CMG helicase complex (By similarity). Short ubiquitin chains on MCM7 promote recruitment of DNA glycosylase NEIL3 (By similarity). If the interstrand cross-link cannot be cleaved by NEIL3, the ubiquitin chains continue to grow on MCM7, promoting the unloading of the CMG helicase complex by the VCP/p97 ATPase, enabling the Fanconi anemia DNA repair pathway (By similarity). Only catalyzes ubiquitination of MCM7 when forks converge (By similarity). Also involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis: promotes ubiquitination of DPCs, leading to their degradation by the proteasome (By similarity). Has also been proposed to play a role in promoting translesion synthesis by mediating the assembly of 'Lys-63'-linked poly-ubiquitin chains on the Y-family polymerase POLN in order to facilitate bypass of DNA lesions and preserve genomic integrity (PubMed:24553286). The function in translesion synthesis is however controversial (PubMed:26595769). Acts as a regulator of the spindle assembly checkpoint (PubMed:25335891). Also acts as a negative regulator of innate immune signaling by inhibiting activation of NF-kappa-B mediated by TNF (PubMed:22945920). Negatively regulates TLR3/4- and RIG-I-mediated IRF3 activation and subsequent IFNB1 production and cellular antiviral response by promoting 'Lys-48'-linked polyubiquitination of TNK1 leading to its proteasomal degradation (PubMed:22945920). {ECO:0000250|UniProtKB:Q6NRV0, ECO:0000269|PubMed:22945920, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:25335891, ECO:0000269|PubMed:26595769, ECO:0000269|PubMed:26711499, ECO:0000269|PubMed:26781088, ECO:0000269|PubMed:27462463, ECO:0000269|PubMed:31545170}. |
Q9BWT3 | PAPOLG | S29 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BWT3 | PAPOLG | S648 | ochoa | Poly(A) polymerase gamma (PAP-gamma) (EC 2.7.7.19) (Neo-poly(A) polymerase) (Neo-PAP) (Polynucleotide adenylyltransferase gamma) (SRP RNA 3'-adenylating enzyme) (Signal recognition particle RNA-adenylating enzyme) (SRP RNA-adenylating enzyme) | Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. {ECO:0000269|PubMed:11287430, ECO:0000269|PubMed:11463842}. |
Q9BX63 | BRIP1 | S197 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX63 | BRIP1 | S930 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BXB5 | OSBPL10 | S507 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BXL5 | HEMGN | S123 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BXR0 | QTRT1 | S139 | ochoa|psp | Queuine tRNA-ribosyltransferase catalytic subunit 1 (EC 2.4.2.64) (Guanine insertion enzyme) (tRNA-guanine transglycosylase) | Catalytic subunit of the queuine tRNA-ribosyltransferase (TGT) that catalyzes the base-exchange of a guanine (G) residue with queuine (Q) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, -Asn, -His and -Tyr), resulting in the hypermodified nucleoside queuosine (7-(((4,5-cis-dihydroxy-2-cyclopenten-1-yl)amino)methyl)-7-deazaguanosine) (PubMed:11255023, PubMed:20354154, PubMed:34009357, PubMed:34241577). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming queuine, allowing a nucleophilic attack on the C1' of the ribose to form the product (By similarity). Modification of cytoplasmic tRNAs with queuosine controls the elongation speed of cognate codons, thereby ensuring the correct folding of nascent proteins to maintain proteome integrity (PubMed:30093495). {ECO:0000255|HAMAP-Rule:MF_03218, ECO:0000269|PubMed:11255023, ECO:0000269|PubMed:20354154, ECO:0000269|PubMed:30093495, ECO:0000269|PubMed:34009357, ECO:0000269|PubMed:34241577}. |
Q9BXS5 | AP1M1 | S322 | ochoa | AP-1 complex subunit mu-1 (AP-mu chain family member mu1A) (Adaptor protein complex AP-1 subunit mu-1) (Adaptor-related protein complex 1 subunit mu-1) (Clathrin assembly protein complex 1 mu-1 medium chain 1) (Clathrin coat assembly protein AP47) (Clathrin coat-associated protein AP47) (Golgi adaptor HA1/AP1 adaptin mu-1 subunit) (Mu-adaptin 1) (Mu1A-adaptin) | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. |
Q9BY77 | POLDIP3 | S275 | ochoa|psp | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BY89 | KIAA1671 | S1224 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYT8 | NLN | S53 | ochoa | Neurolysin, mitochondrial (EC 3.4.24.16) (Angiotensin-binding protein) (Microsomal endopeptidase) (MEP) (Mitochondrial oligopeptidase M) (Neurotensin endopeptidase) | Hydrolyzes oligopeptides such as neurotensin, bradykinin and dynorphin A (By similarity). Acts as a regulator of cannabinoid signaling pathway by mediating degradation of hemopressin, an antagonist peptide of the cannabinoid receptor CNR1 (By similarity). {ECO:0000250|UniProtKB:P42676}. |
Q9BYV9 | BACH2 | S719 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYW2 | SETD2 | S708 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZD4 | NUF2 | S247 | ochoa | Kinetochore protein Nuf2 (hNuf2) (hNuf2R) (hsNuf2) (Cell division cycle-associated protein 1) | Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity (PubMed:12438418, PubMed:14654001, PubMed:15062103, PubMed:15235793, PubMed:15239953, PubMed:15548592, PubMed:17535814). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (PubMed:15548592). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:12438418, ECO:0000269|PubMed:14654001, ECO:0000269|PubMed:15062103, ECO:0000269|PubMed:15235793, ECO:0000269|PubMed:15239953, ECO:0000269|PubMed:15548592, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23085020}. |
Q9BZH6 | WDR11 | S619 | ochoa | WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) | Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}. |
Q9BZV1 | UBXN6 | S96 | ochoa | UBX domain-containing protein 6 (UBX domain-containing protein 1) | May negatively regulate the ATPase activity of VCP, an ATP-driven segregase that associates with different cofactors to control a wide variety of cellular processes (PubMed:26475856). As a cofactor of VCP, it may play a role in the transport of CAV1 to lysosomes for degradation (PubMed:21822278, PubMed:23335559). It may also play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins (PubMed:19275885). Together with VCP and other cofactors, it may play a role in macroautophagy, regulating for instance the clearance of damaged lysosomes (PubMed:27753622). {ECO:0000269|PubMed:19275885, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26475856, ECO:0000269|PubMed:27753622}. |
Q9BZW8 | CD244 | S334 | ochoa | Natural killer cell receptor 2B4 (NK cell activation-inducing ligand) (NAIL) (NK cell type I receptor protein 2B4) (NKR2B4) (h2B4) (SLAM family member 4) (SLAMF4) (Signaling lymphocytic activation molecule 4) (CD antigen CD244) | Heterophilic receptor of the signaling lymphocytic activation molecule (SLAM) family; its ligand is CD48. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Acts as activating natural killer (NK) cell receptor (PubMed:10359122, PubMed:11714776, PubMed:8376943). Activating function implicates association with SH2D1A and FYN (PubMed:15713798). Downstreaming signaling involves predominantly VAV1, and, to a lesser degree, INPP5D/SHIP1 and CBL. Signal attenuation in the absence of SH2D1A is proposed to be dependent on INPP5D and to a lesser extent PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:10934222, PubMed:15713798). Stimulates NK cell cytotoxicity, production of IFN-gamma and granule exocytosis (PubMed:11714776, PubMed:8376943). Optimal expansion and activation of NK cells seems to be dependent on the engagement of CD244 with CD48 expressed on neighboring NK cells (By similarity). Acts as costimulator in NK activation by enhancing signals by other NK receptors such as NCR3 and NCR1 (PubMed:10741393). At early stages of NK cell differentiation may function as an inhibitory receptor possibly ensuring the self-tolerance of developing NK cells (PubMed:11917118). Involved in the regulation of CD8(+) T-cell proliferation; expression on activated T-cells and binding to CD48 provides costimulatory-like function for neighboring T-cells (By similarity). Inhibits inflammatory responses in dendritic cells (DCs) (By similarity). {ECO:0000250|UniProtKB:Q07763, ECO:0000269|PubMed:10359122, ECO:0000269|PubMed:10741393, ECO:0000269|PubMed:10934222, ECO:0000269|PubMed:11714776, ECO:0000269|PubMed:11917118, ECO:0000269|PubMed:8376943, ECO:0000305|PubMed:15713798}. |
Q9BZZ5 | API5 | S464 | ochoa | Apoptosis inhibitor 5 (API-5) (Antiapoptosis clone 11 protein) (AAC-11) (Cell migration-inducing gene 8 protein) (Fibroblast growth factor 2-interacting factor) (FIF) (Protein XAGL) | Antiapoptotic factor that may have a role in protein assembly. Negatively regulates ACIN1. By binding to ACIN1, it suppresses ACIN1 cleavage from CASP3 and ACIN1-mediated DNA fragmentation. Also known to efficiently suppress E2F1-induced apoptosis. Its depletion enhances the cytotoxic action of the chemotherapeutic drugs. {ECO:0000269|PubMed:10780674, ECO:0000269|PubMed:17112319, ECO:0000269|PubMed:19387494}. |
Q9C035 | TRIM5 | S86 | ochoa | Tripartite motif-containing protein 5 (EC 2.3.2.27) (RING finger protein 88) (RING-type E3 ubiquitin transferase TRIM5) | Capsid-specific restriction factor that prevents infection from non-host-adapted retroviruses. Blocks viral replication early in the life cycle, after viral entry but before reverse transcription. In addition to acting as a capsid-specific restriction factor, also acts as a pattern recognition receptor that activates innate immune signaling in response to the retroviral capsid lattice. Binding to the viral capsid triggers its E3 ubiquitin ligase activity, and in concert with the heterodimeric ubiquitin conjugating enzyme complex UBE2V1-UBE2N (also known as UBC13-UEV1A complex) generates 'Lys-63'-linked polyubiquitin chains, which in turn are catalysts in the autophosphorylation of the MAP3K7/TAK1 complex (includes TAK1, TAB2, and TAB3). Activation of the MAP3K7/TAK1 complex by autophosphorylation results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes, thereby leading to an innate immune response in the infected cell. Restricts infection by N-tropic murine leukemia virus (N-MLV), equine infectious anemia virus (EIAV), simian immunodeficiency virus of macaques (SIVmac), feline immunodeficiency virus (FIV), and bovine immunodeficiency virus (BIV) (PubMed:17156811). Plays a role in regulating autophagy through activation of autophagy regulator BECN1 by causing its dissociation from its inhibitors BCL2 and TAB2 (PubMed:25127057). Also plays a role in autophagy by acting as a selective autophagy receptor which recognizes and targets HIV-1 capsid protein p24 for autophagic destruction (PubMed:25127057). {ECO:0000269|PubMed:12878161, ECO:0000269|PubMed:17156811, ECO:0000269|PubMed:18312418, ECO:0000269|PubMed:21035162, ECO:0000269|PubMed:21512573, ECO:0000269|PubMed:21632761, ECO:0000269|PubMed:22291694, ECO:0000269|PubMed:25127057}. |
Q9C040 | TRIM2 | S428 | ochoa | Tripartite motif-containing protein 2 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM2) (RING finger protein 86) (RING-type E3 ubiquitin transferase TRIM2) | UBE2D1-dependent E3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL and of phosphorylated BCL2L11. Plays a neuroprotective function. May play a role in neuronal rapid ischemic tolerance. Plays a role in antiviral immunity and limits New World arenavirus infection independently of its ubiquitin ligase activity (PubMed:24068738). {ECO:0000250|UniProtKB:Q9ESN6, ECO:0000269|PubMed:24068738}. |
Q9C0B5 | ZDHHC5 | S529 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0D5 | TANC1 | S97 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9C0D7 | ZC3H12C | S123 | ochoa | Probable ribonuclease ZC3H12C (EC 3.1.-.-) (MCP-induced protein 3) (Zinc finger CCCH domain-containing protein 12C) | May function as RNase and regulate the levels of target RNA species. {ECO:0000305}. |
Q9C0D7 | ZC3H12C | S232 | ochoa | Probable ribonuclease ZC3H12C (EC 3.1.-.-) (MCP-induced protein 3) (Zinc finger CCCH domain-containing protein 12C) | May function as RNase and regulate the levels of target RNA species. {ECO:0000305}. |
Q9GZR1 | SENP6 | S919 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H008 | LHPP | S191 | ochoa | Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (hLHPP) (EC 3.1.3.-) (EC 3.6.1.1) | Phosphatase that hydrolyzes imidodiphosphate, 3-phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity). {ECO:0000250}. |
Q9H078 | CLPB | S663 | ochoa | Mitochondrial disaggregase (EC 3.6.1.-) (Suppressor of potassium transport defect 3) [Cleaved into: Mitochondrial disaggregase, cleaved form] | Functions as a regulatory ATPase and participates in secretion/protein trafficking process. Has ATP-dependent protein disaggregase activity and is required to maintain the solubility of key mitochondrial proteins (PubMed:32573439, PubMed:34115842, PubMed:35247700, PubMed:36170828, PubMed:36745679). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). Plays a role in granulocyte differentiation (PubMed:34115842). {ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:32573439, ECO:0000269|PubMed:34115842, ECO:0000269|PubMed:35247700, ECO:0000269|PubMed:36170828, ECO:0000269|PubMed:36745679}. |
Q9H0B6 | KLC2 | S151 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H147 | DNTTIP1 | S161 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 1 (Terminal deoxynucleotidyltransferase-interacting factor 1) (TdIF1) (TdT-interacting factor 1) | Increases DNTT terminal deoxynucleotidyltransferase activity (in vitro) (PubMed:11473582). Also acts as a transcriptional regulator, binding to the consensus sequence 5'-GNTGCATG-3' following an AT-tract. Associates with RAB20 promoter and positively regulates its transcription. Binds DNA and nucleosomes; may recruit HDAC1 complexes to nucleosomes or naked DNA. {ECO:0000269|PubMed:11473582, ECO:0000269|PubMed:23874396, ECO:0000305|PubMed:25653165}. |
Q9H175 | CSRNP2 | S504 | ochoa | Cysteine/serine-rich nuclear protein 2 (CSRNP-2) (Protein FAM130A1) (TGF-beta-induced apoptosis protein 12) (TAIP-12) | Binds to the consensus sequence 5'-AGAGTG-3' and has transcriptional activator activity (By similarity). May play a role in apoptosis. {ECO:0000250}. |
Q9H1H9 | KIF13A | S1460 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H1R3 | MYLK2 | S184 | ochoa | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
Q9H2D6 | TRIOBP | S1955 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2F5 | EPC1 | S492 | ochoa | Enhancer of polycomb homolog 1 | Component of the NuA4 histone acetyltransferase (HAT) complex, a multiprotein complex involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). The NuA4 complex plays a direct role in repair of DNA double-strand breaks (DSBs) by promoting homologous recombination (HR) (PubMed:27153538). The NuA4 complex is also required for spermatid development by promoting acetylation of histones: histone acetylation is required for histone replacement during the transition from round to elongating spermatids (By similarity). In the NuA4 complex, EPC1 is required to recruit MBTD1 into the complex (PubMed:32209463). {ECO:0000250|UniProtKB:Q8C9X6, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:32209463}. |
Q9H2G9 | BLZF1 | S59 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2G9 | BLZF1 | S353 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2M9 | RAB3GAP2 | S568 | ochoa | Rab3 GTPase-activating protein non-catalytic subunit (RGAP-iso) (Rab3 GTPase-activating protein 150 kDa subunit) (Rab3-GAP p150) (Rab3-GAP150) (Rab3-GAP regulatory subunit) | Regulatory subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:24891604, PubMed:9733780). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (By similarity). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (By similarity). The Rab3GAP complex acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in human fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (By similarity). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (By similarity). {ECO:0000250|UniProtKB:Q15042, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9733780}. |
Q9H2P0 | ADNP | S891 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2T7 | RANBP17 | S296 | ochoa | Ran-binding protein 17 | May function as a nuclear transport receptor. {ECO:0000250}. |
Q9H2X9 | SLC12A5 | S1045 | ochoa | Solute carrier family 12 member 5 (Electroneutral potassium-chloride cotransporter 2) (K-Cl cotransporter 2) (hKCC2) (Neuronal K-Cl cotransporter) | Mediates electroneutral potassium-chloride cotransport in mature neurons and is required for neuronal Cl(-) homeostasis (PubMed:12106695). As major extruder of intracellular chloride, it establishes the low neuronal Cl(-) levels required for chloride influx after binding of GABA-A and glycine to their receptors, with subsequent hyperpolarization and neuronal inhibition (By similarity). Involved in the regulation of dendritic spine formation and maturation (PubMed:24668262). {ECO:0000250|UniProtKB:Q63633, ECO:0000269|PubMed:12106695, ECO:0000269|PubMed:24668262}. |
Q9H2Y7 | ZNF106 | S482 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H329 | EPB41L4B | S254 | ochoa | Band 4.1-like protein 4B (Erythrocyte membrane protein band 4.1-like 4B) (FERM-containing protein CG1) (Protein EHM2) | Up-regulates the activity of the Rho guanine nucleotide exchange factor ARHGEF18 (By similarity). Involved in the regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). Promotes cellular adhesion, migration and motility in vitro and may play a role in wound healing (PubMed:23664528). May have a role in mediating cytoskeletal changes associated with steroid-induced cell differentiation (PubMed:14521927). {ECO:0000250|UniProtKB:Q9JMC8, ECO:0000269|PubMed:14521927, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:23664528}. |
Q9H3M7 | TXNIP | S361 | ochoa|psp | Thioredoxin-interacting protein (Thioredoxin-binding protein 2) (Vitamin D3 up-regulated protein 1) | May act as an oxidative stress mediator by inhibiting thioredoxin activity or by limiting its bioavailability (PubMed:17603038). Interacts with COPS5 and restores COPS5-induced suppression of CDKN1B stability, blocking the COPS5-mediated translocation of CDKN1B from the nucleus to the cytoplasm (By similarity). Functions as a transcriptional repressor, possibly by acting as a bridge molecule between transcription factors and corepressor complexes, and over-expression will induce G0/G1 cell cycle arrest (PubMed:12821938). Required for the maturation of natural killer cells (By similarity). Acts as a suppressor of tumor cell growth (PubMed:18541147). Inhibits the proteasomal degradation of DDIT4, and thereby contributes to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1) (PubMed:21460850). {ECO:0000250|UniProtKB:Q8BG60, ECO:0000269|PubMed:12821938, ECO:0000269|PubMed:17603038, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:21460850}. |
Q9H4A3 | WNK1 | S1978 | ochoa | Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) | Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}. |
Q9H4B6 | SAV1 | S27 | ochoa|psp | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H4G4 | GLIPR2 | S55 | ochoa | Golgi-associated plant pathogenesis-related protein 1 (GAPR-1) (Golgi-associated PR-1 protein) (Glioma pathogenesis-related protein 2) (GliPR 2) | None |
Q9H4Z3 | PCIF1 | S159 | ochoa | mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase (EC 2.1.1.62) (Cap-specific adenosine methyltransferase) (CAPAM) (hCAPAM) (Phosphorylated CTD-interacting factor 1) (hPCIF1) (Protein phosphatase 1 regulatory subunit 121) | Cap-specific adenosine methyltransferase that catalyzes formation of N(6),2'-O-dimethyladenosine cap (m6A(m)) by methylating the adenosine at the second transcribed position of capped mRNAs (PubMed:30467178, PubMed:30487554, PubMed:31279658, PubMed:31279659, PubMed:33428944). Recruited to the early elongation complex of RNA polymerase II (RNAPII) via interaction with POLR2A and mediates formation of m6A(m) co-transcriptionally (PubMed:30467178). {ECO:0000269|PubMed:30467178, ECO:0000269|PubMed:30487554, ECO:0000269|PubMed:31279658, ECO:0000269|PubMed:31279659, ECO:0000269|PubMed:33428944}. |
Q9H501 | ESF1 | S442 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H582 | ZNF644 | S1000 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H5I1 | SUV39H2 | S388 | ochoa | Histone-lysine N-methyltransferase SUV39H2 (EC 2.1.1.355) (Histone H3-K9 methyltransferase 2) (H3-K9-HMTase 2) (Lysine N-methyltransferase 1B) (Suppressor of variegation 3-9 homolog 2) (Su(var)3-9 homolog 2) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3 using monomethylated H3 'Lys-9' as substrate. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin at pericentric and telomere regions. H3 'Lys-9' trimethylation is also required to direct DNA methylation at pericentric repeats. SUV39H1 is targeted to histone H3 via its interaction with RB1 and is involved in many processes, such as cell cycle regulation, transcriptional repression and regulation of telomere length. May participate in regulation of higher-order chromatin organization during spermatogenesis. Recruited by the large PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1, contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation. {ECO:0000269|PubMed:14765126}. |
Q9H5J8 | TAF1D | S206 | ochoa | TATA box-binding protein-associated factor RNA polymerase I subunit D (RNA polymerase I-specific TBP-associated factor 41 kDa) (TAFI41) (TATA box-binding protein-associated factor 1D) (TBP-associated factor 1D) (Transcription initiation factor SL1/TIF-IB subunit D) | Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1/TIF-IB with the rDNA promoter. SL1/TIF-IB is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA. Formation of SL1/TIF-IB excludes the association of TBP with TFIID subunits. {ECO:0000269|PubMed:15970593, ECO:0000269|PubMed:17318177}. |
Q9H6K1 | ILRUN | S215 | ochoa|psp | Protein ILRUN (Inflammation and lipid regulator with UBA-like and NBR1-like domains protein) | Negative regulator of innate antiviral response. Blocks IRF3-dependent cytokine production such as IFNA, IFNB and TNF (PubMed:29802199). Interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing nuclear levels of the coactivators EP300 and CREBBP (PubMed:29802199). {ECO:0000269|PubMed:29802199}. |
Q9H773 | DCTPP1 | S85 | ochoa | dCTP pyrophosphatase 1 (EC 3.6.1.12) (Deoxycytidine-triphosphatase 1) (dCTPase 1) (RS21C6) (XTP3-transactivated gene A protein) | Hydrolyzes deoxynucleoside triphosphates (dNTPs) to the corresponding nucleoside monophosphates. Has a strong preference for dCTP and its analogs including 5-iodo-dCTP and 5-methyl-dCTP for which it may even have a higher efficiency. May protect DNA or RNA against the incorporation of these genotoxic nucleotide analogs through their catabolism. {ECO:0000269|PubMed:24467396}. |
Q9H799 | CPLANE1 | S2407 | ochoa | Ciliogenesis and planar polarity effector 1 (Protein JBTS17) | Involved in ciliogenesis (PubMed:25877302, PubMed:35582950). Involved in the establishment of cell polarity required for directional cell migration. Proposed to act in association with the CPLANE (ciliogenesis and planar polarity effectors) complex. Involved in recruitment of peripheral IFT-A proteins to basal bodies (By similarity). {ECO:0000250|UniProtKB:Q8CE72, ECO:0000269|PubMed:35582950, ECO:0000305|PubMed:25877302}. |
Q9H7N4 | SCAF1 | S719 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7U1 | CCSER2 | S342 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H7X7 | IFT22 | S137 | ochoa | Intraflagellar transport protein 22 homolog (Rab-like protein 5) | Small GTPase-like component of the intraflagellar transport (IFT) complex B. {ECO:0000250}. |
Q9H7Z6 | KAT8 | S348 | ochoa | Histone acetyltransferase KAT8 (EC 2.3.1.48) (Lysine acetyltransferase 8) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 1) (MYST-1) (Males-absent on the first protein homolog) (hMOF) (Protein acetyltransferase KAT8) (EC 2.3.1.-) (Protein propionyltransferase KAT8) (EC 2.3.1.-) | Histone acetyltransferase that catalyzes histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) or 'Lys-16' (H4K16ac), depending on the context (PubMed:12397079, PubMed:16227571, PubMed:16543150, PubMed:20018852, PubMed:21217699, PubMed:22020126, PubMed:22547026, PubMed:31794431, PubMed:33837287). Catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:12397079, PubMed:16227571, PubMed:16543150, PubMed:21217699, PubMed:22020126, PubMed:22547026, PubMed:33657400, PubMed:33837287). H4K16ac constitutes the only acetylation mark intergenerationally transmitted and regulates key biological processes, such as oogenesis, embryonic stem cell pluripotency, hematopoiesis or glucose metabolism (By similarity). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). As part of the NSL histone acetyltransferase complex, catalyzes histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria: KAT8 associates with mitochondrial DNA and controls expression of respiratory genes in an acetyltransferase-dependent mechanism (PubMed:27768893). Also functions as an acetyltransferase for non-histone targets, such as ALKBH5, COX17, IRF3, KDM1A/LSD1, LMNA, PAX7 or TP53/p53 (PubMed:17189187, PubMed:19854137, PubMed:37369679). Acts as an inhibitor of antiviral immunity by acetylating IRF3, preventing IRF3 recruitment to promoters (By similarity). Acts as a regulator of asymmetric division in muscle stem cells by mediating acetylation of PAX7 (By similarity). As part of the NSL complex, acetylates TP53/p53 at 'Lys-120' (PubMed:17189187, PubMed:19854137). Acts as a regulator of epithelial-to-mesenchymal transition as part of the NSL complex by mediating acetylation of KDM1A/LSD1 (PubMed:27292636). The NSL complex is required for nuclear architecture maintenance by mediating acetylation of LMNA (By similarity). Promotes mitochondrial integrity by catalyzing acetylation of COX17 (By similarity). In addition to protein acetyltransferase activity, able to mediate protein propionylation (PubMed:29321206). {ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:12397079, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:19854137, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:21217699, ECO:0000269|PubMed:22020126, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:27292636, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:29321206, ECO:0000269|PubMed:31794431, ECO:0000269|PubMed:33657400, ECO:0000269|PubMed:33837287, ECO:0000269|PubMed:37369679}. |
Q9H892 | TTC12 | S67 | ochoa | Tetratricopeptide repeat protein 12 (TPR repeat protein 12) | Cytoplasmic protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. {ECO:0000269|PubMed:31978331}. |
Q9H8M5 | CNNM2 | S749 | ochoa | Metal transporter CNNM2 (Ancient conserved domain-containing protein 2) (Cyclin-M2) | Divalent metal cation transporter. Mediates transport of divalent metal cations in an order of Mg(2+) > Co(2+) > Mn(2+) > Sr(2+) > Ba(2+) > Cu(2+) > Fe(2+) (By similarity). {ECO:0000250|UniProtKB:Q3TWN3}. |
Q9H8M7 | MINDY3 | S125 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-3 (EC 3.4.19.12) (Dermal papilla-derived protein 5) (Deubiquitinating enzyme MINDY-3) (Protein CARP) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000269|PubMed:27292798}. |
Q9H9E1 | ANKRA2 | S124 | ochoa | Ankyrin repeat family A protein 2 (RFXANK-like protein 2) | May regulate the interaction between the 3M complex and the histone deacetylases HDAC4 and HDAC5 (PubMed:25752541). May also regulate LRP2/megalin (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000269|PubMed:25752541}. |
Q9HA38 | ZMAT3 | S158 | ochoa | Zinc finger matrin-type protein 3 (Zinc finger protein WIG-1) (p53-activated gene 608 protein) | Acts as a bona fide target gene of p53/TP53. May play a role in the TP53-dependent growth regulatory pathway. May contribute to TP53-mediated apoptosis by regulation of TP53 expression and translocation to the nucleus and nucleolus. {ECO:0000269|PubMed:11571644}. |
Q9HAH7 | FBRS | S281 | ochoa | Probable fibrosin-1 | None |
Q9HAJ7 | SAP30L | S99 | ochoa | Histone deacetylase complex subunit SAP30L (HCV non-structural protein 4A-transactivated protein 2) (Sin3 corepressor complex subunit SAP30L) (Sin3-associated protein p30-like) | [Isoform 1]: Functions as a transcription repressor, probably via its interaction with histone deacetylase complexes (PubMed:16820529, PubMed:18070604). Involved in the functional recruitment of the class 1 Sin3-histone deacetylase complex (HDAC) to the nucleolus (PubMed:16820529). Binds DNA, apparently without sequence-specificity, and bends bound double-stranded DNA (PubMed:19015240). Binds phosphoinositol phosphates (phosphoinositol 3-phosphate, phosphoinositol 4-phosphate and phosphoinositol 5-phosphate) via the same basic sequence motif that mediates DNA binding and nuclear import (PubMed:19015240, PubMed:26609676). {ECO:0000269|PubMed:16820529, ECO:0000269|PubMed:18070604, ECO:0000269|PubMed:19015240, ECO:0000269|PubMed:26609676}.; FUNCTION: [Isoform 2]: Functions as a transcription repressor; isoform 2 has lower transcription repressor activity than isoform 1 and isoform 3. {ECO:0000269|PubMed:18070604}.; FUNCTION: [Isoform 3]: Functions as a transcription repressor; its activity is marginally lower than that of isoform 1. {ECO:0000269|PubMed:18070604}. |
Q9HAW0 | BRF2 | S186 | ochoa | Transcription factor IIIB 50 kDa subunit (TFIIIB50) (hTFIIIB50) (B-related factor 2) (BRF-2) (hBRFU) | General activator of RNA polymerase III transcription. Factor exclusively required for RNA polymerase III transcription of genes with promoter elements upstream of the initiation sites (PubMed:11040218, PubMed:11121026, PubMed:11564744, PubMed:26638071). Contributes to the regulation of gene expression; functions as activator in the absence of oxidative stress (PubMed:26638071). Down-regulates expression of target genes in response to oxidative stress (PubMed:26638071). Overexpression protects cells against apoptosis in response to oxidative stress (PubMed:26638071). {ECO:0000269|PubMed:11040218, ECO:0000269|PubMed:11121026, ECO:0000269|PubMed:11564744, ECO:0000269|PubMed:26638071}. |
Q9HB96 | FANCE | S180 | ochoa | Fanconi anemia group E protein (Protein FACE) | As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}. |
Q9HB96 | FANCE | S210 | ochoa | Fanconi anemia group E protein (Protein FACE) | As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}. |
Q9HBD1 | RC3H2 | S837 | ochoa | Roquin-2 (EC 2.3.2.27) (Membrane-associated nucleic acid-binding protein) (RING finger and CCCH-type zinc finger domain-containing protein 2) (RING finger protein 164) (RING-type E3 ubiquitin transferase Roquin-2) | Post-transcriptional repressor of mRNAs containing a conserved stem loop motif, called constitutive decay element (CDE), which is often located in the 3'-UTR, as in HMGXB3, ICOS, IER3, NFKBID, NFKBIZ, PPP1R10, TNF and in many more mRNAs. Binds to CDE and promotes mRNA deadenylation and degradation. This process does not involve miRNAs. In follicular helper T (Tfh) cells, represses of ICOS and TNFRSF4 expression, thus preventing spontaneous Tfh cell differentiation, germinal center B-cell differentiation in the absence of immunization and autoimmunity. In resting or LPS-stimulated macrophages, controls inflammation by suppressing TNF expression. Also recognizes CDE in its own mRNA and in that of paralogous RC3H1, possibly leading to feedback loop regulation (By similarity). miRNA-binding protein that regulates microRNA homeostasis. Enhances DICER-mediated processing of pre-MIR146a but reduces mature MIR146a levels through an increase of 3' end uridylation. Both inhibits ICOS mRNA expression and they may act together to exert the suppression (PubMed:25697406). Acts as a ubiquitin E3 ligase. Pairs with E2 enzymes UBE2B, UBE2D2, UBE2E2, UBE2E3, UBE2G2, UBE2K and UBE2Q2 and produces polyubiquitin chains (PubMed:26489670). Shows the strongest activity when paired with UBE2N:UBE2V1 or UBE2N:UBE2V2 E2 complexes and generate both short and long polyubiquitin chains (PubMed:26489670). Involved in the ubiquitination of MAP3K5 (PubMed:24448648, PubMed:26489670, PubMed:29186683). Able to interact with double-stranded RNA (dsRNA) (PubMed:26489670). {ECO:0000250|UniProtKB:P0C090, ECO:0000269|PubMed:24448648, ECO:0000269|PubMed:26489670, ECO:0000269|PubMed:29186683}. |
Q9HC77 | CPAP | S469 | ochoa|psp | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HC77 | CPAP | S859 | ochoa | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCE0 | EPG5 | S1393 | ochoa | Ectopic P granules protein 5 homolog | Involved in autophagy. May play a role in a late step of autophagy, such as clearance of autophagosomal cargo. Plays a key role in innate and adaptive immune response triggered by unmethylated cytidine-phosphate-guanosine (CpG) dinucleotides from pathogens, and mediated by the nucleotide-sensing receptor TLR9. It is necessary for the translocation of CpG dinucleotides from early endosomes to late endosomes and lysosomes, where TLR9 is located (PubMed:29130391). {ECO:0000269|PubMed:20550938, ECO:0000269|PubMed:23222957, ECO:0000269|PubMed:29130391}. |
Q9HCH5 | SYTL2 | S154 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCK8 | CHD8 | S2008 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9HCL0 | PCDH18 | S891 | ochoa | Protocadherin-18 | Potential calcium-dependent cell-adhesion protein. |
Q9HCM1 | RESF1 | S868 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCM1 | RESF1 | S1208 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCN4 | GPN1 | S314 | ochoa | GPN-loop GTPase 1 (EC 3.6.5.-) (MBD2-interacting protein) (MBDin) (RNAPII-associated protein 4) (XPA-binding protein 1) | Small GTPase required for proper nuclear import of RNA polymerase II (RNAPII) (PubMed:20855544, PubMed:21768307). May act at an RNAP assembly step prior to nuclear import (PubMed:21768307). Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding proteins, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation (PubMed:17643375). May be involved in nuclear localization of XPA (PubMed:11058119). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:20855544, ECO:0000269|PubMed:21768307, ECO:0000305|PubMed:11058119}. |
Q9HCS5 | EPB41L4A | S543 | ochoa | Band 4.1-like protein 4A (Erythrocyte membrane protein band 4.1-like 4A) (Protein NBL4) | None |
Q9HDC5 | JPH1 | S590 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NP31 | SH2D2A | S217 | ochoa | SH2 domain-containing protein 2A (SH2 domain-containing adapter protein) (T cell-specific adapter protein) (TSAd) (VEGF receptor-associated protein) | Could be a T-cell-specific adapter protein involved in the control of T-cell activation. May play a role in the CD4-p56-LCK-dependent signal transduction pathway. Could also play an important role in normal and pathological angiogenesis. Could be an adapter protein that facilitates and regulates interaction of KDR with effector proteins important to endothelial cell survival and proliferation. |
Q9NP61 | ARFGAP3 | S331 | ochoa | ADP-ribosylation factor GTPase-activating protein 3 (ARF GAP 3) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:11172815}. |
Q9NP74 | PALMD | S364 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NP74 | PALMD | S489 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NP74 | PALMD | S515 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NPG3 | UBN1 | S323 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NPI6 | DCP1A | S142 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NQ66 | PLCB1 | S308 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NQE9 | HINT3 | S38 | ochoa | Adenosine 5'-monophosphoramidase HINT3 (EC 3.9.1.-) (Histidine triad nucleotide-binding protein 3) (HINT-3) | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:17870088). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase (PubMed:17870088). Hydrolyzes 3-indolepropionic acyl-adenylate and fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:17870088). {ECO:0000269|PubMed:17870088}. |
Q9NQS7 | INCENP | S798 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQW6 | ANLN | S642 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NR09 | BIRC6 | S620 | ochoa | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NR48 | ASH1L | S22 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S529 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR48 | ASH1L | S884 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NR55 | BATF3 | S31 | ochoa | Basic leucine zipper transcriptional factor ATF-like 3 (B-ATF-3) (21 kDa small nuclear factor isolated from T-cells) (Jun dimerization protein p21SNFT) | AP-1 family transcription factor that controls the differentiation of CD8(+) thymic conventional dendritic cells in the immune system. Required for development of CD8-alpha(+) classical dendritic cells (cDCs) and related CD103(+) dendritic cells that cross-present antigens to CD8 T-cells and produce interleukin-12 (IL12) in response to pathogens (By similarity). Acts via the formation of a heterodimer with JUN family proteins that recognizes and binds DNA sequence 5'-TGA[CG]TCA-3' and regulates expression of target genes. {ECO:0000250, ECO:0000269|PubMed:10878360, ECO:0000269|PubMed:12087103, ECO:0000269|PubMed:15467742}. |
Q9NRH2 | SNRK | S275 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NRU3 | CNNM1 | S850 | ochoa | Metal transporter CNNM1 (Ancient conserved domain-containing protein 1) (Cyclin-M1) | Probable metal transporter. {ECO:0000250}. |
Q9NRY4 | ARHGAP35 | S970 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NS62 | THSD1 | S456 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NS62 | THSD1 | S791 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NSI6 | BRWD1 | S649 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSV4 | DIAPH3 | S1093 | ochoa | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9NTI5 | PDS5B | S1283 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTJ3 | SMC4 | S1059 | ochoa | Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) | Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9NUQ3 | TXLNG | S97 | ochoa | Gamma-taxilin (Environmental lipopolysaccharide-responding gene protein) (Factor inhibiting ATF4-mediated transcription) (FIAT) (Lipopolysaccharide-specific response protein 5) | May be involved in intracellular vesicle traffic. Inhibits ATF4-mediated transcription, possibly by dimerizing with ATF4 to form inactive dimers that cannot bind DNA. May be involved in regulating bone mass density through an ATF4-dependent pathway. May be involved in cell cycle progression. {ECO:0000269|PubMed:15911876, ECO:0000269|PubMed:18068885}. |
Q9NVH0 | EXD2 | S352 | ochoa | Exonuclease 3'-5' domain-containing protein 2 (EC 3.1.11.1) (3'-5' exoribonuclease EXD2) (EC 3.1.13.-) (Exonuclease 3'-5' domain-like-containing protein 2) | Exonuclease that has both 3'-5' exoribonuclease and exodeoxyribonuclease activities, depending on the divalent metal cation used as cofactor (PubMed:29335528, PubMed:31127291). In presence of Mg(2+), only shows 3'-5' exoribonuclease activity, while it shows both exoribonuclease and exodeoxyribonuclease activities in presence of Mn(2+) (PubMed:29335528, PubMed:31127291). Acts as an exoribonuclease in mitochondrion, possibly by regulating ATP production and mitochondrial translation (PubMed:29335528). Also involved in the response to DNA damage (PubMed:26807646, PubMed:31255466). Acts as 3'-5' exodeoxyribonuclease for double-strand breaks resection and efficient homologous recombination (PubMed:20603073, PubMed:26807646). Plays a key role in controlling the initial steps of chromosomal break repair, it is recruited to chromatin in a damage-dependent manner and functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks (PubMed:26807646). Also involved in response to replicative stress: recruited to stalled forks and is required to stabilize and restart stalled replication forks by restraining excessive fork regression, thereby suppressing their degradation (PubMed:31255466). {ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:26807646, ECO:0000269|PubMed:29335528, ECO:0000269|PubMed:31127291, ECO:0000269|PubMed:31255466}. |
Q9NW82 | WDR70 | S616 | ochoa | WD repeat-containing protein 70 | None |
Q9NWA0 | MED9 | S80 | ochoa | Mediator of RNA polymerase II transcription subunit 9 (Mediator complex subunit 9) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. |
Q9NWA0 | MED9 | S110 | ochoa | Mediator of RNA polymerase II transcription subunit 9 (Mediator complex subunit 9) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. |
Q9NWH9 | SLTM | S289 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NX01 | TXNL4B | S96 | ochoa | Thioredoxin-like protein 4B (Dim1-like protein) | Essential role in pre-mRNA splicing. Required in cell cycle progression for S/G(2) transition. {ECO:0000269|PubMed:15161931}. |
Q9NX40 | OCIAD1 | S108 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NX57 | RAB20 | S132 | ochoa | Ras-related protein Rab-20 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB20 plays a role in apical endocytosis/recycling. Plays a role in the maturation and acidification of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis. Plays a role in the fusion of phagosomes with lysosomes. {ECO:0000250|UniProtKB:P62820, ECO:0000269|PubMed:21255211}. |
Q9NX57 | RAB20 | S142 | ochoa | Ras-related protein Rab-20 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB20 plays a role in apical endocytosis/recycling. Plays a role in the maturation and acidification of phagosomes that engulf pathogens, such as S.aureus and M.tuberculosis. Plays a role in the fusion of phagosomes with lysosomes. {ECO:0000250|UniProtKB:P62820, ECO:0000269|PubMed:21255211}. |
Q9NX74 | DUS2 | S445 | ochoa | tRNA-dihydrouridine(20) synthase [NAD(P)+]-like (EC 1.3.1.91) (Dihydrouridine synthase 2) (Up-regulated in lung cancer protein 8) (URLC8) (tRNA-dihydrouridine synthase 2-like) (hDUS2) | Catalyzes the NADPH-dependent synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs (PubMed:15994936, PubMed:26429968, PubMed:30149704, PubMed:34798057, PubMed:38680565). Specifically modifies U20 in cytoplasmic tRNAs (PubMed:38680565). Activity depends on the presence of guanosine at position 19 in the tRNA substrate (PubMed:38680565). Negatively regulates the activation of EIF2AK2/PKR (PubMed:18096616). {ECO:0000269|PubMed:15994936, ECO:0000269|PubMed:18096616, ECO:0000269|PubMed:26429968, ECO:0000269|PubMed:30149704, ECO:0000269|PubMed:34798057, ECO:0000269|PubMed:38680565}. |
Q9NX95 | SYBU | S396 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NYF5 | FAM13B | S760 | ochoa | Protein FAM13B (GAP-like protein N61) | None |
Q9NYF8 | BCLAF1 | S177 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYF8 | BCLAF1 | S531 | ochoa|psp | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYF8 | BCLAF1 | S648 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYK6 | EURL | S205 | ochoa | Protein EURL homolog | Plays a role in cortical progenitor cell proliferation and differentiation. Promotes dendritic spine development of post-migratory cortical projection neurons by modulating the beta-catenin signaling pathway. {ECO:0000250|UniProtKB:Q9D7G4}. |
Q9NYW8 | RBAK | S78 | ochoa | RB-associated KRAB zinc finger protein (RB-associated KRAB repressor) (hRBaK) (Zinc finger protein 769) | May repress E2F-dependent transcription. May promote AR-dependent transcription. {ECO:0000269|PubMed:10702291, ECO:0000269|PubMed:14664718}. |
Q9NYY3 | PLK2 | S358 | ochoa|psp | Serine/threonine-protein kinase PLK2 (EC 2.7.11.21) (Polo-like kinase 2) (PLK-2) (hPlk2) (Serine/threonine-protein kinase SNK) (hSNK) (Serum-inducible kinase) | Tumor suppressor serine/threonine-protein kinase involved in synaptic plasticity, centriole duplication and G1/S phase transition. Polo-like kinases act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates CPAP, NPM1, RAPGEF2, RASGRF1, SNCA, SIPA1L1 and SYNGAP1. Plays a key role in synaptic plasticity and memory by regulating the Ras and Rap protein signaling: required for overactivity-dependent spine remodeling by phosphorylating the Ras activator RASGRF1 and the Rap inhibitor SIPA1L1 leading to their degradation by the proteasome. Conversely, phosphorylates the Rap activator RAPGEF2 and the Ras inhibitor SYNGAP1, promoting their activity. Also regulates synaptic plasticity independently of kinase activity, via its interaction with NSF that disrupts the interaction between NSF and the GRIA2 subunit of AMPARs, leading to a rapid rundown of AMPAR-mediated current that occludes long term depression. Required for procentriole formation and centriole duplication by phosphorylating CPAP and NPM1, respectively. Its induction by p53/TP53 suggests that it may participate in the mitotic checkpoint following stress. {ECO:0000269|PubMed:15242618, ECO:0000269|PubMed:19001868, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:20531387}. |
Q9NZ56 | FMN2 | S747 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9NZB2 | FAM120A | S652 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9NZC9 | SMARCAL1 | S151 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) | ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}. |
Q9NZC9 | SMARCAL1 | S934 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) | ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}. |
Q9NZJ5 | EIF2AK3 | S856 | ochoa|psp | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZM1 | MYOF | S1915 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9NZN5 | ARHGEF12 | S190 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9P0B6 | CCDC167 | S42 | ochoa | Coiled-coil domain-containing protein 167 | None |
Q9P0K7 | RAI14 | S512 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9P0L1 | ZKSCAN7 | S369 | ochoa | Zinc finger protein with KRAB and SCAN domains 7 (Zinc finger protein 167) (Zinc finger protein 448) (Zinc finger protein 64) | May be involved in transcriptional regulation. |
Q9P0L2 | MARK1 | S219 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P0N8 | MARCHF2 | S223 | ochoa | E3 ubiquitin-protein ligase MARCHF2 (EC 2.3.2.27) (Membrane-associated RING finger protein 2) (Membrane-associated RING-CH protein II) (MARCH-II) (RING finger protein 172) (RING-type E3 ubiquitin transferase MARCHF2) | E3 ubiquitin-protein ligase that may mediate ubiquitination of TFRC and CD86, and promote their subsequent endocytosis and sorting to lysosomes via multivesicular bodies. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates (PubMed:14722266, PubMed:16428329). Together with GOPC/CAL mediates the ubiquitination and lysosomal degradation of CFTR (PubMed:23818989). Ubiquitinates and therefore mediates the degradation of DLG1 (PubMed:17980554). Regulates the intracellular trafficking and secretion of alpha1-antitrypsin/SERPINA1 and HP/haptoglobin via ubiquitination and degradation of the cargo receptor ERGIC3 (PubMed:31142615). Negatively regulates the antiviral and antibacterial immune response by repression of the NF-kB and type 1 IFN signaling pathways, via MARCHF2-mediated K48-linked polyubiquitination of IKBKG/NEMO, resulting in its proteasomal degradation (PubMed:32935379). May be involved in endosomal trafficking through interaction with STX6 (PubMed:15689499). {ECO:0000269|PubMed:14722266, ECO:0000269|PubMed:15689499, ECO:0000269|PubMed:16428329, ECO:0000269|PubMed:17980554, ECO:0000269|PubMed:23818989, ECO:0000269|PubMed:31142615, ECO:0000269|PubMed:32935379}.; FUNCTION: (Microbial infection) Positively regulates the degradation of Vesicular stomatitis virus (VSV) G protein via the lysosomal degradation pathway (PubMed:29573664). Represses HIV-1 viral production and may inhibit the translocation of HIV-1 env to the cell surface, resulting in decreased viral cell-cell transmission (PubMed:29573664). {ECO:0000269|PubMed:29573664}. |
Q9P0V3 | SH3BP4 | S42 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P260 | RELCH | S453 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P265 | DIP2B | S50 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P275 | USP36 | S952 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P2D0 | IBTK | S1045 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2D6 | FAM135A | S953 | ochoa | Protein FAM135A | None |
Q9P2E9 | RRBP1 | S615 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2J5 | LARS1 | S396 | ochoa | Leucine--tRNA ligase, cytoplasmic (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS) (cLRS) | Aminoacyl-tRNA synthetase that catalyzes the specific attachment of leucine to its cognate tRNA (tRNA(Leu)) (PubMed:25051973, PubMed:32232361). It performs tRNA aminoacylation in a two-step reaction: Leu is initially activated by ATP to form a leucyl-adenylate (Leu-AMP) intermediate; then the leucyl moiety is transferred to the acceptor 3' end of the tRNA to yield leucyl-tRNA (PubMed:25051973). To improve the fidelity of catalytic reactions, it is also able to hydrolyze misactivated aminoacyl-adenylate intermediates (pre-transfer editing) and mischarged aminoacyl-tRNAs (post-transfer editing) (PubMed:25051973). {ECO:0000269|PubMed:19426743, ECO:0000269|PubMed:25051973, ECO:0000269|PubMed:32232361}. |
Q9P2K3 | RCOR3 | S234 | ochoa | REST corepressor 3 | May act as a component of a corepressor complex that represses transcription. {ECO:0000305}. |
Q9P2K5 | MYEF2 | S571 | ochoa | Myelin expression factor 2 (MEF-2) (MyEF-2) (MST156) | Transcriptional repressor of the myelin basic protein gene (MBP). Binds to the proximal MB1 element 5'-TTGTCC-3' of the MBP promoter. Its binding to MB1 and function are inhibited by PURA (By similarity). {ECO:0000250}. |
Q9P2K8 | EIF2AK4 | S551 | ochoa|psp | eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}. |
Q9P2N2 | ARHGAP28 | S180 | ochoa | Rho GTPase-activating protein 28 (Rho-type GTPase-activating protein 28) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P2N2 | ARHGAP28 | S258 | ochoa | Rho GTPase-activating protein 28 (Rho-type GTPase-activating protein 28) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9UBK2 | PPARGC1A | S273 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1-alpha) (PPAR-gamma coactivator 1-alpha) (PPARGC-1-alpha) (Ligand effect modulator 6) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:10713165, PubMed:20005308, PubMed:21376232, PubMed:28363985, PubMed:32433991). Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter (PubMed:10713165, PubMed:20005308, PubMed:21376232). Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis (PubMed:10713165, PubMed:20005308, PubMed:21376232). Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism (PubMed:10713165, PubMed:20005308, PubMed:21376232). Acts as a key regulator of gluconeogenesis: stimulates hepatic gluconeogenesis by increasing the expression of gluconeogenic enzymes, and acting together with FOXO1 to promote the fasting gluconeogenic program (PubMed:16753578, PubMed:23142079). Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner (PubMed:23836911). Also involved in the integration of the circadian rhythms and energy metabolism (By similarity). Required for oscillatory expression of clock genes, such as BMAL1 and NR1D1, through the coactivation of RORA and RORC, and metabolic genes, such as PDK4 and PEPCK (By similarity). {ECO:0000250|UniProtKB:O70343, ECO:0000269|PubMed:10713165, ECO:0000269|PubMed:16753578, ECO:0000269|PubMed:20005308, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:23836911, ECO:0000269|PubMed:28363985, ECO:0000269|PubMed:32433991}. |
Q9UBQ7 | GRHPR | S272 | ochoa | Glyoxylate reductase/hydroxypyruvate reductase (EC 1.1.1.79) (EC 1.1.1.81) | Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate, oxidizes D-glycerate to hydroxypyruvate. {ECO:0000269|PubMed:10484776, ECO:0000269|PubMed:10524214}. |
Q9UBS0 | RPS6KB2 | S24 | ochoa | Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) | Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}. |
Q9UBS8 | RNF14 | S162 | ochoa | E3 ubiquitin-protein ligase RNF14 (EC 2.3.2.31) (Androgen receptor-associated protein 54) (HFB30) (RING finger protein 14) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Recruited to stalled ribosomes by the ribosome collision sensor GCN1 and mediates 'Lys-6'-linked ubiquitination of target proteins, leading to their degradation (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Mediates ubiquitination of EEF1A1/eEF1A and ETF1/eRF1 translation factors on stalled ribosomes, leading to their degradation (PubMed:36638793, PubMed:37651229). Also catalyzes ubiquitination of ribosomal proteins RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Specifically required to resolve RNA-protein cross-links caused by reactive aldehydes, which trigger translation stress by stalling ribosomes: acts by catalying 'Lys-6'-linked ubiquitination of RNA-protein cross-links, leading to their removal by the ATP-dependent unfoldase VCP and subsequent degradation by the proteasome (PubMed:37951215, PubMed:37951216). Independently of its function in the response to stalled ribosomes, acts as a regulator of transcription in Wnt signaling via its interaction with TCF transcription factors (TCF7/TCF1, TCF7L1/TCF3 and TCF7L2/TCF4) (PubMed:23449499). May also play a role as a coactivator for androgen- and, to a lesser extent, progesterone-dependent transcription (PubMed:19345326). {ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:23449499, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q9UBS9 | SUCO | S1103 | ochoa | SUN domain-containing ossification factor (Membrane protein CH1) (Protein osteopotentia homolog) (SUN-like protein 1) | Required for bone modeling during late embryogenesis. Regulates type I collagen synthesis in osteoblasts during their postnatal maturation (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | S294 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UDT6 | CLIP2 | S923 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UEG4 | ZNF629 | S706 | ochoa | Zinc finger protein 629 (Zinc finger protein 65) | May be involved in transcriptional regulation. |
Q9UFC0 | LRWD1 | S212 | ochoa | Leucine-rich repeat and WD repeat-containing protein 1 (Centromere protein 33) (CENP-33) (Origin recognition complex-associated protein) (ORC-associated protein) (ORCA) | Required for G1/S transition. Recruits and stabilizes the origin recognition complex (ORC) onto chromatin during G1 to establish pre-replication complex (preRC) and to heterochromatic sites in post-replicated cells. Binds a combination of DNA and histone methylation repressive marks on heterochromatin. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K27me3 and H4K20me3 in a cooperative manner with DNA methylation. Required for silencing of major satellite repeats. May be important ORC2, ORC3 and ORC4 stability. {ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:20932478, ECO:0000269|PubMed:21029866, ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22645314}. |
Q9UGN5 | PARP2 | S353 | ochoa | Poly [ADP-ribose] polymerase 2 (PARP-2) (hPARP-2) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 2) (ARTD2) (DNA ADP-ribosyltransferase PARP2) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 2) (ADPRT-2) (Poly[ADP-ribose] synthase 2) (pADPRT-2) (Protein poly-ADP-ribosyltransferase PARP2) (EC 2.4.2.-) | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:10364231, PubMed:25043379, PubMed:27471034, PubMed:30104678, PubMed:32028527, PubMed:32939087, PubMed:34108479, PubMed:34486521, PubMed:34874266). Mediates glutamate, aspartate or serine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:25043379, PubMed:30104678, PubMed:30321391). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:32939087). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed:25043379). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed:28190768, PubMed:32028527, PubMed:34108479, PubMed:34486521, PubMed:34874266). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:10364231, PubMed:32939087, PubMed:34108479). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly-ADP-ribose chains (PubMed:34732825, PubMed:34795260). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed:30104678). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed:30104678). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:27471034, PubMed:29361132). {ECO:0000269|PubMed:10364231, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30321391, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32939087, ECO:0000269|PubMed:34108479, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266}. |
Q9UGP5 | POLL | S230 | psp | DNA polymerase lambda (Pol Lambda) (EC 2.7.7.7) (EC 4.2.99.-) (DNA polymerase beta-2) (Pol beta2) (DNA polymerase kappa) | DNA polymerase that functions in several pathways of DNA repair (PubMed:11457865, PubMed:19806195, PubMed:20693240, PubMed:30250067). Involved in base excision repair (BER) responsible for repair of lesions that give rise to abasic (AP) sites in DNA (PubMed:11457865, PubMed:19806195). Also contributes to DNA double-strand break repair by non-homologous end joining and homologous recombination (PubMed:19806195, PubMed:20693240, PubMed:30250067). Has both template-dependent and template-independent (terminal transferase) DNA polymerase activities (PubMed:10887191, PubMed:10982892, PubMed:12809503, PubMed:14627824, PubMed:15537631, PubMed:19806195). Also has a 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity (PubMed:11457865, PubMed:19806195). {ECO:0000269|PubMed:10887191, ECO:0000269|PubMed:10982892, ECO:0000269|PubMed:11457865, ECO:0000269|PubMed:12809503, ECO:0000269|PubMed:14627824, ECO:0000269|PubMed:15537631, ECO:0000269|PubMed:19806195, ECO:0000269|PubMed:20693240, ECO:0000269|PubMed:30250067}. |
Q9UGU0 | TCF20 | S1335 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S1418 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UH99 | SUN2 | S54 | ochoa|psp | SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}. |
Q9UHB7 | AFF4 | S703 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHD1 | CHORDC1 | S110 | ochoa | Cysteine and histidine-rich domain-containing protein 1 (CHORD domain-containing protein 1) (CHORD-containing protein 1) (CHP-1) (Protein morgana) | Regulates centrosome duplication, probably by inhibiting the kinase activity of ROCK2 (PubMed:20230755). Proposed to act as co-chaperone for HSP90 (PubMed:20230755). May play a role in the regulation of NOD1 via a HSP90 chaperone complex (PubMed:20230755). In vitro, has intrinsic chaperone activity (PubMed:20230755). This function may be achieved by inhibiting association of ROCK2 with NPM1 (PubMed:20230755). Plays a role in ensuring the localization of the tyrosine kinase receptor EGFR to the plasma membrane, and thus ensures the subsequent regulation of EGFR activity and EGF-induced actin cytoskeleton remodeling (PubMed:32053105). Involved in stress response (PubMed:20230755). Prevents tumorigenesis (PubMed:20230755). {ECO:0000269|PubMed:20230755, ECO:0000269|PubMed:32053105}. |
Q9UHF7 | TRPS1 | S90 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S830 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHF7 | TRPS1 | S978 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHQ1 | NARF | S216 | ochoa | Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2) (IOP2) | None |
Q9UHV7 | MED13 | S530 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UIF7 | MUTYH | S512 | ochoa | Adenine DNA glycosylase (EC 3.2.2.31) (MutY homolog) (hMYH) | Involved in oxidative DNA damage repair. Initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. Possesses both adenine and 2-OH-A DNA glycosylase activities. {ECO:0000269|PubMed:10684930, ECO:0000269|PubMed:20418187, ECO:0000269|PubMed:20848659, ECO:0000269|PubMed:25820570, ECO:0000269|PubMed:26694661}. |
Q9UIF8 | BAZ2B | S681 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UIG0 | BAZ1B | S312 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UIG0 | BAZ1B | S349 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UJU6 | DBNL | S232 | ochoa | Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) | Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}. |
Q9UKA4 | AKAP11 | S743 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKA4 | AKAP11 | S985 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKL3 | CASP8AP2 | S858 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKL3 | CASP8AP2 | S1368 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKV3 | ACIN1 | S729 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKV3 | ACIN1 | S453 | psp | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKY1 | ZHX1 | S648 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9UKY1 | ZHX1 | S686 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9UL36 | ZNF236 | S450 | ochoa | Zinc finger protein 236 | May be involved in transcriptional regulation. |
Q9UL40 | ZNF346 | S145 | ochoa | Zinc finger protein 346 (Just another zinc finger protein) | Binds with low affinity to dsDNA and ssRNA, and with high affinity to dsRNA, with no detectable sequence specificity (PubMed:24521053). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:24521053, ECO:0000269|PubMed:28431233}. |
Q9ULD2 | MTUS1 | S663 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULD4 | BRPF3 | S886 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULD5 | ZNF777 | S143 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9ULD5 | ZNF777 | S157 | ochoa | Zinc finger protein 777 | May be involved in transcriptional repression (PubMed:31856708). Inhibits cell proliferation through CDKN1A/p21 induction by down-regulation of NIBAN1/FAM129A at low cell density (PubMed:25560148). {ECO:0000269|PubMed:25560148, ECO:0000269|PubMed:31856708}. |
Q9ULH1 | ASAP1 | S1027 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULI0 | ATAD2B | S939 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULJ3 | ZBTB21 | S714 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULK2 | ATXN7L1 | S38 | ochoa | Ataxin-7-like protein 1 (Ataxin-7-like protein 4) | None |
Q9ULU4 | ZMYND8 | S737 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULV3 | CIZ1 | S350 | ochoa | Cip1-interacting zinc finger protein (CDKN1A-interacting zinc finger protein 1) (Nuclear protein NP94) (Zinc finger protein 356) | May regulate the subcellular localization of CIP/WAF1. |
Q9ULW0 | TPX2 | S186 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UMY1 | NOL7 | S133 | ochoa | U3 small nucleolar RNA-associated protein NOL7 (U3 snoRNA-associated protein NOL7) (Nucleolar protein 7) (Nucleolar protein of 27 kDa) | Functions as part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit that coordinates the first two steps of ribosome biogenesis in transcription of the primary transcript pre-RNA and pre-18S processing (PubMed:34516797, PubMed:37246770). During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). This subunit is required for processing of the 5'-external transcribed spacer sequence (5'ETS) of the primary transcript pre-rRNA to yield the 18S rRNA (PubMed:37246770). Also plays a role in maintaining early pre-rRNA levels, either by assisting in its transcription or stability (PubMed:37246770). {ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:37246770}. |
Q9UN79 | SOX13 | S371 | ochoa | Transcription factor SOX-13 (Islet cell antigen 12) (SRY (Sex determining region Y)-box 13) (Type 1 diabetes autoantigen ICA12) | Transcription factor that binds to DNA at the consensus sequence 5'-AACAAT-3' (PubMed:10871192). Binds to the proximal promoter region of the myelin protein MPZ gene, and may thereby be involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). Binds to and modifies the activity of TCF7/TCF1, thereby inhibiting transcription and modulates normal gamma-delta T-cell development and differentiation of IL17A expressing gamma-delta T-cells (By similarity). Regulates expression of BLK in the differentiation of IL17A expressing gamma-delta T-cells (By similarity). Promotes brown adipocyte differentiation (By similarity). Inhibitor of WNT signaling (PubMed:20028982). {ECO:0000250|UniProtKB:Q04891, ECO:0000269|PubMed:10871192, ECO:0000269|PubMed:20028982}. |
Q9UP95 | SLC12A4 | S51 | ochoa | Solute carrier family 12 member 4 (Electroneutral potassium-chloride cotransporter 1) (Erythroid K-Cl cotransporter 1) (hKCC1) | Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:35759661). May contribute to cell volume homeostasis in single cells (PubMed:10913127, PubMed:34031912). May be involved in the regulation of basolateral Cl(-) exit in NaCl absorbing epithelia (By similarity). {ECO:0000250|UniProtKB:Q9JIS8, ECO:0000269|PubMed:10913127, ECO:0000269|PubMed:34031912, ECO:0000269|PubMed:35759661}.; FUNCTION: [Isoform 4]: No transporter activity. {ECO:0000269|PubMed:11551954}. |
Q9UPN3 | MACF1 | S3692 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPN6 | SCAF8 | S617 | ochoa | SR-related and CTD-associated factor 8 (CDC5L complex-associated protein 7) (RNA-binding motif protein 16) | Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF4, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF4, also acts as a positive regulator of transcript elongation (PubMed:31104839). {ECO:0000269|PubMed:31104839}. |
Q9UPQ0 | LIMCH1 | S756 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPQ3 | AGAP1 | S101 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 (AGAP-1) (Centaurin-gamma-2) (Cnt-g2) (GTP-binding and GTPase-activating protein 1) (GGAP1) | GTPase-activating protein for ARF1 and, to a lesser extent, ARF5. Directly and specifically regulates the adapter protein 3 (AP-3)-dependent trafficking of proteins in the endosomal-lysosomal system. {ECO:0000269|PubMed:12640130}. |
Q9UPQ9 | TNRC6B | S1336 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9UPT8 | ZC3H4 | S1275 | ochoa | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UPW0 | FOXJ3 | S199 | ochoa | Forkhead box protein J3 | Transcriptional activator of MEF2C involved in the regulation of adult muscle fiber type identity and skeletal muscle regeneration (By similarity). Plays an important role in spermatogenesis (By similarity). Required for the survival of spermatogonia and participates in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q8BUR3}. |
Q9UPX0 | IGSF9B | S775 | ochoa | Protein turtle homolog B (Immunoglobulin superfamily member 9B) (IgSF9B) | Transmembrane protein which is abundantly expressed in interneurons, where it may regulate inhibitory synapse development. May mediate homophilic cell adhesion. {ECO:0000250|UniProtKB:D3ZB51, ECO:0000250|UniProtKB:E9PZ19}. |
Q9UPZ3 | HPS5 | S563 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ35 | SRRM2 | S1179 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ84 | EXO1 | S376 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9UQ84 | EXO1 | S598 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9UQR0 | SCML2 | S499 | ochoa|psp | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9UQR1 | ZNF148 | S412 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y232 | CDYL | S216 | ochoa | Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) | [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}. |
Q9Y253 | POLH | S512 | ochoa|psp | DNA polymerase eta (EC 2.7.7.7) (RAD30 homolog A) (Xeroderma pigmentosum variant type protein) | DNA polymerase specifically involved in the DNA repair by translesion synthesis (TLS) (PubMed:10385124, PubMed:11743006, PubMed:16357261, PubMed:24449906, PubMed:24553286, PubMed:38212351). Due to low processivity on both damaged and normal DNA, cooperates with the heterotetrameric (REV3L, REV7, POLD2 and POLD3) POLZ complex for complete bypass of DNA lesions. Inserts one or 2 nucleotide(s) opposite the lesion, the primer is further extended by the tetrameric POLZ complex. In the case of 1,2-intrastrand d(GpG)-cisplatin cross-link, inserts dCTP opposite the 3' guanine (PubMed:24449906). Particularly important for the repair of UV-induced pyrimidine dimers (PubMed:10385124, PubMed:11743006). Although inserts the correct base, may cause base transitions and transversions depending upon the context. May play a role in hypermutation at immunoglobulin genes (PubMed:11376341, PubMed:14734526). Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but does not have any lyase activity, preventing the release of the 5'-deoxyribose phosphate (5'-dRP) residue. This covalent trapping of the enzyme by the 5'-dRP residue inhibits its DNA synthetic activity during base excision repair, thereby avoiding high incidence of mutagenesis (PubMed:14630940). Targets POLI to replication foci (PubMed:12606586). {ECO:0000269|PubMed:10385124, ECO:0000269|PubMed:11376341, ECO:0000269|PubMed:11743006, ECO:0000269|PubMed:12606586, ECO:0000269|PubMed:14630940, ECO:0000269|PubMed:14734526, ECO:0000269|PubMed:16357261, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:38212351}. |
Q9Y2D9 | ZNF652 | S57 | ochoa | Zinc finger protein 652 | Functions as a transcriptional repressor. {ECO:0000269|PubMed:16966434}. |
Q9Y2F5 | ICE1 | S1854 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H2 | INPP5F | S935 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H5 | PLEKHA6 | S426 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2I7 | PIKFYVE | S88 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2I7 | PIKFYVE | S1549 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y2K6 | USP20 | S112 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2Q9 | MRPS28 | S73 | ochoa | Small ribosomal subunit protein bS1m (28S ribosomal protein S28, mitochondrial) (MRP-S28) (S28mt) (28S ribosomal protein S35, mitochondrial) (MRP-S35) (S35mt) | None |
Q9Y2W1 | THRAP3 | S622 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W2 | WBP11 | S237 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y3D7 | PAM16 | S69 | ochoa | Mitochondrial import inner membrane translocase subunit TIM16 (Mitochondria-associated granulocyte macrophage CSF-signaling molecule) (Presequence translocated-associated motor subunit PAM16) | Regulates ATP-dependent protein translocation into the mitochondrial matrix. Inhibits DNAJC19 stimulation of HSPA9/Mortalin ATPase activity. {ECO:0000269|PubMed:20053669}. |
Q9Y3L3 | SH3BP1 | S175 | ochoa | SH3 domain-binding protein 1 | GTPase activating protein (GAP) which specifically converts GTP-bound Rho-type GTPases including RAC1 and CDC42 in their inactive GDP-bound form. By specifically inactivating RAC1 at the leading edge of migrating cells, it regulates the spatiotemporal organization of cell protrusions which is important for proper cell migration (PubMed:21658605). Also negatively regulates CDC42 in the process of actin remodeling and the formation of epithelial cell junctions (PubMed:22891260). Through its GAP activity toward RAC1 and/or CDC42 plays a specific role in phagocytosis of large particles. Specifically recruited by a PI3 kinase/PI3K-dependent mechanism to sites of large particles engagement, inactivates RAC1 and/or CDC42 allowing the reorganization of the underlying actin cytoskeleton required for engulfment (PubMed:26465210). It also plays a role in angiogenesis and the process of repulsive guidance as part of a semaphorin-plexin signaling pathway. Following the binding of PLXND1 to extracellular SEMA3E it dissociates from PLXND1 and inactivates RAC1, inducing the intracellular reorganization of the actin cytoskeleton and the collapse of cells (PubMed:24841563). {ECO:0000269|PubMed:21658605, ECO:0000269|PubMed:22891260, ECO:0000269|PubMed:24841563, ECO:0000269|PubMed:26465210}. |
Q9Y3M8 | STARD13 | S314 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y3M8 | STARD13 | S416 | ochoa | StAR-related lipid transfer protein 13 (46H23.2) (Deleted in liver cancer 2 protein) (DLC-2) (Rho GTPase-activating protein) (START domain-containing protein 13) (StARD13) | GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells. {ECO:0000269|PubMed:14697242, ECO:0000269|PubMed:16217026}. |
Q9Y3R0 | GRIP1 | S996 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
Q9Y3S1 | WNK2 | S560 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y3Z3 | SAMHD1 | S278 | ochoa | Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (dNTPase) (EC 3.1.5.-) (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5) (SAM domain and HD domain-containing protein 1) (hSAMHD1) | Protein that acts both as a host restriction factor involved in defense response to virus and as a regulator of DNA end resection at stalled replication forks (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:26294762, PubMed:26431200, PubMed:28229507, PubMed:28834754, PubMed:29670289). Has deoxynucleoside triphosphate (dNTPase) activity, which is required to restrict infection by viruses, such as HIV-1: dNTPase activity reduces cellular dNTP levels to levels too low for retroviral reverse transcription to occur, blocking early-stage virus replication in dendritic and other myeloid cells (PubMed:19525956, PubMed:21613998, PubMed:21720370, PubMed:22056990, PubMed:23364794, PubMed:23601106, PubMed:23602554, PubMed:24336198, PubMed:25038827, PubMed:26101257, PubMed:26294762, PubMed:26431200, PubMed:28229507). Likewise, suppresses LINE-1 retrotransposon activity (PubMed:24035396, PubMed:24217394, PubMed:29610582). Not able to restrict infection by HIV-2 virus; because restriction activity is counteracted by HIV-2 viral protein Vpx (PubMed:21613998, PubMed:21720370). In addition to virus restriction, dNTPase activity acts as a regulator of DNA precursor pools by regulating dNTP pools (PubMed:23858451). Phosphorylation at Thr-592 acts as a switch to control dNTPase-dependent and -independent functions: it inhibits dNTPase activity and ability to restrict infection by viruses, while it promotes DNA end resection at stalled replication forks (PubMed:23601106, PubMed:23602554, PubMed:29610582, PubMed:29670289). Functions during S phase at stalled DNA replication forks to promote the resection of gapped or reversed forks: acts by stimulating the exonuclease activity of MRE11, activating the ATR-CHK1 pathway and allowing the forks to restart replication (PubMed:29670289). Its ability to promote degradation of nascent DNA at stalled replication forks is required to prevent induction of type I interferons, thereby preventing chronic inflammation (PubMed:27477283, PubMed:29670289). Ability to promote DNA end resection at stalled replication forks is independent of dNTPase activity (PubMed:29670289). Enhances immunoglobulin hypermutation in B-lymphocytes by promoting transversion mutation (By similarity). {ECO:0000250|UniProtKB:Q60710, ECO:0000269|PubMed:19525956, ECO:0000269|PubMed:21613998, ECO:0000269|PubMed:21720370, ECO:0000269|PubMed:22056990, ECO:0000269|PubMed:23364794, ECO:0000269|PubMed:23601106, ECO:0000269|PubMed:23602554, ECO:0000269|PubMed:23858451, ECO:0000269|PubMed:24035396, ECO:0000269|PubMed:24217394, ECO:0000269|PubMed:24336198, ECO:0000269|PubMed:25038827, ECO:0000269|PubMed:26101257, ECO:0000269|PubMed:26294762, ECO:0000269|PubMed:26431200, ECO:0000269|PubMed:27477283, ECO:0000269|PubMed:28229507, ECO:0000269|PubMed:28834754, ECO:0000269|PubMed:29610582, ECO:0000269|PubMed:29670289}. |
Q9Y426 | C2CD2 | S441 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y485 | DMXL1 | S924 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y490 | TLN1 | S2162 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S549 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S741 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S923 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4E5 | ZNF451 | S596 | ochoa | E3 SUMO-protein ligase ZNF451 (EC 2.3.2.-) (Coactivator for steroid receptors) (E3 SUMO-protein transferase ZNF451) (Zinc finger protein 451) | E3 SUMO-protein ligase; has a preference for SUMO2 and SUMO3 and facilitates UBE2I/UBC9-mediated sumoylation of target proteins (PubMed:26524493, PubMed:26524494). Plays a role in protein SUMO2 modification in response to stress caused by DNA damage and by proteasome inhibitors (in vitro). Required for MCM4 sumoylation (By similarity). Has no activity with SUMO1 (PubMed:26524493). Preferentially transfers an additional SUMO2 chain onto the SUMO2 consensus site 'Lys-11' (PubMed:26524493). Negatively regulates transcriptional activation mediated by the SMAD4 complex in response to TGF-beta signaling. Inhibits EP300-mediated acetylation of histone H3 at 'Lys-9' (PubMed:24324267). Plays a role in regulating the transcription of AR targets (PubMed:18656483). {ECO:0000250|UniProtKB:Q8C0P7, ECO:0000269|PubMed:18656483, ECO:0000269|PubMed:24324267, ECO:0000269|PubMed:26524493, ECO:0000269|PubMed:26524494}. |
Q9Y4F5 | CEP170B | S597 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4W2 | LAS1L | S523 | ochoa | Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) | Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}. |
Q9Y4X4 | KLF12 | S42 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y5W7 | SNX14 | S748 | ochoa | Sorting nexin-14 | Plays a role in maintaining normal neuronal excitability and synaptic transmission. May be involved in several stages of intracellular trafficking (By similarity). Required for autophagosome clearance, possibly by mediating the fusion of lysosomes with autophagosomes (Probable). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a key component of late endosomes/lysosomes (PubMed:25848753). Does not bind phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:25148684, PubMed:25848753). {ECO:0000250|UniProtKB:Q8BHY8, ECO:0000269|PubMed:25148684, ECO:0000269|PubMed:25848753, ECO:0000305|PubMed:25848753}. |
Q9Y5W9 | SNX11 | S220 | ochoa | Sorting nexin-11 | Phosphoinositide-binding protein involved in protein sorting and membrane trafficking in endosomes (PubMed:23615901). Regulates the levels of TRPV3 by promoting its trafficking from the cell membrane to lysosome for degradation (PubMed:26818531). {ECO:0000269|PubMed:23615901, ECO:0000269|PubMed:26818531}. |
Q9Y5X3 | SNX5 | S60 | ochoa | Sorting nexin-5 | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) (PubMed:15561769). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde transport of lysosomal enzyme receptor IGF2R (PubMed:17148574, PubMed:18596235). May function as link between endosomal transport vesicles and dynactin (Probable). Plays a role in the internalization of EGFR after EGF stimulation (Probable). Involved in EGFR endosomal sorting and degradation; the function involves PIP5K1C isoform 3 and is retromer-independent (PubMed:23602387). Together with PIP5K1C isoform 3 facilitates HGS interaction with ubiquitinated EGFR, which initiates EGFR sorting to intraluminal vesicles (ILVs) of the multivesicular body for subsequent lysosomal degradation (Probable). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). Plays a role in macropinocytosis (PubMed:18854019, PubMed:21048941). {ECO:0000269|PubMed:18854019, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:15561769, ECO:0000303|PubMed:19619496, ECO:0000303|PubMed:23085988}. |
Q9Y5Y0 | FLVCR1 | S536 | ochoa | Choline/ethanolamine transporter FLVCR1 (Feline leukemia virus subgroup C receptor-related protein 1) (Feline leukemia virus subgroup C receptor) (hFLVCR) (Heme transporter FLVCR1) | Uniporter that mediates the transport of extracellular choline and ethanolamine into cells, thereby playing a key role in phospholipid biosynthesis (PubMed:37100056, PubMed:38693265, PubMed:38778100, PubMed:39306721). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265, PubMed:38778100). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265, PubMed:38778100). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265, ECO:0000269|PubMed:38778100, ECO:0000269|PubMed:39306721}.; FUNCTION: [Isoform 1]: Uniporter that mediates the transport of extracellular choline and ethanolamine into cells (PubMed:37100056, PubMed:38693265). Choline and ethanolamine are the precursors of phosphatidylcholine and phosphatidylethanolamine, respectively, the two most abundant phospholipids (PubMed:38693265). Transport is not coupled with proton transport and is exclusively driven by the choline (or ethanolamine) gradient across the plasma membrane (PubMed:38693265). Also acts as a heme b transporter that mediates heme efflux from the cytoplasm to the extracellular compartment (PubMed:15369674, PubMed:20610401, PubMed:22483575, PubMed:23187127, PubMed:27923065). Heme export depends on the presence of HPX and is required to maintain intracellular free heme balance, protecting cells from heme toxicity (PubMed:20610401). Heme export provides protection from heme or ferrous iron toxicities in liver, brain, sensory neurons and during erythropoiesis, a process in which heme synthesis intensifies (PubMed:20610401, PubMed:23187127). Possibly export coproporphyrin and protoporphyrin IX, which are both intermediate products in the heme biosynthetic pathway (PubMed:20610401). Does not export bilirubin (PubMed:20610401). The molecular mechanism of heme transport, whether electrogenic, electroneutral or coupled to other ions, remains to be elucidated (PubMed:20610401, PubMed:23187127). {ECO:0000269|PubMed:15369674, ECO:0000269|PubMed:20610401, ECO:0000269|PubMed:22483575, ECO:0000269|PubMed:23187127, ECO:0000269|PubMed:27923065, ECO:0000269|PubMed:37100056, ECO:0000269|PubMed:38693265}.; FUNCTION: [Isoform 2]: Heme b transporter that promotes heme efflux from the mitochondrion to the cytoplasm. Essential for erythroid differentiation. {ECO:0000269|PubMed:23187127}.; FUNCTION: [Isoform 1]: (Microbial infection) Confers susceptibility to feline leukemia virus subgroup C (FeLV-C) infection in vitro. {ECO:0000269|PubMed:10400745}. |
Q9Y6D5 | ARFGEF2 | S227 | ochoa|psp | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6D6 | ARFGEF1 | S234 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6Q9 | NCOA3 | S551 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
Q9Y6U3 | SCIN | S602 | ochoa | Scinderin (Adseverin) | Ca(2+)-dependent actin filament-severing protein that has a regulatory function in exocytosis by affecting the organization of the microfilament network underneath the plasma membrane (PubMed:26365202, PubMed:8547642). Severing activity is inhibited by phosphatidylinositol 4,5-bis-phosphate (PIP2) (By similarity). In vitro, also has barbed end capping and nucleating activities in the presence of Ca(2+). Required for megakaryocyte differentiation, maturation, polyploidization and apoptosis with the release of platelet-like particles (PubMed:11568009). Plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts (By similarity). Regulates chondrocyte proliferation and differentiation (By similarity). Inhibits cell proliferation and tumorigenesis. Signaling is mediated by MAPK, p38 and JNK pathways (PubMed:11568009). {ECO:0000250|UniProtKB:Q28046, ECO:0000250|UniProtKB:Q5ZIV9, ECO:0000250|UniProtKB:Q60604, ECO:0000269|PubMed:11568009, ECO:0000269|PubMed:26365202, ECO:0000269|PubMed:8547642}. |
Q9Y6Y8 | SEC23IP | S926 | ochoa | SEC23-interacting protein (p125) | Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}. |
O00115 | DNASE2 | S70 | Sugiyama | Deoxyribonuclease-2-alpha (EC 3.1.22.1) (Acid DNase) (Deoxyribonuclease II alpha) (DNase II alpha) (Lysosomal DNase II) (R31240_2) | Hydrolyzes DNA under acidic conditions with a preference for double-stranded DNA. Plays a major role in the clearance of nucleic acids generated through apoptosis, hence preventing autoinflammation (PubMed:29259162, PubMed:31775019). Necessary for proper fetal development and for definitive erythropoiesis in fetal liver and bone marrow, where it degrades nuclear DNA expelled from erythroid precursor cells (PubMed:29259162). {ECO:0000269|PubMed:29259162, ECO:0000269|PubMed:31775019}. |
P55036 | PSMD4 | S115 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}. |
Q15084 | PDIA6 | S248 | Sugiyama | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
Q9NUP9 | LIN7C | S115 | Sugiyama | Protein lin-7 homolog C (Lin-7C) (Mammalian lin-seven protein 3) (MALS-3) (Vertebrate lin-7 homolog 3) (Veli-3) | Plays a role in establishing and maintaining the asymmetric distribution of channels and receptors at the plasma membrane of polarized cells. Forms membrane-associated multiprotein complexes that may regulate delivery and recycling of proteins to the correct membrane domains. The tripartite complex composed of LIN7 (LIN7A, LIN7B or LIN7C), CASK and APBA1 associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). This complex may have the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Ensures the proper localization of GRIN2B (subunit 2B of the NMDA receptor) to neuronal postsynaptic density and may function in localizing synaptic vesicles at synapses where it is recruited by beta-catenin and cadherin. Required to localize Kir2 channels, GABA transporter (SLC6A12) and EGFR/ERBB1, ERBB2, ERBB3 and ERBB4 to the basolateral membrane of epithelial cells. {ECO:0000250|UniProtKB:O88952}. |
Q9NZV1 | CRIM1 | S184 | Sugiyama | Cysteine-rich motor neuron 1 protein (CRIM-1) (Cysteine-rich repeat-containing protein S52) [Cleaved into: Processed cysteine-rich motor neuron 1 protein] | May play a role in CNS development by interacting with growth factors implicated in motor neuron differentiation and survival. May play a role in capillary formation and maintenance during angiogenesis. Modulates BMP activity by affecting its processing and delivery to the cell surface. {ECO:0000269|PubMed:12464430, ECO:0000269|PubMed:12805376}. |
O43283 | MAP3K13 | S760 | Sugiyama | Mitogen-activated protein kinase kinase kinase 13 (EC 2.7.11.25) (Leucine zipper-bearing kinase) (Mixed lineage kinase) (MLK) | Activates the JUN N-terminal pathway through activation of the MAP kinase kinase MAP2K7. Acts synergistically with PRDX3 to regulate the activation of NF-kappa-B in the cytosol. This activation is kinase-dependent and involves activating the IKK complex, the IKBKB-containing complex that phosphorylates inhibitors of NF-kappa-B. {ECO:0000269|PubMed:11726277, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:9353328}. |
Q12879 | GRIN2A | S1232 | ELM | Glutamate receptor ionotropic, NMDA 2A (GluN2A) (Glutamate [NMDA] receptor subunit epsilon-1) (N-methyl D-aspartate receptor subtype 2A) (NMDAR2A) (NR2A) (hNR2A) | Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:20890276, PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:28242877, PubMed:36117210, PubMed:38538865, PubMed:8768735). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the slow phase of excitatory postsynaptic current, long-term synaptic potentiation, and learning (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:27288002, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28182669, PubMed:29644724, PubMed:38307912, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761). Participates in the synaptic plasticity regulation through activation by the L-glutamate releaseed by BEST1, into the synaptic cleft, upon F2R/PAR-1 activation in astrocyte (By similarity). {ECO:0000250|UniProtKB:P35436, ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:20890276, ECO:0000269|PubMed:23933818, ECO:0000269|PubMed:23933819, ECO:0000269|PubMed:23933820, ECO:0000269|PubMed:24504326, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27288002, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28182669, ECO:0000269|PubMed:28242877, ECO:0000269|PubMed:29644724, ECO:0000269|PubMed:36117210, ECO:0000269|PubMed:38307912, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}. |
P52788 | SMS | S145 | Sugiyama | Spermine synthase (SPMSY) (EC 2.5.1.22) (Spermidine aminopropyltransferase) | Catalyzes the production of spermine from spermidine and decarboxylated S-adenosylmethionine (dcSAM). {ECO:0000269|PubMed:18367445, ECO:0000269|PubMed:18550699, ECO:0000269|PubMed:23696453, ECO:0000269|PubMed:23897707}. |
O14929 | HAT1 | S361 | Sugiyama | Histone acetyltransferase type B catalytic subunit (EC 2.3.1.48) (Histone acetyltransferase 1) | Histone acetyltransferase that plays a role in different biological processes including cell cycle progression, glucose metabolism, histone production or DNA damage repair (PubMed:20953179, PubMed:23653357, PubMed:31278053, PubMed:32081014). Coordinates histone production and acetylation via H4 promoter binding (PubMed:31278053). Acetylates histone H4 at 'Lys-5' (H4K5ac) and 'Lys-12' (H4K12ac) and, to a lesser extent, histone H2A at 'Lys-5' (H2AK5ac) (PubMed:11585814, PubMed:22615379). Drives H4 production by chromatin binding to support chromatin replication and acetylation. Since transcription of H4 genes is tightly coupled to S-phase, plays an important role in S-phase entry and progression (PubMed:31278053). Promotes homologous recombination in DNA repair by facilitating histone turnover and incorporation of acetylated H3.3 at sites of double-strand breaks (PubMed:23653357). In addition, acetylates other substrates such as chromatin-related proteins (PubMed:32081014). Also acetylates RSAD2 which mediates the interaction of ubiquitin ligase UBE4A with RSAD2 leading to RSAD2 ubiquitination and subsequent degradation (PubMed:31812350). {ECO:0000269|PubMed:11585814, ECO:0000269|PubMed:20953179, ECO:0000269|PubMed:22615379, ECO:0000269|PubMed:23653357, ECO:0000269|PubMed:31278053, ECO:0000269|PubMed:31812350, ECO:0000269|PubMed:32081014}.; FUNCTION: (Microbial infection) Contributes to hepatitis B virus (HBV) replication by acetylating histone H4 at the sites of 'Lys-5' and 'Lys-12' on the covalently closed circular DNA (cccDNA) minichromosome leading to its accumulation within the host cell. {ECO:0000269|PubMed:31695772}. |
Q03112 | MECOM | S624 | SIGNOR | Histone-lysine N-methyltransferase MECOM (EC 2.1.1.367) (Ecotropic virus integration site 1 protein homolog) (EVI-1) (MDS1 and EVI1 complex locus protein) (Myelodysplasia syndrome 1 protein) (Myelodysplasia syndrome-associated protein 1) | [Isoform 1]: Functions as a transcriptional regulator binding to DNA sequences in the promoter region of target genes and regulating positively or negatively their expression. Oncogene which plays a role in development, cell proliferation and differentiation. May also play a role in apoptosis through regulation of the JNK and TGF-beta signaling. Involved in hematopoiesis. {ECO:0000269|PubMed:10856240, ECO:0000269|PubMed:11568182, ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16462766, ECO:0000269|PubMed:19767769, ECO:0000269|PubMed:9665135}.; FUNCTION: [Isoform 7]: Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation. Likely to be one of the primary histone methyltransferases along with PRDM16 that direct cytoplasmic H3K9me1 methylation. {ECO:0000250|UniProtKB:P14404}. |
Q96KP4 | CNDP2 | S370 | Sugiyama | Cytosolic non-specific dipeptidase (EC 3.4.13.18) (CNDP dipeptidase 2) (Glutamate carboxypeptidase-like protein 1) (Peptidase A) (Threonyl dipeptidase) | Catalyzes the peptide bond hydrolysis in dipeptides, displaying a non-redundant activity toward threonyl dipeptides (By similarity). Mediates threonyl dipeptide catabolism in a tissue-specific way (By similarity). Has high dipeptidase activity toward cysteinylglycine, an intermediate metabolite in glutathione metabolism (PubMed:12473676, PubMed:19346245). Metabolizes N-lactoyl-amino acids, both through hydrolysis to form lactic acid and amino acids, as well as through their formation by reverse proteolysis (PubMed:25964343). Plays a role in the regulation of cell cycle arrest and apoptosis (PubMed:17121880, PubMed:24395568). {ECO:0000250|UniProtKB:Q9D1A2, ECO:0000269|PubMed:12473676, ECO:0000269|PubMed:17121880, ECO:0000269|PubMed:19346245, ECO:0000269|PubMed:24395568, ECO:0000269|PubMed:25964343}. |
Q6EMK4 | VASN | S322 | Sugiyama | Vasorin (Protein slit-like 2) | May act as an inhibitor of TGF-beta signaling. {ECO:0000269|PubMed:15247411}. |
P00533 | EGFR | S511 | Sugiyama | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
Q08881 | ITK | S526 | Sugiyama | Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}. |
Q13464 | ROCK1 | S242 | Sugiyama | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
A4UGR9 | XIRP2 | S1417 | Sugiyama | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
Q9NYY3 | PLK2 | S248 | Sugiyama | Serine/threonine-protein kinase PLK2 (EC 2.7.11.21) (Polo-like kinase 2) (PLK-2) (hPlk2) (Serine/threonine-protein kinase SNK) (hSNK) (Serum-inducible kinase) | Tumor suppressor serine/threonine-protein kinase involved in synaptic plasticity, centriole duplication and G1/S phase transition. Polo-like kinases act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains. Phosphorylates CPAP, NPM1, RAPGEF2, RASGRF1, SNCA, SIPA1L1 and SYNGAP1. Plays a key role in synaptic plasticity and memory by regulating the Ras and Rap protein signaling: required for overactivity-dependent spine remodeling by phosphorylating the Ras activator RASGRF1 and the Rap inhibitor SIPA1L1 leading to their degradation by the proteasome. Conversely, phosphorylates the Rap activator RAPGEF2 and the Ras inhibitor SYNGAP1, promoting their activity. Also regulates synaptic plasticity independently of kinase activity, via its interaction with NSF that disrupts the interaction between NSF and the GRIA2 subunit of AMPARs, leading to a rapid rundown of AMPAR-mediated current that occludes long term depression. Required for procentriole formation and centriole duplication by phosphorylating CPAP and NPM1, respectively. Its induction by p53/TP53 suggests that it may participate in the mitotic checkpoint following stress. {ECO:0000269|PubMed:15242618, ECO:0000269|PubMed:19001868, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:20531387}. |
Q9UM73 | ALK | S1075 | Sugiyama | ALK tyrosine kinase receptor (EC 2.7.10.1) (Anaplastic lymphoma kinase) (CD antigen CD246) | Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150). {ECO:0000250|UniProtKB:P97793, ECO:0000269|PubMed:11121404, ECO:0000269|PubMed:11278720, ECO:0000269|PubMed:11387242, ECO:0000269|PubMed:11809760, ECO:0000269|PubMed:12107166, ECO:0000269|PubMed:12122009, ECO:0000269|PubMed:15226403, ECO:0000269|PubMed:16317043, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:17274988, ECO:0000269|PubMed:30061385, ECO:0000269|PubMed:33411331, ECO:0000269|PubMed:34646012, ECO:0000269|PubMed:34819673}. |
A1L390 | PLEKHG3 | S962 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A4D1P6 | WDR91 | S256 | ochoa | WD repeat-containing protein 91 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May play a role in meiosis (By similarity). {ECO:0000250|UniProtKB:Q7TMQ7, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989}. |
A6H8Y1 | BDP1 | S2451 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NDB9 | PALM3 | S375 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A6NKT7 | RGPD3 | S128 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NKT7 | RGPD3 | S1487 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
E9PCH4 | None | S1544 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O00141 | SGK1 | S401 | ochoa | Serine/threonine-protein kinase Sgk1 (EC 2.7.11.1) (Serum/glucocorticoid-regulated kinase 1) | Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cellular enzymes, transcription factors, neuronal excitability, cell growth, proliferation, survival, migration and apoptosis. Plays an important role in cellular stress response. Contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Up-regulates Na(+) channels: SCNN1A/ENAC, SCN5A and ASIC1/ACCN2, K(+) channels: KCNJ1/ROMK1, KCNA1-5, KCNQ1-5 and KCNE1, epithelial Ca(2+) channels: TRPV5 and TRPV6, chloride channels: BSND, CLCN2 and CFTR, glutamate transporters: SLC1A3/EAAT1, SLC1A2 /EAAT2, SLC1A1/EAAT3, SLC1A6/EAAT4 and SLC1A7/EAAT5, amino acid transporters: SLC1A5/ASCT2, SLC38A1/SN1 and SLC6A19, creatine transporter: SLC6A8, Na(+)/dicarboxylate cotransporter: SLC13A2/NADC1, Na(+)-dependent phosphate cotransporter: SLC34A2/NAPI-2B, glutamate receptor: GRIK2/GLUR6. Up-regulates carriers: SLC9A3/NHE3, SLC12A1/NKCC2, SLC12A3/NCC, SLC5A3/SMIT, SLC2A1/GLUT1, SLC5A1/SGLT1 and SLC15A2/PEPT2. Regulates enzymes: GSK3A/B, PMM2 and Na(+)/K(+) ATPase, and transcription factors: CTNNB1 and nuclear factor NF-kappa-B. Stimulates sodium transport into epithelial cells by enhancing the stability and expression of SCNN1A/ENAC. This is achieved by phosphorylating the NEDD4L ubiquitin E3 ligase, promoting its interaction with 14-3-3 proteins, thereby preventing it from binding to SCNN1A/ENAC and targeting it for degradation. Regulates store-operated Ca(+2) entry (SOCE) by stimulating ORAI1 and STIM1. Regulates KCNJ1/ROMK1 directly via its phosphorylation or indirectly via increased interaction with SLC9A3R2/NHERF2. Phosphorylates MDM2 and activates MDM2-dependent ubiquitination of p53/TP53. Phosphorylates MAPT/TAU and mediates microtubule depolymerization and neurite formation in hippocampal neurons. Phosphorylates SLC2A4/GLUT4 and up-regulates its activity. Phosphorylates APBB1/FE65 and promotes its localization to the nucleus. Phosphorylates MAPK1/ERK2 and activates it by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. Phosphorylates FBXW7 and plays an inhibitory role in the NOTCH1 signaling. Phosphorylates FOXO1 resulting in its relocalization from the nucleus to the cytoplasm. Phosphorylates FOXO3, promoting its exit from the nucleus and interference with FOXO3-dependent transcription. Phosphorylates BRAF and MAP3K3/MEKK3 and inhibits their activity. Phosphorylates SLC9A3/NHE3 in response to dexamethasone, resulting in its activation and increased localization at the cell membrane. Phosphorylates CREB1. Necessary for vascular remodeling during angiogenesis. Sustained high levels and activity may contribute to conditions such as hypertension and diabetic nephropathy. Isoform 2 exhibited a greater effect on cell plasma membrane expression of SCNN1A/ENAC and Na(+) transport than isoform 1. {ECO:0000269|PubMed:11154281, ECO:0000269|PubMed:11410590, ECO:0000269|PubMed:11696533, ECO:0000269|PubMed:12397388, ECO:0000269|PubMed:12590200, ECO:0000269|PubMed:12634932, ECO:0000269|PubMed:12650886, ECO:0000269|PubMed:12761204, ECO:0000269|PubMed:12911626, ECO:0000269|PubMed:14623317, ECO:0000269|PubMed:14706641, ECO:0000269|PubMed:15040001, ECO:0000269|PubMed:15044175, ECO:0000269|PubMed:15234985, ECO:0000269|PubMed:15319523, ECO:0000269|PubMed:15496163, ECO:0000269|PubMed:15733869, ECO:0000269|PubMed:15737648, ECO:0000269|PubMed:15845389, ECO:0000269|PubMed:15888551, ECO:0000269|PubMed:16036218, ECO:0000269|PubMed:16443776, ECO:0000269|PubMed:16982696, ECO:0000269|PubMed:17382906, ECO:0000269|PubMed:18005662, ECO:0000269|PubMed:18304449, ECO:0000269|PubMed:18753299, ECO:0000269|PubMed:19447520, ECO:0000269|PubMed:19756449, ECO:0000269|PubMed:20511718, ECO:0000269|PubMed:20730100, ECO:0000269|PubMed:21865597}. |
O00443 | PIK3C2A | S1553 | ochoa | Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PI3K-C2-alpha) (PtdIns-3-kinase C2 subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphoinositide 3-kinase-C2-alpha) | Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers. Has a role in several intracellular trafficking events. Functions in insulin signaling and secretion. Required for translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane and glucose uptake in response to insulin-mediated RHOQ activation. Regulates insulin secretion through two different mechanisms: involved in glucose-induced insulin secretion downstream of insulin receptor in a pathway that involves AKT1 activation and TBC1D4/AS160 phosphorylation, and participates in the late step of insulin granule exocytosis probably in insulin granule fusion. Synthesizes PtdIns3P in response to insulin signaling. Functions in clathrin-coated endocytic vesicle formation and distribution. Regulates dynamin-independent endocytosis, probably by recruiting EEA1 to internalizing vesicles. In neurosecretory cells synthesizes PtdIns3P on large dense core vesicles. Participates in calcium induced contraction of vascular smooth muscle by regulating myosin light chain (MLC) phosphorylation through a mechanism involving Rho kinase-dependent phosphorylation of the MLCP-regulatory subunit MYPT1. May play a role in the EGF signaling cascade. May be involved in mitosis and UV-induced damage response. Required for maintenance of normal renal structure and function by supporting normal podocyte function. Involved in the regulation of ciliogenesis and trafficking of ciliary components (PubMed:31034465). {ECO:0000269|PubMed:10766823, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11239472, ECO:0000269|PubMed:12719431, ECO:0000269|PubMed:16215232, ECO:0000269|PubMed:21081650, ECO:0000269|PubMed:31034465, ECO:0000269|PubMed:9337861}. |
O14715 | RGPD8 | S128 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S1486 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O43164 | PJA2 | S309 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43166 | SIPA1L1 | S1549 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O60271 | SPAG9 | S251 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60307 | MAST3 | S146 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60347 | TBC1D12 | S187 | ochoa | TBC1 domain family member 12 | RAB11A-binding protein that plays a role in neurite outgrowth. {ECO:0000250|UniProtKB:M0R7T9}. |
O60749 | SNX2 | S97 | ochoa | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O60890 | OPHN1 | S372 | ochoa | Oligophrenin-1 | Stimulates GTP hydrolysis of members of the Rho family. Its action on RHOA activity and signaling is implicated in growth and stabilization of dendritic spines, and therefore in synaptic function. Critical for the stabilization of AMPA receptors at postsynaptic sites. Critical for the regulation of synaptic vesicle endocytosis at presynaptic terminals. Required for the localization of NR1D1 to dendrites, can suppress its repressor activity and protect it from proteasomal degradation (By similarity). {ECO:0000250}. |
O75030 | MITF | S504 | ochoa | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75044 | SRGAP2 | S796 | ochoa | SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) (Formin-binding protein 2) (Rho GTPase-activating protein 34) | Postsynaptic RAC1 GTPase activating protein (GAP) that plays a key role in neuronal morphogenesis and migration mainly during development of the cerebral cortex (PubMed:20810653, PubMed:27373832, PubMed:28333212). Regulates excitatory and inhibitory synapse maturation and density in cortical pyramidal neurons (PubMed:22559944, PubMed:27373832). SRGAP2/SRGAP2A limits excitatory and inhibitory synapse density through its RAC1-specific GTPase activating activity, while it promotes maturation of both excitatory and inhibitory synapses through its ability to bind to the postsynaptic scaffolding protein HOMER1 at excitatory synapses, and the postsynaptic protein GPHN at inhibitory synapses (By similarity). Mechanistically, acts by binding and deforming membranes, thereby regulating actin dynamics to regulate cell migration and differentiation (PubMed:27373832). Promotes cell repulsion and contact inhibition of locomotion: localizes to protrusions with curved edges and controls the duration of RAC1 activity in contact protrusions (By similarity). In non-neuronal cells, may also play a role in cell migration by regulating the formation of lamellipodia and filopodia (PubMed:20810653, PubMed:21148482). {ECO:0000250|UniProtKB:Q91Z67, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21148482, ECO:0000269|PubMed:22559944, ECO:0000269|PubMed:27373832, ECO:0000269|PubMed:28333212}. |
O94826 | TOMM70 | S91 | ochoa | Mitochondrial import receptor subunit TOM70 (Mitochondrial precursor proteins import receptor) (Translocase of outer membrane 70 kDa subunit) (Translocase of outer mitochondrial membrane protein 70) | Acts as a receptor of the preprotein translocase complex of the outer mitochondrial membrane (TOM complex) (PubMed:12526792). Recognizes and mediates the translocation of mitochondrial preproteins from the cytosol into the mitochondria in a chaperone dependent manner (PubMed:12526792, PubMed:35025629). Mediates TBK1 and IRF3 activation induced by MAVS in response to Sendai virus infection and promotes host antiviral responses during virus infection (PubMed:20628368, PubMed:25609812, PubMed:32728199). Upon Sendai virus infection, recruits HSP90AA1:IRF3:BAX in mitochondrion and the complex induces apoptosis (PubMed:25609812). {ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:32728199, ECO:0000269|PubMed:35025629}. |
O94916 | NFAT5 | S649 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95049 | TJP3 | S856 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95336 | PGLS | S178 | ochoa | 6-phosphogluconolactonase (6PGL) (EC 3.1.1.31) | Hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate. {ECO:0000269|PubMed:10518023}. |
O95425 | SVIL | S86 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
P02042 | HBD | S51 | ochoa | Hemoglobin subunit delta (Delta-globin) (Hemoglobin delta chain) | Involved in oxygen transport from the lung to the various peripheral tissues. |
P0DJD0 | RGPD1 | S119 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD0 | RGPD1 | S1471 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S127 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DJD1 | RGPD2 | S1479 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10636 | MAPT | S411 | ochoa | Microtubule-associated protein tau (Neurofibrillary tangle protein) (Paired helical filament-tau) (PHF-tau) | Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity (PubMed:21985311). The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both (PubMed:21985311, PubMed:32961270). Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization. {ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:32961270}. |
P11137 | MAP2 | S788 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P15336 | ATF2 | S90 | ochoa|psp | Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) | Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}. |
P17936 | IGFBP3 | S151 | ochoa | Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:10874028, PubMed:19556345). Also exhibits IGF-independent antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R (PubMed:20353938). Inhibits the positive effect of humanin on insulin sensitivity (PubMed:19623253). Promotes testicular germ cell apoptosis (PubMed:19952275). Acts via LRP-1/alpha2M receptor, also known as TGF-beta type V receptor, to mediate cell growth inhibition independent of IGF1 (PubMed:9252371). Mechanistically, induces serine-specific dephosphorylation of IRS1 or IRS2 upon ligation to its receptor, leading to the inhibitory cascade (PubMed:15371331). In the nucleus, interacts with transcription factors such as retinoid X receptor-alpha/RXRA to regulate transcriptional signaling and apoptosis (PubMed:10874028). {ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:15371331, ECO:0000269|PubMed:19159218, ECO:0000269|PubMed:19556345, ECO:0000269|PubMed:19623253, ECO:0000269|PubMed:19952275, ECO:0000269|PubMed:20353938}. |
P18583 | SON | S910 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P23511 | NFYA | S326 | ochoa|psp | Nuclear transcription factor Y subunit alpha (CAAT box DNA-binding protein subunit A) (Nuclear transcription factor Y subunit A) (NF-YA) | Component of the sequence-specific heterotrimeric transcription factor (NF-Y) which specifically recognizes a 5'-CCAAT-3' box motif found in the promoters of its target genes. NF-Y can function as both an activator and a repressor, depending on its interacting cofactors. NF-YA positively regulates the transcription of the core clock component BMAL1. {ECO:0000269|PubMed:12741956}. |
P26045 | PTPN3 | S335 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P27816 | MAP4 | S384 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P31629 | HIVEP2 | S296 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P32519 | ELF1 | S376 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P41231 | P2RY2 | S327 | ochoa | P2Y purinoceptor 2 (P2Y2) (ATP receptor) (P2U purinoceptor 1) (P2U1) (P2U receptor 1) (Purinergic receptor) | Receptor for ATP and UTP coupled to G-proteins that activate a phosphatidylinositol-calcium second messenger system. The affinity range is UTP = ATP > ATP-gamma-S >> 2-methylthio-ATP = ADP. |
P49023 | PXN | S230 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49792 | RANBP2 | S128 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S2462 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P51812 | RPS6KA3 | S369 | ochoa|psp | Ribosomal protein S6 kinase alpha-3 (S6K-alpha-3) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 3) (p90-RSK 3) (p90RSK3) (Insulin-stimulated protein kinase 1) (ISPK-1) (MAP kinase-activated protein kinase 1b) (MAPK-activated protein kinase 1b) (MAPKAP kinase 1b) (MAPKAPK-1b) (Ribosomal S6 kinase 2) (RSK-2) (pp90RSK2) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:10436156, PubMed:9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:18508509, PubMed:18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:18722121). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4-induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). {ECO:0000250|UniProtKB:P18654, ECO:0000269|PubMed:10436156, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:8250835, ECO:0000269|PubMed:9770464, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}. |
P52735 | VAV2 | S576 | ochoa | Guanine nucleotide exchange factor VAV2 (VAV-2) | Guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). {ECO:0000250}. |
P54259 | ATN1 | S896 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P55196 | AFDN | S1779 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55201 | BRPF1 | S238 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P78332 | RBM6 | S353 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78559 | MAP1A | S1675 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S1749 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
Q00325 | SLC25A3 | S33 | ochoa | Solute carrier family 25 member 3 (Phosphate carrier protein, mitochondrial) (Phosphate transport protein) (PTP) | Inorganic ion transporter that transports phosphate or copper ions across the mitochondrial inner membrane into the matrix compartment (By similarity) (PubMed:17273968, PubMed:29237729). Mediates proton-coupled symport of phosphate ions necessary for mitochondrial oxidative phosphorylation of ADP to ATP (By similarity) (PubMed:17273968). Transports copper ions probably in the form of anionic copper(I) complexes to maintain mitochondrial matrix copper pool and to supply copper for cytochrome C oxidase complex assembly (PubMed:29237729). May also play a role in regulation of the mitochondrial permeability transition pore (mPTP) (By similarity). {ECO:0000250|UniProtKB:P12234, ECO:0000250|UniProtKB:P16036, ECO:0000269|PubMed:17273968, ECO:0000269|PubMed:29237729}. |
Q01196 | RUNX1 | S212 | ochoa | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q03164 | KMT2A | S518 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q07157 | TJP1 | S933 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08050 | FOXM1 | S508 | ochoa|psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q12789 | GTF3C1 | S1856 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12888 | TP53BP1 | S727 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13129 | RLF | S1022 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13415 | ORC1 | S199 | ochoa | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13495 | MAMLD1 | S190 | ochoa | Mastermind-like domain-containing protein 1 (F18) (Protein CG1) | Transactivates the HES3 promoter independently of NOTCH proteins. HES3 is a non-canonical NOTCH target gene which lacks binding sites for RBPJ. {ECO:0000269|PubMed:18162467}. |
Q14149 | MORC3 | S503 | ochoa | MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) | Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}. |
Q14814 | MEF2D | S192 | ochoa|psp | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15018 | ABRAXAS2 | S280 | ochoa | BRISC complex subunit Abraxas 2 (Abraxas brother protein 1) (Protein FAM175B) | Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked polyubiquitin, leaving the last ubiquitin chain attached to its substrates (PubMed:19214193, PubMed:20032457, PubMed:20656690, PubMed:24075985). May act as a central scaffold protein that assembles the various components of the BRISC complex and retains them in the cytoplasm (PubMed:20656690). Plays a role in regulating the onset of apoptosis via its role in modulating 'Lys-63'-linked ubiquitination of target proteins (By similarity). Required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activities by enhancing its stability and cell surface expression (PubMed:24075985, PubMed:26344097). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). Required for normal induction of p53/TP53 in response to DNA damage (PubMed:25283148). Independent of the BRISC complex, promotes interaction between USP7 and p53/TP53, and thereby promotes deubiquitination of p53/TP53, preventing its degradation and resulting in increased p53/TP53-mediated transcription regulation and p53/TP53-dependent apoptosis in response to DNA damage (PubMed:25283148). {ECO:0000250|UniProtKB:Q3TCJ1, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:20032457, ECO:0000269|PubMed:20656690, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25283148}. |
Q15036 | SNX17 | S446 | ochoa | Sorting nexin-17 | Critical regulator of endosomal recycling of numerous surface proteins, including integrins, signaling receptor and channels (PubMed:15121882, PubMed:15769472, PubMed:39587083). Binds to NPxY sequences in the cytoplasmic tails of target cargos (PubMed:21512128). Associates with retriever and CCC complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGB1, ITGB5 and their associated alpha subunits (PubMed:22492727, PubMed:28892079, PubMed:39587083). Also required for maintenance of normal cell surface levels of APP and LRP1 (PubMed:16712798, PubMed:19005208). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:16712798). {ECO:0000269|PubMed:15121882, ECO:0000269|PubMed:15769472, ECO:0000269|PubMed:16712798, ECO:0000269|PubMed:19005208, ECO:0000269|PubMed:21512128, ECO:0000269|PubMed:22492727, ECO:0000269|PubMed:28892079}. |
Q15185 | PTGES3 | S64 | ochoa | Prostaglandin E synthase 3 (EC 5.3.99.3) (Cytosolic prostaglandin E2 synthase) (cPGES) (Hsp90 co-chaperone) (Progesterone receptor complex p23) (Telomerase-binding protein p23) | Cytosolic prostaglandin synthase that catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2) (PubMed:10922363). Molecular chaperone that localizes to genomic response elements in a hormone-dependent manner and disrupts receptor-mediated transcriptional activation, by promoting disassembly of transcriptional regulatory complexes (PubMed:11274138, PubMed:12077419). Facilitates HIF alpha proteins hydroxylation via interaction with EGLN1/PHD2, leading to recruit EGLN1/PHD2 to the HSP90 pathway (PubMed:24711448). {ECO:0000269|PubMed:10922363, ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:12077419, ECO:0000269|PubMed:24711448}. |
Q15398 | DLGAP5 | S662 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15418 | RPS6KA1 | S363 | ochoa|psp | Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}. |
Q15468 | STIL | S409 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15678 | PTPN14 | S594 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15697 | ZNF174 | S287 | ochoa | Zinc finger protein 174 (AW-1) (Zinc finger and SCAN domain-containing protein 8) | Transcriptional repressor. {ECO:0000269|PubMed:7673192}. |
Q15911 | ZFHX3 | S1204 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16555 | DPYSL2 | S522 | ochoa|psp | Dihydropyrimidinase-related protein 2 (DRP-2) (Collapsin response mediator protein 2) (CRMP-2) (N2A3) (Unc-33-like phosphoprotein 2) (ULIP-2) | Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis. {ECO:0000269|PubMed:11477421, ECO:0000269|PubMed:15466863, ECO:0000269|PubMed:20801876}. |
Q16584 | MAP3K11 | S524 | ochoa|psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q16584 | MAP3K11 | S548 | ochoa|psp | Mitogen-activated protein kinase kinase kinase 11 (EC 2.7.11.25) (Mixed lineage kinase 3) (Src-homology 3 domain-containing proline-rich kinase) | Activates the JUN N-terminal pathway. Required for serum-stimulated cell proliferation and for mitogen and cytokine activation of MAPK14 (p38), MAPK3 (ERK) and MAPK8 (JNK1) through phosphorylation and activation of MAP2K4/MKK4 and MAP2K7/MKK7. Plays a role in mitogen-stimulated phosphorylation and activation of BRAF, but does not phosphorylate BRAF directly. Influences microtubule organization during the cell cycle. {ECO:0000269|PubMed:12529434, ECO:0000269|PubMed:15258589, ECO:0000269|PubMed:8195146, ECO:0000269|PubMed:9003778}. |
Q2KHR3 | QSER1 | S1211 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q3T8J9 | GON4L | S2097 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q4L180 | FILIP1L | S1019 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q4VCS5 | AMOT | S842 | ochoa | Angiomotin | Plays a central role in tight junction maintenance via the complex formed with ARHGAP17, which acts by regulating the uptake of polarity proteins at tight junctions. Appears to regulate endothelial cell migration and tube formation. May also play a role in the assembly of endothelial cell-cell junctions. Repressor of YAP1 and WWTR1/TAZ transcription of target genes, potentially via regulation of Hippo signaling-mediated phosphorylation of YAP1 which results in its recruitment to tight junctions (PubMed:21205866). {ECO:0000269|PubMed:11257124, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21205866}. |
Q53GS9 | USP39 | S46 | ochoa | Ubiquitin carboxyl-terminal hydrolase 39 (EC 3.4.19.12) (SAD1 homolog) (U4/U6.U5 tri-snRNP-associated 65 kDa protein) | Deubiquitinating enzyme that plays a role in many cellular processes including cellular antiviral response, epithelial morphogenesis, DNA repair or B-cell development (PubMed:33127822, PubMed:34614178). Plays a role in pre-mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the precatalytic spliceosome (PubMed:11350945, PubMed:26912367). Specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus and therefore plays an essential role in B-cell development (By similarity). Regulates AURKB mRNA levels, and thereby plays a role in cytokinesis and in the spindle checkpoint (PubMed:18728397). Regulates apoptosis and G2/M cell cycle checkpoint in response to DNA damage by deubiquitinating and stabilizing CHK2 (PubMed:30771428). Also plays an important role in DNA repair by controlling the recruitment of XRCC4/LIG4 to DNA double-strand breaks for non-homologous end-joining repair (PubMed:34614178). Participates in antiviral activity by affecting the type I IFN signaling by stabilizing STAT1 and decreasing its 'Lys-6'-linked ubiquitination (PubMed:33127822). Contributes to non-canonical Wnt signaling during epidermal differentiation (By similarity). Acts as a negative regulator NF-kappa-B activation through deubiquitination of 'Lys-48'-linked ubiquitination of NFKBIA (PubMed:36651806). {ECO:0000250|UniProtKB:Q3TIX9, ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:18728397, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:30771428, ECO:0000269|PubMed:33127822, ECO:0000269|PubMed:34614178, ECO:0000269|PubMed:36651806}. |
Q5T200 | ZC3H13 | S198 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5X7 | BEND3 | S164 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5T5Y3 | CAMSAP1 | S722 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T6C5 | ATXN7L2 | S575 | ochoa | Ataxin-7-like protein 2 | None |
Q5TH69 | ARFGEF3 | S1066 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5TH69 | ARFGEF3 | S1651 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5U5R9 | HECTD2 | S67 | ochoa | Probable E3 ubiquitin-protein ligase HECTD2 (EC 2.3.2.26) (HECT domain-containing protein 2) (HECT-type E3 ubiquitin transferase HECTD2) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:28584101}.; FUNCTION: (Microbial infection) Catalyzes ubiquitination of Botulinum neurotoxin A light chain (LC) of C.botulinum neurotoxin type A (BoNT/A). {ECO:0000269|PubMed:28584101}. |
Q5VV41 | ARHGEF16 | S191 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5VZ89 | DENND4C | S1333 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q63HR2 | TNS2 | S916 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q641Q2 | WASHC2A | S787 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q674X7 | KAZN | S352 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q68CZ2 | TNS3 | S901 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68CZ2 | TNS3 | S1293 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6KC79 | NIPBL | S350 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6N021 | TET2 | S38 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NUJ5 | PWWP2B | S191 | ochoa | PWWP domain-containing protein 2B | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260). Plays a role in facilitating transcriptional elongation through regulation of histone acetylation (By similarity). Negatively regulates brown adipocyte thermogenesis by interacting with and stabilizing HDAC1 at the UCP1 gene promoter, thereby promoting histone deacetylation at the promoter leading to the repression of UCP1 expression (By similarity). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:30228260}. |
Q6P4R8 | NFRKB | S351 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6PGQ7 | BORA | S112 | psp | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PGQ7 | BORA | S375 | ochoa | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PJF5 | RHBDF2 | S177 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q6VMQ6 | ATF7IP | S477 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6ZRV2 | FAM83H | S850 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZUJ8 | PIK3AP1 | S759 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q76FK4 | NOL8 | S268 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q7Z2D5 | PLPPR4 | S547 | ochoa | Phospholipid phosphatase-related protein type 4 (Brain-specific phosphatidic acid phosphatase-like protein 1) (Inactive 2-lysophosphatidate phosphatase PLPPR4) (Lipid phosphate phosphatase-related protein type 4) (Plasticity-related gene 1 protein) (PRG-1) | Postsynaptic density membrane protein that indirectly regulates glutamatergic synaptic transmission through lysophosphatidic acid (LPA)-mediated signaling pathways. Binds lysophosphatidic acid (LPA) and mediates its internalization into cells. Could act as receptor or a transporter of this lipid at the post-synaptic membrane (By similarity). Modulates lysophosphatidic acid (LPA) activity in neuron axonal outgrowth during development by attenuating phospholipid-induced axon collapse (By similarity). {ECO:0000250|UniProtKB:Q7TMB7, ECO:0000250|UniProtKB:Q7TME0}. |
Q7Z2Z1 | TICRR | S1167 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3J3 | RGPD4 | S128 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3J3 | RGPD4 | S1487 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z4H7 | HAUS6 | S552 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q86U86 | PBRM1 | S178 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86X51 | EZHIP | S105 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XL3 | ANKLE2 | S259 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86YV5 | PRAG1 | S492 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IV36 | HID1 | S653 | ochoa | Protein HID1 (Down-regulated in multiple cancers 1) (HID1 domain-containing protein) (Protein hid-1 homolog) | May play an important role in the development of cancers in a broad range of tissues. {ECO:0000269|PubMed:11281419}. |
Q8N350 | CBARP | S328 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N3K9 | CMYA5 | S1425 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8NAP3 | ZBTB38 | S244 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NB15 | ZNF511 | S214 | ochoa | Zinc finger protein 511 | May be involved in transcriptional regulation. {ECO:0000305}. |
Q8NEM0 | MCPH1 | S333 | ochoa | Microcephalin | Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}. |
Q8NFC6 | BOD1L1 | S2025 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S2203 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFH5 | NUP35 | S100 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8NFI3 | ENGASE | S66 | ochoa | Cytosolic endo-beta-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) | Endoglycosidase that releases N-glycans from glycoproteins by cleaving the beta-1,4-glycosidic bond in the N,N'-diacetylchitobiose core. Involved in the processing of free oligosaccharides in the cytosol. {ECO:0000269|PubMed:12114544}. |
Q8TDF6 | RASGRP4 | S184 | ochoa | RAS guanyl-releasing protein 4 | Functions as a cation- and diacylglycerol (DAG)-regulated nucleotide exchange factor activating Ras through the exchange of bound GDP for GTP (PubMed:11880369, PubMed:11956218, PubMed:12493770, PubMed:18024961). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting Ras-mediated activation of PIK3CG/PI3Kgamma to promote neutrophil functional responses (By similarity). In CD117(+) dendritic cells and mast cells, participates in an lipopolysaccharide (LPS)-activated signaling pathway that stimulates the production of interferon-gamma and other pro-inflammatory cytokines by natural killer (NK) cells (By similarity). May function in mast cell differentiation (PubMed:11880369, PubMed:11956218, PubMed:12493770, PubMed:18024961). Does not appear to be required for the development of B-cells, DC-cells, T-cells, or NK-cells (By similarity). {ECO:0000250|UniProtKB:Q8BTM9, ECO:0000269|PubMed:11880369, ECO:0000269|PubMed:11956218, ECO:0000269|PubMed:12493770, ECO:0000269|PubMed:18024961}. |
Q8TEH3 | DENND1A | S473 | ochoa | DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) | Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}. |
Q8TEU7 | RAPGEF6 | S1494 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8WY36 | BBX | S159 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q92610 | ZNF592 | S441 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92614 | MYO18A | S164 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92619 | ARHGAP45 | S569 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q92794 | KAT6A | S954 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q96EV2 | RBM33 | S1045 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96FS4 | SIPA1 | S839 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96FV9 | THOC1 | S560 | ochoa | THO complex subunit 1 (Nuclear matrix protein p84) (p84N5) (hTREX84) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B/UAP56 (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Regulates transcriptional elongation of a subset of genes (PubMed:22144908). Involved in genome stability by preventing co-transcriptional R-loop formation (By similarity). May play a role in hair cell formation, hence may be involved in hearing (By similarity). {ECO:0000250|UniProtKB:Q7SYB2, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: Participates in an apoptotic pathway which is characterized by activation of caspase-6, increases in the expression of BAK1 and BCL2L1 and activation of NF-kappa-B. This pathway does not require p53/TP53, nor does the presence of p53/TP53 affect the efficiency of cell killing. Activates a G2/M cell cycle checkpoint prior to the onset of apoptosis. Apoptosis is inhibited by association with RB1.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q96JA1 | LRIG1 | S1069 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96L73 | NSD1 | S2573 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96MM6 | HSPA12B | S46 | ochoa | Heat shock 70 kDa protein 12B (Heat shock protein family A member 12B) | None |
Q96NU1 | SAMD11 | S646 | ochoa | Sterile alpha motif domain-containing protein 11 (SAM domain-containing protein 11) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, essential for establishing rod photoreceptor cell identity and function by silencing nonrod gene expression in developing rod photoreceptor cells. {ECO:0000250|UniProtKB:Q1RNF8}. |
Q96QT6 | PHF12 | S555 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96S97 | MYADM | S22 | ochoa | Myeloid-associated differentiation marker (Protein SB135) | None |
Q96T23 | RSF1 | S570 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1359 | ochoa|psp | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T88 | UHRF1 | S639 | ochoa|psp | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99590 | SCAF11 | S629 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99666 | RGPD5 | S128 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99666 | RGPD5 | S1486 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99759 | MAP3K3 | S355 | ochoa | Mitogen-activated protein kinase kinase kinase 3 (EC 2.7.11.25) (MAPK/ERK kinase kinase 3) (MEK kinase 3) (MEKK 3) | Component of a protein kinase signal transduction cascade. Mediates activation of the NF-kappa-B, AP1 and DDIT3 transcriptional regulators. {ECO:0000269|PubMed:12912994, ECO:0000269|PubMed:14661019, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:33729480, ECO:0000269|PubMed:33891857, ECO:0000269|PubMed:9006902}. |
Q9BSF8 | BTBD10 | S92 | ochoa | BTB/POZ domain-containing protein 10 (Glucose metabolism-related protein 1) | Plays a major role as an activator of AKT family members by inhibiting PPP2CA-mediated dephosphorylation, thereby keeping AKTs activated. Plays a role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. {ECO:0000250|UniProtKB:Q80X66}. |
Q9BSJ6 | PIMREG | S131 | ochoa|psp | Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) | During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}. |
Q9C0H5 | ARHGAP39 | S488 | ochoa | Rho GTPase-activating protein 39 | None |
Q9H165 | BCL11A | S432 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1E3 | NUCKS1 | S40 | ochoa | Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) | Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}. |
Q9H257 | CARD9 | S277 | ochoa | Caspase recruitment domain-containing protein 9 (hCARD9) | Adapter protein that plays a key role in innate immune response against fungi by forming signaling complexes downstream of C-type lectin receptors (PubMed:26961233, PubMed:33558980). CARD9-mediated signals are essential for antifungal immunity against a subset of fungi from the phylum Ascomycota (PubMed:24231284, PubMed:25057046, PubMed:25702837, PubMed:26521038, PubMed:26679537, PubMed:26961233, PubMed:27777981, PubMed:29080677, PubMed:33558980). Transduces signals in myeloid cells downstream of C-type lectin receptors CLEC7A (dectin-1), CLEC6A (dectin-2) and CLEC4E (Mincle), which detect pathogen-associated molecular pattern metabolites (PAMPs), such as fungal carbohydrates, and trigger CARD9 activation (By similarity). Upon activation, CARD9 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:11053425, PubMed:26488816, PubMed:26961233, PubMed:31296852, PubMed:33558980). CARD9 signaling in antigen-presenting cells links innate sensing of fungi to the activation of adaptive immunity and provides a cytokine milieu that induces the development and subsequent of interleukin 17-producing T helper (Th17) cells (PubMed:24231284). Also involved in activation of myeloid cells via classical ITAM-associated receptors and TLR: required for TLR-mediated activation of MAPK, while it is not required for TLR-induced activation of NF-kappa-B (By similarity). CARD9 can also be engaged independently of BCL10: forms a complex with RASGRF1 downstream of C-type lectin receptors, which recruits and activates HRAS, leading to ERK activation and the production of cytokines (By similarity). Acts as an important regulator of the intestinal commensal fungi (mycobiota) component of the gut microbiota (PubMed:33548172). Plays an essential role in antifungal immunity against dissemination of gut fungi: acts by promoting induction of antifungal IgG antibodies response in CX3CR1(+) macrophages to confer protection against disseminated C.albicans or C.auris infection (PubMed:33548172). Also mediates immunity against other pathogens, such as certain bacteria, viruses and parasites; CARD9 signaling is however redundant with other innate immune responses (By similarity). In response to L.monocytogenes infection, required for the production of inflammatory cytokines activated by intracellular peptidoglycan: acts by connecting NOD2 recognition of peptidoglycan to downstream activation of MAP kinases (MAPK) without activating NF-kappa-B (By similarity). {ECO:0000250|UniProtKB:A2AIV8, ECO:0000269|PubMed:11053425, ECO:0000269|PubMed:24231284, ECO:0000269|PubMed:25057046, ECO:0000269|PubMed:25702837, ECO:0000269|PubMed:26488816, ECO:0000269|PubMed:26521038, ECO:0000269|PubMed:26679537, ECO:0000269|PubMed:26961233, ECO:0000269|PubMed:27777981, ECO:0000269|PubMed:29080677, ECO:0000269|PubMed:31296852, ECO:0000269|PubMed:33548172, ECO:0000269|PubMed:33558980}. |
Q9H2X6 | HIPK2 | S827 | ochoa|psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H3H1 | TRIT1 | S443 | ochoa | tRNA dimethylallyltransferase (EC 2.5.1.75) (Isopentenyl-diphosphate:tRNA isopentenyltransferase) (IPP transferase) (IPPT) (hGRO1) (tRNA isopentenyltransferase 1) (IPTase) | Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 of both cytosolic and mitochondrial tRNAs, leading to the formation of N6-(dimethylallyl)adenosine (i6A37) (PubMed:11111046, PubMed:24126054, PubMed:24901367, PubMed:34774131). Mediates modification of a limited subset of tRNAs: tRNA(Ser)(AGA), tRNA(Ser)(CGA), tRNA(Ser)(UGA), as well as partial modification of the selenocysteine tRNA(Ser)(UCA) (PubMed:24126054). TRIT1 is therefore required for selenoprotein expression (PubMed:24126054). {ECO:0000269|PubMed:11111046, ECO:0000269|PubMed:24126054, ECO:0000269|PubMed:24901367, ECO:0000269|PubMed:34774131}. |
Q9H582 | ZNF644 | S1189 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H6R4 | NOL6 | S811 | ochoa | Nucleolar protein 6 (Nucleolar RNA-associated protein) (Nrap) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:11895476, ECO:0000269|PubMed:34516797}. |
Q9H7U1 | CCSER2 | S206 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9HB65 | ELL3 | S239 | ochoa | RNA polymerase II elongation factor ELL3 | Enhancer-binding elongation factor that specifically binds enhancers in embryonic stem cells (ES cells), marks them, and is required for their future activation during stem cell specification. Does not only bind to enhancer regions of active genes, but also marks the enhancers that are in a poised or inactive state in ES cells and is required for establishing proper RNA polymerase II occupancy at developmentally regulated genes in a cohesin-dependent manner. Probably required for priming developmentally regulated genes for later recruitment of the super elongation complex (SEC), for transcriptional activation during differentiation. Required for recruitment of P-TEFb within SEC during differentiation. Probably preloaded on germ cell chromatin, suggesting that it may prime gene activation by marking enhancers as early as in the germ cells. Promoting epithelial-mesenchymal transition (EMT) (By similarity). Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). {ECO:0000250, ECO:0000269|PubMed:10882741, ECO:0000269|PubMed:22195968}. |
Q9HB96 | FANCE | S249 | ochoa | Fanconi anemia group E protein (Protein FACE) | As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}. |
Q9HBG4 | ATP6V0A4 | S690 | ochoa | V-type proton ATPase 116 kDa subunit a 4 (V-ATPase 116 kDa isoform a 4) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 4) (Vacuolar proton translocating ATPase 116 kDa subunit a kidney isoform) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Involved in normal vectorial acid transport into the urine by the kidney (PubMed:10973252, PubMed:12414817). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:10973252, ECO:0000269|PubMed:12414817}. |
Q9HC52 | CBX8 | S110 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCE3 | ZNF532 | S1140 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9NQG5 | RPRD1B | S166 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 1B (Cell cycle-related and expression-elevated protein in tumor) | Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly-A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter through promotion of the formation of a chromatin loop. Also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A. Promotes cell proliferation. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:22264791, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}. |
Q9NQW6 | ANLN | S388 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NR80 | ARHGEF4 | S62 | ochoa | Rho guanine nucleotide exchange factor 4 (APC-stimulated guanine nucleotide exchange factor 1) (Asef) (Asef1) | Acts as a guanine nucleotide exchange factor (GEF) for RHOA, RAC1 and CDC42 GTPases. Binding of APC may activate RAC1 GEF activity. The APC-ARHGEF4 complex seems to be involved in cell migration as well as in E-cadherin-mediated cell-cell adhesion. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Involved in tumor angiogenesis and may play a role in intestinal adenoma formation and tumor progression. {ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:12598901, ECO:0000269|PubMed:17145773, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19893577}. |
Q9NRP7 | STK36 | S1293 | ochoa | Serine/threonine-protein kinase 36 (EC 2.7.11.1) (Fused homolog) | Serine/threonine protein kinase which plays an important role in the sonic hedgehog (Shh) pathway by regulating the activity of GLI transcription factors (PubMed:10806483). Controls the activity of the transcriptional regulators GLI1, GLI2 and GLI3 by opposing the effect of SUFU and promoting their nuclear localization (PubMed:10806483). GLI2 requires an additional function of STK36 to become transcriptionally active, but the enzyme does not need to possess an active kinase catalytic site for this to occur (PubMed:10806483). Required for postnatal development, possibly by regulating the homeostasis of cerebral spinal fluid or ciliary function. Essential for construction of the central pair apparatus of motile cilia. {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:28543983}. |
Q9NTI5 | PDS5B | S1383 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NW13 | RBM28 | S397 | ochoa | RNA-binding protein 28 (RNA-binding motif protein 28) | Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}. |
Q9NXF7 | DCAF16 | S130 | ochoa | DDB1- and CUL4-associated factor 16 | Functions as a substrate recognition component for CUL4-DDB1 E3 ubiquitin-protein ligase complex, which mediates ubiquitination and proteasome-dependent degradation of nuclear proteins. {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:31209349}. |
Q9NYD6 | HOXC10 | S152 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYD6 | HOXC10 | S210 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9P219 | CCDC88C | S1683 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P260 | RELCH | S244 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9UI08 | EVL | S354 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UK32 | RPS6KA6 | S372 | ochoa|psp | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q9UKX7 | NUP50 | S315 | ochoa|psp | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9ULD9 | ZNF608 | S1453 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULF5 | SLC39A10 | S591 | ochoa | Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) | Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}. |
Q9UM11 | FZR1 | S151 | ochoa|psp | Fizzy-related protein homolog (Fzr) (CDC20-like protein 1) (Cdh1/Hct1 homolog) (hCDH1) | Substrate-specific adapter for the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin-protein ligase complex. Associates with the APC/C in late mitosis, in replacement of CDC20, and activates the APC/C during anaphase and telophase. The APC/C remains active in degrading substrates to ensure that positive regulators of the cell cycle do not accumulate prematurely. At the G1/S transition FZR1 is phosphorylated, leading to its dissociation from the APC/C. Following DNA damage, it is required for the G2 DNA damage checkpoint: its dephosphorylation and reassociation with the APC/C leads to the ubiquitination of PLK1, preventing entry into mitosis. Acts as an adapter for APC/C to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, may play a role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:25349192). {ECO:0000269|PubMed:14701726, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:25349192, ECO:0000269|PubMed:9734353}. |
Q9UNN5 | FAF1 | S270 | ochoa | FAS-associated factor 1 (hFAF1) (UBX domain-containing protein 12) (UBX domain-containing protein 3A) | Ubiquitin-binding protein (PubMed:19722279). Required for the progression of DNA replication forks by targeting DNA replication licensing factor CDT1 for degradation (PubMed:26842564). Potentiates but cannot initiate FAS-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:P54731, ECO:0000269|PubMed:19722279, ECO:0000269|PubMed:26842564}. |
Q9UPN9 | TRIM33 | S862 | ochoa | E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) | Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}. |
Q9UQ35 | SRRM2 | S2123 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2W1 | THRAP3 | S672 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y4B5 | MTCL1 | S685 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4B5 | MTCL1 | S1752 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
P08684 | CYP3A4 | S134 | EPSD|PSP | Cytochrome P450 3A4 (EC 1.14.14.1) (1,4-cineole 2-exo-monooxygenase) (1,8-cineole 2-exo-monooxygenase) (EC 1.14.14.56) (Albendazole monooxygenase (sulfoxide-forming)) (EC 1.14.14.73) (Albendazole sulfoxidase) (CYPIIIA3) (CYPIIIA4) (Cholesterol 25-hydroxylase) (Cytochrome P450 3A3) (Cytochrome P450 HLp) (Cytochrome P450 NF-25) (Cytochrome P450-PCN1) (Nifedipine oxidase) (Quinine 3-monooxygenase) (EC 1.14.14.55) | A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981). {ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:10759686, ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:11159812, ECO:0000269|PubMed:11555828, ECO:0000269|PubMed:11695850, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:14559847, ECO:0000269|PubMed:15373842, ECO:0000269|PubMed:15764715, ECO:0000269|PubMed:19965576, ECO:0000269|PubMed:20702771, ECO:0000269|PubMed:21490593, ECO:0000269|PubMed:21576599, ECO:0000269|PubMed:22773874, ECO:0000269|PubMed:2732228, ECO:0000269|PubMed:29461981, ECO:0000269|PubMed:8968357, ECO:0000269|PubMed:9435160}. |
Q15349 | RPS6KA2 | S360 | Sugiyama | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
A0A0A6YYL1 | ST20-MTHFS | S73 | ochoa | 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) | None |
A5PLL1 | ANKRD34B | S228 | ochoa | Ankyrin repeat domain-containing protein 34B | None |
D6RIA3 | C4orf54 | S1187 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
H3BRB1 | None | S238 | ochoa | polynucleotide adenylyltransferase (EC 2.7.7.19) | None |
O43237 | DYNC1LI2 | S194 | ochoa | Cytoplasmic dynein 1 light intermediate chain 2 (Dynein light intermediate chain 2, cytosolic) (LIC-2) (LIC53/55) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. {ECO:0000305|PubMed:36071160}. |
O43353 | RIPK2 | S357 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43379 | WDR62 | S1144 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O75030 | MITF | S180 | psp | Microphthalmia-associated transcription factor (Class E basic helix-loop-helix protein 32) (bHLHe32) | Transcription factor that acts as a master regulator of melanocyte survival and differentiation as well as melanosome biogenesis (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Binds to M-boxes (5'-TCATGTG-3') and symmetrical DNA sequences (E-boxes) (5'-CACGTG-3') found in the promoter of pigmentation genes, such as tyrosinase (TYR) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, MITF phosphorylation by MTOR promotes its inactivation (PubMed:36608670). Upon starvation or lysosomal stress, inhibition of MTOR induces MITF dephosphorylation, resulting in transcription factor activity (PubMed:36608670). Plays an important role in melanocyte development by regulating the expression of tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). Plays a critical role in the differentiation of various cell types, such as neural crest-derived melanocytes, mast cells, osteoclasts and optic cup-derived retinal pigment epithelium (PubMed:10587587, PubMed:22647378, PubMed:27889061, PubMed:9647758). {ECO:0000269|PubMed:10587587, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:27889061, ECO:0000269|PubMed:36608670, ECO:0000269|PubMed:9647758}. |
O75151 | PHF2 | S655 | ochoa|psp | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75362 | ZNF217 | S421 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75369 | FLNB | S1505 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75376 | NCOR1 | S97 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75970 | MPDZ | S354 | ochoa | Multiple PDZ domain protein (Multi-PDZ domain protein 1) | Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}. |
O94864 | SUPT7L | S108 | ochoa | STAGA complex 65 subunit gamma (Adenocarcinoma antigen ART1) (SPTF-associated factor 65 gamma) (STAF65gamma) (Suppressor of Ty 7-like) | None |
O94885 | SASH1 | S101 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O95155 | UBE4B | S238 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95163 | ELP1 | S1211 | ochoa | Elongator complex protein 1 (ELP1) (IkappaB kinase complex-associated protein) (IKK complex-associated protein) (p150) | Component of the elongator complex which is required for multiple tRNA modifications, including mcm5U (5-methoxycarbonylmethyl uridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), and ncm5U (5-carbamoylmethyl uridine) (PubMed:29332244). The elongator complex catalyzes the formation of carboxymethyluridine in the wobble base at position 34 in tRNAs (PubMed:29332244). Regulates the migration and branching of projection neurons in the developing cerebral cortex, through a process depending on alpha-tubulin acetylation (By similarity). ELP1 binds to tRNA, mediating interaction of the elongator complex with tRNA (By similarity). May act as a scaffold protein that assembles active IKK-MAP3K14 complexes (IKKA, IKKB and MAP3K14/NIK) (PubMed:9751059). {ECO:0000250|UniProtKB:Q06706, ECO:0000250|UniProtKB:Q7TT37, ECO:0000269|PubMed:9751059, ECO:0000303|PubMed:29332244}. |
O95613 | PCNT | S2214 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95905 | ECD | S419 | ochoa | Protein ecdysoneless homolog (Human suppressor of GCR two) (hSGT1) | Regulator of p53/TP53 stability and function. Inhibits MDM2-mediated degradation of p53/TP53 possibly by cooperating in part with TXNIP (PubMed:16849563, PubMed:23880345). May be involved transcriptional regulation. In vitro has intrinsic transactivation activity enhanced by EP300. May be a transcriptional activator required for the expression of glycolytic genes (PubMed:19919181, PubMed:9928932). Involved in regulation of cell cycle progression. Proposed to disrupt Rb-E2F binding leading to transcriptional activation of E2F proteins (PubMed:19640839). The cell cycle -regulating function may depend on its RUVBL1-mediated association with the R2TP complex (PubMed:26711270). May play a role in regulation of pre-mRNA splicing (PubMed:24722212). Participates together with DDX39A in mRNA nuclear export (PubMed:33941617). {ECO:0000269|PubMed:16849563, ECO:0000269|PubMed:19640839, ECO:0000269|PubMed:19919181, ECO:0000269|PubMed:23880345, ECO:0000269|PubMed:26711270, ECO:0000269|PubMed:33941617, ECO:0000305|PubMed:24722212, ECO:0000305|PubMed:9928932}. |
P02545 | LMNA | S22 | ochoa|psp | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P02724 | GYPA | S121 | ochoa | Glycophorin-A (MN sialoglycoprotein) (PAS-2) (Sialoglycoprotein alpha) (CD antigen CD235a) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Glycophorin A is the major intrinsic membrane protein of the erythrocyte. The N-terminal glycosylated segment, which lies outside the erythrocyte membrane, has MN blood group receptors. Appears to be important for the function of SLC4A1 and is required for high activity of SLC4A1. May be involved in translocation of SLC4A1 to the plasma membrane. {ECO:0000269|PubMed:10926825, ECO:0000269|PubMed:12813056, ECO:0000269|PubMed:14604989, ECO:0000269|PubMed:19438409, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Appears to be a receptor for Hepatitis A virus (HAV). {ECO:0000269|PubMed:15331714}.; FUNCTION: (Microbial infection) Receptor for P.falciparum erythrocyte-binding antigen 175 (EBA-175); binding of EBA-175 is dependent on sialic acid residues of the O-linked glycans. {ECO:0000269|PubMed:8009226}. |
P08651 | NFIC | S366 | ochoa | Nuclear factor 1 C-type (NF1-C) (Nuclear factor 1/C) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/C) (NF-I/C) (NFI-C) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
P10072 | ZNF875 | S220 | ochoa | Zinc finger protein 875 (Krueppel-related zinc finger protein 1) (Protein HKR1) | May be involved in transcriptional regulation. |
P10914 | IRF1 | S282 | ochoa | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P15976 | GATA1 | S187 | psp | Erythroid transcription factor (Eryf1) (GATA-binding factor 1) (GATA-1) (GF-1) (NF-E1 DNA-binding protein) | Transcriptional activator or repressor which serves as a general switch factor for erythroid development (PubMed:35030251). It binds to DNA sites with the consensus sequence 5'-[AT]GATA[AG]-3' within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS (PubMed:24245781). {ECO:0000269|PubMed:22235304, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:35030251}. |
P18825 | ADRA2C | S338 | ochoa | Alpha-2C adrenergic receptor (Alpha-2 adrenergic receptor subtype C4) (Alpha-2C adrenoreceptor) (Alpha-2C adrenoceptor) (Alpha-2CAR) | Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. |
P20700 | LMNB1 | S23 | ochoa|psp | Lamin-B1 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}. |
P21333 | FLNA | S1533 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1734 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P31249 | HOXD3 | S266 | ochoa | Homeobox protein Hox-D3 (Homeobox protein Hox-4A) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P31629 | HIVEP2 | S71 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P40763 | STAT3 | S727 | ochoa|psp | Signal transducer and activator of transcription 3 (Acute-phase response factor) | Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:P42227, ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:12359225, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15194700, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:17344214, ECO:0000269|PubMed:18242580, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:23084476, ECO:0000269|PubMed:28065600, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:32929201, ECO:0000269|PubMed:38404237}. |
P46013 | MKI67 | S235 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46100 | ATRX | S656 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P48681 | NES | S842 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49662 | CASP4 | S271 | ochoa | Caspase-4 (CASP-4) (EC 3.4.22.57) (ICE and Ced-3 homolog 2) (ICH-2) (ICE(rel)-II) (Mih1) (Protease TX) [Cleaved into: Caspase-4 subunit p10; Caspase-4 subunit p20] | Inflammatory caspase that acts as the effector of the non-canonical inflammasome by mediating lipopolysaccharide (LPS)-induced pyroptosis (PubMed:25119034, PubMed:26375003, PubMed:32109412, PubMed:34671164, PubMed:37001519, PubMed:37993712, PubMed:37993714). Also indirectly activates the NLRP3 and NLRP6 inflammasomes (PubMed:23516580, PubMed:26375003, PubMed:32109412, PubMed:7797510). Acts as a thiol protease that cleaves a tetrapeptide after an Asp residue at position P1: catalyzes cleavage of CGAS, GSDMD and IL18 (PubMed:15326478, PubMed:23516580, PubMed:26375003, PubMed:28314590, PubMed:32109412, PubMed:37993712, PubMed:37993714, PubMed:7797510). Effector of the non-canonical inflammasome independently of NLRP3 inflammasome and CASP1: the non-canonical inflammasome promotes pyroptosis through GSDMD cleavage without involving secretion of cytokine IL1B (PubMed:25119034, PubMed:25121752, PubMed:26375003, PubMed:31268602, PubMed:32109412, PubMed:37993712, PubMed:37993714). In the non-canonical inflammasome, CASP4 is activated by direct binding to the lipid A moiety of LPS without the need of an upstream sensor (PubMed:25119034, PubMed:25121752, PubMed:29520027, PubMed:32510692, PubMed:32581219, PubMed:37993712). LPS-binding promotes CASP4 activation and CASP4-mediated cleavage of GSDMD and IL18, followed by IL18 secretion through the GSDMD pore, pyroptosis of infected cells and their extrusion into the gut lumen (PubMed:25119034, PubMed:25121752, PubMed:37993712, PubMed:37993714). Also indirectly promotes secretion of mature cytokines (IL1A and HMGB1) downstream of GSDMD-mediated pyroptosis via activation of the NLRP3 and NLRP6 inflammasomes (PubMed:26375003, PubMed:32109412). Involved in NLRP3-dependent CASP1 activation and IL1B secretion in response to non-canonical activators, such as UVB radiation or cholera enterotoxin (PubMed:22246630, PubMed:23516580, PubMed:24879791, PubMed:25964352, PubMed:26173988, PubMed:26174085, PubMed:26508369). Involved in NLRP6 inflammasome-dependent activation in response to lipoteichoic acid (LTA), a cell-wall component of Gram-positive bacteria, which leads to CASP1 activation and IL1B secretion (PubMed:33377178). Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). The non-canonical inflammasome is required for innate immunity to cytosolic, but not vacuolar, bacteria (By similarity). Plays a crucial role in the restriction of S.typhimurium replication in colonic epithelial cells during infection (PubMed:25121752, PubMed:25964352). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation (PubMed:25121752, PubMed:25964352, PubMed:26375003). May also act as an activator of adaptive immunity in dendritic cells, following activation by oxidized phospholipid 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine, an oxidized phospholipid (oxPAPC) (By similarity). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found in Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP4 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32109412). Catalyzes cleavage and maturation of IL18; IL18 processing also depends of the exosite interface on CASP4 (PubMed:15326478, PubMed:37993712, PubMed:37993714). In contrast, it does not directly process IL1B (PubMed:7743998, PubMed:7797510, PubMed:7797592). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590). {ECO:0000250|UniProtKB:P70343, ECO:0000269|PubMed:15123740, ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:22246630, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:23661706, ECO:0000269|PubMed:24879791, ECO:0000269|PubMed:25119034, ECO:0000269|PubMed:25121752, ECO:0000269|PubMed:25964352, ECO:0000269|PubMed:26173988, ECO:0000269|PubMed:26174085, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26508369, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:29520027, ECO:0000269|PubMed:31268602, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32510692, ECO:0000269|PubMed:32581219, ECO:0000269|PubMed:33377178, ECO:0000269|PubMed:34671164, ECO:0000269|PubMed:37001519, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7743998, ECO:0000269|PubMed:7797510, ECO:0000269|PubMed:7797592}.; FUNCTION: (Microbial infection) In response to the Td92 surface protein of the periodontal pathogen T.denticola, activated by cathepsin CTSG which leads to production and secretion of IL1A and pyroptosis of gingival fibroblasts. {ECO:0000269|PubMed:29077095}. |
P49914 | MTHFS | S97 | ochoa | 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) (5,10-methenyl-tetrahydrofolate synthetase) (MTHFS) (Methenyl-THF synthetase) | Contributes to tetrahydrofolate metabolism. Helps regulate carbon flow through the folate-dependent one-carbon metabolic network that supplies carbon for the biosynthesis of purines, thymidine and amino acids. Catalyzes the irreversible conversion of 5-formyltetrahydrofolate (5-FTHF) to yield 5,10-methenyltetrahydrofolate. {ECO:0000269|PubMed:8522195}. |
P54845 | NRL | S91 | psp | Neural retina-specific leucine zipper protein (NRL) | Acts as a transcriptional activator which regulates the expression of several rod-specific genes, including RHO and PDE6B (PubMed:21981118). Also functions as a transcriptional coactivator, stimulating transcription mediated by the transcription factor CRX and NR2E3 (PubMed:17335001). Binds to the rhodopsin promoter in a sequence-specific manner (PubMed:17335001). {ECO:0000269|PubMed:17335001, ECO:0000269|PubMed:21981118}. |
P55201 | BRPF1 | S1081 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P98161 | PKD1 | Y3334 | ochoa | Polycystin-1 (PC1) (Autosomal dominant polycystic kidney disease 1 protein) | Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B (PubMed:27214281). Both PKD1 and PKD2 are required for channel activity (PubMed:27214281). Involved in renal tubulogenesis (PubMed:12482949). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). Acts as a regulator of cilium length, together with PKD2 (By similarity). The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling (By similarity). The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling (By similarity). May be an ion-channel regulator. Involved in adhesive protein-protein and protein-carbohydrate interactions. Likely to be involved with polycystin-1-interacting protein 1 in the detection, sequestration and exocytosis of senescent mitochondria (PubMed:37681898). {ECO:0000250|UniProtKB:O08852, ECO:0000269|PubMed:12482949, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:37681898}. |
P98174 | FGD1 | S82 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q02779 | MAP3K10 | S489 | ochoa | Mitogen-activated protein kinase kinase kinase 10 (EC 2.7.11.25) (Mixed lineage kinase 2) (Protein kinase MST) | Activates the JUN N-terminal pathway. {ECO:0000250}. |
Q03188 | CENPC | S333 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03252 | LMNB2 | S37 | ochoa|psp | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q08050 | FOXM1 | S331 | ochoa|psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q0D2I5 | IFFO1 | S132 | ochoa | Non-homologous end joining factor IFFO1 (NHEJ factor IFFO1) (Intermediate filament family orphan 1) (Tumor antigen HOM-TES-103) | Nuclear matrix protein involved in the immobilization of broken DNA ends and the suppression of chromosome translocation during DNA double-strand breaks (DSBs) (PubMed:31548606). Interacts with the nuclear lamina component LMNA, resulting in the formation of a nucleoskeleton that relocalizes to the DSB sites in a XRCC4-dependent manner and promotes the immobilization of the broken ends, thereby preventing chromosome translocation (PubMed:31548606). Acts as a scaffold that allows the DNA repair protein XRCC4 and LMNA to assemble into a complex at the DSB sites (PubMed:31548606). {ECO:0000269|PubMed:31548606}. |
Q12802 | AKAP13 | S1411 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q13118 | KLF10 | S249 | ochoa | Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) | Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}. |
Q14153 | FAM53B | S179 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14160 | SCRIB | S1486 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14315 | FLNC | S1527 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S1624 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14451 | GRB7 | S194 | ochoa|psp | Growth factor receptor-bound protein 7 (B47) (Epidermal growth factor receptor GRB-7) (GRB7 adapter protein) | Adapter protein that interacts with the cytoplasmic domain of numerous receptor kinases and modulates down-stream signaling. Promotes activation of down-stream protein kinases, including STAT3, AKT1, MAPK1 and/or MAPK3. Promotes activation of HRAS. Plays a role in signal transduction in response to EGF. Plays a role in the regulation of cell proliferation and cell migration. Plays a role in the assembly and stability of RNA stress granules. Binds to the 5'UTR of target mRNA molecules and represses translation of target mRNA species, when not phosphorylated. Phosphorylation impairs RNA binding and promotes stress granule disassembly during recovery after cellular stress (By similarity). {ECO:0000250, ECO:0000269|PubMed:10893408, ECO:0000269|PubMed:12021278, ECO:0000269|PubMed:12223469, ECO:0000269|PubMed:20622016}. |
Q14643 | ITPR1 | S436 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR1 (IP3 receptor isoform 1) (IP3R 1) (InsP3R1) (Inositol 1,4,5 trisphosphate receptor) (Inositol 1,4,5-trisphosphate receptor type 1) (Type 1 inositol 1,4,5-trisphosphate receptor) (Type 1 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon inositol 1,4,5-trisphosphate binding, mediates calcium release from the endoplasmic reticulum (ER) (PubMed:10620513, PubMed:27108797). Undergoes conformational changes upon ligand binding, suggesting structural flexibility that allows the channel to switch from a closed state, capable of interacting with its ligands such as 1,4,5-trisphosphate and calcium, to an open state, capable of transferring calcium ions across the ER membrane (By similarity). Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CAMK2 complex (By similarity). Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Regulates fertilization and egg activation by tuning the frequency and amplitude of calcium oscillations (By similarity). {ECO:0000250|UniProtKB:P11881, ECO:0000250|UniProtKB:P29994, ECO:0000269|PubMed:10620513, ECO:0000269|PubMed:27108797}. |
Q15003 | NCAPH | S87 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15036 | SNX17 | S421 | ochoa | Sorting nexin-17 | Critical regulator of endosomal recycling of numerous surface proteins, including integrins, signaling receptor and channels (PubMed:15121882, PubMed:15769472, PubMed:39587083). Binds to NPxY sequences in the cytoplasmic tails of target cargos (PubMed:21512128). Associates with retriever and CCC complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGB1, ITGB5 and their associated alpha subunits (PubMed:22492727, PubMed:28892079, PubMed:39587083). Also required for maintenance of normal cell surface levels of APP and LRP1 (PubMed:16712798, PubMed:19005208). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:16712798). {ECO:0000269|PubMed:15121882, ECO:0000269|PubMed:15769472, ECO:0000269|PubMed:16712798, ECO:0000269|PubMed:19005208, ECO:0000269|PubMed:21512128, ECO:0000269|PubMed:22492727, ECO:0000269|PubMed:28892079}. |
Q15366 | PCBP2 | S272 | ochoa|psp | Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}. |
Q15596 | NCOA2 | S1072 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q2KJY2 | KIF26B | S1132 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q49AM3 | TTC31 | S464 | ochoa | Tetratricopeptide repeat protein 31 (TPR repeat protein 31) | None |
Q5D1E8 | ZC3H12A | S99 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5JSZ5 | PRRC2B | S288 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JSZ5 | PRRC2B | S745 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SVQ8 | ZBTB41 | S57 | ochoa | Zinc finger and BTB domain-containing protein 41 | May be involved in transcriptional regulation. |
Q5T0F9 | CC2D1B | S530 | ochoa | Coiled-coil and C2 domain-containing protein 1B (Five prime repressor element under dual repression-binding protein 2) (FRE under dual repression-binding protein 2) (Freud-2) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. {ECO:0000269|PubMed:19423080}. |
Q5VT06 | CEP350 | S2809 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VU97 | CACHD1 | S1178 | ochoa | VWFA and cache domain-containing protein 1 (Cache domain-containing protein 1) | May regulate voltage-dependent calcium channels. {ECO:0000250}. |
Q5VUJ6 | LRCH2 | S521 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 2 | May play a role in the organization of the cytoskeleton. {ECO:0000250|UniProtKB:Q960C5, ECO:0000250|UniProtKB:Q96II8}. |
Q643R3 | LPCAT4 | S504 | ochoa | Lysophospholipid acyltransferase LPCAT4 (1-acylglycerol-3-phosphate O-acyltransferase 7) (1-AGP acyltransferase 7) (1-AGPAT 7) (1-acylglycerophosphocholine O-acyltransferase) (EC 2.3.1.23) (1-acylglycerophosphoserine O-acyltransferase) (EC 2.3.1.n6) (1-alkenylglycerophosphoethanolamine O-acyltransferase) (EC 2.3.1.121) (1-alkylglycerophosphocholine O-acetyltransferase) (EC 2.3.1.67) (Acyltransferase-like 3) (Lysophosphatidylcholine acyltransferase 4) (Lysophosphatidylethanolamine acyltransferase 2) (EC 2.3.1.n7) (Plasmalogen synthase) | Displays acyl-CoA-dependent lysophospholipid acyltransferase activity with a subset of lysophospholipids as substrates; converts lysophosphatidylethanolamine to phosphatidylethanolamine, lysophosphatidylcholine to phosphatidycholine, 1-alkenyl-lysophatidylethanolamine to 1-alkenyl-phosphatidylethanolamine, lysophosphatidylglycerol and alkyl-lysophosphatidylcholine to phosphatidylglycerol and alkyl-phosphatidylcholine, respectively. In contrast, has no lysophosphatidylinositol, glycerol-3-phosphate, diacylglycerol or lysophosphatidic acid acyltransferase activity. Prefers long chain acyl-CoAs (C16, C18) as acyl donors. {ECO:0000269|PubMed:18458083}. |
Q6IQ23 | PLEKHA7 | S536 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6PI48 | DARS2 | S242 | ochoa | Aspartate--tRNA ligase, mitochondrial (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) | Catalyzes the attachment of aspartate to tRNA(Asp) in a two-step reaction: aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp). {ECO:0000269|PubMed:15779907, ECO:0000269|PubMed:23275545}. |
Q6UB98 | ANKRD12 | S1372 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UB99 | ANKRD11 | S1757 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6ZMQ8 | AATK | S495 | ochoa | Serine/threonine-protein kinase LMTK1 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase) (AATYK) (Brain apoptosis-associated tyrosine kinase) (CDK5-binding protein) (Lemur tyrosine kinase 1) (p35-binding protein) (p35BP) | May be involved in neuronal differentiation. {ECO:0000269|PubMed:10837911}. |
Q6ZNL6 | FGD5 | S633 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZS17 | RIPOR1 | S351 | ochoa|psp | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZVF9 | GPRIN3 | S32 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q6ZVF9 | GPRIN3 | S336 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z5J4 | RAI1 | S1013 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q86UD0 | SAPCD2 | S284 | ochoa | Suppressor APC domain-containing protein 2 (Tumor specificity and mitosis phase-dependent expression protein) (TS/MDEP) (p42.3) | Plays a role in planar mitotic spindle orientation in retinal progenitor cells (RPCs) and promotes the production of symmetric terminal divisions (By similarity). Negatively regulates the mitotic apical cortex localization of GPSM2 (PubMed:26766442). Involved also in positive regulation of cell proliferation and tumor cell growth (PubMed:23576022, PubMed:23704824). {ECO:0000250|UniProtKB:Q9D818, ECO:0000269|PubMed:23576022, ECO:0000269|PubMed:23704824, ECO:0000269|PubMed:26766442}. |
Q86VS8 | HOOK3 | S238 | ochoa | Protein Hook homolog 3 (h-hook3) (hHK3) | Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Predominantly recruits 2 dyneins, which increases both the force and speed of the microtubule motor (PubMed:25035494, PubMed:33734450). Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). May regulate clearance of endocytosed receptors such as MSR1. Participates in defining the architecture and localization of the Golgi complex. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000250|UniProtKB:Q8BUK6, ECO:0000269|PubMed:11238449, ECO:0000269|PubMed:17237231, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:32073997, ECO:0000269|PubMed:33734450}.; FUNCTION: (Microbial infection) May serve as a target for the spiC protein from Salmonella typhimurium, which inactivates it, leading to a strong alteration in cellular trafficking. {ECO:0000305}. |
Q86WB0 | ZC3HC1 | S163 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XL3 | ANKLE2 | S919 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q8IVB4 | SLC9A9 | S600 | ochoa | Sodium/hydrogen exchanger 9 (Na(+)/H(+) exchanger 9) (NHE-9) (Solute carrier family 9 member 9) | Endosomal Na(+), K(+)/H(+) antiporter. Mediates the electroneutral exchange of endosomal luminal H(+) for a cytosolic Na(+) or K(+) (Probable). By facilitating proton efflux, SLC9A9 counteracts the acidity generated by vacuolar (V)-ATPase, thereby limiting luminal acidification. Regulates organellar pH and consequently, e.g., endosome maturation and endocytic trafficking of plasma membrane receptors and neurotransporters (PubMed:15522866, PubMed:24065030, PubMed:28130443). Promotes the recycling of transferrin receptors back to the cell surface to facilitate additional iron uptake in the brain (PubMed:28130443). Regulates synaptic transmission by regulating the luminal pH of axonal endosomes (By similarity). Regulates phagosome lumenal pH, thus affecting phagosome maturation, and consequently, microbicidal activity in macrophages (By similarity). Can also be active at the cell surface of specialized cells, e.g., in the inner ear hair bundles uses the high K(+) of the endolymph to regulate intracelular pH (By similarity). {ECO:0000250|UniProtKB:Q8BZ00, ECO:0000269|PubMed:15522866, ECO:0000269|PubMed:24065030, ECO:0000269|PubMed:28130443, ECO:0000305|PubMed:15522866}. |
Q8IVL0 | NAV3 | S1037 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IVL1 | NAV2 | S1977 | ochoa | Neuron navigator 2 (EC 3.6.4.12) (Helicase APC down-regulated 1) (Pore membrane and/or filament-interacting-like protein 2) (Retinoic acid inducible in neuroblastoma 1) (Steerin-2) (Unc-53 homolog 2) (unc53H2) | Possesses 3' to 5' helicase activity and exonuclease activity. Involved in neuronal development, specifically in the development of different sensory organs. {ECO:0000269|PubMed:12214280, ECO:0000269|PubMed:15158073}. |
Q8IWB9 | TEX2 | S91 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8N1G0 | ZNF687 | S433 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8ND56 | LSM14A | S216 | ochoa | Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) | Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}. |
Q8ND82 | ZNF280C | S227 | ochoa | Zinc finger protein 280C (Suppressor of hairy wing homolog 3) (Zinc finger protein 633) | May function as a transcription factor. |
Q8NDI1 | EHBP1 | S751 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NDX5 | PHC3 | S272 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NEV8 | EXPH5 | S393 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEZ4 | KMT2C | S854 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFC6 | BOD1L1 | S1318 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFH8 | REPS2 | S550 | ochoa | RalBP1-associated Eps domain-containing protein 2 (Partner of RalBP1) (RalBP1-interacting protein 2) | Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors as part of the Ral signaling pathway (PubMed:10393179, PubMed:12771942, PubMed:9422736). By controlling growth factor receptors endocytosis may regulate cell survival (PubMed:12771942). Through ASAP1 may regulate cell adhesion and migration (PubMed:12149250). {ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:12149250, ECO:0000269|PubMed:12771942, ECO:0000269|PubMed:9422736}. |
Q8TAT5 | NEIL3 | S450 | ochoa | Endonuclease 8-like 3 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase FPG2) (DNA glycosylase/AP lyase Neil3) (Endonuclease VIII-like 3) (Nei-like protein 3) | DNA glycosylase which prefers single-stranded DNA (ssDNA), or partially ssDNA structures such as bubble and fork structures, to double-stranded DNA (dsDNA) (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). Mediates interstrand cross-link repair in response to replication stress: acts by mediating DNA glycosylase activity, cleaving one of the two N-glycosyl bonds comprising the interstrand cross-link, which avoids the formation of a double-strand break but generates an abasic site that is bypassed by translesion synthesis polymerases (By similarity). In vitro, displays strong glycosylase activity towards the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in both ssDNA and dsDNA; also recognizes FapyA, FapyG, 5-OHU, 5-OHC, 5-OHMH, Tg and 8-oxoA lesions in ssDNA (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). No activity on 8-oxoG detected (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). Also shows weak DNA-(apurinic or apyrimidinic site) lyase activity (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). In vivo, appears to be the primary enzyme involved in removing Sp and Gh from ssDNA in neonatal tissues (PubMed:12433996, PubMed:19170771, PubMed:22569481, PubMed:23755964). {ECO:0000250|UniProtKB:A0A1L8HU22, ECO:0000269|PubMed:12433996, ECO:0000269|PubMed:19170771, ECO:0000269|PubMed:22569481, ECO:0000269|PubMed:23755964}. |
Q8TDM6 | DLG5 | S37 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TEJ3 | SH3RF3 | S804 | ochoa | E3 ubiquitin-protein ligase SH3RF3 (EC 2.3.2.27) (Plenty of SH3s 2) (SH3 domain-containing RING finger protein 3) (SH3 multiple domains protein 4) | Has E3 ubiquitin-protein ligase activity. {ECO:0000269|PubMed:20696164}. |
Q8TEW0 | PARD3 | S809 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q92547 | TOPBP1 | S805 | ochoa | DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) | Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}. |
Q92576 | PHF3 | S125 | ochoa | PHD finger protein 3 | None |
Q92786 | PROX1 | S199 | ochoa | Prospero homeobox protein 1 (Homeobox prospero-like protein PROX1) (PROX-1) | Transcription factor involved in developmental processes such as cell fate determination, gene transcriptional regulation and progenitor cell regulation in a number of organs. Plays a critical role in embryonic development and functions as a key regulatory protein in neurogenesis and the development of the heart, eye lens, liver, pancreas and the lymphatic system. Involved in the regulation of the circadian rhythm. Represses: transcription of the retinoid-related orphan receptor RORG, transcriptional activator activity of RORA and RORG and the expression of RORA/G-target genes including core clock components: BMAL1, NPAS2 and CRY1 and metabolic genes: AVPR1A and ELOVL3. {ECO:0000269|PubMed:23723244, ECO:0000303|PubMed:22733308}. |
Q92917 | GPKOW | S42 | ochoa | G-patch domain and KOW motifs-containing protein (G-patch domain-containing protein 5) (Protein MOS2 homolog) (Protein T54) | RNA-binding protein involved in pre-mRNA splicing. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:25296192, ECO:0000305|PubMed:33509932}. |
Q969H4 | CNKSR1 | Y26 | psp | Connector enhancer of kinase suppressor of ras 1 (Connector enhancer of KSR 1) (CNK homolog protein 1) (CNK1) (hCNK1) (Connector enhancer of KSR-like) | May function as an adapter protein or regulator of Ras signaling pathways. |
Q96AQ6 | PBXIP1 | S67 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96BH1 | RNF25 | S297 | ochoa | E3 ubiquitin-protein ligase RNF25 (EC 2.3.2.27) (RING finger protein 25) (RING finger protein AO7) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951216). Catalyzes ubiquitination of RPS27A in response to ribosome collisions, promoting activation of RNF14 (PubMed:36638793). RNF25 catalyzes ubiquitination of other ribosomal proteins on stalled ribosomes, such as RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Also involved in ubiquitination and degradation of stalled ETF1/eRF1 (PubMed:36638793, PubMed:37651229). Independently of its function in the response to stalled ribosomes, mediates ubiquitination and subsequent proteasomal degradation of NKD2 (By similarity). May also stimulate transcription mediated by NF-kappa-B via its interaction with RELA/p65 (PubMed:12748188). {ECO:0000250|UniProtKB:Q9QZR0, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951216}. |
Q96DH6 | MSI2 | S33 | ochoa | RNA-binding protein Musashi homolog 2 (Musashi-2) | RNA binding protein that regulates the expression of target mRNAs at the translation level. May play a role in the proliferation and maintenance of stem cells in the central nervous system (By similarity). {ECO:0000250}. |
Q96DR7 | ARHGEF26 | S329 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96I51 | RCC1L | S272 | ochoa | RCC1-like G exchanging factor-like protein (RCC1-like protein) (Williams-Beuren syndrome chromosomal region 16 protein) | Guanine nucleotide exchange factor (GEF) for mitochondrial dynamin-related GTPase OPA1. Activates OPA1, by exchanging bound GDP for free GTP, and drives OPA1 and MFN1-dependent mitochondrial fusion (PubMed:28746876). Plays an essential role in mitochondrial ribosome biogenesis. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation of core subunits of the oxidative phosphorylation system (PubMed:27667664). {ECO:0000269|PubMed:27667664, ECO:0000269|PubMed:28746876}.; FUNCTION: [Isoform 1]: Plays an essential role in mitochondrial ribosome biogenesis via its association with GTPases that play a role in the assembly of the large ribosome subunit. {ECO:0000269|PubMed:32735630}.; FUNCTION: [Isoform 2]: Plays an essential role in mitochondrial ribosome biogenesis via its association with GTPases that play a role in the assembly of the small ribosome subunit. {ECO:0000269|PubMed:32735630}. |
Q96II8 | LRCH3 | S628 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96JE7 | SEC16B | S258 | ochoa | Protein transport protein Sec16B (Leucine zipper transcription regulator 2) (Regucalcin gene promoter region-related protein p117) (RGPR-p117) (SEC16 homolog B) | Plays a role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17192411, PubMed:21768384, PubMed:22355596). Involved in peroxisome biogenesis. Regulates the transport of peroxisomal biogenesis factors PEX3 and PEX16 from the ER to peroxisomes (PubMed:21768384). {ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:21768384, ECO:0000303|PubMed:22355596}. |
Q96L91 | EP400 | S2656 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96RL1 | UIMC1 | S463 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q99569 | PKP4 | S1091 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99650 | OSMR | S877 | ochoa | Oncostatin-M-specific receptor subunit beta (Interleukin-31 receptor subunit beta) (IL-31 receptor subunit beta) (IL-31R subunit beta) (IL-31R-beta) (IL-31RB) | Associates with IL31RA to form the IL31 receptor. Binds IL31 to activate STAT3 and possibly STAT1 and STAT5. Capable of transducing OSM-specific signaling events. {ECO:0000269|PubMed:15184896, ECO:0000269|PubMed:8999038}. |
Q9BTC0 | DIDO1 | S1522 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BVA0 | KATNB1 | S360 | ochoa | Katanin p80 WD40 repeat-containing subunit B1 (Katanin p80 subunit B1) (p80 katanin) | Participates in a complex which severs microtubules in an ATP-dependent manner. May act to target the enzymatic subunit of this complex to sites of action such as the centrosome. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03022, ECO:0000269|PubMed:10751153}. |
Q9BW62 | KATNAL1 | S440 | ochoa | Katanin p60 ATPase-containing subunit A-like 1 (Katanin p60 subunit A-like 1) (EC 5.6.1.1) (p60 katanin-like 1) | Regulates microtubule dynamics in Sertoli cells, a process that is essential for spermiogenesis and male fertility. Severs microtubules in an ATP-dependent manner, promoting rapid reorganization of cellular microtubule arrays (By similarity). Has microtubule-severing activity in vitro (PubMed:26929214). {ECO:0000250|UniProtKB:Q8K0T4, ECO:0000269|PubMed:26929214}. |
Q9BWG6 | SCNM1 | S183 | ochoa | Sodium channel modifier 1 | As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:36084634). Plays a role in the regulation of primary cilia length and Hedgehog signaling (PubMed:36084634). {ECO:0000269|PubMed:36084634}. |
Q9BXB5 | OSBPL10 | S201 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BXL7 | CARD11 | S535 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BY50 | SEC11C | Y171 | ochoa | Signal peptidase complex catalytic subunit SEC11C (EC 3.4.21.89) (Microsomal signal peptidase 21 kDa subunit) (SPase 21 kDa subunit) (SEC11 homolog C) (SEC11-like protein 3) (SPC21) | Catalytic component of the signal peptidase complex (SPC) which catalyzes the cleavage of N-terminal signal sequences from nascent proteins as they are translocated into the lumen of the endoplasmic reticulum (PubMed:34388369). Specifically cleaves N-terminal signal peptides that contain a hydrophobic alpha-helix (h-region) shorter than 18-20 amino acids (PubMed:34388369). {ECO:0000269|PubMed:34388369}. |
Q9BY89 | KIAA1671 | S558 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BZC7 | ABCA2 | S1238 | ochoa | ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) | Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}. |
Q9C0C2 | TNKS1BP1 | S435 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZR1 | SENP6 | S221 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H3S7 | PTPN23 | S1133 | ochoa | Tyrosine-protein phosphatase non-receptor type 23 (EC 3.1.3.48) (His domain-containing protein tyrosine phosphatase) (HD-PTP) (Protein tyrosine phosphatase TD14) (PTP-TD14) | Plays a role in sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) via its interaction with the ESCRT-I complex (endosomal sorting complex required for transport I), and possibly also other ESCRT complexes (PubMed:18434552, PubMed:21757351). May act as a negative regulator of Ras-mediated mitogenic activity (PubMed:18434552). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:18434552, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:21757351}. |
Q9H4M7 | PLEKHA4 | S229 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H6E5 | TUT1 | S238 | ochoa | Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) | Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}. |
Q9H792 | PEAK1 | S507 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7U1 | CCSER2 | S328 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H930 | SP140L | S180 | ochoa | Nuclear body protein SP140-like protein | None |
Q9HCH5 | SYTL2 | S322 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9NRA8 | EIF4ENIF1 | S797 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NX00 | TMEM160 | S48 | ochoa | Transmembrane protein 160 | None |
Q9NZ53 | PODXL2 | S144 | ochoa | Podocalyxin-like protein 2 (Endoglycan) | Acts as a ligand for vascular selectins. Mediates rapid rolling of leukocytes over vascular surfaces through high affinity divalent cation-dependent interactions with E-, P- and L-selectins. {ECO:0000269|PubMed:18606703}. |
Q9NZI6 | TFCP2L1 | S37 | ochoa | Transcription factor CP2-like protein 1 (CP2-related transcriptional repressor 1) (CRTR-1) (Transcription factor LBP-9) | Transcription factor that facilitates establishment and maintenance of pluripotency in embryonic stem cells (ESCs) (PubMed:25215486, PubMed:26906118). With KLF2, acts as the major effector of self-renewal that mediates induction of pluripotency downstream of LIF/STAT3 and Wnt/beta-catenin signaling (By similarity). Required for normal duct development in the salivary gland and kidney (By similarity). Coordinates the development of the kidney collecting ducts intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively (By similarity). Regulates the expression of IC genes including subunits B1 and D2 of the V-ATPase complex, OXGR1, CA12, SLC4A1, AQP6 and IC-specific transcription factor FOXI1 (By similarity). Also regulates the expression of JAG1 and subsequent notch signaling in the collecting duct (By similarity). JAG1 initiates notch signaling in PCs but inhibits notch signaling in ICs (By similarity). Acts as a transcriptional suppressor that may suppress UBP1-mediated transcriptional activation (By similarity). Modulates the placental expression of CYP11A1 (PubMed:10644752). {ECO:0000250|UniProtKB:Q3UNW5, ECO:0000269|PubMed:10644752, ECO:0000269|PubMed:25215486, ECO:0000269|PubMed:26906118}. |
Q9NZN5 | ARHGEF12 | S1327 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9P107 | GMIP | S664 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P206 | NHSL3 | S929 | ochoa | NHS-like protein 3 | Able to directly activate the TNF-NFkappaB signaling pathway. {ECO:0000269|PubMed:32854746}. |
Q9P266 | JCAD | S400 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2D6 | FAM135A | S454 | ochoa | Protein FAM135A | None |
Q9P2Y4 | ZNF219 | S114 | ochoa | Zinc finger protein 219 | Transcriptional regulator (PubMed:14621294, PubMed:19549071). Recognizes and binds 2 copies of the core DNA sequence motif 5'-GGGGG-3' (PubMed:14621294). Binds to the HMGN1 promoter and may repress HMGN1 expression (PubMed:14621294). Regulates SNCA expression in primary cortical neurons (PubMed:19549071). Binds to the COL2A1 promoter and activates COL2A1 expression, as part of a complex with SOX9 (By similarity). Plays a role in chondrocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q6IQX8, ECO:0000269|PubMed:14621294, ECO:0000269|PubMed:19549071}. |
Q9UGU0 | TCF20 | S1122 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UIF9 | BAZ2A | S26 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJM8 | HAO1 | S194 | ochoa | 2-Hydroxyacid oxidase 1 (HAOX1) (EC 1.1.3.15) (Glycolate oxidase) (GO) (GOX) (Glyoxylate oxidase) (EC 1.2.3.5) | Broad substrate specificity (S)-2-hydroxy-acid oxidase that preferentially oxidizes glycolate (PubMed:10777549, PubMed:10978532, PubMed:17669354, PubMed:18215067). The glyoxylate produced by the oxidation of glycolate can then be utilized by alanine-glyoxylate aminotransferase for the peroxisomal synthesis of glycine; this pathway appears to be an important step for the detoxification of glyoxylate which, if allowed to accumulate, may be metabolized to oxalate with formation of kidney stones (PubMed:10978532, PubMed:17669354). Can also catalyze the oxidation of glyoxylate, and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, albeit with much lower catalytic efficiency (PubMed:10777549, PubMed:17669354, PubMed:18215067). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2 (PubMed:10777549, PubMed:10978532, PubMed:17669354, PubMed:18215067). Is not active on L-lactate and 2-hydroxybutanoate (PubMed:10777549). {ECO:0000269|PubMed:10777549, ECO:0000269|PubMed:10978532, ECO:0000269|PubMed:17669354, ECO:0000269|PubMed:18215067, ECO:0000303|PubMed:10978532, ECO:0000303|PubMed:17669354}. |
Q9UJQ4 | SALL4 | S776 | ochoa | Sal-like protein 4 (Zinc finger protein 797) (Zinc finger protein SALL4) | Transcription factor with a key role in the maintenance and self-renewal of embryonic and hematopoietic stem cells. {ECO:0000269|PubMed:23012367}. |
Q9UK61 | TASOR | S1552 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UL54 | TAOK2 | S827 | ochoa | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
Q9ULI3 | HEG1 | S1293 | ochoa | Protein HEG homolog 1 | Receptor component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions. {ECO:0000250}. |
Q9ULJ7 | ANKRD50 | Y1397 | ochoa | Ankyrin repeat domain-containing protein 50 | Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). |
Q9UMZ2 | SYNRG | S919 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UPX0 | IGSF9B | S783 | ochoa | Protein turtle homolog B (Immunoglobulin superfamily member 9B) (IgSF9B) | Transmembrane protein which is abundantly expressed in interneurons, where it may regulate inhibitory synapse development. May mediate homophilic cell adhesion. {ECO:0000250|UniProtKB:D3ZB51, ECO:0000250|UniProtKB:E9PZ19}. |
Q9UPX0 | IGSF9B | S1202 | ochoa | Protein turtle homolog B (Immunoglobulin superfamily member 9B) (IgSF9B) | Transmembrane protein which is abundantly expressed in interneurons, where it may regulate inhibitory synapse development. May mediate homophilic cell adhesion. {ECO:0000250|UniProtKB:D3ZB51, ECO:0000250|UniProtKB:E9PZ19}. |
Q9UQB3 | CTNND2 | S415 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y2T1 | AXIN2 | S493 | ochoa | Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) | Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}. |
Q9Y3I0 | RTCB | S300 | ochoa | RNA-splicing ligase RtcB homolog (EC 6.5.1.8) (3'-phosphate/5'-hydroxy nucleic acid ligase) | Catalytic subunit of the tRNA-splicing ligase complex that acts by directly joining spliced tRNA halves to mature-sized tRNAs by incorporating the precursor-derived splice junction phosphate into the mature tRNA as a canonical 3',5'-phosphodiester. May act as an RNA ligase with broad substrate specificity, and may function toward other RNAs. {ECO:0000255|HAMAP-Rule:MF_03144, ECO:0000269|PubMed:21311021, ECO:0000269|PubMed:24870230}. |
Q9Y3R5 | DOP1B | S597 | ochoa | Protein DOP1B | May play a role in regulating membrane trafficking of cargo proteins. Together with ATP9A and MON2, regulates SNX3 retromer-mediated endosomal sorting of WLS away from lysosomal degradation. {ECO:0000269|PubMed:30213940}. |
Q9Y490 | TLN1 | S979 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4C1 | KDM3A | S463 | ochoa | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4D2 | DAGLA | S952 | ochoa | Diacylglycerol lipase-alpha (DAGL-alpha) (DGL-alpha) (EC 3.1.1.116) (Neural stem cell-derived dendrite regulator) (Sn1-specific diacylglycerol lipase alpha) | Serine hydrolase that hydrolyzes arachidonic acid-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) (PubMed:14610053, PubMed:23502535, PubMed:26668358). Preferentially hydrolyzes sn-1 fatty acids from diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to biosynthesize 2-AG (PubMed:14610053, PubMed:23502535, PubMed:26668358). Has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in regulating 2-AG signaling in the central nervous system (CNS). Regulates 2-AG involved in retrograde suppression at central synapses. Supports axonal growth during development and adult neurogenesis. Plays a role for eCB signaling in the physiological regulation of anxiety and depressive behaviors. Also regulates neuroinflammatory responses in the brain, in particular, LPS-induced microglial activation (By similarity). {ECO:0000250|UniProtKB:Q6WQJ1, ECO:0000269|PubMed:14610053, ECO:0000269|PubMed:23502535, ECO:0000269|PubMed:26668358}. |
Q9Y5K6 | CD2AP | S514 | ochoa | CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) | Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}. |
Q9Y613 | FHOD1 | S498 | ochoa|psp | FH1/FH2 domain-containing protein 1 (Formin homolog overexpressed in spleen 1) (FHOS) (Formin homology 2 domain-containing protein 1) | Required for the assembly of F-actin structures, such as stress fibers. Depends on the Rho-ROCK cascade for its activity. Contributes to the coordination of microtubules with actin fibers and plays a role in cell elongation. Acts synergistically with ROCK1 to promote SRC-dependent non-apoptotic plasma membrane blebbing. {ECO:0000269|PubMed:14576350, ECO:0000269|PubMed:15878344, ECO:0000269|PubMed:18694941}. |
Q9Y6R4 | MAP3K4 | S1135 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
O00444 | PLK4 | S592 | Sugiyama | Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) | Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}. |
Q8TEW0 | PARD3 | S728 | Sugiyama | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
O60282 | KIF5C | S176 | SIGNOR | Kinesin heavy chain isoform 5C (EC 3.6.4.-) (Kinesin heavy chain neuron-specific 2) (Kinesin-1) | Microtubule-associated force-producing protein that may play a role in organelle transport. Has ATPase activity (By similarity). Involved in synaptic transmission (PubMed:24812067). Mediates dendritic trafficking of mRNAs (By similarity). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). {ECO:0000250|UniProtKB:P28738, ECO:0000250|UniProtKB:P56536, ECO:0000269|PubMed:24812067}. |
P08151 | GLI1 | S602 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P60484 | PTEN | S179 | SIGNOR | Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) | Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}. |
A0MZ66 | SHTN1 | S494 | ochoa | Shootin-1 (Shootin1) | Involved in the generation of internal asymmetric signals required for neuronal polarization and neurite outgrowth. Mediates netrin-1-induced F-actin-substrate coupling or 'clutch engagement' within the axon growth cone through activation of CDC42, RAC1 and PAK1-dependent signaling pathway, thereby converting the F-actin retrograde flow into traction forces, concomitantly with filopodium extension and axon outgrowth. Plays a role in cytoskeletal organization by regulating the subcellular localization of phosphoinositide 3-kinase (PI3K) activity at the axonal growth cone. Also plays a role in regenerative neurite outgrowth. In the developing cortex, cooperates with KIF20B to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in the accumulation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the growth cone of primary hippocampal neurons. {ECO:0000250|UniProtKB:A0MZ67, ECO:0000250|UniProtKB:Q8K2Q9}. |
A1L390 | PLEKHG3 | S827 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A4D1S0 | KLRG2 | S143 | ochoa | Killer cell lectin-like receptor subfamily G member 2 (C-type lectin domain family 15 member B) | None |
A6NHT5 | HMX3 | S153 | ochoa | Homeobox protein HMX3 (Homeobox protein H6 family member 3) (Homeobox protein Nkx-5.1) | Transcription factor involved in specification of neuronal cell types and which is required for inner ear and hypothalamus development. Binds to the 5'-CAAGTG-3' core sequence. Controls semicircular canal formation in the inner ear. Also required for hypothalamic/pituitary axis of the CNS (By similarity). {ECO:0000250}. |
M0QZK8 | None | S51 | ochoa | gamma-glutamylcyclotransferase (EC 4.3.2.9) | None |
O00562 | PITPNM1 | S382 | ochoa|psp | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
O14544 | SOCS6 | S165 | ochoa | Suppressor of cytokine signaling 6 (SOCS-6) (Cytokine-inducible SH2 protein 4) (CIS-4) (Suppressor of cytokine signaling 4) (SOCS-4) | SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction. May be a substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Regulates KIT degradation by ubiquitination of the tyrosine-phosphorylated receptor. {ECO:0000250, ECO:0000269|PubMed:21030588}. |
O15061 | SYNM | S1163 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15240 | VGF | S199 | ochoa | Neurosecretory protein VGF [Cleaved into: Neuroendocrine regulatory peptide-1 (NERP-1); Neuroendocrine regulatory peptide-2 (NERP-2); VGF-derived peptide TLQP-21; VGF-derived peptide TLQP-62; Antimicrobial peptide VGF[554-577]] | [Neurosecretory protein VGF]: Secreted polyprotein that is packaged and proteolytically processed by prohormone convertases PCSK1 and PCSK2 in a cell-type-specific manner (By similarity). VGF and peptides derived from its processing play many roles in neurogenesis and neuroplasticity associated with learning, memory, depression and chronic pain (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Neuroendocrine regulatory peptide-1]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Suppresses presynaptic glutamatergic neurons connected to vasopressin neurons. {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [Neuroendocrine regulatory peptide-2]: Plays a role in the control of body fluid homeostasis by regulating vasopressin release. Activates GABAergic interneurons which are inhibitory neurons of the nervous system and thereby suppresses presynaptic glutamatergic neurons (By similarity). Also stimulates feeding behavior in an orexin-dependent manner in the hypothalamus (By similarity). Functions as a positive regulator for the activation of orexin neurons resulting in elevated gastric acid secretion and gastric emptying (By similarity). {ECO:0000250|UniProtKB:P20156}.; FUNCTION: [VGF-derived peptide TLQP-21]: Secreted multifunctional neuropeptide that binds to different cell receptors and thereby plays multiple physiological roles including modulation of energy expenditure, pain, response to stress, gastric regulation, glucose homeostasis as well as lipolysis (By similarity). Activates the G-protein-coupled receptor C3AR1 via a folding-upon-binding mechanism leading to enhanced lipolysis in adipocytes (By similarity). Interacts with C1QBP receptor in macrophages and microglia causing increased levels of intracellular calcium and hypersensitivity (By similarity). {ECO:0000250|UniProtKB:P20156, ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [VGF-derived peptide TLQP-62]: Plays a role in the regulation of memory formation and depression-related behaviors potentially by influencing synaptic plasticity and neurogenesis. Induces acute and transient activation of the NTRK2/TRKB receptor and subsequent CREB phosphorylation (By similarity). Also induces insulin secretion in insulinoma cells by increasing intracellular calcium mobilization (By similarity). {ECO:0000250|UniProtKB:Q0VGU4}.; FUNCTION: [Antimicrobial peptide VGF[554-577]]: Has bactericidal activity against M.luteus, and antifungal activity against P. Pastoris. {ECO:0000269|PubMed:23250050}. |
O60291 | MGRN1 | S492 | ochoa | E3 ubiquitin-protein ligase MGRN1 (EC 2.3.2.27) (Mahogunin RING finger protein 1) (RING finger protein 156) (RING-type E3 ubiquitin transferase MGRN1) | E3 ubiquitin-protein ligase. Mediates monoubiquitination at multiple sites of TSG101 in the presence of UBE2D1, but not of UBE2G1, nor UBE2H. Plays a role in the regulation of endosome-to-lysosome trafficking. Impairs MC1R- and MC4R-signaling by competing with GNAS-binding to MCRs and inhibiting agonist-induced cAMP production. Does not inhibit ADRB2-signaling. Does not promote MC1R ubiquitination. Acts also as a negative regulator of hedgehog signaling (By similarity). {ECO:0000250|UniProtKB:Q9D074, ECO:0000269|PubMed:17229889, ECO:0000269|PubMed:19703557, ECO:0000269|PubMed:19737927}. |
O60610 | DIAPH1 | S22 | ochoa | Protein diaphanous homolog 1 (Diaphanous-related formin-1) (DRF1) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers (By similarity). Binds to the barbed end of the actin filament and slows down actin polymerization and depolymerization (By similarity). Required for cytokinesis, and transcriptional activation of the serum response factor (By similarity). DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics (By similarity). Functions as a scaffold protein for MAPRE1 and APC to stabilize microtubules and promote cell migration (By similarity). Has neurite outgrowth promoting activity. Acts in a Rho-dependent manner to recruit PFY1 to the membrane (By similarity). In hear cells, it may play a role in the regulation of actin polymerization in hair cells (PubMed:20937854, PubMed:21834987, PubMed:26912466). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854, PubMed:21834987). It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity (PubMed:20937854, PubMed:21834987). In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854, PubMed:21834987). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape (PubMed:20937854, PubMed:21834987). Plays a role in brain development (PubMed:24781755). Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity (By similarity). {ECO:0000250|UniProtKB:O08808, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24781755, ECO:0000269|PubMed:26912466}. |
O75223 | GGCT | S136 | ochoa | Gamma-glutamylcyclotransferase (EC 4.3.2.9) (Cytochrome c-releasing factor 21) | Catalyzes the formation of 5-oxoproline from gamma-glutamyl dipeptides and may play a significant role in glutathione homeostasis (PubMed:18515354). Induces release of cytochrome c from mitochondria with resultant induction of apoptosis (PubMed:16765912). {ECO:0000269|PubMed:16765912, ECO:0000269|PubMed:18515354}. |
O75420 | GIGYF1 | S370 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O75427 | LRCH4 | S281 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O94769 | ECM2 | S304 | ochoa | Extracellular matrix protein 2 (Matrix glycoprotein SC1/ECM2) | Promotes matrix assembly and cell adhesiveness. {ECO:0000250|UniProtKB:Q5FW85}. |
O94876 | TMCC1 | S414 | ochoa | Transmembrane and coiled-coil domains protein 1 | Endoplasmic reticulum membrane protein that promotes endoplasmic reticulum-associated endosome fission (PubMed:30220460). Localizes to contact sites between the endoplasmic reticulum and endosomes and acts by promoting recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). {ECO:0000269|PubMed:30220460}. |
O94966 | USP19 | S244 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
P07197 | NEFM | S628 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P11388 | TOP2A | S1361 | psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P13994 | YJU2B | S362 | ochoa | Probable splicing factor YJU2B (Coiled-coil domain-containing protein 130) | May be involved in mRNA splicing. {ECO:0000250|UniProtKB:Q9BW85}. |
P14314 | PRKCSH | S442 | ochoa | Glucosidase 2 subunit beta (80K-H protein) (Glucosidase II subunit beta) (Protein kinase C substrate 60.1 kDa protein heavy chain) (PKCSH) | Regulatory subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:O08795, ECO:0000269|PubMed:10929008}. |
P15822 | HIVEP1 | S1874 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P21333 | FLNA | S1923 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P24928 | POLR2A | S217 | ochoa | DNA-directed RNA polymerase II subunit RPB1 (RNA polymerase II subunit B1) (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II subunit A) (DNA-directed RNA polymerase III largest subunit) (RNA-directed RNA polymerase II subunit RPB1) (EC 2.7.7.48) | Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (By similarity) (PubMed:23748380, PubMed:27193682, PubMed:28108474, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:8381534, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA (By similarity) (PubMed:24207025, PubMed:26124092). {ECO:0000250|UniProtKB:G3MZY8, ECO:0000250|UniProtKB:P08775, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:24207025, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:28108474, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.; FUNCTION: (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome. {ECO:0000269|PubMed:18032511}. |
P29375 | KDM5A | S1666 | ochoa | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P33240 | CSTF2 | S120 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P35749 | MYH11 | S1935 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P41227 | NAA10 | S186 | ochoa | N-alpha-acetyltransferase 10 (EC 2.3.1.255) (N-terminal acetyltransferase complex ARD1 subunit homolog A) (hARD1) (NatA catalytic subunit Naa10) | Catalytic subunit of N-terminal acetyltransferase complexes which display alpha (N-terminal) acetyltransferase activity (PubMed:15496142, PubMed:19420222, PubMed:19826488, PubMed:20145209, PubMed:20154145, PubMed:25489052, PubMed:27708256, PubMed:29754825, PubMed:32042062). Acetylates amino termini that are devoid of initiator methionine (PubMed:19420222). The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation (PubMed:12464182). Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration (PubMed:19826488). Acetylates, and stabilizes TSC2, thereby repressing mTOR activity and suppressing cancer development (PubMed:20145209). Acetylates HSPA1A and HSPA1B at 'Lys-77' which enhances its chaperone activity and leads to preferential binding to co-chaperone HOPX (PubMed:27708256). Acetylates HIST1H4A (PubMed:29754825). Acts as a negative regulator of sister chromatid cohesion during mitosis (PubMed:27422821). {ECO:0000269|PubMed:12464182, ECO:0000269|PubMed:15496142, ECO:0000269|PubMed:19420222, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20145209, ECO:0000269|PubMed:20154145, ECO:0000269|PubMed:25489052, ECO:0000269|PubMed:27422821, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:29754825, ECO:0000269|PubMed:32042062}. |
P41252 | IARS1 | S1047 | ochoa | Isoleucine--tRNA ligase, cytoplasmic (EC 6.1.1.5) (Isoleucyl-tRNA synthetase) (IRS) (IleRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. {ECO:0000269|PubMed:8052601}. |
P46821 | MAP1B | S1208 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48634 | PRRC2A | S1554 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49796 | RGS3 | S704 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P54284 | CACNB3 | S152 | ochoa | Voltage-dependent L-type calcium channel subunit beta-3 (CAB3) (Calcium channel voltage-dependent subunit beta 3) | Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:8119293). Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). {ECO:0000250|UniProtKB:P54287, ECO:0000250|UniProtKB:Q9MZL3, ECO:0000269|PubMed:8119293}. |
P55196 | AFDN | S1173 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P56645 | PER3 | S923 | ochoa | Period circadian protein homolog 3 (hPER3) (Cell growth-inhibiting gene 13 protein) (Circadian clock protein PERIOD 3) | Originally described as a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Has a redundant role with the other PER proteins PER1 and PER2 and is not essential for the circadian rhythms maintenance. In contrast, plays an important role in sleep-wake timing and sleep homeostasis probably through the transcriptional regulation of sleep homeostasis-related genes, without influencing circadian parameters. Can bind heme. {ECO:0000269|PubMed:17346965, ECO:0000269|PubMed:19716732, ECO:0000269|PubMed:24439663, ECO:0000269|PubMed:24577121, ECO:0000269|PubMed:26903630}. |
P57682 | KLF3 | S224 | ochoa|psp | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
P78347 | GTF2I | S210 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
Q02040 | AKAP17A | S633 | ochoa | A-kinase anchor protein 17A (AKAP-17A) (721P) (B-lymphocyte antigen) (Protein XE7) (Protein kinase A-anchoring protein 17A) (PRKA17A) (Splicing factor, arginine/serine-rich 17A) | Splice factor regulating alternative splice site selection for certain mRNA precursors. Mediates regulation of pre-mRNA splicing in a PKA-dependent manner. {ECO:0000269|PubMed:16982639, ECO:0000269|PubMed:19840947}. |
Q02548 | PAX5 | S283 | ochoa | Paired box protein Pax-5 (B-cell-specific transcription factor) (BSAP) | Transcription factor that plays an essential role in commitment of lymphoid progenitors to the B-lymphocyte lineage (PubMed:10811620, PubMed:27181361). Fulfills a dual role by repressing B-lineage inappropriate genes and simultaneously activating B-lineage-specific genes (PubMed:10811620, PubMed:27181361). In turn, regulates cell adhesion and migration, induces V(H)-to-D(H)J(H) recombination, facilitates pre-B-cell receptor signaling and promotes development to the mature B-cell stage (PubMed:32612238). Repression of the cohesin-release factor WAPL causes global changes of the chromosomal architecture in pro-B cells to facilitate the generation of a diverse antibody repertoire (PubMed:32612238). {ECO:0000269|PubMed:10811620, ECO:0000269|PubMed:27181361, ECO:0000269|PubMed:32612238}.; FUNCTION: (Microbial infection) Plays an essential role in the maintenance of Epstein-Barr virus genome copy number within the host cell by promoting EBNA1/oriP-dependent binding and transcription (PubMed:31941781). Also participates in the inhibition of lytic EBV reactivation by modulating viral BZLF1 activity (PubMed:23678172). {ECO:0000269|PubMed:23678172, ECO:0000269|PubMed:31941781}. |
Q02556 | IRF8 | S162 | ochoa | Interferon regulatory factor 8 (IRF-8) (Interferon consensus sequence-binding protein) (H-ICSBP) (ICSBP) | Transcription factor that specifically binds to the upstream regulatory region of type I interferon (IFN) and IFN-inducible MHC class I genes (the interferon consensus sequence (ICS)) (PubMed:25122610). Can both act as a transcriptional activator or repressor (By similarity). Plays a negative regulatory role in cells of the immune system (By similarity). Involved in CD8(+) dendritic cell differentiation by forming a complex with the BATF-JUNB heterodimer in immune cells, leading to recognition of AICE sequence (5'-TGAnTCA/GAAA-3'), an immune-specific regulatory element, followed by cooperative binding of BATF and IRF8 and activation of genes (By similarity). Required for the development of plasmacytoid dendritic cells (pDCs), which produce most of the type I IFN in response to viral infection (By similarity). Positively regulates macroautophagy in dendritic cells (PubMed:29434592). Acts as a transcriptional repressor of osteoclast differentiation factors such as NFATC1 and EEIG1 (By similarity). {ECO:0000250|UniProtKB:P23611, ECO:0000269|PubMed:25122610, ECO:0000269|PubMed:29434592}. |
Q04726 | TLE3 | S203 | ochoa | Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) | Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}. |
Q05519 | SRSF11 | S449 | ochoa | Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) | May function in pre-mRNA splicing. |
Q09472 | EP300 | S1038 | ochoa|psp | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q12802 | AKAP13 | S2449 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q13283 | G3BP1 | S232 | ochoa|psp | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
Q13309 | SKP2 | S64 | ochoa|psp | S-phase kinase-associated protein 2 (Cyclin-A/CDK2-associated protein p45) (F-box protein Skp2) (F-box/LRR-repeat protein 1) (p45skp2) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins involved in cell cycle progression, signal transduction and transcription (PubMed:9736735, PubMed:11931757, PubMed:12435635, PubMed:12769844, PubMed:12840033, PubMed:15342634, PubMed:15668399, PubMed:15949444, PubMed:16103164, PubMed:16262255, PubMed:16581786, PubMed:16951159, PubMed:17908926, PubMed:17962192, PubMed:22464731, PubMed:22770219, PubMed:32267835). Specifically recognizes phosphorylated CDKN1B/p27kip and is involved in regulation of G1/S transition (By similarity). Degradation of CDKN1B/p27kip also requires CKS1 (By similarity). Recognizes target proteins ORC1, CDT1, RBL2, KMT2A/MLL1, CDK9, RAG2, NBN, FOXO1, UBP43, YTHDF2, and probably MYC, TOB1 and TAL1 (PubMed:11931757, PubMed:12435635, PubMed:12769844, PubMed:12840033, PubMed:15342634, PubMed:15668399, PubMed:15949444, PubMed:16103164, PubMed:16581786, PubMed:16951159, PubMed:17908926, PubMed:17962192, PubMed:22464731, PubMed:32267835). Degradation of TAL1 also requires STUB1 (PubMed:17962192). Recognizes CDKN1A in association with CCNE1 or CCNE2 and CDK2 (PubMed:9736735, PubMed:16262255). Promotes ubiquitination and destruction of CDH1 in a CK1-dependent manner, thereby regulating cell migration (PubMed:22770219). Following phosphorylation in response to DNA damage, mediates 'Lys-63'-linked ubiquitination of NBN, promoting ATM recruitment to DNA damage sites and DNA repair via homologous recombination (PubMed:22464731). {ECO:0000250|UniProtKB:Q9Z0Z3, ECO:0000269|PubMed:11931757, ECO:0000269|PubMed:12435635, ECO:0000269|PubMed:12769844, ECO:0000269|PubMed:12840033, ECO:0000269|PubMed:15342634, ECO:0000269|PubMed:15668399, ECO:0000269|PubMed:15949444, ECO:0000269|PubMed:16103164, ECO:0000269|PubMed:16262255, ECO:0000269|PubMed:16581786, ECO:0000269|PubMed:16951159, ECO:0000269|PubMed:17908926, ECO:0000269|PubMed:17962192, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:22770219, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:9736735}.; FUNCTION: Through the ubiquitin-mediated proteasomal degradation of hepatitis C virus non-structural protein 5A, has an antiviral activity towards that virus. {ECO:0000269|PubMed:27194766}. |
Q13415 | ORC1 | S258 | ochoa|psp | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13459 | MYO9B | S1290 | ochoa|psp | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q14161 | GIT2 | S668 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14191 | WRN | S426 | ochoa|psp | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14207 | NPAT | S775 | ochoa|psp | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14324 | MYBPC2 | S44 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14571 | ITPR2 | S1160 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR2 (IP3 receptor isoform 2) (IP3R 2) (InsP3R2) (Inositol 1,4,5-trisphosphate receptor type 2) (Type 2 inositol 1,4,5-trisphosphate receptor) (Type 2 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that upon inositol 1,4,5-trisphosphate binding transports calcium from the endoplasmic reticulum lumen to cytoplasm. Exists in two states; a long-lived closed state where the channel is essentially 'parked' with only very rare visits to an open state and that ligands facilitate the transition from the 'parked' state into a 'drive' mode represented by periods of bursting activity (By similarity). {ECO:0000250|UniProtKB:Q9Z329}. |
Q15311 | RALBP1 | S34 | ochoa | RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) | Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}. |
Q2M1Z3 | ARHGAP31 | S629 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q32MZ4 | LRRFIP1 | S714 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q3MIN7 | RGL3 | S40 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q3MIN7 | RGL3 | S512 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q5D1E8 | ZC3H12A | S344 | ochoa | Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) | Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}. |
Q5T481 | RBM20 | S1048 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T9C9 | PIP5KL1 | S313 | ochoa | Phosphatidylinositol 4-phosphate 5-kinase-like protein 1 (PI(4)P 5-kinase-like protein 1) (PtdIns(4)P-5-kinase-like protein 1) (EC 2.7.1.68) | May act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment and conversion to PI(3,4,5)P3. {ECO:0000250}. |
Q69YH5 | CDCA2 | S400 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6DN90 | IQSEC1 | S417 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6GYQ0 | RALGAPA1 | S861 | ochoa | Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) | Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q6IQ49 | SDE2 | S153 | ochoa | Splicing regulator SDE2 (Replication stress response regulator SDE2) | Inhibits translesion DNA synthesis by preventing monoubiquitination of PCNA, this is necessary to counteract damage due to ultraviolet light-induced replication stress (PubMed:27906959). SDE2 is cleaved following PCNA binding, and its complete degradation is necessary to allow S-phase progression following DNA damage (PubMed:27906959). {ECO:0000269|PubMed:27906959}.; FUNCTION: Plays a role in pre-mRNA splicing by facilitating excision of relatively short introns featuring weak 3'-splice sites (ss) and high GC content (PubMed:34365507). May recruit CACTIN to the spliceosome (By similarity). {ECO:0000250|UniProtKB:O14113, ECO:0000269|PubMed:34365507}.; FUNCTION: Plays a role in ribosome biogenesis by enabling SNORD3- and SNORD118-dependent cleavage of the 47S rRNA precursor (PubMed:34365507). Binds ncRNA (non-coding RNA) including the snoRNAs SNORD3 and SNORD118 (PubMed:34365507). {ECO:0000269|PubMed:34365507}. |
Q6UXF1 | TMEM108 | S543 | ochoa | Transmembrane protein 108 (Retrolinkin) | Transmembrane protein required for proper cognitive functions. Involved in the development of dentate gyrus (DG) neuron circuitry, is necessary for AMPA receptors surface expression and proper excitatory postsynaptic currents of DG granule neurons. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Through the interaction with DST, mediates the docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport. In hippocampal neurons, required for BDNF-dependent dendrite outgrowth. Cooperates with SH3GL2 and recruits the WAVE1 complex to facilitate actin-dependent BDNF:NTRK2 early endocytic trafficking and mediate signaling from early endosomes. {ECO:0000250|UniProtKB:Q8BHE4}. |
Q6ZTQ3 | RASSF6 | S179 | ochoa | Ras association domain-containing protein 6 | Involved in the induction of apoptosis, through both caspase-dependent and caspase-independent pathways. May act as a Ras effector protein. May suppress the serum-induced basal levels of NF-kappa-B (By similarity). {ECO:0000250, ECO:0000269|PubMed:17367779}. |
Q6ZUS6 | CCDC149 | S414 | ochoa | Coiled-coil domain-containing protein 149 | None |
Q6ZVL6 | KIAA1549L | S1479 | ochoa | UPF0606 protein KIAA1549L | None |
Q71H61 | ILDR2 | S569 | ochoa | Immunoglobulin-like domain-containing receptor 2 (Angulin-3) | May be involved in ER stress pathways with effects on lipid homeostasis and insulin secretion. With ILDR1 and LSR, involved in the maintain of the epithelial barrier function through the recruitment of MARVELD2/tricellulin to tricellular tight junctions (By similarity). Also functions as a B7-like protein family member expressed on immune cells and inflamed tissue and with T-cell inhibitory activity (PubMed:29431694). In the inner ear, may regulate alternative pre-mRNA splicing via binding to TRA2A, TRA2B and SRSF1 (By similarity). {ECO:0000250|UniProtKB:B5TVM2, ECO:0000269|PubMed:29431694}. |
Q7L8A9 | VASH1 | S313 | ochoa | Tubulinyl-Tyr carboxypeptidase 1 (EC 3.4.17.17) (Tubulin carboxypeptidase 1) (Tyrosine carboxypeptidase 1) (TTCP 1) (Vasohibin-1) | Tyrosine carboxypeptidase that removes the C-terminal tyrosine residue of alpha-tubulin, thereby regulating microtubule dynamics and function (PubMed:29146869, PubMed:31171830, PubMed:31235910, PubMed:31235911, PubMed:31270470). Critical for spindle function and accurate chromosome segregation during mitosis since microtubule detyronisation regulates mitotic spindle length and postioning (PubMed:31171830). Acts as an angiogenesis inhibitor: inhibits migration, proliferation and network formation by endothelial cells as well as angiogenesis (PubMed:15467828, PubMed:16488400, PubMed:16707096, PubMed:19204325). This inhibitory effect is selective to endothelial cells as it does not affect the migration of smooth muscle cells or fibroblasts (PubMed:15467828, PubMed:16488400, PubMed:16707096). {ECO:0000269|PubMed:15467828, ECO:0000269|PubMed:16488400, ECO:0000269|PubMed:16707096, ECO:0000269|PubMed:19204325, ECO:0000269|PubMed:29146869, ECO:0000269|PubMed:31171830, ECO:0000269|PubMed:31235910, ECO:0000269|PubMed:31235911, ECO:0000269|PubMed:31270470}. |
Q7Z6E9 | RBBP6 | S1052 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6Z7 | HUWE1 | S2508 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UE4 | MTDH | S308 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86VE0 | MYPOP | S178 | ochoa | Myb-related transcription factor, partner of profilin (Myb-related protein p42POP) (Partner of profilin) | Transcriptional repressor; DNA-binding protein that specifically recognizes the core sequence 5'-YAAC[GT]G-3'. Dimerization with PFN1 reduces its DNA-binding capacity (By similarity). {ECO:0000250}. |
Q8IU68 | TMC8 | S658 | ochoa | Transmembrane channel-like protein 8 (Epidermodysplasia verruciformis protein 2) | Acts as a regulatory protein involved in the regulation of numerous cellular processes (PubMed:18158319, PubMed:23429285, PubMed:30068544, PubMed:32917726). Together with its homolog TMC6/EVER1, forms a complex with calcium-binding protein CIB1 in lymphocytes and keratynocytes where TMC6 and TMC8 stabilize CIB1 levels and reciprocally (PubMed:30068544, PubMed:32917726). Together with TMC6, also forms a complex with and activates zinc transporter ZNT1 at the ER membrane of keratynocytes, thereby facilitating zinc uptake into the ER (PubMed:18158319). Also inhibits receptor-mediated calcium release from ER stores and calcium activated and volume regulated chloride channels (PubMed:25220380). Down-regulates the activity of transcription factors induced by zinc and cytokines (PubMed:18158319). Also sequesters TRADD which impairs the recruitment of TRAF2 and RIPK1 in the pro-survival complex I and promotes proapoptotic complex II formation, and may therefore be involved in TNF-induced cell death/survival decisions (PubMed:23429285). {ECO:0000269|PubMed:18158319, ECO:0000269|PubMed:23429285, ECO:0000269|PubMed:25220380, ECO:0000269|PubMed:30068544, ECO:0000269|PubMed:32917726}. |
Q8IVL0 | NAV3 | S1459 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IWY9 | CDAN1 | S158 | ochoa | Codanin-1 | May act as a negative regulator of ASF1 in chromatin assembly. {ECO:0000269|PubMed:22407294}. |
Q8IYA7 | MKX | S36 | ochoa | Homeobox protein Mohawk | May act as a morphogenetic regulator of cell adhesion. {ECO:0000250}. |
Q8IZD4 | DCP1B | S511 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8NBR6 | MINDY2 | S94 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8ND30 | PPFIBP2 | S414 | ochoa | Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q8NDV7 | TNRC6A | S1217 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NDV7 | TNRC6A | S1869 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8TBZ6 | TRMT10A | S318 | ochoa | tRNA methyltransferase 10 homolog A (EC 2.1.1.221) (RNA (guanine-9-)-methyltransferase domain-containing protein 2) (tRNA (guanine(9)-N(1))-methyltransferase TRMT10A) | S-adenosyl-L-methionine-dependent guanine N(1)-methyltransferase that catalyzes the formation of N(1)-methylguanine at position 9 (m1G9) in tRNAs (PubMed:23042678, PubMed:25053765). Probably not able to catalyze formation of N(1)-methyladenine at position 9 (m1A9) in tRNAs (PubMed:23042678). {ECO:0000269|PubMed:23042678, ECO:0000269|PubMed:25053765}. |
Q8TEB9 | RHBDD1 | S291 | ochoa|psp | Rhomboid-related protein 4 (RRP4) (EC 3.4.21.105) (Rhomboid domain-containing protein 1) (Rhomboid-like protein 4) | Intramembrane-cleaving serine protease that cleaves single transmembrane or multi-pass membrane proteins in the hydrophobic plane of the membrane, luminal loops and juxtamembrane regions. Involved in regulated intramembrane proteolysis and the subsequent release of functional polypeptides from their membrane anchors. Functional component of endoplasmic reticulum-associated degradation (ERAD) for misfolded membrane proteins. Required for the degradation process of some specific misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Functions in BIK, MPZ, PKD1, PTCRA, RHO, STEAP3 and TRAC processing. Involved in the regulation of exosomal secretion; inhibits the TSAP6-mediated secretion pathway. Involved in the regulation of apoptosis; modulates BIK-mediated apoptotic activity. Also plays a role in the regulation of spermatogenesis; inhibits apoptotic activity in spermatogonia. {ECO:0000269|PubMed:18953687, ECO:0000269|PubMed:22624035}. |
Q8TEV9 | SMCR8 | S498 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8WUB8 | PHF10 | S331 | ochoa | PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) | Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}. |
Q8WUY3 | PRUNE2 | S1264 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WX92 | NELFB | S191 | ochoa | Negative elongation factor B (NELF-B) (Cofactor of BRCA1) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:12612062). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:10199401). May be able to induce chromatin unfolding (PubMed:11739404). Essential for early embryogenesis; plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) by preventing unscheduled expression of developmental genes (By similarity). Plays a key role in establishing the responsiveness of stem cells to developmental cues; facilitates plasticity and cell fate commitment in ESCs by establishing the appropriate expression level of signaling molecules (By similarity). Supports the transcription of genes involved in energy metabolism in cardiomyocytes; facilitates the association of transcription initiation factors with the promoters of the metabolism-related genes (By similarity). {ECO:0000250|UniProtKB:Q8C4Y3, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11739404, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II (PubMed:23884411). In vitro, binds weakly to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1 (PubMed:23884411). {ECO:0000269|PubMed:23884411}. |
Q8WXI9 | GATAD2B | S135 | ochoa | Transcriptional repressor p66-beta (GATA zinc finger domain-containing protein 2B) (p66/p68) | Transcriptional repressor (PubMed:12183469, PubMed:16415179). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Enhances MBD2-mediated repression (PubMed:12183469, PubMed:16415179). Efficient repression requires the presence of GATAD2A (PubMed:16415179). Targets MBD3 to discrete loci in the nucleus (PubMed:11756549). May play a role in synapse development (PubMed:23644463). {ECO:0000269|PubMed:11756549, ECO:0000269|PubMed:12183469, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:23644463, ECO:0000269|PubMed:28977666}. |
Q8WZ75 | ROBO4 | S816 | ochoa | Roundabout homolog 4 (Magic roundabout) | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}. |
Q92545 | TMEM131 | S1363 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92598 | HSPH1 | S557 | ochoa | Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) | Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}. |
Q969Z0 | TBRG4 | S553 | ochoa | FAST kinase domain-containing protein 4 (Cell cycle progression restoration protein 2) (Cell cycle progression protein 2) (Protein TBRG4) (Transforming growth factor beta regulator 4) | Plays a role in processing of mitochondrial RNA precursors and in stabilization of a subset of mature mitochondrial RNA species, such as MT-CO1, MT-CO2, MT-CYB, MT-CO3, MT-ND3, MT-ND5 and MT-ATP8/6. May play a role in cell cycle progression (PubMed:9383053). {ECO:0000269|PubMed:28335001, ECO:0000269|PubMed:9383053}. |
Q96C19 | EFHD2 | S74 | ochoa|psp | EF-hand domain-containing protein D2 (Swiprosin-1) | May regulate B-cell receptor (BCR)-induced immature and primary B-cell apoptosis. Plays a role as negative regulator of the canonical NF-kappa-B-activating branch. Controls spontaneous apoptosis through the regulation of BCL2L1 abundance. {ECO:0000250}. |
Q96CA5 | BIRC7 | S220 | ochoa | Baculoviral IAP repeat-containing protein 7 (EC 2.3.2.27) (Kidney inhibitor of apoptosis protein) (KIAP) (Livin) (Melanoma inhibitor of apoptosis protein) (ML-IAP) (RING finger protein 50) (RING-type E3 ubiquitin transferase BIRC7) [Cleaved into: Baculoviral IAP repeat-containing protein 7 30kDa subunit (Truncated livin) (p30-Livin) (tLivin)] | Apoptotic regulator capable of exerting proapoptotic and anti-apoptotic activities and plays crucial roles in apoptosis, cell proliferation, and cell cycle control (PubMed:11024045, PubMed:11084335, PubMed:11162435, PubMed:16729033, PubMed:17294084). Its anti-apoptotic activity is mediated through the inhibition of CASP3, CASP7 and CASP9, as well as by its E3 ubiquitin-protein ligase activity (PubMed:11024045, PubMed:16729033). As it is a weak caspase inhibitor, its anti-apoptotic activity is thought to be due to its ability to ubiquitinate DIABLO/SMAC targeting it for degradation thereby promoting cell survival (PubMed:16729033). May contribute to caspase inhibition, by blocking the ability of DIABLO/SMAC to disrupt XIAP/BIRC4-caspase interactions (PubMed:16729033). Protects against apoptosis induced by TNF or by chemical agents such as adriamycin, etoposide or staurosporine (PubMed:11084335, PubMed:11162435, PubMed:11865055). Suppression of apoptosis is mediated by activation of MAPK8/JNK1, and possibly also of MAPK9/JNK2 (PubMed:11865055). This activation depends on TAB1 and MAP3K7/TAK1 (PubMed:11865055). In vitro, inhibits CASP3 and proteolytic activation of pro-CASP9 (PubMed:11024045). {ECO:0000269|PubMed:11024045, ECO:0000269|PubMed:11084335, ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11865055, ECO:0000269|PubMed:16729033, ECO:0000269|PubMed:17294084}.; FUNCTION: [Isoform 1]: Blocks staurosporine-induced apoptosis (PubMed:11322947). Promotes natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}.; FUNCTION: [Isoform 2]: Blocks etoposide-induced apoptosis (PubMed:11162435, PubMed:11322947). Protects against natural killer (NK) cell-mediated killing (PubMed:18034418). {ECO:0000269|PubMed:11162435, ECO:0000269|PubMed:11322947, ECO:0000269|PubMed:18034418}. |
Q96FI4 | NEIL1 | S61 | psp | Endonuclease 8-like 1 (EC 3.2.2.-) (EC 4.2.99.18) (DNA glycosylase/AP lyase Neil1) (DNA-(apurinic or apyrimidinic site) lyase Neil1) (Endonuclease VIII-like 1) (FPG1) (Nei homolog 1) (NEH1) (Nei-like protein 1) | Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as a DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized pyrimidines, such as thymine glycol, formamidopyrimidine (Fapy) and 5-hydroxyuracil. Has marginal activity towards 8-oxoguanine. Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. Has DNA glycosylase/lyase activity towards mismatched uracil and thymine, in particular in U:C and T:C mismatches. Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000269|PubMed:11904416, ECO:0000269|PubMed:12200441, ECO:0000269|PubMed:12509226, ECO:0000269|PubMed:14522990}. |
Q96PN7 | TRERF1 | S540 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96RS0 | TGS1 | S298 | ochoa|psp | Trimethylguanosine synthase (EC 2.1.1.-) (CLL-associated antigen KW-2) (Cap-specific guanine-N(2) methyltransferase) (Hepatocellular carcinoma-associated antigen 137) (Nuclear receptor coactivator 6-interacting protein) (PRIP-interacting protein with methyltransferase motif) (PIMT) (PIPMT) | Catalyzes the 2 serial methylation steps for the conversion of the 7-monomethylguanosine (m(7)G) caps of snRNAs and snoRNAs to a 2,2,7-trimethylguanosine (m(2,2,7)G) cap structure. The enzyme is specific for guanine, and N7 methylation must precede N2 methylation. Hypermethylation of the m7G cap of U snRNAs leads to their concentration in nuclear foci, their colocalization with coilin and the formation of canonical Cajal bodies (CBs). Plays a role in transcriptional regulation. {ECO:0000269|PubMed:11517327, ECO:0000269|PubMed:11912212, ECO:0000269|PubMed:16687569, ECO:0000269|PubMed:18775984}. |
Q96T23 | RSF1 | S629 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q99676 | ZNF184 | S122 | ochoa | Zinc finger protein 184 | May be involved in transcriptional regulation. |
Q9BTA9 | WAC | S64 | ochoa | WW domain-containing adapter protein with coiled-coil | Acts as a linker between gene transcription and histone H2B monoubiquitination at 'Lys-120' (H2BK120ub1) (PubMed:21329877). Interacts with the RNA polymerase II transcriptional machinery via its WW domain and with RNF20-RNF40 via its coiled coil region, thereby linking and regulating H2BK120ub1 and gene transcription (PubMed:21329877). Regulates the cell-cycle checkpoint activation in response to DNA damage (PubMed:21329877). Positive regulator of amino acid starvation-induced autophagy (PubMed:22354037). Also acts as a negative regulator of basal autophagy (PubMed:26812014). Positively regulates MTOR activity by promoting, in an energy-dependent manner, the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex. This leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). May negatively regulate the ubiquitin proteasome pathway (PubMed:21329877). {ECO:0000269|PubMed:21329877, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:26812014}. |
Q9BXF6 | RAB11FIP5 | S523 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BYW2 | SETD2 | S2082 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZD6 | PRRG4 | S202 | ochoa | Transmembrane gamma-carboxyglutamic acid protein 4 (Proline-rich gamma-carboxyglutamic acid protein 4) (Proline-rich Gla protein 4) | May control axon guidance across the CNS (PubMed:28859078). Prevents the delivery of ROBO1 at the cell surface and down-regulates its expression (PubMed:28859078). {ECO:0000269|PubMed:28859078}. |
Q9GZL7 | WDR12 | S306 | ochoa | Ribosome biogenesis protein WDR12 (WD repeat-containing protein 12) | Component of the PeBoW complex, which is required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S ribosome. {ECO:0000255|HAMAP-Rule:MF_03029, ECO:0000269|PubMed:16043514, ECO:0000269|PubMed:17353269}. |
Q9H334 | FOXP1 | S658 | ochoa | Forkhead box protein P1 (Mac-1-regulated forkhead) (MFH) | Transcriptional repressor (PubMed:18347093, PubMed:26647308). Can act with CTBP1 to synergistically repress transcription but CTPBP1 is not essential (By similarity). Plays an important role in the specification and differentiation of lung epithelium. Acts cooperatively with FOXP4 to regulate lung secretory epithelial cell fate and regeneration by restricting the goblet cell lineage program; the function may involve regulation of AGR2. Essential transcriptional regulator of B-cell development. Involved in regulation of cardiac muscle cell proliferation. Involved in the columnar organization of spinal motor neurons. Promotes the formation of the lateral motor neuron column (LMC) and the preganglionic motor column (PGC) and is required for respective appropriate motor axon projections. The segment-appropriate generation of spinal cord motor columns requires cooperation with other Hox proteins. Can regulate PITX3 promoter activity; may promote midbrain identity in embryonic stem cell-derived dopamine neurons by regulating PITX3. Negatively regulates the differentiation of T follicular helper cells T(FH)s. Involved in maintenance of hair follicle stem cell quiescence; the function probably involves regulation of FGF18 (By similarity). Represses transcription of various pro-apoptotic genes and cooperates with NF-kappa B-signaling in promoting B-cell expansion by inhibition of caspase-dependent apoptosis (PubMed:25267198). Binds to CSF1R promoter elements and is involved in regulation of monocyte differentiation and macrophage functions; repression of CSF1R in monocytes seems to involve NCOR2 as corepressor (PubMed:15286807, PubMed:18347093, PubMed:18799727). Involved in endothelial cell proliferation, tube formation and migration indicative for a role in angiogenesis; the role in neovascularization seems to implicate suppression of SEMA5B (PubMed:24023716). Can negatively regulate androgen receptor signaling (PubMed:18640093). Acts as a transcriptional activator of the FBXL7 promoter; this activity is regulated by AURKA (PubMed:28218735). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:15286807, ECO:0000269|PubMed:18640093, ECO:0000269|PubMed:18799727, ECO:0000269|PubMed:24023716, ECO:0000269|PubMed:25267198, ECO:0000269|PubMed:26647308, ECO:0000269|PubMed:28218735, ECO:0000305|PubMed:18347093, ECO:0000305|PubMed:24023716}.; FUNCTION: [Isoform 8]: Involved in transcriptional regulation in embryonic stem cells (ESCs). Stimulates expression of transcription factors that are required for pluripotency and decreases expression of differentiation-associated genes. Has distinct DNA-binding specifities as compared to the canonical form and preferentially binds DNA with the sequence 5'-CGATACAA-3' (or closely related sequences) (PubMed:21924763). Promotes ESC self-renewal and pluripotency (By similarity). {ECO:0000250|UniProtKB:P58462, ECO:0000269|PubMed:21924763}. |
Q9H694 | BICC1 | S26 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H792 | PEAK1 | S1036 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H972 | C14orf93 | S130 | ochoa | Uncharacterized protein C14orf93 | None |
Q9HAW4 | CLSPN | S1314 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HCE9 | ANO8 | S641 | ochoa | Anoctamin-8 (Transmembrane protein 16H) | Does not exhibit calcium-activated chloride channel (CaCC) activity. |
Q9HCK1 | ZDBF2 | S886 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9NR48 | ASH1L | S1748 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NX70 | MED29 | S137 | ochoa | Mediator of RNA polymerase II transcription subunit 29 (Intersex-like protein) (Mediator complex subunit 29) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:15555573}. |
Q9NXL9 | MCM9 | S1088 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NZ71 | RTEL1 | S305 | ochoa | Regulator of telomere elongation helicase 1 (EC 5.6.2.-) (Novel helicase-like) | A probable ATP-dependent DNA helicase implicated in telomere-length regulation, DNA repair and the maintenance of genomic stability. Acts as an anti-recombinase to counteract toxic recombination and limit crossover during meiosis. Regulates meiotic recombination and crossover homeostasis by physically dissociating strand invasion events and thereby promotes noncrossover repair by meiotic synthesis dependent strand annealing (SDSA) as well as disassembly of D loop recombination intermediates. Also disassembles T loops and prevents telomere fragility by counteracting telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere. {ECO:0000255|HAMAP-Rule:MF_03065, ECO:0000269|PubMed:18957201, ECO:0000269|PubMed:23453664, ECO:0000269|PubMed:24009516}. |
Q9P1Y5 | CAMSAP3 | S685 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P246 | STIM2 | S609 | ochoa | Stromal interaction molecule 2 | Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}. |
Q9UBP9 | GULP1 | S211 | ochoa | PTB domain-containing engulfment adapter protein 1 (Cell death protein 6 homolog) (PTB domain adapter protein CED-6) (Protein GULP) | May function as an adapter protein. Required for efficient phagocytosis of apoptotic cells. Modulates cellular glycosphingolipid and cholesterol transport. May play a role in the internalization and endosomal trafficking of various LRP1 ligands, such as PSAP. Increases cellular levels of GTP-bound ARF6. {ECO:0000269|PubMed:10574763, ECO:0000269|PubMed:10574771, ECO:0000269|PubMed:16497666, ECO:0000269|PubMed:17398097}. |
Q9UHJ3 | SFMBT1 | S740 | ochoa | Scm-like with four MBT domains protein 1 (hSFMBT) (Renal ubiquitous protein 1) | Histone-binding protein, which is part of various corepressor complexes. Mediates the recruitment of corepressor complexes to target genes, followed by chromatin compaction and repression of transcription. Plays a role during myogenesis: required for the maintenance of undifferentiated states of myogenic progenitor cells via interaction with MYOD1. Interaction with MYOD1 leads to the recruitment of associated corepressors and silencing of MYOD1 target genes. Part of the SLC complex in germ cells, where it may play a role during spermatogenesis. {ECO:0000269|PubMed:17599839, ECO:0000269|PubMed:23349461, ECO:0000269|PubMed:23592795}. |
Q9UKG1 | APPL1 | S401 | ochoa|psp | DCC-interacting protein 13-alpha (Dip13-alpha) (Adapter protein containing PH domain, PTB domain and leucine zipper motif 1) | Multifunctional adapter protein that binds to various membrane receptors, nuclear factors and signaling proteins to regulate many processes, such as cell proliferation, immune response, endosomal trafficking and cell metabolism (PubMed:10490823, PubMed:15016378, PubMed:19661063, PubMed:26073777, PubMed:26583432). Regulates signaling pathway leading to cell proliferation through interaction with RAB5A and subunits of the NuRD/MeCP1 complex (PubMed:15016378). Functions as a positive regulator of innate immune response via activation of AKT1 signaling pathway by forming a complex with APPL1 and PIK3R1 (By similarity). Inhibits Fc-gamma receptor-mediated phagocytosis through PI3K/Akt signaling in macrophages (By similarity). Regulates TLR4 signaling in activated macrophages (By similarity). Involved in trafficking of the TGFBR1 from the endosomes to the nucleus via microtubules in a TRAF6-dependent manner (PubMed:26583432). Plays a role in cell metabolism by regulating adiponecting and insulin signaling pathways (PubMed:19661063, PubMed:24879834, PubMed:26073777). Required for fibroblast migration through HGF cell signaling (By similarity). Positive regulator of beta-catenin/TCF-dependent transcription through direct interaction with RUVBL2/reptin resulting in the relief of RUVBL2-mediated repression of beta-catenin/TCF target genes by modulating the interactions within the beta-catenin-reptin-HDAC complex (PubMed:19433865). {ECO:0000250|UniProtKB:Q8K3H0, ECO:0000269|PubMed:10490823, ECO:0000269|PubMed:15016378, ECO:0000269|PubMed:19433865, ECO:0000269|PubMed:19661063, ECO:0000269|PubMed:24879834, ECO:0000269|PubMed:26073777, ECO:0000269|PubMed:26583432}. |
Q9ULH1 | ASAP1 | S726 | ochoa | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 (130 kDa phosphatidylinositol 4,5-bisphosphate-dependent ARF1 GTPase-activating protein) (ADP-ribosylation factor-directed GTPase-activating protein 1) (ARF GTPase-activating protein 1) (Development and differentiation-enhancing factor 1) (DEF-1) (Differentiation-enhancing factor 1) (PIP2-dependent ARF1 GAP) | Possesses phosphatidylinositol 4,5-bisphosphate-dependent GTPase-activating protein activity for ARF1 (ADP ribosylation factor 1) and ARF5 and a lesser activity towards ARF6. May coordinate membrane trafficking with cell growth or actin cytoskeleton remodeling by binding to both SRC and PIP2. May function as a signal transduction protein involved in the differentiation of fibroblasts into adipocytes and possibly other cell types. Part of the ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, which direct preciliary vesicle trafficking to mother centriole and ciliogenesis initiation (PubMed:25673879). {ECO:0000250, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:25673879}. |
Q9ULL8 | SHROOM4 | S494 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9Y2L6 | FRMD4B | S992 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y2X7 | GIT1 | S670 | ochoa | ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}. |
Q9Y6D5 | ARFGEF2 | S218 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6Q6 | TNFRSF11A | S514 | ochoa | Tumor necrosis factor receptor superfamily member 11A (Osteoclast differentiation factor receptor) (ODFR) (Receptor activator of NF-KB) (CD antigen CD265) | Receptor for TNFSF11/RANKL/TRANCE/OPGL; essential for RANKL-mediated osteoclastogenesis (PubMed:9878548). Its interaction with EEIG1 promotes osteoclastogenesis via facilitating the transcription of NFATC1 and activation of PLCG2 (By similarity). Involved in the regulation of interactions between T-cells and dendritic cells (By similarity). {ECO:0000250|UniProtKB:O35305, ECO:0000269|PubMed:9878548}. |
P19438 | TNFRSF1A | S274 | SIGNOR|iPTMNet | Tumor necrosis factor receptor superfamily member 1A (Tumor necrosis factor receptor 1) (TNF-R1) (Tumor necrosis factor receptor type I) (TNF-RI) (TNFR-I) (p55) (p60) (CD antigen CD120a) [Cleaved into: Tumor necrosis factor receptor superfamily member 1A, membrane form; Tumor necrosis factor-binding protein 1 (TBPI)] | Receptor for TNFSF2/TNF-alpha and homotrimeric TNFSF1/lymphotoxin-alpha. The adapter molecule FADD recruits caspase-8 to the activated receptor. The resulting death-inducing signaling complex (DISC) performs caspase-8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. Contributes to the induction of non-cytocidal TNF effects including anti-viral state and activation of the acid sphingomyelinase. |
Q9H9S0 | NANOG | S52 | PSP | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
Q14524 | SCN5A | S464 | PSP | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
A0A0G2JS52 | None | S43 | ochoa | Myelin transcription factor 1 domain-containing protein | None |
A0A1W2PPC1 | PRR33 | S125 | ochoa | Proline rich 33 | None |
A2A3K4 | PTPDC1 | S438 | ochoa | Protein tyrosine phosphatase domain-containing protein 1 (EC 3.1.3.-) | May play roles in cilia formation and/or maintenance. {ECO:0000250}. |
A2RU30 | TESPA1 | S356 | ochoa | Protein TESPA1 (Thymocyte-expressed positive selection-associated protein 1) | Required for the development and maturation of T-cells, its function being essential for the late stages of thymocyte development (By similarity). Plays a role in T-cell antigen receptor (TCR)-mediated activation of the ERK and NFAT signaling pathways, possibly by serving as a scaffolding protein that promotes the assembly of the LAT signalosome in thymocytes. May play a role in the regulation of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release and mitochondrial Ca(2+) uptake via the mitochondria-associated endoplasmic reticulum membrane (MAM) compartment. {ECO:0000250, ECO:0000269|PubMed:22561606}. |
A2RUB6 | CCDC66 | S797 | ochoa | Coiled-coil domain-containing protein 66 | Microtubule-binding protein required for ciliogenesis (PubMed:28235840). May function in ciliogenesis by mediating the transport of proteins like BBS4 to the cilium, but also through the organization of the centriolar satellites (PubMed:28235840). Required for the assembly of signaling-competent cilia with proper structure and length (PubMed:36606424). Mediates this function in part by regulating transition zone assembly and basal body recruitment of the IFT-B complex (PubMed:36606424). Cooperates with the ciliopathy proteins CSPP1 and CEP104 during cilium length regulation (PubMed:36606424). Plays two important roles during cell division (PubMed:35849559). First, is required for mitotic progression via regulation of spindle assembly, organization and orientation, levels of spindle microtubules (MTs), kinetochore-fiber integrity, and chromosome alignment (PubMed:35849559). Second, functions during cytokinesis in part by regulating assembly and organization of central spindle and midbody MTs (PubMed:35849559). Plays a role in retina morphogenesis and/or homeostasis (By similarity). {ECO:0000250|UniProtKB:Q6NS45, ECO:0000269|PubMed:28235840, ECO:0000269|PubMed:35849559}. |
A4UGR9 | XIRP2 | S2530 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A4UGR9 | XIRP2 | S3042 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A6H8Y1 | BDP1 | S2050 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6NDB9 | PALM3 | S72 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A6NDB9 | PALM3 | S303 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
A6NFI3 | ZNF316 | S221 | ochoa | Zinc finger protein 316 | May be involved in transcriptional regulation. {ECO:0000250}. |
A7KAX9 | ARHGAP32 | S613 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7KAX9 | ARHGAP32 | S1820 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A7MCY6 | TBKBP1 | S534 | ochoa | TANK-binding kinase 1-binding protein 1 (TBK1-binding protein 1) | Adapter protein which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. {ECO:0000269|PubMed:21931631}. |
C9J069 | AJM1 | S856 | ochoa | Apical junction component 1 homolog | May be involved in the control of adherens junction integrity. {ECO:0000250|UniProtKB:A0A1C3NSL9}. |
C9J798 | RASA4B | S760 | ochoa | Ras GTPase-activating protein 4B | Ca(2+)-dependent Ras GTPase-activating protein, that may play a role in the Ras-MAPK pathway. {ECO:0000250|UniProtKB:O43374}. |
E7EW31 | PROB1 | S179 | ochoa | Proline-rich basic protein 1 | None |
H3BRB1 | None | S133 | ochoa | polynucleotide adenylyltransferase (EC 2.7.7.19) | None |
H3BRB1 | None | S138 | ochoa | polynucleotide adenylyltransferase (EC 2.7.7.19) | None |
H7C1W4 | None | S58 | ochoa | Uncharacterized protein | None |
J3KQ70 | INO80B-WBP1 | S63 | ochoa | HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) | None |
M0QX08 | None | S58 | ochoa | Protein kinase domain-containing protein | None |
O00165 | HAX1 | S153 | ochoa | HCLS1-associated protein X-1 (HS1-associating protein X-1) (HAX-1) (HS1-binding protein 1) (HSP1BP-1) | Recruits the Arp2/3 complex to the cell cortex and regulates reorganization of the cortical actin cytoskeleton via its interaction with KCNC3 and the Arp2/3 complex (PubMed:26997484). Slows down the rate of inactivation of KCNC3 channels (PubMed:26997484). Promotes GNA13-mediated cell migration. Involved in the clathrin-mediated endocytosis pathway. May be involved in internalization of ABC transporters such as ABCB11. May inhibit CASP9 and CASP3. Promotes cell survival. May regulate intracellular calcium pools. {ECO:0000269|PubMed:15339924, ECO:0000269|PubMed:16857965, ECO:0000269|PubMed:17545607, ECO:0000269|PubMed:18319618, ECO:0000269|PubMed:18971376, ECO:0000269|PubMed:26997484, ECO:0000269|PubMed:9058808}. |
O00429 | DNM1L | S616 | ochoa|psp | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00566 | MPHOSPH10 | S163 | ochoa | U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) | Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}. |
O14613 | CDC42EP2 | S101 | ochoa | Cdc42 effector protein 2 (Binder of Rho GTPases 1) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts in a CDC42-dependent manner. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
O14682 | ENC1 | S406 | ochoa | Ectoderm-neural cortex protein 1 (ENC-1) (Kelch-like protein 37) (Nuclear matrix protein NRP/B) (p53-induced gene 10 protein) | Actin-binding protein involved in the regulation of neuronal process formation and in differentiation of neural crest cells. Down-regulates transcription factor NF2L2/NRF2 by decreasing the rate of protein synthesis and not via a ubiquitin-mediated proteasomal degradation mechanism. {ECO:0000269|PubMed:19424503}. |
O14686 | KMT2D | S3130 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S4822 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14745 | NHERF1 | S46 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}. |
O14901 | KLF11 | S166 | ochoa|psp | Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) | Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}. |
O14939 | PLD2 | S134 | psp | Phospholipase D2 (PLD 2) (hPLD2) (EC 3.1.4.4) (Choline phosphatase 2) (PLD1C) (Phosphatidylcholine-hydrolyzing phospholipase D2) | Function as phospholipase selective for phosphatidylcholine (PubMed:9582313). May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity). {ECO:0000250|UniProtKB:P97813, ECO:0000269|PubMed:9582313}. |
O15014 | ZNF609 | S743 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15020 | SPTBN2 | S772 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15047 | SETD1A | S565 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15069 | NACAD | S561 | ochoa | NAC-alpha domain-containing protein 1 | May prevent inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). May bind to nascent polypeptide chains as they emerge from the ribosome and block their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. May also reduce the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites) (By similarity). {ECO:0000250}. |
O15085 | ARHGEF11 | S1300 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15105 | SMAD7 | S206 | psp | Mothers against decapentaplegic homolog 7 (MAD homolog 7) (Mothers against DPP homolog 7) (Mothers against decapentaplegic homolog 8) (MAD homolog 8) (Mothers against DPP homolog 8) (SMAD family member 7) (SMAD 7) (Smad7) (hSMAD7) | Antagonist of signaling by TGF-beta (transforming growth factor) type 1 receptor superfamily members; has been shown to inhibit TGF-beta (Transforming growth factor) and activin signaling by associating with their receptors thus preventing SMAD2 access (PubMed:21791611). Functions as an adapter to recruit SMURF2 to the TGF-beta receptor complex. Also acts by recruiting the PPP1R15A-PP1 complex to TGFBR1, which promotes its dephosphorylation. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. {ECO:0000269|PubMed:11163210, ECO:0000269|PubMed:12023024, ECO:0000269|PubMed:14718519, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:21791611, ECO:0000269|PubMed:9892009}. |
O15160 | POLR1C | S258 | ochoa | DNA-directed RNA polymerases I and III subunit RPAC1 (DNA-directed RNA polymerase I subunit C) (RNA polymerases I and III subunit AC1) (AC40) (DNA-directed RNA polymerases I and III 40 kDa polypeptide) (RPA40) (RPA39) (RPC40) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and short non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs, respectively. POLR1C/RPAC1 is part of the polymerase core and may function as a clamp element that moves to open and close the cleft. {ECO:0000250|UniProtKB:P07703, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492, ECO:0000305|PubMed:26151409}. |
O15213 | WDR46 | S41 | ochoa | WD repeat-containing protein 46 (WD repeat-containing protein BING4) | Scaffold component of the nucleolar structure. Required for localization of DDX21 and NCL to the granular compartment of the nucleolus (PubMed:23848194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23848194, ECO:0000269|PubMed:34516797}. |
O15231 | ZNF185 | S307 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15234 | CASC3 | S265 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15304 | SIVA1 | S70 | ochoa | Apoptosis regulatory protein Siva (CD27-binding protein) (CD27BP) | Induces CD27-mediated apoptosis. Inhibits BCL2L1 isoform Bcl-x(L) anti-apoptotic activity. Inhibits activation of NF-kappa-B and promotes T-cell receptor-mediated apoptosis. {ECO:0000269|PubMed:12011449, ECO:0000269|PubMed:14739602, ECO:0000269|PubMed:15034012, ECO:0000269|PubMed:15958577, ECO:0000269|PubMed:16491128}. |
O15375 | SLC16A5 | S451 | ochoa | Monocarboxylate transporter 6 (MCT 6) (Monocarboxylate transporter 5) (MCT 5) (Solute carrier family 16 member 5) | Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate (By similarity). {ECO:0000250}. |
O15394 | NCAM2 | S786 | ochoa | Neural cell adhesion molecule 2 (N-CAM-2) (NCAM-2) | May play important roles in selective fasciculation and zone-to-zone projection of the primary olfactory axons. |
O43252 | PAPSS1 | S102 | ochoa | Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPS synthase 1) (PAPSS 1) (Sulfurylase kinase 1) (SK 1) (SK1) [Includes: Sulfate adenylyltransferase (EC 2.7.7.4) (ATP-sulfurylase) (Sulfate adenylate transferase) (SAT); Adenylyl-sulfate kinase (EC 2.7.1.25) (3'-phosphoadenosine-5'-phosphosulfate synthase) (APS kinase) (Adenosine-5'-phosphosulfate 3'-phosphotransferase) (Adenylylsulfate 3'-phosphotransferase)] | Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate (PAPS: activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway (PubMed:14747722, PubMed:9576487, PubMed:9648242, PubMed:9668121). Required for normal biosynthesis of sulfated L-selectin ligands in endothelial cells (PubMed:9576487). {ECO:0000269|PubMed:14747722, ECO:0000269|PubMed:9576487, ECO:0000269|PubMed:9648242, ECO:0000269|PubMed:9668121}. |
O43296 | ZNF264 | S150 | ochoa | Zinc finger protein 264 | May be involved in transcriptional regulation. |
O43314 | PPIP5K2 | S983 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43374 | RASA4 | S760 | ochoa | Ras GTPase-activating protein 4 (Calcium-promoted Ras inactivator) (Ras p21 protein activator 4) (RasGAP-activating-like protein 2) | Ca(2+)-dependent Ras GTPase-activating protein, that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular calcium. Functions as an adaptor for Cdc42 and Rac1 during FcR-mediated phagocytosis. {ECO:0000269|PubMed:11448776}. |
O43379 | WDR62 | S1070 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43379 | WDR62 | S1123 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43432 | EIF4G3 | S232 | ochoa | Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}. |
O43463 | SUV39H1 | S391 | ochoa|psp | Histone-lysine N-methyltransferase SUV39H1 (EC 2.1.1.355) (Histone H3-K9 methyltransferase 1) (H3-K9-HMTase 1) (Lysine N-methyltransferase 1A) (Position-effect variegation 3-9 homolog) (Suppressor of variegation 3-9 homolog 1) (Su(var)3-9 homolog 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3 using monomethylated H3 'Lys-9' as substrate. Also weakly methylates histone H1 (in vitro). H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin at pericentric and telomere regions. H3 'Lys-9' trimethylation is also required to direct DNA methylation at pericentric repeats. SUV39H1 is targeted to histone H3 via its interaction with RB1 and is involved in many processes, such as repression of MYOD1-stimulated differentiation, regulation of the control switch for exiting the cell cycle and entering differentiation, repression by the PML-RARA fusion protein, BMP-induced repression, repression of switch recombination to IgA and regulation of telomere length. Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Recruited by the large PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1, contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation. {ECO:0000269|PubMed:14765126, ECO:0000269|PubMed:16449642, ECO:0000269|PubMed:16818776, ECO:0000269|PubMed:16858404, ECO:0000269|PubMed:18004385, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:30111536}.; FUNCTION: (Microbial infection) Plays a role in defense against mycobacterial infections. Methylates M.tuberculosis HupB on 'Lys-140', probably methylates HupB of M.bovis also. Methylation has an inhibitory effect on mycobacterial growth in the host. Macrophages expressing about 60% SUV39H1 are slightly more susceptible to M.bovis or M.tuberculosis infection. Chaetocin (an inhibitor of this enzyme) increases macrophage survival of M.tuberculosis. This protein inhibits biofilm formation by M.tuberculosis via 'Lys-140' trimethylation. {ECO:0000269|PubMed:29170282}. |
O43520 | ATP8B1 | S1232 | ochoa | Phospholipid-transporting ATPase IC (EC 7.6.2.1) (ATPase class I type 8B member 1) (Familial intrahepatic cholestasis type 1) (P4-ATPase flippase complex alpha subunit ATP8B1) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of phospholipids, in particular phosphatidylcholines (PC), from the outer to the inner leaflet of the plasma membrane (PubMed:17948906, PubMed:25315773). May participate in the establishment of the canalicular membrane integrity by ensuring asymmetric distribution of phospholipids in the canicular membrane (By similarity). Thus may have a role in the regulation of bile acids transport into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both and protect hepatocytes from bile salts (By similarity). Involved in the microvillus formation in polarized epithelial cells; the function seems to be independent from its flippase activity (PubMed:20512993). Participates in correct apical membrane localization of CDC42, CFTR and SLC10A2 (PubMed:25239307, PubMed:27301931). Enables CDC42 clustering at the apical membrane during enterocyte polarization through the interaction between CDC42 polybasic region and negatively charged membrane lipids provided by ATP8B1 (By similarity). Together with TMEM30A is involved in uptake of the synthetic drug alkylphospholipid perifosine (PubMed:20510206). Required for the preservation of cochlear hair cells in the inner ear (By similarity). May act as cardiolipin transporter during inflammatory injury (By similarity). {ECO:0000250|UniProtKB:Q148W0, ECO:0000269|PubMed:17948906, ECO:0000269|PubMed:20510206, ECO:0000269|PubMed:20512993, ECO:0000269|PubMed:25239307, ECO:0000269|PubMed:27301931}. |
O43566 | RGS14 | S456 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43583 | DENR | S73 | ochoa|psp | Density-regulated protein (DRP) (Protein DRP1) (Smooth muscle cell-associated protein 3) (SMAP-3) | Translation regulator forming a complex with MCTS1 to promote translation reinitiation. Translation reinitiation is the process where the small ribosomal subunit remains attached to the mRNA following termination of translation of a regulatory upstream ORF (uORF), and resume scanning on the same mRNA molecule to initiate translation of a downstream ORF, usually the main ORF (mORF). The MCTS1/DENR complex is pivotal to two linked mechanisms essential for translation reinitiation. Firstly, the dissociation of deacylated tRNAs from post-termination 40S ribosomal complexes during ribosome recycling. Secondly, the recruitment in an EIF2-independent manner of aminoacylated initiator tRNA to P site of 40S ribosomes for a new round of translation. This regulatory mechanism governs the translation of more than 150 genes which translation reinitiation is MCTS1/DENR complex-dependent. {ECO:0000269|PubMed:16982740, ECO:0000269|PubMed:20713520, ECO:0000269|PubMed:37875108}. |
O43586 | PSTPIP1 | S359 | ochoa | Proline-serine-threonine phosphatase-interacting protein 1 (PEST phosphatase-interacting protein 1) (CD2-binding protein 1) (H-PIP) | Involved in regulation of the actin cytoskeleton. May regulate WAS actin-bundling activity. Bridges the interaction between ABL1 and PTPN18 leading to ABL1 dephosphorylation. May play a role as a scaffold protein between PTPN12 and WAS and allow PTPN12 to dephosphorylate WAS. Has the potential to physically couple CD2 and CD2AP to WAS. Acts downstream of CD2 and CD2AP to recruit WAS to the T-cell:APC contact site so as to promote the actin polymerization required for synapse induction during T-cell activation (By similarity). Down-regulates CD2-stimulated adhesion through the coupling of PTPN12 to CD2. Also has a role in innate immunity and the inflammatory response. Recruited to inflammasomes by MEFV. Induces formation of pyroptosomes, large supramolecular structures composed of oligomerized PYCARD dimers which form prior to inflammatory apoptosis. Binding to MEFV allows MEFV to bind to PYCARD and facilitates pyroptosome formation. Regulates endocytosis and cell migration in neutrophils. {ECO:0000250, ECO:0000269|PubMed:17964261, ECO:0000269|PubMed:18480402, ECO:0000269|PubMed:19109554, ECO:0000269|PubMed:19584923, ECO:0000269|PubMed:9857189}. |
O43765 | SGTA | S77 | ochoa | Small glutamine-rich tetratricopeptide repeat-containing protein alpha (Alpha-SGT) (Vpu-binding protein) (UBP) | Co-chaperone that binds misfolded and hydrophobic patches-containing client proteins in the cytosol. Mediates their targeting to the endoplasmic reticulum but also regulates their sorting to the proteasome when targeting fails (PubMed:28104892). Functions in tail-anchored/type II transmembrane proteins membrane insertion constituting with ASNA1 and the BAG6 complex a targeting module (PubMed:28104892). Functions upstream of the BAG6 complex and ASNA1, binding more rapidly the transmembrane domain of newly synthesized proteins (PubMed:25535373, PubMed:28104892). It is also involved in the regulation of the endoplasmic reticulum-associated misfolded protein catabolic process via its interaction with BAG6: collaborates with the BAG6 complex to maintain hydrophobic substrates in non-ubiquitinated states (PubMed:23129660, PubMed:25179605). Competes with RNF126 for interaction with BAG6, preventing the ubiquitination of client proteins associated with the BAG6 complex (PubMed:27193484). Binds directly to HSC70 and HSP70 and regulates their ATPase activity (PubMed:18759457). {ECO:0000269|PubMed:18759457, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:25535373, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection via interaction with DNAJB12, DNAJB14 and HSPA8/Hsc70 (PubMed:24675744). {ECO:0000269|PubMed:24675744}. |
O60237 | PPP1R12B | S687 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60264 | SMARCA5 | S66 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O60268 | KIAA0513 | S279 | ochoa | Uncharacterized protein KIAA0513 | None |
O60285 | NUAK1 | S388 | ochoa | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O60291 | MGRN1 | S153 | ochoa | E3 ubiquitin-protein ligase MGRN1 (EC 2.3.2.27) (Mahogunin RING finger protein 1) (RING finger protein 156) (RING-type E3 ubiquitin transferase MGRN1) | E3 ubiquitin-protein ligase. Mediates monoubiquitination at multiple sites of TSG101 in the presence of UBE2D1, but not of UBE2G1, nor UBE2H. Plays a role in the regulation of endosome-to-lysosome trafficking. Impairs MC1R- and MC4R-signaling by competing with GNAS-binding to MCRs and inhibiting agonist-induced cAMP production. Does not inhibit ADRB2-signaling. Does not promote MC1R ubiquitination. Acts also as a negative regulator of hedgehog signaling (By similarity). {ECO:0000250|UniProtKB:Q9D074, ECO:0000269|PubMed:17229889, ECO:0000269|PubMed:19703557, ECO:0000269|PubMed:19737927}. |
O60303 | KATNIP | S368 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60307 | MAST3 | S348 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60336 | MAPKBP1 | S1283 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60488 | ACSL4 | S57 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60673 | REV3L | S1030 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60674 | JAK2 | S523 | ochoa|psp | Tyrosine-protein kinase JAK2 (EC 2.7.10.2) (Janus kinase 2) (JAK-2) | Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin receptor (MPL/TPOR); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins (PubMed:15690087, PubMed:7615558, PubMed:9657743, PubMed:15899890). Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins (PubMed:15690087, PubMed:9618263). Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain (PubMed:9657743). Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. Part of a signaling cascade that is activated by increased cellular retinol and that leads to the activation of STAT5 (STAT5A or STAT5B) (PubMed:21368206). In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation (PubMed:20098430). Plays a role in cell cycle by phosphorylating CDKN1B (PubMed:21423214). Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin (PubMed:19783980). Up-regulates the potassium voltage-gated channel activity of KCNA3 (PubMed:25644777). {ECO:0000269|PubMed:12023369, ECO:0000269|PubMed:15690087, ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:21368206, ECO:0000269|PubMed:21423214, ECO:0000269|PubMed:25644777, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:9618263, ECO:0000269|PubMed:9657743}. |
O60858 | TRIM13 | S275 | ochoa | E3 ubiquitin-protein ligase TRIM13 (EC 2.3.2.27) (B-cell chronic lymphocytic leukemia tumor suppressor Leu5) (Leukemia-associated protein 5) (Putative tumor suppressor RFP2) (RING finger protein 77) (RING-type E3 ubiquitin transferase TRIM13) (Ret finger protein 2) (Tripartite motif-containing protein 13) | Endoplasmic reticulum (ER) membrane anchored E3 ligase involved in the retrotranslocation and turnover of membrane and secretory proteins from the ER through a set of processes named ER-associated degradation (ERAD). This process acts on misfolded proteins as well as in the regulated degradation of correctly folded proteins. Enhances ionizing radiation-induced p53/TP53 stability and apoptosis via ubiquitinating MDM2 and AKT1 and decreasing AKT1 kinase activity through MDM2 and AKT1 proteasomal degradation. Regulates ER stress-induced autophagy, and may act as a tumor suppressor (PubMed:22178386). Also plays a role in innate immune response by stimulating NF-kappa-B activity in the TLR2 signaling pathway. Ubiquitinates TRAF6 via the 'Lys-29'-linked polyubiquitination chain resulting in NF-kappa-B activation (PubMed:28087809). Participates as well in T-cell receptor-mediated NF-kappa-B activation (PubMed:25088585). In the presence of TNF, modulates the IKK complex by regulating IKBKG/NEMO ubiquitination leading to the repression of NF-kappa-B (PubMed:25152375). {ECO:0000269|PubMed:17314412, ECO:0000269|PubMed:21333377, ECO:0000269|PubMed:22178386, ECO:0000269|PubMed:25088585, ECO:0000269|PubMed:25152375, ECO:0000269|PubMed:28087809}. |
O75128 | COBL | S815 | ochoa | Protein cordon-bleu | Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}. |
O75132 | ZBED4 | S255 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75151 | PHF2 | S539 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75351 | VPS4B | S385 | ochoa | Vacuolar protein sorting-associated protein 4B (EC 3.6.4.6) (Cell migration-inducing gene 1 protein) (Suppressor of K(+) transport growth defect 1) (Protein SKD1) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their ATP-dependent disassembly, possibly in combination with membrane fission (PubMed:18687924). Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:18687924, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:16193069, ECO:0000269|PubMed:18606141}. |
O75362 | ZNF217 | S848 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75363 | BCAS1 | S63 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75369 | FLNB | S440 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S730 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S833 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S932 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S1121 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S1316 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S1409 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S1902 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2083 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2274 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2325 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75391 | SPAG7 | S158 | ochoa | Sperm-associated antigen 7 | None |
O75943 | RAD17 | S416 | ochoa | Cell cycle checkpoint protein RAD17 (hRad17) (RF-C/activator 1 homolog) | Essential for sustained cell growth, maintenance of chromosomal stability, and ATR-dependent checkpoint activation upon DNA damage (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Has a weak ATPase activity required for binding to chromatin (PubMed:10208430, PubMed:11418864, PubMed:11687627, PubMed:11799063, PubMed:12672690, PubMed:14624239, PubMed:15235112). Participates in the recruitment of the 9-1-1 (RAD1-RAD9-HUS1) complex and RHNO1 onto chromatin, and in CHEK1 activation (PubMed:21659603). Involved in homologous recombination by mediating recruitment of the MRN complex to DNA damage sites (PubMed:24534091). May also serve as a sensor of DNA replication progression (PubMed:12578958, PubMed:14500819, PubMed:15538388). {ECO:0000269|PubMed:10208430, ECO:0000269|PubMed:11418864, ECO:0000269|PubMed:11687627, ECO:0000269|PubMed:11799063, ECO:0000269|PubMed:12578958, ECO:0000269|PubMed:12672690, ECO:0000269|PubMed:14500819, ECO:0000269|PubMed:14624239, ECO:0000269|PubMed:15235112, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:24534091}. |
O76074 | PDE5A | S86 | ochoa | cGMP-specific 3',5'-cyclic phosphodiesterase (EC 3.1.4.35) (cGMP-binding cGMP-specific phosphodiesterase) (CGB-PDE) | Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. This phosphodiesterase catalyzes the specific hydrolysis of cGMP to 5'-GMP (PubMed:15489334, PubMed:9714779). Specifically regulates nitric-oxide-generated cGMP (PubMed:15489334). {ECO:0000269|PubMed:15489334, ECO:0000269|PubMed:9714779}. |
O94808 | GFPT2 | S202 | ochoa | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 2) (Glutamine:fructose-6-phosphate amidotransferase 2) (GFAT 2) (GFAT2) (Hexosephosphate aminotransferase 2) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. |
O94811 | TPPP | S45 | ochoa | Tubulin polymerization-promoting protein (TPPP) (EC 3.6.5.-) (25 kDa brain-specific protein) (TPPP/p25) (p24) (p25-alpha) | Regulator of microtubule dynamics that plays a key role in myelination by promoting elongation of the myelin sheath (PubMed:31522887). Acts as a microtubule nucleation factor in oligodendrocytes: specifically localizes to the postsynaptic Golgi apparatus region, also named Golgi outpost, and promotes microtubule nucleation, an important step for elongation of the myelin sheath (PubMed:31522887, PubMed:33831707). Required for both uniform polarized growth of distal microtubules as well as directing the branching of proximal processes (PubMed:31522887). Shows magnesium-dependent GTPase activity; the role of the GTPase activity is unclear (PubMed:21316364, PubMed:21995432). In addition to microtubule nucleation activity, also involved in microtubule bundling and stabilization of existing microtubules, thereby maintaining the integrity of the microtubule network (PubMed:17105200, PubMed:17693641, PubMed:18028908, PubMed:26289831). Regulates microtubule dynamics by promoting tubulin acetylation: acts by inhibiting the tubulin deacetylase activity of HDAC6 (PubMed:20308065, PubMed:23093407). Also regulates cell migration: phosphorylation by ROCK1 inhibits interaction with HDAC6, resulting in decreased acetylation of tubulin and increased cell motility (PubMed:23093407). Plays a role in cell proliferation by regulating the G1/S-phase transition (PubMed:23355470). Involved in astral microtubule organization and mitotic spindle orientation during early stage of mitosis; this process is regulated by phosphorylation by LIMK2 (PubMed:22328514). {ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:17693641, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:21316364, ECO:0000269|PubMed:21995432, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:26289831, ECO:0000269|PubMed:31522887}. |
O94850 | DDN | S567 | ochoa | Dendrin | Promotes apoptosis of kidney glomerular podocytes. Podocytes are highly specialized cells essential to the ultrafiltration of blood, resulting in the extraction of urine and the retention of protein (By similarity). {ECO:0000250}. |
O94885 | SASH1 | S297 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94953 | KDM4B | S352 | ochoa|psp | Lysine-specific demethylase 4B (EC 1.14.11.66) (JmjC domain-containing histone demethylation protein 3B) (Jumonji domain-containing protein 2B) ([histone H3]-trimethyl-L-lysine(9) demethylase 4B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27', H3 'Lys-36' nor H4 'Lys-20'. Only able to demethylate trimethylated H3 'Lys-9', with a weaker activity than KDM4A, KDM4C and KDM4D. Demethylation of Lys residue generates formaldehyde and succinate (PubMed:16603238, PubMed:28262558). Plays a critical role in the development of the central nervous system (CNS). {ECO:0000250|UniProtKB:Q91VY5, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
O95196 | CSPG5 | S543 | ochoa | Chondroitin sulfate proteoglycan 5 (Acidic leucine-rich EGF-like domain-containing brain protein) (Neuroglycan C) | May function as a growth and differentiation factor involved in neuritogenesis. May induce ERBB3 activation. {ECO:0000269|PubMed:15358134}. |
O95251 | KAT7 | S124 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95279 | KCNK5 | S385 | ochoa | Potassium channel subfamily K member 5 (Acid-sensitive potassium channel protein TASK-2) (TWIK-related acid-sensitive K(+) channel 2) | K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:26919430, PubMed:36063992, PubMed:9812978). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:36063992). {ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:36063992, ECO:0000269|PubMed:9812978}. |
O95359 | TACC2 | S962 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S1822 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95382 | MAP3K6 | S1144 | ochoa | Mitogen-activated protein kinase kinase kinase 6 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 2) | Component of a protein kinase signal transduction cascade. Activates the JNK, but not ERK or p38 kinase pathways. {ECO:0000269|PubMed:17210579, ECO:0000269|PubMed:9875215}. |
O95396 | MOCS3 | S47 | ochoa | Adenylyltransferase and sulfurtransferase MOCS3 (Molybdenum cofactor synthesis protein 3) (Molybdopterin synthase sulfurylase) (MPT synthase sulfurylase) [Includes: Molybdopterin-synthase adenylyltransferase (EC 2.7.7.80) (Adenylyltransferase MOCS3) (Sulfur carrier protein MOCS2A adenylyltransferase); Molybdopterin-synthase sulfurtransferase (EC 2.8.1.11) (Sulfur carrier protein MOCS2A sulfurtransferase) (Sulfurtransferase MOCS3)] | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of cytosolic tRNA(Lys), tRNA(Glu) and tRNA(Gln) (PubMed:19017811, PubMed:22453920, PubMed:30817134). Also essential during biosynthesis of the molybdenum cofactor (PubMed:15073332, PubMed:22453920, PubMed:30817134). Acts by mediating the C-terminal thiocarboxylation of sulfur carriers URM1 and MOCS2A (PubMed:15073332, PubMed:19017811, PubMed:22453920). Its N-terminus first activates URM1 and MOCS2A as acyl-adenylates (-COAMP), then the persulfide sulfur on the catalytic cysteine is transferred to URM1 and MOCS2A to form thiocarboxylation (-COSH) of their C-terminus (PubMed:19017811, PubMed:22453920). The reaction probably involves hydrogen sulfide that is generated from the persulfide intermediate and that acts as a nucleophile towards URM1 and MOCS2A (PubMed:15073332, PubMed:22453920). Subsequently, a transient disulfide bond is formed (PubMed:15073332, PubMed:22453920). Does not use thiosulfate as sulfur donor; NFS1 acting as a sulfur donor for thiocarboxylation reactions (PubMed:18650437, PubMed:22453920). {ECO:0000255|HAMAP-Rule:MF_03049, ECO:0000269|PubMed:15073332, ECO:0000269|PubMed:18650437, ECO:0000269|PubMed:19017811, ECO:0000269|PubMed:22453920, ECO:0000269|PubMed:30817134}. |
O95402 | MED26 | S535 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95405 | ZFYVE9 | S668 | ochoa | Zinc finger FYVE domain-containing protein 9 (Mothers against decapentaplegic homolog-interacting protein) (Madh-interacting protein) (Novel serine protease) (NSP) (Receptor activation anchor) (hSARA) (Smad anchor for receptor activation) | Early endosomal protein that functions to recruit SMAD2/SMAD3 to intracellular membranes and to the TGF-beta receptor. Plays a significant role in TGF-mediated signaling by regulating the subcellular location of SMAD2 and SMAD3 and modulating the transcriptional activity of the SMAD3/SMAD4 complex. Possibly associated with TGF-beta receptor internalization. {ECO:0000269|PubMed:15356634, ECO:0000269|PubMed:9865696}. |
O95644 | NFATC1 | S359 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95714 | HERC2 | S1588 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95747 | OXSR1 | S359 | ochoa | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
O95785 | WIZ | S1517 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95835 | LATS1 | S613 | ochoa|psp | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
P02549 | SPTA1 | S1363 | ochoa | Spectrin alpha chain, erythrocytic 1 (Erythroid alpha-spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P02730 | SLC4A1 | S350 | ochoa | Band 3 anion transport protein (Anion exchange protein 1) (AE 1) (Anion exchanger 1) (Solute carrier family 4 member 1) (CD antigen CD233) | Functions both as a transporter that mediates electroneutral anion exchange across the cell membrane and as a structural protein (PubMed:10926824, PubMed:14734552, PubMed:1538405, PubMed:16227998, PubMed:20151848, PubMed:24121512, PubMed:28387307, PubMed:35835865). Component of the ankyrin-1 complex of the erythrocyte membrane; required for normal flexibility and stability of the erythrocyte membrane and for normal erythrocyte shape via the interactions of its cytoplasmic domain with cytoskeletal proteins, glycolytic enzymes, and hemoglobin (PubMed:1538405, PubMed:20151848, PubMed:35835865). Functions as a transporter that mediates the 1:1 exchange of inorganic anions across the erythrocyte membrane. Mediates chloride-bicarbonate exchange in the kidney, and is required for normal acidification of the urine (PubMed:10926824, PubMed:14734552, PubMed:16227998, PubMed:24121512, PubMed:28387307). {ECO:0000269|PubMed:10926824, ECO:0000269|PubMed:14734552, ECO:0000269|PubMed:1538405, ECO:0000269|PubMed:16227998, ECO:0000269|PubMed:20151848, ECO:0000269|PubMed:24121512, ECO:0000269|PubMed:28387307, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Acts as a receptor for P.falciparum (isolate 3D7) MSP9 and thus, facilitates merozoite invasion of erythrocytes (PubMed:14630931). Acts as a receptor for P.falciparum (isolate 3D7) MSP1 and thus, facilitates merozoite invasion of erythrocytes (PubMed:12692305). {ECO:0000269|PubMed:12692305, ECO:0000269|PubMed:14630931}. |
P05412 | JUN | S73 | ochoa|psp | Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) | Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}. |
P06401 | PGR | S400 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P06744 | GPI | S455 | ochoa | Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Autocrine motility factor) (AMF) (Neuroleukin) (NLK) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI) (Sperm antigen 36) (SA-36) | In the cytoplasm, catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, the second step in glycolysis, and the reverse reaction during gluconeogenesis (PubMed:28803808). Besides it's role as a glycolytic enzyme, also acts as a secreted cytokine: acts as an angiogenic factor (AMF) that stimulates endothelial cell motility (PubMed:11437381). Acts as a neurotrophic factor, neuroleukin, for spinal and sensory neurons (PubMed:11004567, PubMed:3352745). It is secreted by lectin-stimulated T-cells and induces immunoglobulin secretion (PubMed:11004567, PubMed:3352745). {ECO:0000269|PubMed:11004567, ECO:0000269|PubMed:11437381, ECO:0000269|PubMed:28803808, ECO:0000269|PubMed:3352745}. |
P07197 | NEFM | S511 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07814 | EPRS1 | S688 | ochoa | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P08172 | CHRM2 | S232 | ochoa|psp | Muscarinic acetylcholine receptor M2 | The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}. |
P08195 | SLC3A2 | S607 | ochoa | Amino acid transporter heavy chain SLC3A2 (4F2 cell-surface antigen heavy chain) (4F2hc) (4F2 heavy chain antigen) (Lymphocyte activation antigen 4F2 large subunit) (Solute carrier family 3 member 2) (CD antigen CD98) | Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters (PubMed:10574970, PubMed:10903140, PubMed:11557028, PubMed:30867591, PubMed:33298890, PubMed:33758168, PubMed:34880232, PubMed:9751058, PubMed:9829974, PubMed:9878049). Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids (PubMed:10903140, PubMed:9829974). Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane (PubMed:34880232). SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane (By similarity). SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA (PubMed:10574970, PubMed:11389679, PubMed:11557028, PubMed:11564694, PubMed:11742812, PubMed:12117417, PubMed:12225859, PubMed:12716892, PubMed:15980244, PubMed:30867591, PubMed:33298890, PubMed:33758168). SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8 (PubMed:10391915, PubMed:10574970, PubMed:11311135, PubMed:15769744, PubMed:33066406). When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression (PubMed:11121428, PubMed:15625115). {ECO:0000250|UniProtKB:P63115, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11121428, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11389679, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:11742812, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15625115, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15980244, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:33066406, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:33758168, ECO:0000269|PubMed:34880232, ECO:0000269|PubMed:9751058, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.; FUNCTION: (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells. {ECO:0000269|PubMed:34294905}. |
P08263 | GSTA1 | S202 | ochoa | Glutathione S-transferase A1 (EC 2.5.1.18) (13-hydroperoxyoctadecadienoate peroxidase) (EC 1.11.1.-) (Androst-5-ene-3,17-dione isomerase) (EC 5.3.3.-) (GST HA subunit 1) (GST class-alpha member 1) (GST-epsilon) (GSTA1-1) (GTH1) [Cleaved into: Glutathione S-transferase A1, N-terminally processed] | Glutathione S-transferase that catalyzes the nucleophilic attack of the sulfur atom of glutathione on the electrophilic groups of a wide range of exogenous and endogenous compounds (Probable). Involved in the formation of glutathione conjugates of both prostaglandin A2 (PGA2) and prostaglandin J2 (PGJ2) (PubMed:9084911). It also catalyzes the isomerization of D5-androstene-3,17-dione (AD) into D4-androstene-3,17-dione and may therefore play an important role in hormone biosynthesis (PubMed:11152686). Through its glutathione-dependent peroxidase activity toward the fatty acid hydroperoxide (13S)-hydroperoxy-(9Z,11E)-octadecadienoate/13-HPODE it is also involved in the metabolism of oxidized linoleic acid (PubMed:16624487). {ECO:0000269|PubMed:11152686, ECO:0000269|PubMed:16624487, ECO:0000269|PubMed:9084911, ECO:0000305|PubMed:20606271}. |
P09210 | GSTA2 | S202 | ochoa | Glutathione S-transferase A2 (EC 2.5.1.18) (GST HA subunit 2) (GST class-alpha member 2) (GST-gamma) (GSTA2-2) (GTH2) | Catalyzes the conjugation of glutathione to a large variety of electrophilic compounds. {ECO:0000250|UniProtKB:P10648}. |
P0C7T5 | ATXN1L | S251 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P11137 | MAP2 | S285 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11171 | EPB41 | S712 | ochoa | Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) | Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
P13631 | RARG | S176 | ochoa | Retinoic acid receptor gamma (RAR-gamma) (Nuclear receptor subfamily 1 group B member 3) | Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. Required for limb bud development. In concert with RARA or RARB, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). {ECO:0000250}. |
P15822 | HIVEP1 | S65 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15924 | DSP | S2024 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16144 | ITGB4 | S1696 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P17036 | ZNF3 | S143 | ochoa | Zinc finger protein 3 (Zinc finger protein HF.12) (Zinc finger protein HZF3.1) (Zinc finger protein KOX25) | Involved in cell differentiation and/or proliferation. |
P17480 | UBTF | S484 | ochoa|psp | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P17535 | JUND | S90 | ochoa | Transcription factor JunD (Transcription factor AP-1 subunit JunD) | Transcription factor binding AP-1 sites (PubMed:9989505). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription factor complex, thereby enhancing their DNA binding activity to an AP-1 consensus sequence 3'-TGA[GC]TCA-5' and enhancing their transcriptional activity (PubMed:28981703, PubMed:9989505). {ECO:0000269|PubMed:28981703, ECO:0000269|PubMed:9989505}. |
P17535 | JUND | S100 | ochoa|psp | Transcription factor JunD (Transcription factor AP-1 subunit JunD) | Transcription factor binding AP-1 sites (PubMed:9989505). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription factor complex, thereby enhancing their DNA binding activity to an AP-1 consensus sequence 3'-TGA[GC]TCA-5' and enhancing their transcriptional activity (PubMed:28981703, PubMed:9989505). {ECO:0000269|PubMed:28981703, ECO:0000269|PubMed:9989505}. |
P17706 | PTPN2 | S304 | ochoa | Tyrosine-protein phosphatase non-receptor type 2 (EC 3.1.3.48) (T-cell protein-tyrosine phosphatase) (TCPTP) | Non-receptor type tyrosine-specific phosphatase that dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, PDGFR. Also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3 and STAT6 either in the nucleus or the cytoplasm. Negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. Plays a multifaceted and important role in the development of the immune system. Functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. Dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. Negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. Also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. In addition to the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it dephosphorylates EGFR and negatively regulates EGF signaling. Dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. Negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. Also plays an important role in glucose homeostasis. For instance, negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. May also bind DNA. {ECO:0000269|PubMed:10734133, ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12138178, ECO:0000269|PubMed:12612081, ECO:0000269|PubMed:14966296, ECO:0000269|PubMed:15592458, ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:9488479}. |
P18065 | IGFBP2 | S142 | ochoa|psp | Insulin-like growth factor-binding protein 2 (IBP-2) (IGF-binding protein 2) (IGFBP-2) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:18563800, PubMed:38796567). Functions coordinately with receptor protein tyrosine phosphatase beta/PTPRB and the IGF1 receptor to regulate IGF1-mediated signaling by stimulating the phosphorylation of PTEN leading to its inactivation and AKT1 activation (PubMed:22869525). Plays a positive role in cell migration via interaction with integrin alpha5/ITGA5 through an RGD motif (PubMed:16569642). Additionally, interaction with ITGA5/ITGB1 enhances the adhesion of endothelial progenitor cells to endothelial cells (PubMed:26076738). Upon mitochondrial damage, facilitates apoptosis with ITGA5 of podocytes, and then activates the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury (PubMed:38796567). {ECO:0000269|PubMed:16569642, ECO:0000269|PubMed:18563800, ECO:0000269|PubMed:19081843, ECO:0000269|PubMed:22869525, ECO:0000269|PubMed:26076738, ECO:0000269|PubMed:38796567}. |
P18433 | PTPRA | S211 | ochoa | Receptor-type tyrosine-protein phosphatase alpha (Protein-tyrosine phosphatase alpha) (R-PTP-alpha) (EC 3.1.3.48) | Tyrosine protein phosphatase which is involved in integrin-mediated focal adhesion formation (By similarity). Following integrin engagement, specifically recruits BCAR3, BCAR1 and CRK to focal adhesions thereby promoting SRC-mediated phosphorylation of BRAC1 and the subsequent activation of PAK and small GTPase RAC1 and CDC42 (By similarity). {ECO:0000250|UniProtKB:P18052}. |
P19793 | RXRA | S260 | ochoa|psp | Retinoic acid receptor RXR-alpha (Nuclear receptor subfamily 2 group B member 1) (Retinoid X receptor alpha) | Receptor for retinoic acid that acts as a transcription factor (PubMed:10874028, PubMed:11162439, PubMed:11915042, PubMed:37478846). Forms homo- or heterodimers with retinoic acid receptors (RARs) and binds to target response elements in response to their ligands, all-trans or 9-cis retinoic acid, to regulate gene expression in various biological processes (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:16107141, PubMed:17761950, PubMed:18800767, PubMed:19167885, PubMed:28167758, PubMed:37478846). The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 to regulate transcription (PubMed:10195690, PubMed:11162439, PubMed:11915042, PubMed:17761950, PubMed:28167758). The high affinity ligand for retinoid X receptors (RXRs) is 9-cis retinoic acid (PubMed:1310260). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:20215566). On ligand binding, the corepressors dissociate from the receptors and coactivators are recruited leading to transcriptional activation (PubMed:20215566, PubMed:37478846, PubMed:9267036). Serves as a common heterodimeric partner for a number of nuclear receptors, such as RARA, RARB and PPARA (PubMed:10195690, PubMed:11915042, PubMed:28167758, PubMed:29021580). The RXRA/RARB heterodimer can act as a transcriptional repressor or transcriptional activator, depending on the RARE DNA element context (PubMed:29021580). The RXRA/PPARA heterodimer is required for PPARA transcriptional activity on fatty acid oxidation genes such as ACOX1 and the P450 system genes (PubMed:10195690). Together with RARA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). Acts as an enhancer of RARA binding to RARE DNA element (PubMed:28167758). May facilitate the nuclear import of heterodimerization partners such as VDR and NR4A1 (PubMed:12145331, PubMed:15509776). Promotes myelin debris phagocytosis and remyelination by macrophages (PubMed:26463675). Plays a role in the attenuation of the innate immune system in response to viral infections, possibly by negatively regulating the transcription of antiviral genes such as type I IFN genes (PubMed:25417649). Involved in the regulation of calcium signaling by repressing ITPR2 gene expression, thereby controlling cellular senescence (PubMed:30216632). {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:11162439, ECO:0000269|PubMed:11915042, ECO:0000269|PubMed:12145331, ECO:0000269|PubMed:1310260, ECO:0000269|PubMed:15509776, ECO:0000269|PubMed:16107141, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18800767, ECO:0000269|PubMed:19167885, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:25417649, ECO:0000269|PubMed:26463675, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:29021580, ECO:0000269|PubMed:30216632, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P20265 | POU3F2 | S341 | ochoa | POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) | Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}. |
P20339 | RAB5A | S123 | ochoa|psp | Ras-related protein Rab-5A (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB5A is required for the fusion of plasma membranes and early endosomes (PubMed:10818110, PubMed:14617813, PubMed:15378032, PubMed:16410077). Contributes to the regulation of filopodia extension (PubMed:14978216). Required for the exosomal release of SDCBP, CD63, PDCD6IP and syndecan (PubMed:22660413). Regulates maturation of apoptotic cell-containing phagosomes, probably downstream of DYN2 and PIK3C3 (By similarity). {ECO:0000250|UniProtKB:Q9CQD1, ECO:0000269|PubMed:10818110, ECO:0000269|PubMed:14617813, ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:15378032, ECO:0000269|PubMed:16410077, ECO:0000269|PubMed:22660413}. |
P20393 | NR1D1 | S310 | ochoa | Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}. |
P21127 | CDK11B | S752 | ochoa|psp | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
P21333 | FLNA | S468 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S860 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1055 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1436 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1630 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S1946 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2128 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2180 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2224 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2414 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21580 | TNFAIP3 | S480 | psp | Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] | Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}. |
P22415 | USF1 | S186 | psp | Upstream stimulatory factor 1 (Class B basic helix-loop-helix protein 11) (bHLHb11) (Major late transcription factor 1) | Transcription factor that binds to a symmetrical DNA sequence (E-boxes) (5'-CACGTG-3') that is found in a variety of viral and cellular promoters. |
P23469 | PTPRE | S105 | ochoa | Receptor-type tyrosine-protein phosphatase epsilon (Protein-tyrosine phosphatase epsilon) (R-PTP-epsilon) (EC 3.1.3.48) | Isoform 1 plays a critical role in signaling transduction pathways and phosphoprotein network topology in red blood cells. May play a role in osteoclast formation and function (By similarity). {ECO:0000250}.; FUNCTION: Isoform 2 acts as a negative regulator of insulin receptor (IR) signaling in skeletal muscle. Regulates insulin-induced tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate 1 (IRS-1), phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin induced stimulation of glucose uptake (By similarity). {ECO:0000250}.; FUNCTION: Isoform 1 and isoform 2 act as a negative regulator of FceRI-mediated signal transduction leading to cytokine production and degranulation, most likely by acting at the level of SYK to affect downstream events such as phosphorylation of SLP76 and LAT and mobilization of Ca(2+). {ECO:0000250}. |
P23508 | MCC | S702 | ochoa | Colorectal mutant cancer protein (Protein MCC) | Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}. |
P23588 | EIF4B | S93 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P23769 | GATA2 | S73 | psp | Endothelial transcription factor GATA-2 (GATA-binding protein 2) | Transcriptional activator which regulates endothelin-1 gene expression in endothelial cells. Binds to the consensus sequence 5'-AGATAG-3'. |
P24534 | EEF1B2 | S43 | ochoa | Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) | Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}. |
P25098 | GRK2 | S670 | ochoa|psp | Beta-adrenergic receptor kinase 1 (Beta-ARK-1) (EC 2.7.11.15) (G-protein coupled receptor kinase 2) | Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them (PubMed:19715378). Key regulator of LPAR1 signaling (PubMed:19306925). Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor (PubMed:19306925). Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner (PubMed:19306925). Positively regulates ciliary smoothened (SMO)-dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity (By similarity). Inhibits relaxation of airway smooth muscle in response to blue light (PubMed:30284927). {ECO:0000250|UniProtKB:P21146, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:19715378, ECO:0000269|PubMed:30284927}. |
P26358 | DNMT1 | S714 | ochoa|psp | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P26358 | DNMT1 | S1105 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P28360 | MSX1 | S136 | ochoa | Homeobox protein MSX-1 (Homeobox protein Hox-7) (Msh homeobox 1-like protein) | Acts as a transcriptional repressor (By similarity). Capable of transcription autoinactivation (By similarity). Binds to the consensus sequence 5'-C/GTAAT-3' in downstream activin regulatory elements (DARE) in the gene promoter, thereby repressing the transcription of CGA/alpha-GSU and GNRHR (By similarity). Represses transcription of myoblast differentiation factors (By similarity). Binds to core enhancer regions in target gene promoters of myoblast differentiation factors with binding specificity facilitated by interaction with PIAS1 (By similarity). Regulates, in a stage-specific manner, a developmental program of gene expression in the fetal tooth bud that controls odontoblast differentiation and proliferation of dental mesenchymal cells (By similarity). At the bud stage, required for mesenchymal molar tooth bud development via facilitating reciprocal signaling between dental epithelial and mesenchymal cells (By similarity). May also regulate expression of Wnt antagonists such as DKK2 and SFPR2 in the developing tooth mesenchyme (By similarity). Required for BMP4 expression in dental mesenchyme cells (By similarity). Also, in response to BMP4, required for BMP4 expression in neighboring dental epithelial cells (By similarity). Required for maximal FGF4-induced expression of SDC1 in dental mesenchyme cells (By similarity). Also in response to SDC1, required for SDC1 expression in neighboring dental epithelial cells (By similarity). At the early bell stage, acts to drive proliferation of dental mesenchyme cells, however during the late bell stage acts as an homeostatic regulator of the cell cycle (By similarity). Regulates proliferation and inhibits premature mesenchymal odontogenesis during the bell stage via inhibition of the Wnt signaling component CTNNB1 and subsequent repression of the odontoblast differentiation factors BMP2, BMP4, LEF1, ALPL and BGLAP/OCN (By similarity). Additionally, required for correct development and fusion of the palatal shelves and embryonic mandibular formation (By similarity). Plays a role in embryonic bone formation of the middle ear, skull and nasal bones (By similarity). Required for correct formation and thickness of the nail plate (By similarity). May play a role in limb-pattern formation (By similarity). {ECO:0000250|UniProtKB:P13297, ECO:0000269|PubMed:12807959, ECO:0000303|PubMed:8696335}. |
P28370 | SMARCA1 | S119 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 1 (SMARCA1) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A1) (EC 3.6.4.-) (Global transcription activator SNF2L1) (Nucleosome-remodeling factor subunit SNF2L) (SNF2L) (SNF2 related chromatin remodeling ATPase 1) | [Isoform 1]: ATPase that possesses intrinsic ATP-dependent chromatin-remodeling activity (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). ATPase activity is substrate-dependent, and is increased when nucleosomes are the substrate, but is also catalytically active when DNA alone is the substrate (PubMed:14609955, PubMed:15310751, PubMed:15640247). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:15310751, PubMed:15640247, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A-, BAZ1B-, BAZ2A- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Within the NURF-1 and CERF-1 ISWI chromatin remodeling complexes, nucleosomes are the preferred substrate for its ATPase activity (PubMed:14609955, PubMed:15640247). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). May promote neurite outgrowth (PubMed:14609955). May be involved in the development of luteal cells (PubMed:16740656). Facilitates nucleosome assembly during DNA replication, ensuring replication fork progression and genomic stability by preventing replication stress and nascent DNA gaps (PubMed:39413208). {ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:16740656, ECO:0000269|PubMed:28801535, ECO:0000269|PubMed:39413208}.; FUNCTION: [Isoform 2]: Catalytically inactive when either DNA or nucleosomes are the substrate and does not possess chromatin-remodeling activity (PubMed:15310751, PubMed:28801535). Acts as a negative regulator of chromatin remodelers by generating inactive complexes (PubMed:15310751). {ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:28801535}. |
P28715 | ERCC5 | S341 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P28715 | ERCC5 | S526 | ochoa | DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) | Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}. |
P28749 | RBL1 | S615 | ochoa|psp | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P29317 | EPHA2 | S570 | ochoa | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P30304 | CDC25A | S261 | ochoa | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30305 | CDC25B | S50 | psp | M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P30307 | CDC25C | S214 | ochoa|psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P31249 | HOXD3 | S261 | ochoa | Homeobox protein Hox-D3 (Homeobox protein Hox-4A) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P31270 | HOXA11 | S221 | ochoa | Homeobox protein Hox-A11 (Homeobox protein Hox-1I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P31274 | HOXC9 | S159 | ochoa | Homeobox protein Hox-C9 (Homeobox protein Hox-3B) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P32519 | ELF1 | S127 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P33241 | LSP1 | S111 | ochoa | Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) | May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}. |
P34897 | SHMT2 | S144 | ochoa | Serine hydroxymethyltransferase, mitochondrial (SHMT) (EC 2.1.2.1) (Glycine hydroxymethyltransferase) (Serine methylase) | Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis (PubMed:24075985, PubMed:25619277, PubMed:29364879, PubMed:33015733). Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate (PubMed:25619277). Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA (PubMed:21876188). Also required for mitochondrial translation by producing 5,10-methylenetetrahydrofolate; 5,10-methylenetetrahydrofolate providing methyl donors to produce the taurinomethyluridine base at the wobble position of some mitochondrial tRNAs (PubMed:29364879, PubMed:29452640). Associates with mitochondrial DNA (PubMed:18063578). In addition to its role in mitochondria, also plays a role in the deubiquitination of target proteins as component of the BRISC complex: required for IFNAR1 deubiquitination by the BRISC complex (PubMed:24075985). {ECO:0000269|PubMed:18063578, ECO:0000269|PubMed:21876188, ECO:0000269|PubMed:24075985, ECO:0000269|PubMed:25619277, ECO:0000269|PubMed:29364879, ECO:0000269|PubMed:29452640, ECO:0000269|PubMed:33015733}. |
P35236 | PTPN7 | S93 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 7 (EC 3.1.3.48) (Hematopoietic protein-tyrosine phosphatase) (HEPTP) (Protein-tyrosine phosphatase LC-PTP) | Protein phosphatase that acts preferentially on tyrosine-phosphorylated MAPK1. Plays a role in the regulation of T and B-lymphocyte development and signal transduction. {ECO:0000269|PubMed:10206983, ECO:0000269|PubMed:10559944, ECO:0000269|PubMed:10702794, ECO:0000269|PubMed:1510684, ECO:0000269|PubMed:1530918, ECO:0000269|PubMed:9624114}. |
P35606 | COPB2 | S859 | ochoa|psp | Coatomer subunit beta' (Beta'-coat protein) (Beta'-COP) (p102) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. {ECO:0000269|PubMed:34450031}.; FUNCTION: This coatomer complex protein, essential for Golgi budding and vesicular trafficking, is a selective binding protein (RACK) for protein kinase C, epsilon type. It binds to Golgi membranes in a GTP-dependent manner (By similarity). {ECO:0000250}. |
P35611 | ADD1 | S64 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35611 | ADD1 | S600 | ochoa | Alpha-adducin (Erythrocyte adducin subunit alpha) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin. |
P35612 | ADD2 | S60 | ochoa | Beta-adducin (Erythrocyte adducin subunit beta) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}. |
P35612 | ADD2 | S592 | ochoa|psp | Beta-adducin (Erythrocyte adducin subunit beta) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}. |
P38432 | COIL | S489 | ochoa|psp | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P38935 | IGHMBP2 | S716 | ochoa | DNA-binding protein SMUBP-2 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase IGHMBP2) (Glial factor 1) (GF-1) (Immunoglobulin mu-binding protein 2) | 5' to 3' helicase that unwinds RNA and DNA duplexes in an ATP-dependent reaction (PubMed:19158098, PubMed:22999958, PubMed:30218034). Specific to 5'-phosphorylated single-stranded guanine-rich sequences (PubMed:22999958, PubMed:8349627). May play a role in RNA metabolism, ribosome biogenesis or initiation of translation (PubMed:19158098, PubMed:19299493). May play a role in regulation of transcription (By similarity). Interacts with tRNA-Tyr (PubMed:19299493). {ECO:0000250|UniProtKB:Q9EQN5, ECO:0000269|PubMed:19158098, ECO:0000269|PubMed:19299493, ECO:0000269|PubMed:22999958, ECO:0000269|PubMed:30218034, ECO:0000269|PubMed:8349627}. |
P41229 | KDM5C | S897 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P42566 | EPS15 | S324 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P42566 | EPS15 | S563 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P42694 | HELZ | S629 | ochoa | Probable helicase with zinc finger domain (EC 3.6.4.-) (Down-regulated in human cancers protein) | May act as a helicase that plays a role in RNA metabolism in multiple tissues and organs within the developing embryo. |
P42858 | HTT | S2651 | ochoa | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43403 | ZAP70 | S317 | ochoa | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P46013 | MKI67 | S308 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2223 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S3128 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S614 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48067 | SLC6A9 | S673 | ochoa | Sodium- and chloride-dependent glycine transporter 1 (GlyT-1) (GlyT1) (Solute carrier family 6 member 9) | Sodium- and chloride-dependent glycine transporter (PubMed:8183239). Essential for regulating glycine concentrations at inhibitory glycinergic synapses. {ECO:0000250|UniProtKB:P28571, ECO:0000269|PubMed:8183239}.; FUNCTION: [Isoform GlyT-1B]: Sodium- and chloride-dependent glycine transporter. {ECO:0000269|PubMed:8183239}.; FUNCTION: [Isoform GlyT-1C]: Sodium- and chloride-dependent glycine transporter. {ECO:0000269|PubMed:8183239}. |
P48380 | RFX3 | S260 | ochoa | Transcription factor RFX3 (Regulatory factor X 3) | Transcription factor required for ciliogenesis and islet cell differentiation during endocrine pancreas development. Essential for the differentiation of nodal monocilia and left-right asymmetry specification during embryogenesis. Required for the biogenesis of motile cilia by governing growth and beating efficiency of motile cells. Also required for ciliated ependymal cell differentiation. Regulates the expression of genes involved in ciliary assembly (DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary motility (DNAH11, DNAH9 and DNAH5) (By similarity). Together with RFX6, participates in the differentiation of 4 of the 5 islet cell types during endocrine pancreas development, with the exception of pancreatic PP (polypeptide-producing) cells. Regulates transcription by forming a heterodimer with another RFX protein and binding to the X-box in the promoter of target genes (PubMed:20148032). Represses transcription of MAP1A in non-neuronal cells but not in neuronal cells (PubMed:12411430). {ECO:0000250|UniProtKB:P48381, ECO:0000269|PubMed:12411430, ECO:0000269|PubMed:20148032}. |
P48380 | RFX3 | S664 | ochoa | Transcription factor RFX3 (Regulatory factor X 3) | Transcription factor required for ciliogenesis and islet cell differentiation during endocrine pancreas development. Essential for the differentiation of nodal monocilia and left-right asymmetry specification during embryogenesis. Required for the biogenesis of motile cilia by governing growth and beating efficiency of motile cells. Also required for ciliated ependymal cell differentiation. Regulates the expression of genes involved in ciliary assembly (DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary motility (DNAH11, DNAH9 and DNAH5) (By similarity). Together with RFX6, participates in the differentiation of 4 of the 5 islet cell types during endocrine pancreas development, with the exception of pancreatic PP (polypeptide-producing) cells. Regulates transcription by forming a heterodimer with another RFX protein and binding to the X-box in the promoter of target genes (PubMed:20148032). Represses transcription of MAP1A in non-neuronal cells but not in neuronal cells (PubMed:12411430). {ECO:0000250|UniProtKB:P48381, ECO:0000269|PubMed:12411430, ECO:0000269|PubMed:20148032}. |
P48637 | GSS | S415 | ochoa | Glutathione synthetase (GSH synthetase) (GSH-S) (EC 6.3.2.3) (Glutathione synthase) | Catalyzes the production of glutathione from gamma-glutamylcysteine and glycine in an ATP-dependent manner (PubMed:7646467, PubMed:9215686). Glutathione (gamma-glutamylcysteinylglycine, GSH) is the most abundant intracellular thiol in living aerobic cells and is required for numerous processes including the protection of cells against oxidative damage, amino acid transport, the detoxification of foreign compounds, the maintenance of protein sulfhydryl groups in a reduced state and acts as a cofactor for a number of enzymes (PubMed:10369661). Participates in ophthalmate biosynthesis in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51855, ECO:0000269|PubMed:7646467, ECO:0000269|PubMed:9215686, ECO:0000303|PubMed:10369661}. |
P48681 | NES | S1016 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49006 | MARCKSL1 | S22 | ochoa | MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) | Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}. |
P49321 | NASP | S451 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49327 | FASN | S974 | ochoa | Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] | Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}. |
P49354 | FNTA | S49 | ochoa | Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha (EC 2.5.1.58) (EC 2.5.1.59) (CAAX farnesyltransferase subunit alpha) (FTase-alpha) (Ras proteins prenyltransferase subunit alpha) (Type I protein geranyl-geranyltransferase subunit alpha) (GGTase-I-alpha) | Essential subunit of both the farnesyltransferase and the geranylgeranyltransferase complex. Contributes to the transfer of a farnesyl or geranylgeranyl moiety from farnesyl or geranylgeranyl diphosphate to a cysteine at the fourth position from the C-terminus of several proteins having the C-terminal sequence Cys-aliphatic-aliphatic-X. May positively regulate neuromuscular junction development downstream of MUSK via its function in RAC1 prenylation and activation. {ECO:0000269|PubMed:12036349, ECO:0000269|PubMed:12825937, ECO:0000269|PubMed:16893176, ECO:0000269|PubMed:19246009, ECO:0000269|PubMed:8419339, ECO:0000269|PubMed:8494894}. |
P49591 | SARS1 | S331 | ochoa | Serine--tRNA ligase, cytoplasmic (EC 6.1.1.11) (Seryl-tRNA synthetase) (SerRS) (Seryl-tRNA(Ser/Sec) synthetase) | Catalyzes the attachment of serine to tRNA(Ser) in a two-step reaction: serine is first activated by ATP to form Ser-AMP and then transferred to the acceptor end of tRNA(Ser) (PubMed:22353712, PubMed:24095058, PubMed:26433229, PubMed:28236339, PubMed:34570399, PubMed:36041817, PubMed:9431993). Is probably also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec) (PubMed:26433229, PubMed:28236339, PubMed:34570399, PubMed:9431993). In the nucleus, binds to the VEGFA core promoter and prevents MYC binding and transcriptional activation by MYC (PubMed:24940000). Recruits SIRT2 to the VEGFA promoter, promoting deacetylation of histone H4 at 'Lys-16' (H4K16). Thereby, inhibits the production of VEGFA and sprouting angiogenesis mediated by VEGFA (PubMed:19423847, PubMed:19423848, PubMed:24940000). {ECO:0000269|PubMed:19423847, ECO:0000269|PubMed:19423848, ECO:0000269|PubMed:22353712, ECO:0000269|PubMed:24095058, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:26433229, ECO:0000269|PubMed:28236339, ECO:0000269|PubMed:34570399, ECO:0000269|PubMed:36041817, ECO:0000269|PubMed:9431993}. |
P49716 | CEBPD | S191 | ochoa | CCAAT/enhancer-binding protein delta (C/EBP delta) (Nuclear factor NF-IL6-beta) (NF-IL6-beta) | Transcription activator that recognizes two different DNA motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers (PubMed:16397300). Important transcription factor regulating the expression of genes involved in immune and inflammatory responses (PubMed:16397300, PubMed:1741402). Transcriptional activator that enhances IL6 transcription alone and as heterodimer with CEBPB (PubMed:1741402). {ECO:0000269|PubMed:1741402}. |
P49796 | RGS3 | S401 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P50221 | MEOX1 | S236 | ochoa | Homeobox protein MOX-1 (Mesenchyme homeobox 1) | Mesodermal transcription factor that plays a key role in somitogenesis and is specifically required for sclerotome development. Required for maintenance of the sclerotome polarity and formation of the cranio-cervical joints (PubMed:23290072, PubMed:24073994). Binds specifically to the promoter of target genes and regulates their expression. Activates expression of NKX3-2 in the sclerotome. Activates expression of CDKN1A and CDKN2A in endothelial cells, acting as a regulator of vascular cell proliferation. While it activates CDKN1A in a DNA-dependent manner, it activates CDKN2A in a DNA-independent manner. Required for hematopoietic stem cell (HSCs) induction via its role in somitogenesis: specification of HSCs occurs via the deployment of a specific endothelial precursor population, which arises within a sub-compartment of the somite named endotome. {ECO:0000250|UniProtKB:F1Q4R9, ECO:0000250|UniProtKB:P32442, ECO:0000269|PubMed:23290072, ECO:0000269|PubMed:24073994}. |
P50395 | GDI2 | S61 | ochoa | Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2) | GDP-dissociation inhibitor preventing the GDP to GTP exchange of most Rab proteins. By keeping these small GTPases in their inactive GDP-bound form regulates intracellular membrane trafficking (PubMed:25860027). Negatively regulates protein transport to the cilium and ciliogenesis through the inhibition of RAB8A (PubMed:25860027). {ECO:0000269|PubMed:25860027}. |
P50458 | LHX2 | S230 | ochoa | LIM/homeobox protein Lhx2 (Homeobox protein LH-2) (LIM homeobox protein 2) | Acts as a transcriptional activator. Stimulates the promoter of the alpha-glycoprotein gene. Transcriptional regulatory protein involved in the control of cell differentiation in developing lymphoid and neural cell types (By similarity). {ECO:0000250}. |
P51397 | DAP | S51 | ochoa|psp | Death-associated protein 1 (DAP-1) | Ribosome-binding protein involved in ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (By similarity). Acts via its association with eiF5a (EIF5A and EIF5A2) at the polypeptide exit tunnel of the ribosome, preventing mRNA translation (By similarity). Involved in ribosome hibernation in the mature oocyte by preventing mRNA translation, leading to ribosome inactivation (By similarity). Ribosomes, which are produced in large quantities during oogenesis, are stored and translationally repressed in the oocyte and early embryo (By similarity). Also acts as a negative regulator of autophagy (PubMed:20537536). Involved in mediating interferon-gamma-induced cell death (PubMed:7828849). {ECO:0000250|UniProtKB:Q9I9N1, ECO:0000269|PubMed:20537536, ECO:0000269|PubMed:7828849}. |
P51610 | HCFC1 | S789 | ochoa | Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] | Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}. |
P51787 | KCNQ1 | S468 | ochoa|psp | Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) | Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}. |
P51798 | CLCN7 | S48 | ochoa | H(+)/Cl(-) exchange transporter 7 (Chloride channel 7 alpha subunit) (Chloride channel protein 7) (ClC-7) | Slowly voltage-gated channel mediating the exchange of chloride ions against protons (PubMed:18449189, PubMed:21527911). Functions as antiporter and contributes to the acidification of the lysosome lumen and may be involved in maintaining lysosomal pH (PubMed:18449189, PubMed:21527911, PubMed:31155284). The CLC channel family contains both chloride channels and proton-coupled anion transporters that exchange chloride or another anion for protons (By similarity). The presence of conserved gating glutamate residues is typical for family members that function as antiporters (By similarity). {ECO:0000250|UniProtKB:P35523, ECO:0000269|PubMed:18449189, ECO:0000269|PubMed:21527911, ECO:0000269|PubMed:31155284}. |
P51810 | GPR143 | S343 | ochoa | G-protein coupled receptor 143 (Ocular albinism type 1 protein) | Receptor for tyrosine, L-DOPA and dopamine. After binding to L-DOPA, stimulates Ca(2+) influx into the cytoplasm, increases secretion of the neurotrophic factor SERPINF1 and relocalizes beta arrestin at the plasma membrane; this ligand-dependent signaling occurs through a G(q)-mediated pathway in melanocytic cells. Its activity is mediated by G proteins which activate the phosphoinositide signaling pathway. Also plays a role as an intracellular G protein-coupled receptor involved in melanosome biogenesis, organization and transport. {ECO:0000269|PubMed:10471510, ECO:0000269|PubMed:16524428, ECO:0000269|PubMed:18697795, ECO:0000269|PubMed:18828673, ECO:0000269|PubMed:19717472}. |
P51826 | AFF3 | S881 | ochoa | AF4/FMR2 family member 3 (Lymphoid nuclear protein related to AF4) (Protein LAF-4) | Putative transcription activator that may function in lymphoid development and oncogenesis. Binds, in vitro, to double-stranded DNA. |
P51858 | HDGF | S165 | ochoa | Hepatoma-derived growth factor (HDGF) (High mobility group protein 1-like 2) (HMG-1L2) | [Isoform 1]: Acts as a transcriptional repressor (PubMed:17974029). Has mitogenic activity for fibroblasts (PubMed:11751870, PubMed:26845719). Heparin-binding protein (PubMed:15491618). {ECO:0000269|PubMed:11751870, ECO:0000269|PubMed:15491618, ECO:0000269|PubMed:17974029, ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 2]: Does not have mitogenic activity for fibroblasts (PubMed:26845719). Does not bind heparin (PubMed:26845719). {ECO:0000269|PubMed:26845719}.; FUNCTION: [Isoform 3]: Has mitogenic activity for fibroblasts (PubMed:26845719). Heparin-binding protein (PubMed:26845719). {ECO:0000269|PubMed:26845719}. |
P52746 | ZNF142 | S904 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P53804 | TTC3 | S1819 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P54136 | RARS1 | S200 | ochoa | Arginine--tRNA ligase, cytoplasmic (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS) | Forms part of a macromolecular complex that catalyzes the attachment of specific amino acids to cognate tRNAs during protein synthesis (PubMed:25288775). Modulates the secretion of AIMP1 and may be involved in generation of the inflammatory cytokine EMAP2 from AIMP1 (PubMed:17443684). {ECO:0000269|PubMed:17443684, ECO:0000269|PubMed:25288775}. |
P54278 | PMS2 | S403 | ochoa | Mismatch repair endonuclease PMS2 (EC 3.1.-.-) (DNA mismatch repair protein PMS2) (PMS1 protein homolog 2) | Component of the post-replicative DNA mismatch repair system (MMR) (PubMed:30653781, PubMed:35189042). Heterodimerizes with MLH1 to form MutL alpha. DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH3) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MutL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages. Possesses an ATPase activity, but in the absence of gross structural changes, ATP hydrolysis may not be necessary for proficient mismatch repair (PubMed:35189042). {ECO:0000269|PubMed:16873062, ECO:0000269|PubMed:18206974, ECO:0000269|PubMed:23709753, ECO:0000269|PubMed:30653781, ECO:0000269|PubMed:35189042}. |
P54725 | RAD23A | S205 | ochoa | UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) | Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}. |
P54750 | PDE1A | S403 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1A (Cam-PDE 1A) (EC 3.1.4.17) (61 kDa Cam-PDE) (hCam-1) | Calcium/calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cGMP and cAMP, which are key regulators of many important physiological processes. Has a higher efficiency with cGMP compared to cAMP. {ECO:0000269|PubMed:8557689}. |
P55196 | AFDN | S1455 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P56182 | RRP1 | S383 | ochoa | Ribosomal RNA processing protein 1 homolog A (Novel nuclear protein 1) (NNP-1) (Nucleolar protein Nop52) (RRP1-like protein) | Plays a critical role in the generation of 28S rRNA. {ECO:0000269|PubMed:10341208}. |
P57059 | SIK1 | S186 | ochoa | Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}. |
P57076 | CFAP298 | S267 | ochoa | Cilia- and flagella-associated protein 298 (Protein kurly homolog) | Plays a role in motile cilium function, possibly by acting on outer dynein arm assembly (PubMed:24094744). Seems to be important for initiation rather than maintenance of cilium motility (By similarity). Required for correct positioning of the cilium at the apical cell surface, suggesting an additional role in the planar cell polarity (PCP) pathway (By similarity). May suppress canonical Wnt signaling activity (By similarity). {ECO:0000250|UniProtKB:Q6DRC3, ECO:0000269|PubMed:24094744}. |
P59923 | ZNF445 | S665 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P60866 | RPS20 | S93 | ochoa | Small ribosomal subunit protein uS10 (40S ribosomal protein S20) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}. |
P61020 | RAB5B | S123 | ochoa|psp | Ras-related protein Rab-5B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. {ECO:0000250|UniProtKB:P20339}. |
P61371 | ISL1 | S269 | ochoa|psp | Insulin gene enhancer protein ISL-1 (Islet-1) | DNA-binding transcriptional activator. Recognizes and binds to the consensus octamer binding site 5'-ATAATTAA-3' in promoter of target genes. Plays a fundamental role in the gene regulatory network essential for retinal ganglion cell (RGC) differentiation. Cooperates with the transcription factor POU4F2 to achieve maximal levels of expression of RGC target genes and RGC fate specification in the developing retina. Involved in the specification of motor neurons in cooperation with LHX3 and LDB1 (By similarity). Binds to insulin gene enhancer sequences (By similarity). Essential for heart development. Marker of one progenitor cell population that give rise to the outflow tract, right ventricle, a subset of left ventricular cells, and a large number of atrial cells as well, its function is required for these progenitors to contribute to the heart. Controls the expression of FGF and BMP growth factors in this cell population and is required for proliferation and survival of cells within pharyngeal foregut endoderm and adjacent splanchnic mesoderm as well as for migration of cardiac progenitors into the heart (By similarity). {ECO:0000250|UniProtKB:P61372, ECO:0000250|UniProtKB:P61374}. |
P61586 | RHOA | S88 | psp | Transforming protein RhoA (EC 3.6.5.2) (Rho cDNA clone 12) (h12) | Small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Mainly associated with cytoskeleton organization, in active state binds to a variety of effector proteins to regulate cellular responses such as cytoskeletal dynamics, cell migration and cell cycle (PubMed:23871831). Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers (PubMed:31570889, PubMed:8910519, PubMed:9121475). Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis (PubMed:12900402, PubMed:16236794). Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion (PubMed:20974804, PubMed:23940119). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization (PubMed:20937854). Regulates KCNA2 potassium channel activity by reducing its location at the cell surface in response to CHRM1 activation; promotes KCNA2 endocytosis (PubMed:19403695, PubMed:9635436). Acts as an allosteric activator of guanine nucleotide exchange factor ECT2 by binding in its activated GTP-bound form to the PH domain of ECT2 which stimulates the release of PH inhibition and promotes the binding of substrate RHOA to the ECT2 catalytic center (PubMed:31888991). May be an activator of PLCE1 (PubMed:16103226). In neurons, involved in the inhibition of the initial spine growth. Upon activation by CaMKII, modulates dendritic spine structural plasticity by relaying CaMKII transient activation to synapse-specific, long-term signaling (By similarity). Acts as a regulator of platelet alpha-granule release during activation and aggregation of platelets (By similarity). When activated by DAAM1 may signal centrosome maturation and chromosomal segregation during cell division. May also be involved in contractile ring formation during cytokinesis. {ECO:0000250|UniProtKB:P61589, ECO:0000250|UniProtKB:Q9QUI0, ECO:0000269|PubMed:12900402, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:19403695, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:23871831, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:31570889, ECO:0000269|PubMed:31888991, ECO:0000269|PubMed:8910519, ECO:0000269|PubMed:9121475, ECO:0000269|PubMed:9635436}.; FUNCTION: (Microbial infection) Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague. {ECO:0000269|PubMed:12062101, ECO:0000269|PubMed:12538863}. |
P63279 | UBE2I | S71 | ochoa|psp | SUMO-conjugating enzyme UBC9 (EC 2.3.2.-) (RING-type E3 SUMO transferase UBC9) (SUMO-protein ligase) (Ubiquitin carrier protein 9) (Ubiquitin carrier protein I) (Ubiquitin-conjugating enzyme E2 I) (Ubiquitin-protein ligase I) (p18) | Accepts the ubiquitin-like proteins SUMO1, SUMO2, SUMO3, SUMO4 and SUMO1P1/SUMO5 from the UBLE1A-UBLE1B E1 complex and catalyzes their covalent attachment to other proteins with the help of an E3 ligase such as RANBP2, CBX4 and ZNF451. Can catalyze the formation of poly-SUMO chains. Necessary for sumoylation of FOXL2 and KAT5. Essential for nuclear architecture and chromosome segregation. Sumoylates p53/TP53 at 'Lys-386'. Mediates sumoylation of ERCC6 which is essential for its transcription-coupled nucleotide excision repair activity (PubMed:26620705). {ECO:0000269|PubMed:11451954, ECO:0000269|PubMed:15809060, ECO:0000269|PubMed:17466333, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:19744555, ECO:0000269|PubMed:20077568, ECO:0000269|PubMed:26524494, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:27211601, ECO:0000269|PubMed:8668529}. |
P78332 | RBM6 | S1025 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78559 | MAP1A | S2664 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P84157 | MXRA7 | S144 | ochoa | Matrix-remodeling-associated protein 7 | None |
P98171 | ARHGAP4 | S860 | ochoa | Rho GTPase-activating protein 4 (Rho-GAP hematopoietic protein C1) (Rho-type GTPase-activating protein 4) (p115) | Inhibitory effect on stress fiber organization. May down-regulate Rho-like GTPase in hematopoietic cells. |
P98174 | FGD1 | S205 | ochoa|psp | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q00013 | MPP1 | S52 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q00013 | MPP1 | S57 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q00341 | HDLBP | S944 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q01201 | RELB | S37 | ochoa | Transcription factor RelB (I-Rel) | NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49. As a member of the NUPR1/RELB/IER3 survival pathway, may provide pancreatic ductal adenocarcinoma with remarkable resistance to cell stress, such as starvation or gemcitabine treatment. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer in a CRY1/CRY2 independent manner. Increased repression of the heterodimer is seen in the presence of NFKB2/p52. Is required for both T and B lymphocyte maturation and function (PubMed:26385063). {ECO:0000269|PubMed:1732739, ECO:0000269|PubMed:22565310, ECO:0000269|PubMed:26385063, ECO:0000269|PubMed:7925301, ECO:0000269|PubMed:8441398}. |
Q01484 | ANK2 | S1940 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S3793 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01518 | CAP1 | S34 | ochoa | Adenylyl cyclase-associated protein 1 (CAP 1) | Directly regulates filament dynamics and has been implicated in a number of complex developmental and morphological processes, including mRNA localization and the establishment of cell polarity. |
Q01538 | MYT1 | S335 | ochoa | Myelin transcription factor 1 (MyT1) (Myelin transcription factor I) (MyTI) (PLPB1) (Proteolipid protein-binding protein) | Binds to the promoter region of genes encoding proteolipid proteins of the central nervous system. May play a role in the development of neurons and oligodendroglia in the CNS. May regulate a critical transition point in oligodendrocyte lineage development by modulating oligodendrocyte progenitor proliferation relative to terminal differentiation and up-regulation of myelin gene transcription. {ECO:0000269|PubMed:14962745}. |
Q02224 | CENPE | S2608 | psp | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q03060 | CREM | S277 | psp | cAMP-responsive element modulator (Inducible cAMP early repressor) (ICER) | Transcriptional regulator that binds the cAMP response element (CRE), a sequence present in many viral and cellular promoters. Isoforms are either transcriptional activators or repressors. Plays a role in spermatogenesis and is involved in spermatid maturation (PubMed:10373550). {ECO:0000269|PubMed:10373550}.; FUNCTION: [Isoform 6]: May play a role in the regulation of the circadian clock: acts as a transcriptional repressor of the core circadian component PER1 by directly binding to cAMP response elements in its promoter. {ECO:0000250}. |
Q03164 | KMT2A | S3644 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S158 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04725 | TLE2 | S271 | ochoa | Transducin-like enhancer protein 2 (Enhancer of split groucho-like protein 2) (ESG2) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250}. |
Q04725 | TLE2 | S281 | ochoa | Transducin-like enhancer protein 2 (Enhancer of split groucho-like protein 2) (ESG2) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250}. |
Q05516 | ZBTB16 | S256 | ochoa | Zinc finger and BTB domain-containing protein 16 (Promyelocytic leukemia zinc finger protein) (Zinc finger protein 145) (Zinc finger protein PLZF) | Acts as a transcriptional repressor (PubMed:10688654, PubMed:24359566). Transcriptional repression may be mediated through recruitment of histone deacetylases to target promoters (PubMed:10688654). May play a role in myeloid maturation and in the development and/or maintenance of other differentiated tissues. Probable substrate-recognition component of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14528312). {ECO:0000269|PubMed:10688654, ECO:0000269|PubMed:14528312, ECO:0000269|PubMed:24359566}. |
Q05639 | EEF1A2 | S205 | psp | Elongation factor 1-alpha 2 (EF-1-alpha-2) (EC 3.6.5.-) (Eukaryotic elongation factor 1 A-2) (eEF1A-2) (Statin-S1) | Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis. Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (By similarity). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (By similarity). {ECO:0000250|UniProtKB:P68104, ECO:0000250|UniProtKB:Q71V39}. |
Q06210 | GFPT1 | S205 | ochoa|psp | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
Q06418 | TYRO3 | S869 | ochoa | Tyrosine-protein kinase receptor TYRO3 (EC 2.7.10.1) (Tyrosine-protein kinase BYK) (Tyrosine-protein kinase DTK) (Tyrosine-protein kinase RSE) (Tyrosine-protein kinase SKY) (Tyrosine-protein kinase TIF) | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to several ligands including TULP1 or GAS6. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces dimerization and autophosphorylation of TYRO3 on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with PIK3R1 and thereby enhances PI3-kinase activity. Activates the AKT survival pathway, including nuclear translocation of NF-kappa-B and up-regulation of transcription of NF-kappa-B-regulated genes. TYRO3 signaling plays a role in various processes such as neuron protection from excitotoxic injury, platelet aggregation and cytoskeleton reorganization. Also plays an important role in inhibition of Toll-like receptors (TLRs)-mediated innate immune response by activating STAT1, which selectively induces production of suppressors of cytokine signaling SOCS1 and SOCS3. {ECO:0000269|PubMed:20546121}.; FUNCTION: (Microbial infection) Acts as a receptor for lassa virus and lymphocytic choriomeningitis virus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:22156524, ECO:0000269|PubMed:22673088, ECO:0000269|PubMed:25277499}.; FUNCTION: (Microbial infection) Acts as a receptor for Ebolavirus, possibly through GAS6 binding to phosphatidyl-serine at the surface of virion envelope. {ECO:0000269|PubMed:17005688}. |
Q07343 | PDE4B | S661 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}. |
Q08378 | GOLGA3 | S140 | ochoa | Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) | Golgi auto-antigen; probably involved in maintaining Golgi structure. |
Q08379 | GOLGA2 | S37 | ochoa|psp | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q08AD1 | CAMSAP2 | S810 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q09028 | RBBP4 | S355 | ochoa | Histone-binding protein RBBP4 (Chromatin assembly factor 1 subunit C) (CAF-1 subunit C) (Chromatin assembly factor I p48 subunit) (CAF-I 48 kDa subunit) (CAF-I p48) (Nucleosome-remodeling factor subunit RBAP48) (Retinoblastoma-binding protein 4) (RBBP-4) (Retinoblastoma-binding protein p48) | Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA (PubMed:10866654). Component of the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair (PubMed:8858152). Component of the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression (PubMed:9150135). Component of the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:16428440, PubMed:28977666, PubMed:39460621). Component of the PRC2 complex, which promotes repression of homeotic genes during development (PubMed:29499137, PubMed:31959557). Component of the NURF (nucleosome remodeling factor) complex (PubMed:14609955, PubMed:15310751). {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557, ECO:0000269|PubMed:39460621, ECO:0000269|PubMed:8858152, ECO:0000269|PubMed:9150135}. |
Q09666 | AHNAK | S4993 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q10570 | CPSF1 | S737 | ochoa | Cleavage and polyadenylation specificity factor subunit 1 (Cleavage and polyadenylation specificity factor 160 kDa subunit) (CPSF 160 kDa subunit) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (PubMed:14749727). May play a role in eye morphogenesis and the development of retinal ganglion cell projections to the midbrain (By similarity). {ECO:0000250|UniProtKB:A0A0R4IC37, ECO:0000269|PubMed:14749727}. |
Q12772 | SREBF2 | S469 | ochoa | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12796 | PNRC1 | S105 | ochoa | Proline-rich nuclear receptor coactivator 1 (Proline-rich protein 2) (Protein B4-2) | Nuclear receptor coactivator. May play a role in signal transduction. {ECO:0000269|PubMed:10894149}. |
Q12802 | AKAP13 | S983 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S1282 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12888 | TP53BP1 | S265 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S552 | ochoa|psp | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12906 | ILF3 | S382 | ochoa|psp | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12912 | IRAG2 | S140 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q12955 | ANK3 | S2672 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S4298 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12955 | ANK3 | S4333 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12988 | HSPB3 | S53 | ochoa | Heat shock protein beta-3 (HspB3) (Heat shock 17 kDa protein) (HSP 17) (Heat shock protein family B member 3) (Protein 3) | Inhibitor of actin polymerization. |
Q13009 | TIAM1 | S1466 | ochoa|psp | Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) | Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}. |
Q13042 | CDC16 | S560 | ochoa|psp | Cell division cycle protein 16 homolog (Anaphase-promoting complex subunit 6) (APC6) (CDC16 homolog) (CDC16Hs) (Cyclosome subunit 6) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q13045 | FLII | S406 | ochoa | Protein flightless-1 homolog | Is a regulator of actin polymerization, required for proper myofibril organization and regulation of the length of sarcomeric thin filaments (By similarity). It also plays a role in the assembly of cardiomyocyte cell adhesion complexes (By similarity). Regulates cytoskeletal rearrangements involved in cytokinesis and cell migration, by inhibiting Rac1-dependent paxillin phosphorylation (By similarity). May play a role as coactivator in transcriptional activation by hormone-activated nuclear receptors (NR) and acts in cooperation with NCOA2 and CARM1 (PubMed:14966289). Involved in estrogen hormone signaling. {ECO:0000250|UniProtKB:Q9JJ28, ECO:0000269|PubMed:14966289}. |
Q13075 | NAIP | S982 | ochoa | Baculoviral IAP repeat-containing protein 1 (Neuronal apoptosis inhibitory protein) | Anti-apoptotic protein which acts by inhibiting the activities of CASP3, CASP7 and CASP9. Can inhibit the autocleavage of pro-CASP9 and cleavage of pro-CASP3 by CASP9. Capable of inhibiting CASP9 autoproteolysis at 'Asp-315' and decreasing the rate of auto proteolysis at 'Asp-330'. Acts as a mediator of neuronal survival in pathological conditions. Prevents motor-neuron apoptosis induced by a variety of signals. Possible role in the prevention of spinal muscular atrophy that seems to be caused by inappropriate persistence of motor-neuron apoptosis: mutated or deleted forms of NAIP have been found in individuals with severe spinal muscular atrophy.; FUNCTION: Acts as a sensor component of the NLRC4 inflammasome that specifically recognizes and binds needle protein CprI from pathogenic bacteria C.violaceum. Association of pathogenic bacteria proteins drives in turn drive assembly and activation of the NLRC4 inflammasome, promoting caspase-1 activation, cytokine production and macrophage pyroptosis. The NLRC4 inflammasome is activated as part of the innate immune response to a range of intracellular bacteria such as C.violaceum and L.pneumophila. |
Q13115 | DUSP4 | S345 | ochoa | Dual specificity protein phosphatase 4 (EC 3.1.3.16) (EC 3.1.3.48) (Dual specificity protein phosphatase hVH2) (Mitogen-activated protein kinase phosphatase 2) (MAP kinase phosphatase 2) (MKP-2) | Regulates mitogenic signal transduction by dephosphorylating both Thr and Tyr residues on MAP kinases ERK1 and ERK2. {ECO:0000269|PubMed:7535768}. |
Q13127 | REST | S864 | ochoa|psp | RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) | Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}. |
Q13129 | RLF | S41 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13129 | RLF | S632 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13228 | SELENBP1 | S53 | ochoa | Methanethiol oxidase (MTO) (EC 1.8.3.4) (56 kDa selenium-binding protein) (SBP56) (SP56) (Selenium-binding protein 1) | Catalyzes the oxidation of methanethiol, an organosulfur compound known to be produced in substantial amounts by gut bacteria (PubMed:29255262). Selenium-binding protein which may be involved in the sensing of reactive xenobiotics in the cytoplasm. May be involved in intra-Golgi protein transport (By similarity). {ECO:0000250|UniProtKB:Q8VIF7, ECO:0000269|PubMed:29255262}. |
Q13309 | SKP2 | S179 | ochoa | S-phase kinase-associated protein 2 (Cyclin-A/CDK2-associated protein p45) (F-box protein Skp2) (F-box/LRR-repeat protein 1) (p45skp2) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins involved in cell cycle progression, signal transduction and transcription (PubMed:9736735, PubMed:11931757, PubMed:12435635, PubMed:12769844, PubMed:12840033, PubMed:15342634, PubMed:15668399, PubMed:15949444, PubMed:16103164, PubMed:16262255, PubMed:16581786, PubMed:16951159, PubMed:17908926, PubMed:17962192, PubMed:22464731, PubMed:22770219, PubMed:32267835). Specifically recognizes phosphorylated CDKN1B/p27kip and is involved in regulation of G1/S transition (By similarity). Degradation of CDKN1B/p27kip also requires CKS1 (By similarity). Recognizes target proteins ORC1, CDT1, RBL2, KMT2A/MLL1, CDK9, RAG2, NBN, FOXO1, UBP43, YTHDF2, and probably MYC, TOB1 and TAL1 (PubMed:11931757, PubMed:12435635, PubMed:12769844, PubMed:12840033, PubMed:15342634, PubMed:15668399, PubMed:15949444, PubMed:16103164, PubMed:16581786, PubMed:16951159, PubMed:17908926, PubMed:17962192, PubMed:22464731, PubMed:32267835). Degradation of TAL1 also requires STUB1 (PubMed:17962192). Recognizes CDKN1A in association with CCNE1 or CCNE2 and CDK2 (PubMed:9736735, PubMed:16262255). Promotes ubiquitination and destruction of CDH1 in a CK1-dependent manner, thereby regulating cell migration (PubMed:22770219). Following phosphorylation in response to DNA damage, mediates 'Lys-63'-linked ubiquitination of NBN, promoting ATM recruitment to DNA damage sites and DNA repair via homologous recombination (PubMed:22464731). {ECO:0000250|UniProtKB:Q9Z0Z3, ECO:0000269|PubMed:11931757, ECO:0000269|PubMed:12435635, ECO:0000269|PubMed:12769844, ECO:0000269|PubMed:12840033, ECO:0000269|PubMed:15342634, ECO:0000269|PubMed:15668399, ECO:0000269|PubMed:15949444, ECO:0000269|PubMed:16103164, ECO:0000269|PubMed:16262255, ECO:0000269|PubMed:16581786, ECO:0000269|PubMed:16951159, ECO:0000269|PubMed:17908926, ECO:0000269|PubMed:17962192, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:22770219, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:9736735}.; FUNCTION: Through the ubiquitin-mediated proteasomal degradation of hepatitis C virus non-structural protein 5A, has an antiviral activity towards that virus. {ECO:0000269|PubMed:27194766}. |
Q13362 | PPP2R5C | S298 | psp | Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform (PP2A B subunit isoform B'-gamma) (PP2A B subunit isoform B56-gamma) (PP2A B subunit isoform PR61-gamma) (PP2A B subunit isoform R5-gamma) (Renal carcinoma antigen NY-REN-29) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. The PP2A-PPP2R5C holoenzyme may specifically dephosphorylate and activate TP53 and play a role in DNA damage-induced inhibition of cell proliferation. PP2A-PPP2R5C may also regulate the ERK signaling pathway through ERK dephosphorylation. {ECO:0000269|PubMed:16456541, ECO:0000269|PubMed:17245430}. |
Q13427 | PPIG | S290 | ochoa | Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}. |
Q13438 | OS9 | S509 | ochoa | Protein OS-9 (Amplified in osteosarcoma 9) | Lectin component of the HRD1 complex, which functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Specifically recognizes and binds improperly folded glycoproteins as well as hyperglycosylated proteins, retain them in the ER, and transfers them to the ubiquitination machinery and promote their degradation (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Possible targets include TRPV4 as well as hyperglycosylated HSP90B1 (PubMed:17932042). {ECO:0000269|PubMed:17932042, ECO:0000269|PubMed:18264092, ECO:0000269|PubMed:18417469, ECO:0000269|PubMed:19084021, ECO:0000269|PubMed:19346256, ECO:0000269|PubMed:21172656, ECO:0000269|PubMed:24899641}. |
Q13469 | NFATC2 | S53 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13480 | GAB1 | S454 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13501 | SQSTM1 | S28 | ochoa|psp | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13572 | ITPK1 | S358 | ochoa | Inositol-tetrakisphosphate 1-kinase (EC 2.7.1.134) (Inositol 1,3,4-trisphosphate 5/6-kinase) (Inositol-triphosphate 5/6-kinase) (Ins(1,3,4)P(3) 5/6-kinase) (EC 2.7.1.159) | Kinase that can phosphorylate various inositol polyphosphate such as Ins(3,4,5,6)P4 or Ins(1,3,4)P3 (PubMed:11042108, PubMed:8662638). Phosphorylates Ins(3,4,5,6)P4 at position 1 to form Ins(1,3,4,5,6)P5 (PubMed:11042108). This reaction is thought to have regulatory importance, since Ins(3,4,5,6)P4 is an inhibitor of plasma membrane Ca(2+)-activated Cl(-) channels, while Ins(1,3,4,5,6)P5 is not. Also phosphorylates Ins(1,3,4)P3 on O-5 and O-6 to form Ins(1,3,4,6)P4, an essential molecule in the hexakisphosphate (InsP6) pathway (PubMed:11042108, PubMed:8662638). Also acts as an inositol polyphosphate phosphatase that dephosphorylates Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 to Ins(1,3,4)P3, and Ins(1,3,4,5,6)P5 to Ins(3,4,5,6)P4 (PubMed:11909533, PubMed:17616525). May also act as an isomerase that interconverts the inositol tetrakisphosphate isomers Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 in the presence of ADP and magnesium (PubMed:11909533). Probably acts as the rate-limiting enzyme of the InsP6 pathway. Modifies TNF-alpha-induced apoptosis by interfering with the activation of TNFRSF1A-associated death domain (PubMed:11909533, PubMed:12925536, PubMed:17616525). Plays an important role in MLKL-mediated necroptosis. Produces highly phosphorylated inositol phosphates such as inositolhexakisphosphate (InsP6) which bind to MLKL mediating the release of an N-terminal auto-inhibitory region leading to its activation. Essential for activated phospho-MLKL to oligomerize and localize to the cell membrane during necroptosis (PubMed:17616525). {ECO:0000269|PubMed:11042108, ECO:0000269|PubMed:11909533, ECO:0000269|PubMed:12925536, ECO:0000269|PubMed:17616525, ECO:0000269|PubMed:8662638}. |
Q13586 | STIM1 | S575 | ochoa|psp | Stromal interaction molecule 1 | Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}. |
Q13613 | MTMR1 | S49 | ochoa | Phosphatidylinositol-3-phosphate phosphatase MTMR1 (EC 3.1.3.-) (Myotubularin-related protein 1) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (EC 3.1.3.95) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate, generating phosphatidylinositol (PubMed:11733541, PubMed:27018598). Could also dephosphorylate phosphatidylinositol 3,5-bisphosphate to produce phosphatidylinositol 5-phosphate (PubMed:27018598). {ECO:0000269|PubMed:11733541, ECO:0000269|PubMed:27018598}. |
Q13671 | RIN1 | S744 | ochoa | Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) | Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}. |
Q14123 | PDE1C | S413 | ochoa | Dual specificity calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1C (Cam-PDE 1C) (EC 3.1.4.17) (Hcam3) | Calmodulin-dependent cyclic nucleotide phosphodiesterase with a dual specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:29860631, PubMed:8557689). Has a high affinity for both cAMP and cGMP (PubMed:8557689). Modulates the amplitude and duration of the cAMP signal in sensory cilia in response to odorant stimulation, hence contributing to the generation of action potentials. Regulates smooth muscle cell proliferation. Regulates the stability of growth factor receptors, including PDGFRB (Probable). {ECO:0000269|PubMed:29860631, ECO:0000269|PubMed:8557689, ECO:0000305|PubMed:29860631}. |
Q14135 | VGLL4 | S262 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14147 | DHX34 | S976 | ochoa | Probable ATP-dependent RNA helicase DHX34 (EC 3.6.4.13) (DEAH box protein 34) (DExH-box helicase 34) | Probable ATP-binding RNA helicase required for nonsense-mediated decay (NMD) degradation of mRNA transcripts containing premature stop codons (PubMed:25220460, PubMed:33205750). Promotes the phosphorylation of UPF1 along with its interaction with key NMD pathway proteins UPF2 and EIF4A3 (PubMed:25220460). Interaction with the RUVBL1-RUVBL2 complex results in loss of nucleotide binding ability and ATP hydrolysis of the complex (PubMed:33205750). Negatively regulates the nucleotide binding ability and ATP hydrolysis of the RUVBL1-RUVBL2 complex via induction of N-terminus conformation changes of the RUVBL2 subunits (PubMed:33205750). {ECO:0000269|PubMed:25220460, ECO:0000269|PubMed:33205750}. |
Q14151 | SAFB2 | S343 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14155 | ARHGEF7 | S249 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14155 | ARHGEF7 | S676 | ochoa | Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) | Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}. |
Q14160 | SCRIB | S504 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | S1475 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14161 | GIT2 | S724 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14203 | DCTN1 | S105 | ochoa | Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}. |
Q14207 | NPAT | S207 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14315 | FLNC | S559 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S954 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S1848 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S1940 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2300 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2395 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14676 | MDC1 | S882 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14807 | KIF22 | S543 | ochoa | Kinesin-like protein KIF22 (Kinesin-like DNA-binding protein) (Kinesin-like protein 4) | Kinesin family member that is involved in spindle formation and the movements of chromosomes during mitosis and meiosis. Binds to microtubules and to DNA (By similarity). Plays a role in congression of laterally attached chromosomes in NDC80-depleted cells (PubMed:25743205). {ECO:0000250|UniProtKB:Q9I869, ECO:0000269|PubMed:25743205}. |
Q14865 | ARID5B | S1002 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14966 | ZNF638 | S1106 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14978 | NOLC1 | S623 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q15025 | TNIP1 | S266 | ochoa | TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) | Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}. |
Q15025 | TNIP1 | S442 | ochoa | TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) | Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}. |
Q15031 | LARS2 | S711 | ochoa | Leucine--tRNA ligase, mitochondrial (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS) | Catalyzes the attachment of leucine to its cognate tRNA. {ECO:0000269|PubMed:26537577}. |
Q15067 | ACOX1 | S26 | ochoa|psp | Peroxisomal acyl-coenzyme A oxidase 1 (AOX) (EC 1.3.3.6) (Palmitoyl-CoA oxidase) (Peroxisomal fatty acyl-CoA oxidase) (Straight-chain acyl-CoA oxidase) (SCOX) [Cleaved into: Peroxisomal acyl-CoA oxidase 1, A chain; Peroxisomal acyl-CoA oxidase 1, B chain; Peroxisomal acyl-CoA oxidase 1, C chain] | Involved in the initial and rate-limiting step of peroxisomal beta-oxidation of straight-chain saturated and unsaturated very-long-chain fatty acids (PubMed:15060085, PubMed:17458872, PubMed:17603022, PubMed:32169171, PubMed:33234382, PubMed:7876265). Catalyzes the desaturation of fatty acyl-CoAs such as palmitoyl-CoA (hexadecanoyl-CoA) to 2-trans-enoyl-CoAs ((2E)-enoyl-CoAs) such as (2E)-hexadecenoyl-CoA, and donates electrons directly to molecular oxygen (O(2)), thereby producing hydrogen peroxide (H(2)O(2)) (PubMed:17458872, PubMed:17603022, PubMed:7876265). {ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:17458872, ECO:0000269|PubMed:17603022, ECO:0000269|PubMed:32169171, ECO:0000269|PubMed:33234382, ECO:0000269|PubMed:7876265}.; FUNCTION: [Isoform 1]: Shows highest activity against medium-chain fatty acyl-CoAs. Shows optimum activity with a chain length of 10 carbons (decanoyl-CoA) in vitro. {ECO:0000269|PubMed:17603022}.; FUNCTION: [Isoform 2]: Is active against a much broader range of substrates and shows activity towards long-chain fatty acyl-CoAs. {ECO:0000269|PubMed:17603022}. |
Q15291 | RBBP5 | S497 | ochoa | Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3) | In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). Does not affect ES cell self-renewal (By similarity). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3 (PubMed:19556245). Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:19556245). In association with ASH2L and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:Q8BX09, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q15326 | ZMYND11 | S138 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15365 | PCBP1 | S264 | ochoa | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15398 | DLGAP5 | S767 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15424 | SAFB | S344 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15545 | TAF7 | S159 | ochoa | Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}. |
Q15545 | TAF7 | S201 | ochoa | Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}. |
Q15596 | NCOA2 | S29 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15596 | NCOA2 | S736 | ochoa|psp | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15599 | NHERF2 | S43 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (NHERF-2) (NHE3 kinase A regulatory protein E3KARP) (SRY-interacting protein 1) (SIP-1) (Sodium-hydrogen exchanger regulatory factor 2) (Solute carrier family 9 isoform A3 regulatory factor 2) (Tyrosine kinase activator protein 1) (TKA-1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3 (PubMed:18829453). May also act as scaffold protein in the nucleus. {ECO:0000269|PubMed:10455146, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:9096337}. |
Q155Q3 | DIXDC1 | S271 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q15772 | SPEG | S390 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q15853 | USF2 | S222 | psp | Upstream stimulatory factor 2 (Class B basic helix-loop-helix protein 12) (bHLHb12) (FOS-interacting protein) (FIP) (Major late transcription factor 2) (Upstream transcription factor 2) | Transcription factor that binds to a symmetrical DNA sequence (E-boxes) (5'-CACGTG-3') that is found in a variety of viral and cellular promoters. |
Q15911 | ZFHX3 | S2625 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16204 | CCDC6 | S244 | ochoa|psp | Coiled-coil domain-containing protein 6 (Papillary thyroid carcinoma-encoded protein) (Protein H4) | None |
Q16206 | ENOX2 | S240 | ochoa | Ecto-NOX disulfide-thiol exchanger 2 (APK1 antigen) (Cytosolic ovarian carcinoma antigen 1) (Tumor-associated hydroquinone oxidase) (tNOX) [Includes: Hydroquinone [NADH] oxidase (EC 1.-.-.-); Protein disulfide-thiol oxidoreductase (EC 1.-.-.-)] | May be involved in cell growth. Probably acts as a terminal oxidase of plasma electron transport from cytosolic NAD(P)H via hydroquinones to acceptors at the cell surface. Hydroquinone oxidase activity alternates with a protein disulfide-thiol interchange/oxidoreductase activity which may control physical membrane displacements associated with vesicle budding or cell enlargement. The activities oscillate with a period length of 22 minutes and play a role in control of the ultradian cellular biological clock. {ECO:0000269|PubMed:12356293, ECO:0000269|PubMed:9932650}. |
Q16649 | NFIL3 | S210 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q16665 | HIF1A | S643 | ochoa|psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16665 | HIF1A | S687 | ochoa|psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q16763 | UBE2S | S73 | ochoa | Ubiquitin-conjugating enzyme E2 S (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme S) (E2-EPF) (Ubiquitin carrier protein S) (Ubiquitin-conjugating enzyme E2-24 kDa) (Ubiquitin-conjugating enzyme E2-EPF5) (Ubiquitin-protein ligase S) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:19820702, PubMed:19822757, PubMed:22496338, PubMed:27259151). Catalyzes 'Lys-11'-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis (PubMed:19820702, PubMed:19822757, PubMed:27259151, PubMed:27910872). Acts by specifically elongating 'Lys-11'-linked polyubiquitin chains initiated by the E2 enzyme UBE2C/UBCH10 on APC/C substrates, enhancing the degradation of APC/C substrates by the proteasome and promoting mitotic exit (PubMed:19820702, PubMed:19822757, PubMed:27259151). Also acts by elongating ubiquitin chains initiated by the E2 enzyme UBE2D1/UBCH5 in vitro; it is however unclear whether UBE2D1/UBCH5 acts as an E2 enzyme for the APC/C in vivo. Also involved in ubiquitination and subsequent degradation of VHL, resulting in an accumulation of HIF1A (PubMed:16819549). In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, except 'Lys-48'-linked polyubiquitination (PubMed:20061386, PubMed:20622874). {ECO:0000269|PubMed:16819549, ECO:0000269|PubMed:19820702, ECO:0000269|PubMed:19822757, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22496338, ECO:0000269|PubMed:27259151, ECO:0000269|PubMed:27910872}. |
Q16772 | GSTA3 | S202 | ochoa | Glutathione S-transferase A3 (EC 2.5.1.18) (GST class-alpha member 3) (Glutathione S-transferase A3-3) | Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Catalyzes isomerization reactions that contribute to the biosynthesis of steroid hormones. Efficiently catalyze obligatory double-bond isomerizations of delta(5)-androstene-3,17-dione and delta(5)-pregnene-3,20-dione, precursors to testosterone and progesterone, respectively. Has substantial activity toward aflatoxin B1-8,9-epoxide (By similarity). {ECO:0000250|UniProtKB:P30115, ECO:0000269|PubMed:11418619, ECO:0000269|PubMed:15595823, ECO:0000269|PubMed:20083122}. |
Q16799 | RTN1 | S487 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q1MSJ5 | CSPP1 | S401 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q2KHM9 | KIAA0753 | S772 | ochoa | Protein moonraker (MNR) (OFD1- and FOPNL-interacting protein) | Involved in centriole duplication (PubMed:24613305, PubMed:26297806). Positively regulates CEP63 centrosomal localization (PubMed:24613305, PubMed:26297806). Required for WDR62 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:24613305, PubMed:26297806). May play a role in cilium assembly. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:28220259}. |
Q2LD37 | BLTP1 | S2287 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M1Z3 | ARHGAP31 | S1384 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2M3C6 | TMEM266 | S475 | ochoa | Transmembrane protein 266 (hTMEM266) (HV1-related protein 1) (HsHVRP1) | Voltage-sensor protein present on the post-synaptic side of glutamatergic mossy fibers and granule cells in the cerebellum (PubMed:25165868, PubMed:30810529). Despite the presence of a voltage-sensor segment, does not form a functional ion channel and its precise role remains unclear (PubMed:25165868, PubMed:30810529). Undergoes both rapid and slow structural rearrangements in response to changes in voltage (PubMed:30810529). Contains a zinc-binding site that can regulate the slow conformational transition (PubMed:30810529). {ECO:0000269|PubMed:25165868, ECO:0000269|PubMed:30810529}. |
Q2NKX8 | ERCC6L | S946 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2TAL8 | QRICH1 | S736 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q2TBE0 | CWF19L2 | S479 | ochoa | CWF19-like protein 2 | None |
Q32MZ4 | LRRFIP1 | S521 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q32MZ4 | LRRFIP1 | S581 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q3KP66 | INAVA | S643 | ochoa | Innate immunity activator protein | Expressed in peripheral macrophages and intestinal myeloid-derived cells, is required for optimal PRR (pattern recognition receptor)-induced signaling, cytokine secretion, and bacterial clearance. Upon stimulation of a broad range of PRRs (pattern recognition receptor) such as NOD2 or TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9, associates with YWHAQ/14-3-3T, which in turn leads to the recruitment and activation of MAP kinases and NF-kappa-B signaling complexes that amplifies PRR-induced downstream signals and cytokine secretion (PubMed:28436939). In the intestine, regulates adherens junction stability by regulating the degradation of CYTH1 and CYTH2, probably acting as substrate cofactor for SCF E3 ubiquitin-protein ligase complexes. Stabilizes adherens junctions by limiting CYTH1-dependent ARF6 activation (PubMed:29420262). {ECO:0000269|PubMed:28436939, ECO:0000269|PubMed:29420262}. |
Q3KQU3 | MAP7D1 | S753 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3L8U1 | CHD9 | S550 | ochoa | Chromodomain-helicase-DNA-binding protein 9 (CHD-9) (EC 3.6.4.-) (ATP-dependent helicase CHD9) (Chromatin-related mesenchymal modulator) (CReMM) (Chromatin-remodeling factor CHROM1) (Kismet homolog 2) (PPAR-alpha-interacting complex protein 320 kDa) (Peroxisomal proliferator-activated receptor A-interacting complex 320 kDa protein) | Probable ATP-dependent chromatin-remodeling factor. Acts as a transcriptional coactivator for PPARA and possibly other nuclear receptors. Has DNA-dependent ATPase activity and binds to A/T-rich DNA. Associates with A/T-rich regulatory regions in promoters of genes that participate in the differentiation of progenitors during osteogenesis (By similarity). {ECO:0000250, ECO:0000269|PubMed:16095617, ECO:0000269|PubMed:16554032}. |
Q3LXA3 | TKFC | S511 | ochoa | Triokinase/FMN cyclase (Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)) [Includes: ATP-dependent dihydroxyacetone kinase (DHA kinase) (EC 2.7.1.28) (EC 2.7.1.29) (Glycerone kinase) (Triokinase) (Triose kinase); FAD-AMP lyase (cyclizing) (EC 4.6.1.15) (FAD-AMP lyase (cyclic FMN forming)) (FMN cyclase)] | Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde, and the splitting of ribonucleoside diphosphate-X compounds among which FAD is the best substrate. Represses IFIH1-mediated cellular antiviral response (PubMed:17600090). {ECO:0000250|UniProtKB:F1RKQ4, ECO:0000250|UniProtKB:Q4KLZ6, ECO:0000269|PubMed:16289032, ECO:0000269|PubMed:17600090, ECO:0000269|PubMed:32004446, ECO:0000269|PubMed:4688871}. |
Q3T8J9 | GON4L | S1339 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q3V6T2 | CCDC88A | S1675 | ochoa|psp | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q4AC94 | C2CD3 | S339 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4AC94 | C2CD3 | S728 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4KWH8 | PLCH1 | S1307 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q4LE39 | ARID4B | S778 | ochoa | AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) | Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}. |
Q52LA3 | LIN52 | S28 | ochoa|psp | Protein lin-52 homolog | None |
Q53EZ4 | CEP55 | S425 | ochoa|psp | Centrosomal protein of 55 kDa (Cep55) (Up-regulated in colon cancer 6) | Plays a role in mitotic exit and cytokinesis (PubMed:16198290, PubMed:17853893). Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis (PubMed:17853893). Not required for microtubule nucleation (PubMed:16198290). Plays a role in the development of the brain and kidney (PubMed:28264986). {ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:28264986}. |
Q53EZ4 | CEP55 | S428 | ochoa|psp | Centrosomal protein of 55 kDa (Cep55) (Up-regulated in colon cancer 6) | Plays a role in mitotic exit and cytokinesis (PubMed:16198290, PubMed:17853893). Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis (PubMed:17853893). Not required for microtubule nucleation (PubMed:16198290). Plays a role in the development of the brain and kidney (PubMed:28264986). {ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:28264986}. |
Q53T59 | HS1BP3 | S128 | ochoa | HCLS1-binding protein 3 (HS1-binding protein 3) (HSP1BP-3) | May be a modulator of IL-2 signaling. {ECO:0000250}. |
Q587I9 | SFT2D3 | S56 | ochoa | Vesicle transport protein SFT2C (SFT2 domain-containing protein 3) | May be involved in fusion of retrograde transport vesicles derived from an endocytic compartment with the Golgi complex. {ECO:0000250|UniProtKB:P38166}. |
Q5JSZ5 | PRRC2B | S556 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5M775 | SPECC1 | S218 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5PSV4 | BRMS1L | S197 | ochoa | Breast cancer metastasis-suppressor 1-like protein (BRMS1-homolog protein p40) (BRMS1-like protein p40) | Involved in the histone deacetylase (HDAC1)-dependent transcriptional repression activity. When overexpressed in lung cancer cell line that lacks p53/TP53 expression, inhibits cell growth. {ECO:0000269|PubMed:15451426}. |
Q5SYE7 | NHSL1 | S1233 | ochoa | NHS-like protein 1 | None |
Q5T0W9 | FAM83B | S729 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T1M5 | FKBP15 | S356 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1R4 | HIVEP3 | S739 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S830 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1V6 | DDX59 | S160 | ochoa | Probable ATP-dependent RNA helicase DDX59 (EC 3.6.4.13) (DEAD box protein 59) (Zinc finger HIT domain-containing protein 5) | None |
Q5T481 | RBM20 | S742 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T4S7 | UBR4 | S181 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5P2 | KIAA1217 | S1111 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T8I9 | HENMT1 | S329 | ochoa | Small RNA 2'-O-methyltransferase (EC 2.1.1.386) (HEN1 methyltransferase homolog 1) | Methyltransferase that adds a 2'-O-methyl group at the 3'-end of piRNAs, a class of 24 to 30 nucleotide RNAs that are generated by a Dicer-independent mechanism and are primarily derived from transposons and other repeated sequence elements. This probably protects the 3'-end of piRNAs from uridylation activity and subsequent degradation. Stabilization of piRNAs is essential for gametogenesis. {ECO:0000250|UniProtKB:Q8CAE2}. |
Q5TAX3 | TUT4 | S104 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TC79 | ZBTB37 | S465 | ochoa | Zinc finger and BTB domain-containing protein 37 | May be involved in transcriptional regulation. |
Q5TC84 | OGFRL1 | S381 | ochoa | Opioid growth factor receptor-like protein 1 | None |
Q5TH69 | ARFGEF3 | S1991 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5UE93 | PIK3R6 | S358 | ochoa|psp | Phosphoinositide 3-kinase regulatory subunit 6 (Phosphoinositide 3-kinase gamma adapter protein of 87 kDa) (p84 PI3K adapter protein) (p84 PIKAP) (p87 PI3K adapter protein) (p87PIKAP) | Regulatory subunit of the PI3K gamma complex. Acts as an adapter to drive activation of PIK3CG by beta-gamma G protein dimers. The PIK3CG:PIK3R6 heterodimer is much less sensitive to beta-gamma G protein dimers than PIK3CG:PIK3R5 and its membrane recruitment and beta-gamma G protein dimer-dependent activation requires HRAS bound to PIK3CG. Recruits of the PI3K gamma complex to a PDE3B:RAPGEF3 signaling complex involved in angiogenesis; signaling seems to involve RRAS. {ECO:0000269|PubMed:21393242}. |
Q5UIP0 | RIF1 | S1772 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VSL9 | STRIP1 | S65 | ochoa | Striatin-interacting protein 1 (Protein FAM40A) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation. {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399}. |
Q5VST9 | OBSCN | S136 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VST9 | OBSCN | S7244 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT97 | SYDE2 | S223 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VUA4 | ZNF318 | S1267 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VV41 | ARHGEF16 | S240 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5VV67 | PPRC1 | S771 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VV67 | PPRC1 | S1063 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PGC-1-related coactivator) (PRC) | Acts as a coactivator during transcriptional activation of nuclear genes related to mitochondrial biogenesis and cell growth. Involved in the transcription coactivation of CREB and NRF1 target genes. {ECO:0000269|PubMed:11340167, ECO:0000269|PubMed:16908542}. |
Q5VVW2 | GARNL3 | S432 | ochoa | GTPase-activating Rap/Ran-GAP domain-like protein 3 | None |
Q5VWQ0 | RSBN1 | S81 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VWQ0 | RSBN1 | S547 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VWQ8 | DAB2IP | S763 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q5VZL5 | ZMYM4 | S782 | ochoa | Zinc finger MYM-type protein 4 (Zinc finger protein 262) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q66K14 | TBC1D9B | S463 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q68CZ1 | RPGRIP1L | S989 | ochoa | Protein fantom (Nephrocystin-8) (RPGR-interacting protein 1-like protein) (RPGRIP1-like protein) | Negatively regulates signaling through the G-protein coupled thromboxane A2 receptor (TBXA2R) (PubMed:19464661). May be involved in mechanisms like programmed cell death, craniofacial development, patterning of the limbs, and formation of the left-right axis (By similarity). Involved in the organization of apical junctions; the function is proposed to implicate a NPHP1-4-8 module. Does not seem to be strictly required for ciliogenesis (PubMed:19464661). Involved in establishment of planar cell polarity such as in cochlear sensory epithelium and is proposed to implicate stabilization of disheveled proteins (By similarity). Involved in regulation of proteasomal activity at the primary cilium probably implicating association with PSDM2 (By similarity). {ECO:0000250|UniProtKB:Q8CG73, ECO:0000269|PubMed:19464661}. |
Q68CZ2 | TNS3 | S1154 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68DK2 | ZFYVE26 | S1893 | ochoa | Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) | Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}. |
Q68EM7 | ARHGAP17 | S520 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q69YH5 | CDCA2 | S126 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q69YN4 | VIRMA | S1579 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q6BDS2 | BLTP3A | S1337 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DN90 | IQSEC1 | S211 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6F5E8 | CARMIL2 | S1120 | ochoa | Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}. |
Q6FI81 | CIAPIN1 | S183 | ochoa | Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) | Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}. |
Q6IBW4 | NCAPH2 | S208 | ochoa | Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) | Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}. |
Q6IN85 | PPP4R3A | S127 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6IQ23 | PLEKHA7 | S612 | ochoa | Pleckstrin homology domain-containing family A member 7 (PH domain-containing family A member 7) | Required for zonula adherens biogenesis and maintenance (PubMed:19041755). Acts via its interaction with CAMSAP3, which anchors microtubules at their minus-ends to zonula adherens, leading to the recruitment of KIFC3 kinesin to the junctional site (PubMed:19041755). Mediates docking of ADAM10 to zonula adherens through a PDZD11-dependent interaction with the ADAM10-binding protein TSPAN33 (PubMed:30463011). {ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:30463011}. |
Q6NUJ5 | PWWP2B | S250 | ochoa | PWWP domain-containing protein 2B | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260). Plays a role in facilitating transcriptional elongation through regulation of histone acetylation (By similarity). Negatively regulates brown adipocyte thermogenesis by interacting with and stabilizing HDAC1 at the UCP1 gene promoter, thereby promoting histone deacetylation at the promoter leading to the repression of UCP1 expression (By similarity). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:30228260}. |
Q6NYC8 | PPP1R18 | S368 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6NYC8 | PPP1R18 | S401 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6NZY4 | ZCCHC8 | S598 | ochoa | Zinc finger CCHC domain-containing protein 8 (TRAMP-like complex RNA-binding factor ZCCHC8) | Scaffolding subunit of the trimeric nuclear exosome targeting (NEXT) complex that is involved in the surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. May be involved in pre-mRNA splicing (Probable). It is required for 3'-end maturation of telomerase RNA component (TERC), TERC 3'-end targeting to the nuclear RNA exosome, and for telomerase function (PubMed:31488579). {ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:31488579, ECO:0000305|PubMed:16263084}. |
Q6P0Q8 | MAST2 | S900 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P1M0 | SLC27A4 | S555 | ochoa | Long-chain fatty acid transport protein 4 (FATP-4) (Fatty acid transport protein 4) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain-fatty-acid--CoA ligase) (EC 6.2.1.3) (Solute carrier family 27 member 4) (Very long-chain acyl-CoA synthetase 4) (ACSVL4) (EC 6.2.1.-) | Mediates the levels of long-chain fatty acids (LCFA) in the cell by facilitating their transport across cell membranes (PubMed:10518211, PubMed:12556534, PubMed:20448275, PubMed:21395585, PubMed:22022213). Appears to be the principal fatty acid transporter in small intestinal enterocytes (PubMed:20448275). Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake (PubMed:22022213, PubMed:24269233). Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis (By similarity). Probably involved in fatty acid transport across the blood barrier (PubMed:21395585). Indirectly inhibits RPE65 via substrate competition and via production of VLCFA derivatives like lignoceroyl-CoA. Prevents light-induced degeneration of rods and cones (By similarity). {ECO:0000250|UniProtKB:Q91VE0, ECO:0000269|PubMed:10518211, ECO:0000269|PubMed:12556534, ECO:0000269|PubMed:20448275, ECO:0000269|PubMed:21395585, ECO:0000269|PubMed:22022213, ECO:0000269|PubMed:24269233}. |
Q6P2H3 | CEP85 | S660 | ochoa | Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) | Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}. |
Q6P2H3 | CEP85 | S663 | ochoa | Centrosomal protein of 85 kDa (Cep85) (Coiled-coil domain-containing protein 21) | Acts as a regulator of centriole duplication through a direct interaction with STIL, a key factor involved in the early steps of centriole formation. The CEP85-STIL protein complex acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). Acts as a negative regulator of NEK2 to maintain the centrosome integrity in interphase. Suppresses centrosome disjunction by inhibiting NEK2 kinase activity (PubMed:26220856). {ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292}. |
Q6P4F7 | ARHGAP11A | S582 | ochoa | Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}. |
Q6PCB5 | RSBN1L | S536 | ochoa | Lysine-specific demethylase RSBN1L (EC 1.14.11.-) (Round spermatid basic protein 1-like protein) | Lysine-specific demethylase that specifically demethylates methylated lysine residues of proteins. {ECO:0000250|UniProtKB:Q80T69}. |
Q6PI47 | KCTD18 | S393 | ochoa | BTB/POZ domain-containing protein KCTD18 | None |
Q6PJG6 | BRAT1 | S582 | ochoa | Integrator complex assembly factor BRAT1 (BRCA1-associated ATM activator 1) (BRCA1-associated protein required for ATM activation protein 1) | Component of a multiprotein complex required for the assembly of the RNA endonuclease module of the integrator complex (PubMed:39032489, PubMed:39032490). Associates with INTS9 and INTS11 in the cytoplasm and blocks the active site of INTS11 to inhibit the endonuclease activity of INTS11 before formation of the full integrator complex (PubMed:39032489, PubMed:39032490). Following dissociation of WDR73 of the complex, BRAT1 facilitates the nuclear import of the INTS9-INTS11 heterodimer (PubMed:39032489). In the nucleus, INTS4 is integrated to the INTS9-INTS11 heterodimer and BRAT1 is released from the mature RNA endonuclease module by inositol hexakisphosphate (InsP6) (PubMed:39032489). BRAT1 is also involved in DNA damage response; activates kinases ATM, SMC1A and PRKDC by modulating their phosphorylation status following ionizing radiation (IR) stress (PubMed:16452482, PubMed:22977523). Plays a role in regulating mitochondrial function and cell proliferation (PubMed:25070371). Required for protein stability of MTOR and MTOR-related proteins, and cell cycle progress by growth factors (PubMed:25657994). {ECO:0000269|PubMed:16452482, ECO:0000269|PubMed:22977523, ECO:0000269|PubMed:25070371, ECO:0000269|PubMed:25657994, ECO:0000269|PubMed:39032489, ECO:0000269|PubMed:39032490}. |
Q6PJT7 | ZC3H14 | S515 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6PJT7 | ZC3H14 | S620 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6PKG0 | LARP1 | S521 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6PL24 | TMED8 | S71 | ochoa | Protein TMED8 | None |
Q6RFH5 | WDR74 | S214 | ochoa | WD repeat-containing protein 74 (NOP seven-associated protein 1) | Regulatory protein of the MTREX-exosome complex involved in the synthesis of the 60S ribosomal subunit (PubMed:26456651). Participates in an early cleavage of the pre-rRNA processing pathway in cooperation with NVL (PubMed:29107693). Required for blastocyst formation, is necessary for RNA transcription, processing and/or stability during preimplantation development (By similarity). {ECO:0000250|UniProtKB:Q8VCG3, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:29107693}. |
Q6T4R5 | NHS | S1410 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6UWF3 | SCIMP | S76 | ochoa | SLP adapter and CSK-interacting membrane protein (SLP65/SLP76, Csk-interacting membrane protein) | Lipid tetraspanin-associated transmembrane adapter/mediator that acts as a scaffold for Src-family kinases and other signaling proteins in immune cells (PubMed:21930792). It is involved in major histocompatibility complex class II (MHC-II) signaling transduction in B cells, where it is required in generating the calcium response and enhancing ERK activity upon MHC-II stimulation (PubMed:21930792). In dendritic cells, it is involved in sustaining CLEC7A/DECTIN1 signaling after CLEC7A activation by fungal beta-glucans (By similarity). It also acts as an agonist-inducible signaling adapter for TLR1, TLR2, TLR3, TLR4, and TLR7 by selectively enabling the expression of pro-inflammatory cytokines IL6 and IL12B in macrophages and acting as a scaffold for phosphorylation of Toll-like receptors by Src-family kinases (By similarity). {ECO:0000250|UniProtKB:Q3UU41, ECO:0000269|PubMed:21930792}. |
Q6UX15 | LAYN | S286 | ochoa | Layilin | Receptor for hyaluronate. {ECO:0000269|PubMed:11294894}. |
Q6VMQ6 | ATF7IP | S57 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6W2J9 | BCOR | S423 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6ZMQ8 | AATK | S1262 | ochoa | Serine/threonine-protein kinase LMTK1 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase) (AATYK) (Brain apoptosis-associated tyrosine kinase) (CDK5-binding protein) (Lemur tyrosine kinase 1) (p35-binding protein) (p35BP) | May be involved in neuronal differentiation. {ECO:0000269|PubMed:10837911}. |
Q6ZRV2 | FAM83H | S998 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZS81 | WDFY4 | S1847 | ochoa | WD repeat- and FYVE domain-containing protein 4 | Plays a critical role in the regulation of cDC1-mediated cross-presentation of viral and tumor antigens in dendritic cells. Mechanistically, acts near the plasma membrane and interacts with endosomal membranes to promote endosomal-to-cytosol antigen trafficking. Also plays a role in B-cell survival through regulation of autophagy. {ECO:0000250|UniProtKB:E9Q2M9}. |
Q6ZS81 | WDFY4 | S3123 | ochoa | WD repeat- and FYVE domain-containing protein 4 | Plays a critical role in the regulation of cDC1-mediated cross-presentation of viral and tumor antigens in dendritic cells. Mechanistically, acts near the plasma membrane and interacts with endosomal membranes to promote endosomal-to-cytosol antigen trafficking. Also plays a role in B-cell survival through regulation of autophagy. {ECO:0000250|UniProtKB:E9Q2M9}. |
Q6ZSS7 | MFSD6 | S644 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZU35 | CRACD | S1042 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZUT6 | CCDC9B | S448 | ochoa | Coiled-coil domain-containing protein 9B | None |
Q6ZVM7 | TOM1L2 | S479 | ochoa | TOM1-like protein 2 (Target of Myb-like protein 2) | Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}. |
Q6ZW13 | C16orf86 | S147 | ochoa | Uncharacterized protein C16orf86 | None |
Q702N8 | XIRP1 | S527 | ochoa | Xin actin-binding repeat-containing protein 1 (Cardiomyopathy-associated protein 1) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct cardiac intercalated disk ultrastructure via maintenance of cell-cell adhesion stability, and as a result maintains cardiac organ morphology, conductance and heart beat rhythm (By similarity). Required for development of normal skeletal muscle morphology and muscle fiber type composition (By similarity). Plays a role in regulating muscle satellite cell activation and survival, as a result promotes muscle fiber recovery from injury and fatigue (By similarity). {ECO:0000250|UniProtKB:O70373, ECO:0000269|PubMed:15454575}. |
Q70E73 | RAPH1 | S1154 | ochoa | Ras-associated and pleckstrin homology domains-containing protein 1 (RAPH1) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 18 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 9 protein) (Lamellipodin) (Proline-rich EVH1 ligand 2) (PREL-2) (Protein RMO1) | Mediator of localized membrane signals. Implicated in the regulation of lamellipodial dynamics. Negatively regulates cell adhesion. |
Q76I76 | SSH2 | S236 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q76I76 | SSH2 | S1227 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q76L83 | ASXL2 | S562 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L590 | MCM10 | S548 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7L7X3 | TAOK1 | S421 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7L8C5 | SYT13 | S113 | ochoa | Synaptotagmin-13 (Synaptotagmin XIII) (SytXIII) | May be involved in transport vesicle docking to the plasma membrane. {ECO:0000250}. |
Q7RTP6 | MICAL3 | S1310 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7RTP6 | MICAL3 | S1406 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z2K8 | GPRIN1 | S615 | ochoa | G protein-regulated inducer of neurite outgrowth 1 (GRIN1) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z2Z1 | TICRR | S1078 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z333 | SETX | S1663 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z589 | EMSY | S821 | ochoa | BRCA2-interacting transcriptional repressor EMSY | Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin (PubMed:14651845). Its interaction with BRCA2 suggests that it may play a central role in the DNA repair function of BRCA2 (PubMed:14651845). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). {ECO:0000269|PubMed:14651845, ECO:0000269|PubMed:19131338}. |
Q7Z591 | AKNA | S52 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z591 | AKNA | S1102 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5J4 | RAI1 | S880 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z5L9 | IRF2BP2 | S175 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q7Z6E9 | RBBP6 | S516 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z6G8 | ANKS1B | S310 | ochoa | Ankyrin repeat and sterile alpha motif domain-containing protein 1B (Amyloid-beta protein intracellular domain-associated protein 1) (AIDA-1) (E2A-PBX1-associated protein) (EB-1) | Isoform 2 may participate in the regulation of nucleoplasmic coilin protein interactions in neuronal and transformed cells.; FUNCTION: Isoform 3 can regulate global protein synthesis by altering nucleolar numbers. {ECO:0000250, ECO:0000269|PubMed:15347684, ECO:0000269|PubMed:15862129}.; FUNCTION: Isoform 4 may play a role as a modulator of APP processing. Overexpression can down-regulate APP processing. |
Q7Z6I8 | C5orf24 | S121 | ochoa | UPF0461 protein C5orf24 | None |
Q7Z6M1 | RABEPK | S191 | ochoa | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q7Z6Z7 | HUWE1 | S1077 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86SX3 | TEDC1 | S35 | ochoa | Tubulin epsilon and delta complex protein 1 | Acts as a positive regulator of ciliary hedgehog signaling. Required for centriole stability (By similarity). May play a role in counteracting perturbation of actin filaments, such as after treatment with the actin depolymerizing microbial metabolite Chivosazole F (PubMed:28796488). {ECO:0000250|UniProtKB:Q3UK37, ECO:0000269|PubMed:28796488}. |
Q86TG7 | PEG10 | S252 | ochoa | Retrotransposon-derived protein PEG10 (Embryonal carcinoma differentiation-regulated protein) (Mammalian retrotransposon-derived protein 2) (Myelin expression factor 3-like protein 1) (MEF3-like protein 1) (Paternally expressed gene 10 protein) (Retrotransposon gag domain-containing protein 3) (Retrotransposon-derived gag-like polyprotein) (Ty3/Gypsy-like protein) | Retrotransposon-derived protein that binds its own mRNA and self-assembles into virion-like capsids (PubMed:34413232). Forms virion-like extracellular vesicles that encapsulate their own mRNA and are released from cells, enabling intercellular transfer of PEG10 mRNA (PubMed:34413232). Binds its own mRNA in the 5'-UTR region, in the region near the boundary between the nucleocapsid (NC) and protease (PRO) coding sequences and in the beginning of the 3'-UTR region (PubMed:34413232). Involved in placenta formation: required for trophoblast stem cells differentiation (By similarity). Involved at the immediate early stage of adipocyte differentiation (By similarity). Overexpressed in many cancers and enhances tumor progression: promotes cell proliferation by driving cell cycle progression from G0/G1 (PubMed:12810624, PubMed:16423995, PubMed:26235627, PubMed:28193232). Enhances cancer progression by inhibiting the TGF-beta signaling, possibly via interaction with the TGF-beta receptor ACVRL1 (PubMed:15611116, PubMed:26235627, PubMed:30094509). May bind to the 5'-GCCTGTCTTT-3' DNA sequence of the MB1 domain in the myelin basic protein (MBP) promoter; additional evidences are however required to confirm this result (By similarity). {ECO:0000250|UniProtKB:Q7TN75, ECO:0000269|PubMed:12810624, ECO:0000269|PubMed:15611116, ECO:0000269|PubMed:16423995, ECO:0000269|PubMed:26235627, ECO:0000269|PubMed:28193232, ECO:0000269|PubMed:30094509, ECO:0000269|PubMed:34413232}. |
Q86U86 | PBRM1 | S131 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UB9 | TMEM135 | S198 | ochoa | Transmembrane protein 135 (Peroxisomal membrane protein 52) (PMP52) | Involved in mitochondrial metabolism by regulating the balance between mitochondrial fusion and fission. May act as a regulator of mitochondrial fission that promotes DNM1L-dependent fission through activation of DNM1L. May be involved in peroxisome organization. {ECO:0000250|UniProtKB:Q5U4F4, ECO:0000250|UniProtKB:Q9CYV5}. |
Q86UP3 | ZFHX4 | S1279 | ochoa | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q86UR1 | NOXA1 | S239 | psp | NADPH oxidase activator 1 (NOX activator 1) (Antigen NY-CO-31) (NCF2-like protein) (P67phox-like factor) (p51-nox) | Functions as an activator of NOX1, a superoxide-producing NADPH oxidase. Functions in the production of reactive oxygen species (ROS) which participate in a variety of biological processes including host defense, hormone biosynthesis, oxygen sensing and signal transduction. May also activate CYBB/gp91phox and NOX3. {ECO:0000269|PubMed:12657628, ECO:0000269|PubMed:12716910, ECO:0000269|PubMed:14617635, ECO:0000269|PubMed:14978110, ECO:0000269|PubMed:15181005, ECO:0000269|PubMed:15824103, ECO:0000269|PubMed:17602954, ECO:0000269|PubMed:19755710}. |
Q86US8 | SMG6 | S424 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86US8 | SMG6 | S1000 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86V48 | LUZP1 | S639 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86V48 | LUZP1 | S745 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VE9 | SERINC5 | S360 | psp | Serine incorporator 5 | Restriction factor required to restrict infectivity of lentiviruses, such as HIV-1: acts by inhibiting an early step of viral infection. Impairs the penetration of the viral particle into the cytoplasm (PubMed:26416733, PubMed:26416734). Non-ATP-dependent, non-specific lipid transporter for phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine. Functions as a scramblase that flips lipids in both directions across the membrane. Phospholipid scrambling results in HIV-1 surface exposure of phosphatidylserine and loss of membrane asymmetry, which leads to changes in HIV-1 Env conformation and loss of infectivity (PubMed:37474505). Enhances the incorporation of serine into phosphatidylserine and sphingolipids. May play a role in providing serine molecules for the formation of myelin glycosphingolipids in oligodendrocytes (By similarity). {ECO:0000250|UniProtKB:Q63175, ECO:0000269|PubMed:26416733, ECO:0000269|PubMed:26416734, ECO:0000269|PubMed:37474505}. |
Q86VM9 | ZC3H18 | S487 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86W42 | THOC6 | S180 | ochoa | THO complex subunit 6 (Functional spliceosome-associated protein 35) (fSAP35) (WD repeat-containing protein 58) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Plays a key structural role in the oligomerization of the THO-DDX39B complex (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15998806, PubMed:17190602). Plays a role in apoptosis negative control involved in brain development (PubMed:15833825, PubMed:23621916). {ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:23621916, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q86W50 | METTL16 | S329 | ochoa | RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) | RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}. |
Q86W56 | PARG | S302 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86WB0 | ZC3HC1 | S24 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86XR2 | NIBAN3 | S38 | ochoa | Protein Niban 3 (B-cell novel protein 1) (Niban-like protein 2) (Protein FAM129C) | None |
Q86Y97 | KMT5C | S439 | ochoa | Histone-lysine N-methyltransferase KMT5C (Lysine N-methyltransferase 5C) (Lysine-specific methyltransferase 5C) (Suppressor of variegation 4-20 homolog 2) (Su(var)4-20 homolog 2) (Suv4-20h2) ([histone H4]-N-methyl-L-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.362) ([histone H4]-lysine20 N-methyltransferase KMT5B) (EC 2.1.1.361) | Histone methyltransferase that specifically methylates monomethylated 'Lys-20' (H4K20me1) and dimethylated 'Lys-20' (H4K20me2) of histone H4 to produce respectively dimethylated 'Lys-20' (H4K20me2) and trimethylated 'Lys-20' (H4K20me3) and thus regulates transcription and maintenance of genome integrity (PubMed:24396869, PubMed:28114273). In vitro also methylates unmodified 'Lys-20' (H4K20me0) of histone H4 and nucleosomes (PubMed:24396869). H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. Mainly functions in pericentric heterochromatin regions, thereby playing a central role in the establishment of constitutive heterochromatin in these regions. KMT5C is targeted to histone H3 via its interaction with RB1 family proteins (RB1, RBL1 and RBL2) (By similarity). Facilitates TP53BP1 foci formation upon DNA damage and proficient non-homologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (PubMed:28114273). May play a role in class switch reconbination by catalyzing the di- and trimethylation of 'Lys-20' of histone H4 (By similarity). {ECO:0000250|UniProtKB:Q6Q783, ECO:0000269|PubMed:24396869, ECO:0000269|PubMed:28114273}. |
Q86YA3 | ZGRF1 | S880 | ochoa | 5'-3' DNA helicase ZGRF1 (EC 5.6.2.3) (GRF-type zinc finger domain-containing protein 1) | 5'-3' DNA helicase which is recruited to sites of DNA damage and promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination (HR) (PubMed:32640219, PubMed:34552057). Promotes HR by directly stimulating RAD51-mediated strand exchange activity (PubMed:32640219). Not required to load RAD51 at sites of DNA damage but promotes recombinational repair after RAD51 recruitment (PubMed:32640219). Also promotes HR by positively regulating EXO1-mediated DNA end resection of double-strand breaks (PubMed:34552057). Required for recruitment of replication protein RPA2 to DNA damage sites (PubMed:34552057). Promotes the initiation of the G2/M checkpoint but not its maintenance (PubMed:34552057). Catalyzes Holliday junction branch migration and dissociation of D-loops and DNA flaps (PubMed:32640219). {ECO:0000269|PubMed:32640219, ECO:0000269|PubMed:34552057}. |
Q86YN6 | PPARGC1B | S524 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q8IU81 | IRF2BP1 | S66 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IUD2 | ERC1 | S730 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IUG5 | MYO18B | S2542 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IUW3 | SPATA2L | S290 | ochoa | Spermatogenesis-associated protein 2-like protein (SPATA2-like protein) | None |
Q8IUW3 | SPATA2L | S332 | ochoa | Spermatogenesis-associated protein 2-like protein (SPATA2-like protein) | None |
Q8IV48 | ERI1 | S21 | ochoa | 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) | RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}. |
Q8IVT2 | MISP | S284 | ochoa | Mitotic interactor and substrate of PLK1 (Mitotic spindle positioning protein) | Plays a role in mitotic spindle orientation and mitotic progression. Regulates the distribution of dynactin at the cell cortex in a PLK1-dependent manner, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning. May link microtubules to the actin cytospkeleton and focal adhesions. May be required for directed cell migration and centrosome orientation. May also be necessary for proper stacking of the Golgi apparatus. {ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:23574715}. |
Q8IW41 | MAPKAPK5 | S212 | ochoa | MAP kinase-activated protein kinase 5 (MAPK-activated protein kinase 5) (MAPKAP kinase 5) (MAPKAP-K5) (MAPKAPK-5) (MK-5) (MK5) (EC 2.7.11.1) (p38-regulated/activated protein kinase) (PRAK) | Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent MYC translation. Acts as a negative regulator of mTORC1 signaling by mediating phosphorylation and inhibition of RHEB. Part of the atypical MAPK signaling via its interaction with ERK3/MAPK6 or ERK4/MAPK4: the precise role of the complex formed with ERK3/MAPK6 or ERK4/MAPK4 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPK (ERK3/MAPK6 or ERK4/MAPK4), ERK3/MAPK6 (or ERK4/MAPK4) is phosphorylated and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6 (or ERK4/MAPK4). Mediates phosphorylation of HSP27/HSPB1 in response to PKA/PRKACA stimulation, inducing F-actin rearrangement. {ECO:0000269|PubMed:17254968, ECO:0000269|PubMed:17728103, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:9628874}. |
Q8IWC1 | MAP7D3 | S441 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IWE5 | PLEKHM2 | S334 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWE5 | PLEKHM2 | S766 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWQ3 | BRSK2 | S367 | ochoa | Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}. |
Q8IWT3 | CUL9 | S947 | ochoa | Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) | Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}. |
Q8IWY8 | ZSCAN29 | S153 | ochoa | Zinc finger and SCAN domain-containing protein 29 (Zinc finger protein 690) | May be involved in transcriptional regulation. |
Q8IWY8 | ZSCAN29 | S405 | ochoa | Zinc finger and SCAN domain-containing protein 29 (Zinc finger protein 690) | May be involved in transcriptional regulation. |
Q8IWZ8 | SUGP1 | S411 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX03 | WWC1 | S876 | ochoa | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IX90 | SKA3 | S346 | ochoa | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8IXZ2 | ZC3H3 | S593 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8IYB3 | SRRM1 | S452 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IYH5 | ZZZ3 | S113 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYH5 | ZZZ3 | S606 | ochoa | ZZ-type zinc finger-containing protein 3 | Histone H3 reader that is required for the ATAC complex-mediated maintenance of histone acetylation and gene activation (PubMed:30217978). Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:19103755). {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:30217978}. |
Q8IYJ3 | SYTL1 | S392 | ochoa | Synaptotagmin-like protein 1 (Exophilin-7) (Protein JFC1) | May play a role in vesicle trafficking (By similarity). Binds phosphatidylinositol 3,4,5-trisphosphate. Acts as a RAB27A effector protein and may play a role in cytotoxic granule exocytosis in lymphocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:11278853, ECO:0000269|PubMed:18266782}. |
Q8IZD2 | KMT2E | S837 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZE3 | SCYL3 | S707 | ochoa | Protein-associating with the carboxyl-terminal domain of ezrin (Ezrin-binding protein PACE-1) (SCY1-like protein 3) | May play a role in regulating cell adhesion/migration complexes in migrating cells. {ECO:0000269|PubMed:12651155}. |
Q8IZT6 | ASPM | S605 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N0Z2 | ABRA | S156 | ochoa | Actin-binding Rho-activating protein (Striated muscle activator of Rho-dependent signaling) (STARS) | Acts as an activator of serum response factor (SRF)-dependent transcription possibly by inducing nuclear translocation of MKL1 or MKL2 and through a mechanism requiring Rho-actin signaling. {ECO:0000250|UniProtKB:Q8BUZ1}. |
Q8N1G1 | REXO1 | S358 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N201 | INTS1 | S104 | ochoa | Integrator complex subunit 1 (Int1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q8N201 | INTS1 | S284 | ochoa | Integrator complex subunit 1 (Int1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q8N201 | INTS1 | S1395 | ochoa | Integrator complex subunit 1 (Int1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q8N283 | ANKRD35 | S776 | ochoa | Ankyrin repeat domain-containing protein 35 | None |
Q8N2Y8 | RUSC2 | S1380 | ochoa | AP-4 complex accessory subunit RUSC2 (Interacting protein of Rab1) (Iporin) (RUN and SH3 domain-containing protein 2) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network. {ECO:0000269|PubMed:30262884}. |
Q8N3D4 | EHBP1L1 | S237 | ochoa | EH domain-binding protein 1-like protein 1 | May act as Rab effector protein and play a role in vesicle trafficking. {ECO:0000305|PubMed:27552051}. |
Q8N3K9 | CMYA5 | S1717 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N3Z3 | GTPBP8 | S74 | ochoa | GTP-binding protein 8 | None |
Q8N3Z6 | ZCCHC7 | S482 | ochoa | Zinc finger CCHC domain-containing protein 7 (TRAMP-like complex RNA-binding factor ZCCHC7) | None |
Q8N488 | RYBP | S99 | ochoa | RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}. |
Q8N6F7 | GCSAM | S143 | ochoa | Germinal center-associated signaling and motility protein (Germinal center B-cell-expressed transcript 2 protein) (Germinal center-associated lymphoma protein) (hGAL) | Involved in the negative regulation of lymphocyte motility. It mediates the migration-inhibitory effects of IL6. Serves as a positive regulator of the RhoA signaling pathway. Enhancement of RhoA activation results in inhibition of lymphocyte and lymphoma cell motility by activation of its downstream effector ROCK. Is a regulator of B-cell receptor signaling, that acts through SYK kinase activation. {ECO:0000269|PubMed:17823310, ECO:0000269|PubMed:20844236, ECO:0000269|PubMed:23299888}. |
Q8N8E3 | CEP112 | S115 | ochoa | Centrosomal protein of 112 kDa (Cep112) (Coiled-coil domain-containing protein 46) | None |
Q8NAV1 | PRPF38A | S209 | ochoa | Pre-mRNA-splicing factor 38A | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:26673105, ECO:0000269|PubMed:28781166}. |
Q8NAX2 | KDF1 | S137 | ochoa | Keratinocyte differentiation factor 1 | Plays a role in the regulation of the epidermis formation during early development. Required both as an inhibitor of basal cell proliferation and a promoter of differentiation of basal progenitor cell progeny (By similarity). {ECO:0000250|UniProtKB:A2A9F4}. |
Q8NC42 | RNF149 | S334 | ochoa | E3 ubiquitin-protein ligase RNF149 (EC 2.3.2.27) (DNA polymerase-transactivated protein 2) (RING finger protein 149) (RING-type E3 ubiquitin transferase RNF149) | E3 ubiquitin-protein ligase. Ubiquitinates BRAF, inducing its proteasomal degradation. {ECO:0000269|PubMed:22628551}. |
Q8NC44 | RETREG2 | S291 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8NC44 | RETREG2 | S403 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8NCD3 | HJURP | S140 | ochoa | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCF5 | NFATC2IP | S173 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCF5 | NFATC2IP | S204 | ochoa|psp | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCN2 | ZBTB34 | S463 | ochoa | Zinc finger and BTB domain-containing protein 34 | May be a transcriptional repressor. {ECO:0000269|PubMed:16718364}. |
Q8NDV7 | TNRC6A | S991 | ochoa | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
Q8NE01 | CNNM3 | S661 | ochoa | Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) | Probable metal transporter. {ECO:0000250}. |
Q8NE71 | ABCF1 | S22 | ochoa | ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) | Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}. |
Q8NEG4 | FAM83F | S61 | ochoa | Protein FAM83F | None |
Q8NEV8 | EXPH5 | S910 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEV8 | EXPH5 | S1074 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEY1 | NAV1 | S541 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEY1 | NAV1 | S760 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFW9 | MYRIP | S350 | ochoa | Rab effector MyRIP (Exophilin-8) (Myosin-VIIa- and Rab-interacting protein) (Synaptotagmin-like protein lacking C2 domains C) (SlaC2-c) (Slp homolog lacking C2 domains c) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor proteins MYO5A and MYO7A. May link RAB27A-containing vesicles to actin filaments. Functions as a protein kinase A-anchoring protein (AKAP). May act as a scaffolding protein that links PKA to components of the exocytosis machinery, thus facilitating exocytosis, including insulin release (By similarity). {ECO:0000250}. |
Q8NG08 | HELB | S1021 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8NHL6 | LILRB1 | S522 | ochoa | Leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1) (Leukocyte immunoglobulin-like receptor 1) (CD85 antigen-like family member J) (Immunoglobulin-like transcript 2) (ILT-2) (Monocyte/macrophage immunoglobulin-like receptor 7) (MIR-7) (CD antigen CD85j) | Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C, HLA-G and HLA-F alleles (PubMed:16455647, PubMed:28636952). Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of FCER1A signaling and serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions (PubMed:11907092, PubMed:9285411, PubMed:9842885). Recognizes HLA-G in complex with B2M/beta-2 microglobulin and a nonamer self-peptide (PubMed:16455647). Upon interaction with peptide-bound HLA-G-B2M complex, triggers secretion of growth-promoting factors by decidual NK cells (PubMed:19304799, PubMed:29262349). Reprograms B cells toward an immune suppressive phenotype (PubMed:24453251). {ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:16455647, ECO:0000269|PubMed:19304799, ECO:0000269|PubMed:24453251, ECO:0000269|PubMed:28636952, ECO:0000269|PubMed:29262349, ECO:0000269|PubMed:9285411, ECO:0000269|PubMed:9842885}. |
Q8NI08 | NCOA7 | S502 | ochoa | Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) | Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}. |
Q8TAB3 | PCDH19 | S983 | ochoa | Protocadherin-19 | Calcium-dependent cell-adhesion protein. {ECO:0000250|UniProtKB:F8W3X3}. |
Q8TAP6 | CEP76 | S83 | ochoa|psp | Centrosomal protein of 76 kDa (Cep76) | Centrosomal protein involved in regulation of centriole duplication. Required to limit centriole duplication to once per cell cycle by preventing centriole reduplication. {ECO:0000269|PubMed:19460342}. |
Q8TBC5 | ZSCAN18 | S168 | ochoa | Zinc finger and SCAN domain-containing protein 18 (Zinc finger protein 447) | May be involved in transcriptional regulation. |
Q8TBE0 | BAHD1 | S44 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TC92 | ENOX1 | S254 | ochoa | Ecto-NOX disulfide-thiol exchanger 1 (Candidate growth-related and time keeping constitutive hydroquinone [NADH] oxidase) (cCNOX) (Cell proliferation-inducing gene 38 protein) (Constitutive Ecto-NOX) (cNOX) [Includes: Hydroquinone [NADH] oxidase (EC 1.-.-.-); Protein disulfide-thiol oxidoreductase (EC 1.-.-.-)] | Probably acts as a terminal oxidase of plasma electron transport from cytosolic NAD(P)H via hydroquinones to acceptors at the cell surface. Hydroquinone oxidase activity alternates with a protein disulfide-thiol interchange/oxidoreductase activity which may control physical membrane displacements associated with vesicle budding or cell enlargement. The activities oscillate with a period length of 24 minutes and play a role in control of the ultradian cellular biological clock. {ECO:0000269|PubMed:11360993, ECO:0000269|PubMed:12565167, ECO:0000269|PubMed:17027975, ECO:0000269|PubMed:19055324}. |
Q8TCC3 | MRPL30 | S49 | ochoa | Large ribosomal subunit protein uL30m (39S ribosomal protein L28, mitochondrial) (L28mt) (MRP-L28) (39S ribosomal protein L30, mitochondrial) (L30mt) (MRP-L30) | None |
Q8TD26 | CHD6 | S21 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TD43 | TRPM4 | S1103 | ochoa | Transient receptor potential cation channel subfamily M member 4 (hTRPM4) (Calcium-activated non-selective cation channel 1) (Long transient receptor potential channel 4) (LTrpC-4) (LTrpC4) (Melastatin-4) | Calcium-activated selective cation channel that mediates membrane depolarization (PubMed:12015988, PubMed:12842017, PubMed:29211723, PubMed:30528822). While it is activated by increase in intracellular Ca(2+), it is impermeable to it (PubMed:12015988). Mediates transport of monovalent cations (Na(+) > K(+) > Cs(+) > Li(+)), leading to depolarize the membrane (PubMed:12015988). It thereby plays a central role in cadiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. Participates in T-cell activation by modulating Ca(2+) oscillations after T lymphocyte activation, which is required for NFAT-dependent IL2 production. Involved in myogenic constriction of cerebral arteries. Controls insulin secretion in pancreatic beta-cells. May also be involved in pacemaking or could cause irregular electrical activity under conditions of Ca(2+) overload. Affects T-helper 1 (Th1) and T-helper 2 (Th2) cell motility and cytokine production through differential regulation of calcium signaling and NFATC1 localization. Enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. Plays a role in keratinocyte differentiation (PubMed:30528822). {ECO:0000269|PubMed:11535825, ECO:0000269|PubMed:12015988, ECO:0000269|PubMed:12799367, ECO:0000269|PubMed:12842017, ECO:0000269|PubMed:14758478, ECO:0000269|PubMed:15121803, ECO:0000269|PubMed:15331675, ECO:0000269|PubMed:15472118, ECO:0000269|PubMed:15550671, ECO:0000269|PubMed:15590641, ECO:0000269|PubMed:15845551, ECO:0000269|PubMed:16186107, ECO:0000269|PubMed:16407466, ECO:0000269|PubMed:16424899, ECO:0000269|PubMed:16806463, ECO:0000269|PubMed:20625999, ECO:0000269|PubMed:20656926, ECO:0000269|PubMed:29211723, ECO:0000269|PubMed:30528822}.; FUNCTION: [Isoform 2]: Lacks channel activity. {ECO:0000269|PubMed:12842017}. |
Q8TDI0 | CHD5 | S1631 | ochoa | Chromodomain-helicase-DNA-binding protein 5 (CHD-5) (EC 3.6.4.-) (ATP-dependent helicase CHD5) | ATP-dependent chromatin-remodeling factor that binds DNA through histones and regulates gene transcription. May specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3. Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin. Plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. Regulates the expression of genes involved in cell proliferation and differentiation. Downstream activated genes may include CDKN2A that positively regulates the p53/TP53 pathway, which in turn, prevents cell proliferation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. {ECO:0000250|UniProtKB:A2A8L1, ECO:0000269|PubMed:23948251}. |
Q8TDR0 | TRAF3IP1 | S557 | ochoa | TRAF3-interacting protein 1 (Interleukin-13 receptor alpha 1-binding protein 1) (Intraflagellar transport protein 54 homolog) (Microtubule-interacting protein associated with TRAF3) (MIP-T3) | Plays an inhibitory role on IL13 signaling by binding to IL13RA1. Involved in suppression of IL13-induced STAT6 phosphorylation, transcriptional activity and DNA-binding. Recruits TRAF3 and DISC1 to the microtubules. Involved in kidney development and epithelial morphogenesis. Involved in the regulation of microtubule cytoskeleton organization. Is a negative regulator of microtubule stability, acting through the control of MAP4 levels (PubMed:26487268). Involved in ciliogenesis (By similarity). {ECO:0000250|UniProtKB:Q149C2, ECO:0000269|PubMed:10791955, ECO:0000269|PubMed:12812986, ECO:0000269|PubMed:12935900, ECO:0000269|PubMed:26487268}. |
Q8TDW7 | FAT3 | S4270 | ochoa | Protocadherin Fat 3 (hFat3) (Cadherin family member 15) (FAT tumor suppressor homolog 3) | May play a role in the interactions between neurites derived from specific subsets of neurons during development. {ECO:0000250}. |
Q8TE67 | EPS8L3 | S518 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8-like protein 3) (Epidermal growth factor receptor pathway substrate 8-related protein 3) (EPS8-related protein 3) | None |
Q8TE68 | EPS8L1 | S239 | ochoa | Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8-like protein 1) (Epidermal growth factor receptor pathway substrate 8-related protein 1) (EPS8-related protein 1) | Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. {ECO:0000269|PubMed:14565974}. |
Q8TED9 | AFAP1L1 | S745 | ochoa | Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) | May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}. |
Q8TES7 | FBF1 | S359 | ochoa | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TEV9 | SMCR8 | S790 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8TEW8 | PARD3B | S100 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF30 | WHAMM | S692 | ochoa | WASP homolog-associated protein with actin, membranes and microtubules (WAS protein homology region 2 domain-containing protein 1) (WH2 domain-containing protein 1) | Acts as a nucleation-promoting factor (NPF) that stimulates Arp2/3-mediated actin polymerization both at the Golgi apparatus and along tubular membranes. Its activity in membrane tubulation requires F-actin and interaction with microtubules. Proposed to use coordinated actin-nucleating and microtubule-binding activities of distinct WHAMM molecules to drive membrane tubule elongation; when MT-bound can recruit and remodel membrane vesicles but is prevented to activate the Arp2/3 complex. Involved as a regulator of Golgi positioning and morphology. Participates in vesicle transport between the reticulum endoplasmic and the Golgi complex. Required for RhoD-dependent actin reorganization such as in cell adhesion and cell migration. {ECO:0000269|PubMed:18614018, ECO:0000269|PubMed:23027905, ECO:0000269|PubMed:23087206}. |
Q8TF32 | ZNF431 | S440 | ochoa | Zinc finger protein 431 | Sequence-specific DNA binding transcriptional repressor. Represses target gene transcription by recruiting HDAC1 and HDAC2 histone deacetylases. Acts as a specific transcriptional repressor for PTCH1 during embryonic development. Required for osteoblast differentiation and sonic hedgehog/SHH signaling response. Binds to the consensus site 5'-GCGCCC-3' in the promoter of PTCH1 (By similarity). {ECO:0000250}. |
Q8TF46 | DIS3L | S989 | ochoa | DIS3-like exonuclease 1 (EC 3.1.13.1) | Catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events (PubMed:20531386, PubMed:20531389, PubMed:37602378). In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA (PubMed:20531386, PubMed:20531389). {ECO:0000269|PubMed:20531386, ECO:0000269|PubMed:20531389, ECO:0000269|PubMed:37602378}. |
Q8WUI4 | HDAC7 | S109 | ochoa | Histone deacetylase 7 (HD7) (EC 3.5.1.98) (Histone deacetylase 7A) (HD7a) (Protein deacetylase HDAC7) (EC 3.5.1.-) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (By similarity). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Involved in muscle maturation by repressing transcription of myocyte enhancer factors such as MEF2A, MEF2B and MEF2C (By similarity). During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors (By similarity). May be involved in Epstein-Barr virus (EBV) latency, possibly by repressing the viral BZLF1 gene (PubMed:12239305). Positively regulates the transcriptional repressor activity of FOXP3 (PubMed:17360565). Serves as a corepressor of RARA, causing its deacetylation and inhibition of RARE DNA element binding (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). Also acetylates non-histone proteins, such as ALKBH5 (PubMed:37369679). {ECO:0000250|UniProtKB:Q8C2B3, ECO:0000269|PubMed:12239305, ECO:0000269|PubMed:17360565, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37369679}. |
Q8WVB6 | CHTF18 | S871 | ochoa | Chromosome transmission fidelity protein 18 homolog (hCTF18) (CHL12) | Chromosome cohesion factor involved in sister chromatid cohesion and fidelity of chromosome transmission. Component of one of the cell nuclear antigen loader complexes, CTF18-replication factor C (CTF18-RFC), which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. The CTF18-RFC complex binds to single-stranded and primed DNAs and has weak ATPase activity that is stimulated by the presence of primed DNA, replication protein A (RPA) and by proliferating cell nuclear antigen (PCNA). The CTF18-RFC complex catalyzes the ATP-dependent loading of PCNA onto primed and gapped DNA. Interacts with and stimulates DNA polymerase POLH. During DNA repair synthesis, involved in loading DNA polymerase POLE at the sites of local damage (PubMed:20227374). {ECO:0000269|PubMed:12766176, ECO:0000269|PubMed:12930902, ECO:0000269|PubMed:17545166, ECO:0000269|PubMed:20227374}. |
Q8WVT3 | TRAPPC12 | S75 | ochoa | Trafficking protein particle complex subunit 12 (Tetratricopeptide repeat protein 15) (TPR repeat protein 15) (TTC-15) (Trafficking of membranes and mitosis) | Component of the TRAPP complex, which is involved in endoplasmic reticulum to Golgi apparatus trafficking at a very early stage (PubMed:21525244, PubMed:28777934). Also plays a role in chromosome congression, kinetochore assembly and stability and controls the recruitment of CENPE to the kinetochores (PubMed:25918224). {ECO:0000269|PubMed:21525244, ECO:0000269|PubMed:25918224, ECO:0000269|PubMed:28777934}. |
Q8WW38 | ZFPM2 | S904 | ochoa | Zinc finger protein ZFPM2 (Friend of GATA protein 2) (FOG-2) (Friend of GATA 2) (hFOG-2) (Zinc finger protein 89B) (Zinc finger protein multitype 2) | Transcription regulator that plays a central role in heart morphogenesis and development of coronary vessels from epicardium, by regulating genes that are essential during cardiogenesis. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA4, GATA5 and GATA6. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. Also required in gonadal differentiation, possibly be regulating expression of SRY. Probably acts a corepressor of NR2F2 (By similarity). {ECO:0000250, ECO:0000269|PubMed:10438528}. |
Q8WWI1 | LMO7 | S1516 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWQ0 | PHIP | S142 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WWQ0 | PHIP | S1243 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WX92 | NELFB | S557 | ochoa | Negative elongation factor B (NELF-B) (Cofactor of BRCA1) | Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:12612062). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:10199401). May be able to induce chromatin unfolding (PubMed:11739404). Essential for early embryogenesis; plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) by preventing unscheduled expression of developmental genes (By similarity). Plays a key role in establishing the responsiveness of stem cells to developmental cues; facilitates plasticity and cell fate commitment in ESCs by establishing the appropriate expression level of signaling molecules (By similarity). Supports the transcription of genes involved in energy metabolism in cardiomyocytes; facilitates the association of transcription initiation factors with the promoters of the metabolism-related genes (By similarity). {ECO:0000250|UniProtKB:Q8C4Y3, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11739404, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II (PubMed:23884411). In vitro, binds weakly to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1 (PubMed:23884411). {ECO:0000269|PubMed:23884411}. |
Q8WX93 | PALLD | S484 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXG6 | MADD | S930 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WYL5 | SSH1 | S576 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q92503 | SEC14L1 | S586 | ochoa | SEC14-like protein 1 | May play a role in innate immunity by inhibiting the antiviral RIG-I signaling pathway. In this pathway, functions as a negative regulator of RIGI, the cytoplasmic sensor of viral nucleic acids. Prevents the interaction of RIGI with MAVS/IPS1, an important step in signal propagation (PubMed:23843640). May also regulate the SLC18A3 and SLC5A7 cholinergic transporters (PubMed:17092608). {ECO:0000269|PubMed:17092608, ECO:0000269|PubMed:23843640}. |
Q92508 | PIEZO1 | S165 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92539 | LPIN2 | S106 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92576 | PHF3 | S1184 | ochoa | PHD finger protein 3 | None |
Q92608 | DOCK2 | S1685 | ochoa | Dedicator of cytokinesis protein 2 | Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}. |
Q92615 | LARP4B | S488 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92622 | RUBCN | S671 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92628 | KIAA0232 | S712 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92733 | PRCC | S212 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92793 | CREBBP | S1076 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92826 | HOXB13 | S31 | psp | Homeobox protein Hox-B13 | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000269|PubMed:28473536}. |
Q92844 | TANK | S129 | ochoa | TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) | Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}. |
Q92858 | ATOH1 | S84 | ochoa | Transcription factor ATOH1 (Atonal bHLH transcription factor 1) (Class A basic helix-loop-helix protein 14) (bHLHa14) (Helix-loop-helix protein hATH-1) (hATH1) (Protein atonal homolog 1) | Transcriptional regulator. Activates E box-dependent transcription in collaboration with TCF3/E47, but the activity is completely antagonized by the negative regulator of neurogenesis HES1. Plays a role in the differentiation of subsets of neural cells by activating E box-dependent transcription (By similarity). {ECO:0000250|UniProtKB:P48985}. |
Q92859 | NEO1 | S1178 | ochoa | Neogenin (Immunoglobulin superfamily DCC subclass member 2) | Multi-functional cell surface receptor regulating cell adhesion in many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Receptor for members of the BMP, netrin, and repulsive guidance molecule (RGM) families. Netrin-Neogenin interactions result in a chemoattractive axon guidance response and cell-cell adhesion, the interaction between NEO1/Neogenin and RGMa and RGMb induces a chemorepulsive response. {ECO:0000269|PubMed:21149453}. |
Q92889 | ERCC4 | S521 | ochoa | DNA repair endonuclease XPF (EC 3.1.-.-) (DNA excision repair protein ERCC-4) (DNA repair protein complementing XP-F cells) (Xeroderma pigmentosum group F-complementing protein) | Catalytic component of a structure-specific DNA repair endonuclease responsible for the 5-prime incision during DNA repair, and which is essential for nucleotide excision repair (NER) and interstrand cross-link (ICL) repair. {ECO:0000269|PubMed:10413517, ECO:0000269|PubMed:11790111, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:24027083, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:8797827}. |
Q92890 | UFD1 | S129 | ochoa | Ubiquitin recognition factor in ER-associated degradation protein 1 (Ubiquitin fusion degradation protein 1) (UB fusion protein 1) | Essential component of the ubiquitin-dependent proteolytic pathway which degrades ubiquitin fusion proteins. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. It may be involved in the development of some ectoderm-derived structures (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and NPLOC4, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI (PubMed:26471729). {ECO:0000250|UniProtKB:Q9ES53, ECO:0000269|PubMed:26471729}. |
Q92945 | KHSRP | S480 | ochoa | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
Q93075 | TATDN2 | S115 | ochoa | 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) | Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}. |
Q969J2 | ZKSCAN4 | S44 | ochoa | Zinc finger protein with KRAB and SCAN domains 4 (P373c6.1) (Zinc finger protein 307) (Zinc finger protein 427) | May be involved in the transcriptional activation of MDM2 and EP300 genes. {ECO:0000269|PubMed:17910948}. |
Q96A35 | MRPL24 | S24 | ochoa | Large ribosomal subunit protein uL24m (39S ribosomal protein L24, mitochondrial) (L24mt) (MRP-L24) | None |
Q96AQ6 | PBXIP1 | S43 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96AY2 | EME1 | S117 | ochoa | Structure-specific endonuclease subunit EME1 (Crossover junction endonuclease EME1) (Essential meiotic structure-specific endonuclease 1) (MMS4 homolog) (hMMS4) | Non-catalytic subunit of the structure-specific, heterodimeric DNA endonuclease MUS81-EME1 which is involved in the maintenance of genome stability. In the complex, EME1 is required for DNA cleavage, participating in DNA recognition and bending (PubMed:12686547, PubMed:12721304, PubMed:14617801, PubMed:17289582, PubMed:24733841, PubMed:24813886, PubMed:35290797, PubMed:39015284). MUS81-EME1 cleaves 3'-flaps and nicked Holliday junctions, and exhibit limited endonuclease activity with 5' flaps and nicked double-stranded DNAs (PubMed:24733841, PubMed:35290797). Active during prometaphase, MUS81-EME1 resolves mitotic recombination intermediates, including Holliday junctions, which form during homologous recombination (PubMed:14617801, PubMed:24813886). {ECO:0000269|PubMed:12686547, ECO:0000269|PubMed:12721304, ECO:0000269|PubMed:14617801, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:24733841, ECO:0000269|PubMed:24813886, ECO:0000269|PubMed:35290797, ECO:0000269|PubMed:39015284}. |
Q96B70 | LENG9 | S416 | ochoa | Leukocyte receptor cluster member 9 | None |
Q96C57 | CUSTOS | S179 | ochoa | Protein CUSTOS | Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}. |
Q96CW5 | TUBGCP3 | S614 | ochoa | Gamma-tubulin complex component 3 (GCP-3) (hGCP3) (Gamma-ring complex protein 104 kDa) (h104p) (hGrip104) (Spindle pole body protein Spc98 homolog) (hSpc98) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:38305685, PubMed:38609661, PubMed:39321809, PubMed:9566967). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809, ECO:0000269|PubMed:9566967}. |
Q96D09 | GPRASP2 | S550 | ochoa | G-protein coupled receptor-associated sorting protein 2 (GASP-2) | May play a role in regulation of a variety of G-protein coupled receptors. {ECO:0000269|PubMed:15086532}. |
Q96D46 | NMD3 | S25 | ochoa | 60S ribosomal export protein NMD3 (hNMD3) | Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. {ECO:0000269|PubMed:12724356, ECO:0000269|PubMed:12773398}. |
Q96D71 | REPS1 | S617 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96DU7 | ITPKC | S322 | ochoa | Inositol-trisphosphate 3-kinase C (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase C) (IP3 3-kinase C) (IP3K C) (InsP 3-kinase C) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis (PubMed:11085927, PubMed:12747803). Can phosphorylate inositol 2,4,5-triphosphate to inositol 2,4,5,6-tetraphosphate (By similarity). {ECO:0000250|UniProtKB:Q80ZG2, ECO:0000269|PubMed:11085927, ECO:0000269|PubMed:12747803}. |
Q96DZ5 | CLIP3 | S402 | ochoa | CAP-Gly domain-containing linker protein 3 (Cytoplasmic linker protein 170-related 59 kDa protein) (CLIP-170-related 59 kDa protein) (CLIPR-59) | Functions as a cytoplasmic linker protein. Involved in TGN-endosome dynamics. May modulate the cellular compartmentalization of AKT kinase family and promote its cell membrane localization, thereby playing a role in glucose transport in adipocytes. {ECO:0000269|PubMed:19139280}. |
Q96EA4 | SPDL1 | S555 | ochoa|psp | Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) | Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}. |
Q96EG3 | ZNF837 | S351 | ochoa | Zinc finger protein 837 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q96EK5 | KIFBP | S178 | ochoa | KIF-binding protein (KIF1-binding protein) (Kinesin family binding protein) | Activator of KIF1B plus-end-directed microtubule motor activity (PubMed:16225668). Required for organization of axonal microtubules, and axonal outgrowth and maintenance during peripheral and central nervous system development. {ECO:0000269|PubMed:16225668, ECO:0000269|PubMed:20621975, ECO:0000269|PubMed:23427148}. |
Q96EK9 | KTI12 | S184 | ochoa | Protein KTI12 homolog | None |
Q96EK9 | KTI12 | S205 | ochoa | Protein KTI12 homolog | None |
Q96EV2 | RBM33 | S765 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96F46 | IL17RA | S708 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96FZ2 | HMCES | S45 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96FZ2 | HMCES | S295 | ochoa | Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) | Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}. |
Q96H22 | CENPN | S299 | ochoa | Centromere protein N (CENP-N) (Interphase centromere complex protein 32) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPN is the first protein to bind specifically to CENPA nucleosomes and the direct binding of CENPA nucleosomes by CENPN is required for centromere assembly. Required for chromosome congression and efficiently align the chromosomes on a metaphase plate. {ECO:0000269|PubMed:16622419, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:18007590, ECO:0000269|PubMed:19543270}. |
Q96I34 | PPP1R16A | S418 | ochoa | Protein phosphatase 1 regulatory subunit 16A (Myosin phosphatase-targeting subunit 3) | Inhibits protein phosphatase 1 activity toward phosphorylase, myosin light chain and myosin substrates. {ECO:0000250}. |
Q96JA1 | LRIG1 | S1046 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96JM3 | CHAMP1 | S675 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96KB5 | PBK | S32 | ochoa|psp | Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) | Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}. |
Q96KG9 | SCYL1 | S41 | ochoa | N-terminal kinase-like protein (Coated vesicle-associated kinase of 90 kDa) (SCY1-like protein 1) (Telomerase regulation-associated protein) (Telomerase transcriptional element-interacting factor) (Teratoma-associated tyrosine kinase) | Regulates COPI-mediated retrograde protein traffic at the interface between the Golgi apparatus and the endoplasmic reticulum (PubMed:18556652). Involved in the maintenance of the Golgi apparatus morphology (PubMed:26581903). {ECO:0000269|PubMed:18556652, ECO:0000269|PubMed:26581903}.; FUNCTION: [Isoform 6]: Acts as a transcriptional activator. It binds to three different types of GC-rich DNA binding sites (box-A, -B and -C) in the beta-polymerase promoter region. It also binds to the TERT promoter region. {ECO:0000269|PubMed:15963946}. |
Q96KG9 | SCYL1 | S559 | ochoa | N-terminal kinase-like protein (Coated vesicle-associated kinase of 90 kDa) (SCY1-like protein 1) (Telomerase regulation-associated protein) (Telomerase transcriptional element-interacting factor) (Teratoma-associated tyrosine kinase) | Regulates COPI-mediated retrograde protein traffic at the interface between the Golgi apparatus and the endoplasmic reticulum (PubMed:18556652). Involved in the maintenance of the Golgi apparatus morphology (PubMed:26581903). {ECO:0000269|PubMed:18556652, ECO:0000269|PubMed:26581903}.; FUNCTION: [Isoform 6]: Acts as a transcriptional activator. It binds to three different types of GC-rich DNA binding sites (box-A, -B and -C) in the beta-polymerase promoter region. It also binds to the TERT promoter region. {ECO:0000269|PubMed:15963946}. |
Q96KM6 | ZNF512B | S63 | ochoa | Zinc finger protein 512B | Involved in transcriptional regulation by repressing gene expression (PubMed:39460621). Associates with the nucleosome remodeling and histone deacetylase (NuRD) complex, which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:39460621). {ECO:0000269|PubMed:39460621}. |
Q96KN4 | LRATD1 | S67 | ochoa | Protein LRATD1 (LRAT domain-containing 1) (Neurologic sensory protein 1) (NSE1) (Protein FAM84A) | May play a role in cell morphology and motility. {ECO:0000269|PubMed:16820875}. |
Q96L91 | EP400 | S1732 | ochoa | E1A-binding protein p400 (EC 3.6.4.-) (CAG repeat protein 32) (Domino homolog) (hDomino) (Trinucleotide repeat-containing gene 12 protein) (p400 kDa SWI2/SNF2-related protein) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. May be required for transcriptional activation of E2F1 and MYC target genes during cellular proliferation. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. May regulate ZNF42 transcription activity. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q96LC9 | BMF | S77 | ochoa|psp | Bcl-2-modifying factor | May play a role in apoptosis. Isoform 1 seems to be the main initiator. |
Q96MY1 | NOL4L | S130 | ochoa | Nucleolar protein 4-like | None |
Q96N64 | PWWP2A | S525 | ochoa | PWWP domain-containing protein 2A | Chromatin-binding protein that acts as an adapter between distinct nucleosome components (H3K36me3 or H2A.Z) and chromatin-modifying complexes, contributing to the regulation of the levels of histone acetylation at actively transcribed genes (PubMed:30228260, PubMed:30327463). Competes with CHD4 and MBD3 for interaction with MTA1 to form a NuRD subcomplex, preventing the formation of full NuRD complex (containing CHD4 and MBD3), leading to recruitment of HDACs to gene promoters resulting in turn in the deacetylation of nearby H3K27 and H2A.Z (PubMed:30228260, PubMed:30327463). Plays a role in facilitating transcriptional elongation and repression of spurious transcription initiation through regulation of histone acetylation (By similarity). Essential for proper mitosis progression (PubMed:28645917). {ECO:0000250|UniProtKB:Q69Z61, ECO:0000269|PubMed:28645917, ECO:0000269|PubMed:30228260, ECO:0000269|PubMed:30327463}. |
Q96NA2 | RILP | S377 | ochoa | Rab-interacting lysosomal protein | Rab effector playing a role in late endocytic transport to degradative compartments (PubMed:11179213, PubMed:11696325, PubMed:12944476, PubMed:14668488, PubMed:27113757). Involved in the regulation of lysosomal morphology and distribution (PubMed:14668488, PubMed:27113757). Induces recruitment of dynein-dynactin motor complexes to Rab7A-containing late endosome and lysosome compartments (PubMed:11179213, PubMed:11696325). Promotes centripetal migration of phagosomes and the fusion of phagosomes with the late endosomes and lysosomes (PubMed:12944476). {ECO:0000269|PubMed:11179213, ECO:0000269|PubMed:11696325, ECO:0000269|PubMed:12944476, ECO:0000269|PubMed:14668488, ECO:0000269|PubMed:27113757}. |
Q96NY7 | CLIC6 | S112 | ochoa | Chloride intracellular channel protein 6 (Glutaredoxin-like oxidoreductase CLIC6) (EC 1.8.-.-) (Parchorin) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (By similarity). Can insert into membranes and form voltage-dependent chloride-selective channels. The channel opens upon membrane depolarization at positive voltages and closes at negative membrane voltages (PubMed:37838179). May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity). {ECO:0000250|UniProtKB:Q9N2G5, ECO:0000250|UniProtKB:Q9Y696, ECO:0000269|PubMed:37838179}. |
Q96PE2 | ARHGEF17 | S418 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PY5 | FMNL2 | S1016 | ochoa|psp | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96PY6 | NEK1 | S837 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PY6 | NEK1 | S881 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96PZ2 | FAM111A | S508 | ochoa | Serine protease FAM111A (EC 3.4.21.-) | Single-stranded DNA-binding serine protease that mediates the proteolytic cleavage of covalent DNA-protein cross-links (DPCs) during DNA synthesis, thereby playing a key role in maintaining genomic integrity (PubMed:32165630). DPCs are highly toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription, and which are induced by reactive agents, such as UV light or formaldehyde (PubMed:32165630). Protects replication fork from stalling by removing DPCs, such as covalently trapped topoisomerase 1 (TOP1) adducts on DNA lesion, or poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors (PubMed:32165630). Required for PCNA loading on replication sites (PubMed:24561620). Promotes S-phase entry and DNA synthesis (PubMed:24561620). Also acts as a restriction factor for some viruses including SV40 polyomavirus and vaccinia virus (PubMed:23093934, PubMed:37607234). Mechanistically, affects nuclear barrier function during viral replication by mediating the disruption of the nuclear pore complex (NPC) via its protease activity (PubMed:33369867, PubMed:37607234). In turn, interacts with vaccinia virus DNA-binding protein OPG079 in the cytoplasm and promotes its degradation without the need of its protease activity but through autophagy (PubMed:37607234). {ECO:0000269|PubMed:24561620, ECO:0000269|PubMed:32165630, ECO:0000269|PubMed:37607234}. |
Q96Q05 | TRAPPC9 | S953 | ochoa | Trafficking protein particle complex subunit 9 (NIK- and IKBKB-binding protein) (Tularik gene 1 protein) | Functions as an activator of NF-kappa-B through increased phosphorylation of the IKK complex. May function in neuronal cells differentiation. May play a role in vesicular transport from endoplasmic reticulum to Golgi. {ECO:0000269|PubMed:15951441}. |
Q96Q15 | SMG1 | S1903 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96Q27 | ASB2 | S371 | psp | Ankyrin repeat and SOCS box protein 2 (ASB-2) | Substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15590664, PubMed:16325183). Mediates Notch-induced ubiquitination and degradation of substrates including TCF3/E2A and JAK2 (PubMed:21119685). Required during embryonic heart development for complete heart looping (By similarity). Required for cardiomyocyte differentiation (PubMed:32179481). Specifically promotes the ubiquitination of SMAD9 and targets it for proteasomal degradation, leading to avoid excessive accumulation of SMAD9 (PubMed:34845242). Plays a role in the regulation of NK-cell migration by modulating protein levels of filamin A/FLNA via regulation of its ubiquitination and proteasome degradation (By similarity). {ECO:0000250|UniProtKB:Q8K0L0, ECO:0000269|PubMed:15590664, ECO:0000269|PubMed:16325183, ECO:0000269|PubMed:21119685, ECO:0000269|PubMed:32179481, ECO:0000269|PubMed:34845242}.; FUNCTION: [Isoform 1]: Involved in myogenic differentiation and targets filamin FLNB for proteasomal degradation but not filamin FLNA (PubMed:19300455). Also targets DES for proteasomal degradation (By similarity). Acts as a negative regulator of skeletal muscle mass (By similarity). {ECO:0000250|UniProtKB:Q8K0L0, ECO:0000269|PubMed:19300455}.; FUNCTION: [Isoform 2]: Targets filamins FLNA and FLNB for proteasomal degradation (PubMed:21737450, PubMed:22916308, PubMed:24044920, PubMed:24052262). This leads to enhanced adhesion of hematopoietic cells to fibronectin (PubMed:21737450). Required for FLNA degradation in immature cardiomyocytes which is necessary for actin cytoskeleton remodeling, leading to proper organization of myofibrils and function of mature cardiomyocytes (By similarity). Required for degradation of FLNA and FLNB in immature dendritic cells (DC) which enhances immature DC migration by promoting DC podosome formation and DC-mediated degradation of the extracellular matrix (By similarity). Does not promote proteasomal degradation of tyrosine-protein kinases JAK1 or JAK2 in hematopoietic cells (PubMed:22916308). {ECO:0000250|UniProtKB:Q8K0L0, ECO:0000269|PubMed:21737450, ECO:0000269|PubMed:22916308, ECO:0000269|PubMed:24044920, ECO:0000269|PubMed:24052262}. |
Q96Q42 | ALS2 | S1335 | ochoa | Alsin (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 6 protein) (Amyotrophic lateral sclerosis 2 protein) | May act as a GTPase regulator. Controls survival and growth of spinal motoneurons (By similarity). {ECO:0000250}. |
Q96QB1 | DLC1 | S577 | ochoa | Rho GTPase-activating protein 7 (Deleted in liver cancer 1 protein) (DLC-1) (HP protein) (Rho-type GTPase-activating protein 7) (START domain-containing protein 12) (StARD12) (StAR-related lipid transfer protein 12) | Functions as a GTPase-activating protein for the small GTPases RHOA, RHOB, RHOC and CDC42, terminating their downstream signaling. This induces morphological changes and detachment through cytoskeletal reorganization, playing a critical role in biological processes such as cell migration and proliferation. Also functions in vivo as an activator of the phospholipase PLCD1. Active DLC1 increases cell migration velocity but reduces directionality. Required for growth factor-induced epithelial cell migration; in resting cells, interacts with TNS3 while PTEN interacts with the p85 regulatory subunit of the PI3K kinase complex but growth factor stimulation induces phosphorylation of TNS3 and PTEN, causing them to change their binding preference so that PTEN interacts with DLC1 and TNS3 interacts with p85 (PubMed:26166433). The PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA while the TNS3-p85 complex translocates to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). {ECO:0000269|PubMed:18786931, ECO:0000269|PubMed:19170769, ECO:0000269|PubMed:19710422, ECO:0000269|PubMed:26166433}. |
Q96RE7 | NACC1 | S125 | ochoa | Nucleus accumbens-associated protein 1 (NAC-1) (BTB/POZ domain-containing protein 14B) | Functions as a transcriptional repressor. Seems to function as a transcriptional corepressor in neuronal cells through recruitment of HDAC3 and HDAC4. Contributes to tumor progression, and tumor cell proliferation and survival. This may be mediated at least in part through repressing transcriptional activity of GADD45GIP1. Required for recruiting the proteasome from the nucleus to the cytoplasm and dendritic spines. {ECO:0000269|PubMed:17130457, ECO:0000269|PubMed:17804717}. |
Q96RG2 | PASK | S843 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RU2 | USP28 | S1053 | ochoa | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96RU3 | FNBP1 | S517 | ochoa | Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) | May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}. |
Q96RY5 | CRAMP1 | S616 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q96S38 | RPS6KC1 | S823 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96SN8 | CDK5RAP2 | S1350 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96ST3 | SIN3A | S1112 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q96ST8 | CEP89 | S188 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96T23 | RSF1 | S227 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T58 | SPEN | S2159 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S2366 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T58 | SPEN | S3433 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q96T88 | UHRF1 | S709 | ochoa | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99576 | TSC22D3 | S102 | ochoa | TSC22 domain family protein 3 (DSIP-immunoreactive peptide) (Protein DIP) (hDIP) (Delta sleep-inducing peptide immunoreactor) (Glucocorticoid-induced leucine zipper protein) (GILZ) (TSC-22-like protein) (TSC-22-related protein) (TSC-22R) | Protects T-cells from IL2 deprivation-induced apoptosis through the inhibition of FOXO3A transcriptional activity that leads to the down-regulation of the pro-apoptotic factor BCL2L11 (PubMed:15031210). In macrophages, plays a role in the anti-inflammatory and immunosuppressive effects of glucocorticoids and IL10 (PubMed:12393603). In T-cells, inhibits anti-CD3-induced NFKB1 nuclear translocation and thereby NFKB1 DNA-binding activities (PubMed:11468175). In vitro, suppresses AP-1 transcription factor complex DNA-binding activities (By similarity). {ECO:0000250|UniProtKB:Q9Z2S7, ECO:0000269|PubMed:11468175, ECO:0000269|PubMed:12393603, ECO:0000269|PubMed:15031210}.; FUNCTION: [Isoform 1]: Inhibits myogenic differentiation and mediates anti-myogenic effects of glucocorticoids by binding and regulating MYOD1 and HDAC1 transcriptional activity resulting in reduced expression of MYOG. {ECO:0000250|UniProtKB:Q9Z2S7}. |
Q99618 | CDCA3 | S222 | ochoa | Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) | F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}. |
Q99700 | ATXN2 | S889 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99704 | DOK1 | S281 | ochoa | Docking protein 1 (Downstream of tyrosine kinase 1) (p62(dok)) (pp62) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK1 appears to be a negative regulator of the insulin signaling pathway. Modulates integrin activation by competing with talin for the same binding site on ITGB3. {ECO:0000269|PubMed:18156175}. |
Q99708 | RBBP8 | S163 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99767 | APBA2 | S208 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 2 (Adapter protein X11beta) (Neuron-specific X11L protein) (Neuronal Munc18-1-interacting protein 2) (Mint-2) | Putative function in synaptic vesicle exocytosis by binding to STXBP1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. |
Q99814 | EPAS1 | S581 | psp | Endothelial PAS domain-containing protein 1 (EPAS-1) (Basic-helix-loop-helix-PAS protein MOP2) (Class E basic helix-loop-helix protein 73) (bHLHe73) (HIF-1-alpha-like factor) (HLF) (Hypoxia-inducible factor 2-alpha) (HIF-2-alpha) (HIF2-alpha) (Member of PAS protein 2) (PAS domain-containing protein 2) | Transcription factor involved in the induction of oxygen regulated genes. Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Regulates the vascular endothelial growth factor (VEGF) expression and seems to be implicated in the development of blood vessels and the tubular system of lung. May also play a role in the formation of the endothelium that gives rise to the blood brain barrier. Potent activator of the Tie-2 tyrosine kinase expression. Activation requires recruitment of transcriptional coactivators such as CREBBP and probably EP300. Interaction with redox regulatory protein APEX1 seems to activate CTAD (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97481}. |
Q99829 | CPNE1 | S55 | ochoa | Copine-1 (Chromobindin 17) (Copine I) | Calcium-dependent phospholipid-binding protein that plays a role in calcium-mediated intracellular processes (PubMed:14674885). Involved in the TNF-alpha receptor signaling pathway in a calcium-dependent manner (PubMed:14674885). Exhibits calcium-dependent phospholipid binding properties (PubMed:19539605, PubMed:9430674). Plays a role in neuronal progenitor cell differentiation; induces neurite outgrowth via a AKT-dependent signaling cascade and calcium-independent manner (PubMed:23263657, PubMed:25450385). May recruit target proteins to the cell membrane in a calcium-dependent manner (PubMed:12522145). May function in membrane trafficking (PubMed:9430674). Involved in TNF-alpha-induced NF-kappa-B transcriptional repression by inducing endoprotease processing of the transcription factor NF-kappa-B p65/RELA subunit (PubMed:18212740). Also induces endoprotease processing of NF-kappa-B p50/NFKB1, p52/NFKB2, RELB and REL (PubMed:18212740). {ECO:0000269|PubMed:12522145, ECO:0000269|PubMed:14674885, ECO:0000269|PubMed:18212740, ECO:0000269|PubMed:19539605, ECO:0000269|PubMed:23263657, ECO:0000269|PubMed:25450385, ECO:0000269|PubMed:9430674}. |
Q9BPX3 | NCAPG | S844 | ochoa | Condensin complex subunit 3 (Chromosome-associated protein G) (Condensin subunit CAP-G) (hCAP-G) (Melanoma antigen NY-MEL-3) (Non-SMC condensin I complex subunit G) (XCAP-G homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
Q9BQ13 | KCTD14 | S23 | ochoa | BTB/POZ domain-containing protein KCTD14 | None |
Q9BQ65 | USB1 | S36 | ochoa | U6 snRNA phosphodiesterase 1 (hUsb1) (3'-5' RNA exonuclease USB1) (EC 4.6.1.-) (Mutated in poikiloderma with neutropenia protein 1) (Mutated in PN protein 1) (hMpn1) | 3'-5' RNA exonuclease that trims the 3' end of oligo(U) and oligo(A) tracts of the pre-U6 small nuclear RNA (snRNA) molecule, leading to the formation of a mature U6 snRNA 3' end-terminated with a 2',3'-cyclic phosphate (PubMed:22899009, PubMed:23022480, PubMed:23190533, PubMed:26213367, PubMed:28887445, PubMed:30215753, PubMed:31832688). Participates in the U6 snRNA 3' end processing that prevents U6 snRNA degradation (PubMed:22899009, PubMed:23022480, PubMed:23190533, PubMed:26213367, PubMed:28887445, PubMed:30215753, PubMed:31832688). In addition also removes uridines from the 3' end of U6atac snRNA and possibly the vault RNA VTRNA1-1 (PubMed:26213367). {ECO:0000269|PubMed:22899009, ECO:0000269|PubMed:23022480, ECO:0000269|PubMed:23190533, ECO:0000269|PubMed:26213367, ECO:0000269|PubMed:28887445, ECO:0000269|PubMed:30215753, ECO:0000269|PubMed:31832688}. |
Q9BQE4 | SELENOS | S140 | ochoa | Selenoprotein S (SelS) (VCP-interacting membrane protein) | Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}. |
Q9BQG0 | MYBBP1A | S1267 | ochoa | Myb-binding protein 1A | May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}. |
Q9BQI5 | SGIP1 | S319 | ochoa | SH3-containing GRB2-like protein 3-interacting protein 1 (Endophilin-3-interacting protein) | May function in clathrin-mediated endocytosis. Has both a membrane binding/tubulating activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a preference for membranes enriched in phosphatidylserine and phosphoinositides and is required for the endocytosis of the transferrin receptor. May also bind tubulin. May play a role in the regulation of energy homeostasis. {ECO:0000250|UniProtKB:Q8VD37}. |
Q9BQI7 | PSD2 | S191 | ochoa | PH and SEC7 domain-containing protein 2 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 C) (Exchange factor for ARF6 C) (Pleckstrin homology and SEC7 domain-containing protein 2) | None |
Q9BRQ6 | CHCHD6 | S43 | ochoa | MICOS complex subunit MIC25 (Coiled-coil-helix cristae morphology protein 1) (Coiled-coil-helix-coiled-coil-helix domain-containing protein 6) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. {ECO:0000269|PubMed:22228767}. |
Q9BRR0 | ZKSCAN3 | S37 | ochoa | Zinc finger protein with KRAB and SCAN domains 3 (Zinc finger and SCAN domain-containing protein 13) (Zinc finger protein 306) (Zinc finger protein 309) (Zinc finger protein 47 homolog) (Zf47) (Zfp-47) | Transcriptional factor that binds to the consensus sequence 5'-[GT][AG][AGT]GGGG-3' and acts as a repressor of autophagy. Specifically represses expression of genes involved in autophagy and lysosome biogenesis/function such as MAP1LC3B, ULK1 or WIPI2. Associates with chromatin at the ITGB4 and VEGF promoters. Also acts as a transcription activator and promotes cancer cell progression and/or migration in various tumors and myelomas. {ECO:0000269|PubMed:18940803, ECO:0000269|PubMed:21057542, ECO:0000269|PubMed:22531714, ECO:0000269|PubMed:23434374}. |
Q9BRR9 | ARHGAP9 | S203 | ochoa | Rho GTPase-activating protein 9 (Rho-type GTPase-activating protein 9) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has a substantial GAP activity toward CDC42 and RAC1 and less toward RHOA. Has a role in regulating adhesion of hematopoietic cells to the extracellular matrix. Binds phosphoinositides, and has the highest affinity for phosphatidylinositol 3,4,5-trisphosphate, followed by phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 4,5-bisphosphate. {ECO:0000269|PubMed:11396949}. |
Q9BSJ8 | ESYT1 | S963 | ochoa | Extended synaptotagmin-1 (E-Syt1) (Membrane-bound C2 domain-containing protein) | Binds calcium (via the C2 domains) and translocates to sites of contact between the endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium levels (PubMed:23791178, PubMed:24183667). Helps tether the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane (PubMed:24183667). Acts as an inhibitor of ADGRD1 G-protein-coupled receptor activity in absence of cytosolic calcium (PubMed:38758649). Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport (By similarity). {ECO:0000250|UniProtKB:A0FGR8, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24183667, ECO:0000269|PubMed:38758649}. |
Q9BTC8 | MTA3 | S430 | ochoa | Metastasis-associated protein MTA3 | Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12705869, PubMed:16428440, PubMed:28977666). Plays a role in maintenance of the normal epithelial architecture through the repression of SNAI1 transcription in a histone deacetylase-dependent manner, and thus the regulation of E-cadherin levels (PubMed:12705869). Contributes to transcriptional repression by BCL6 (PubMed:15454082). {ECO:0000269|PubMed:12705869, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q9BUG6 | ZSCAN5A | S245 | ochoa | Zinc finger and SCAN domain-containing protein 5A (Zinc finger protein 495) | May be involved in transcriptional regulation. |
Q9BUH8 | BEGAIN | S346 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BV73 | CEP250 | S2229 | ochoa | Centrosome-associated protein CEP250 (250 kDa centrosomal protein) (Cep250) (Centrosomal Nek2-associated protein 1) (C-Nap1) (Centrosomal protein 2) | Plays an important role in centrosome cohesion during interphase (PubMed:30404835, PubMed:36282799). Recruits CCDC102B to the proximal ends of centrioles (PubMed:30404835). Maintains centrosome cohesion by forming intercentriolar linkages (PubMed:36282799). Accumulates at the proximal end of each centriole, forming supramolecular assemblies with viscous material properties that promote organelle cohesion (PubMed:36282799). May be involved in ciliogenesis (PubMed:28005958). {ECO:0000269|PubMed:28005958, ECO:0000269|PubMed:30404835, ECO:0000269|PubMed:36282799}. |
Q9BVC5 | C2orf49 | S182 | ochoa | Ashwin | None |
Q9BVI0 | PHF20 | S902 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BVJ6 | UTP14A | S569 | ochoa | U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) | May be required for ribosome biogenesis. {ECO:0000250}. |
Q9BVN2 | RUSC1 | S831 | ochoa | AP-4 complex accessory subunit RUSC1 (New molecule containing SH3 at the carboxy-terminus) (Nesca) (RUN and SH3 domain-containing protein 1) | Associates with the adapter-like complex 4 (AP-4) and may therefore play a role in vesicular trafficking of proteins at the trans-Golgi network (PubMed:30262884). Signaling adapter which plays a role in neuronal differentiation (PubMed:15024033). Involved in regulation of NGF-dependent neurite outgrowth (PubMed:15024033). May play a role in neuronal vesicular trafficking, specifically involving pre-synaptic membrane proteins (By similarity). Seems to be involved in signaling pathways that are regulated by the prolonged activation of MAPK (PubMed:15024033). Can regulate the polyubiquitination of IKBKG and thus may be involved in regulation of the NF-kappa-B pathway (PubMed:19365808). {ECO:0000250|UniProtKB:Q8BG26, ECO:0000269|PubMed:15024033, ECO:0000269|PubMed:19365808, ECO:0000269|PubMed:30262884}. |
Q9BVR0 | HERC2P3 | S315 | ochoa | Putative HERC2-like protein 3 | None |
Q9BVV6 | KIAA0586 | S154 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BVV6 | KIAA0586 | S1130 | ochoa | Protein TALPID3 | Required for ciliogenesis and sonic hedgehog/SHH signaling. Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1. May play a role in early ciliogenesis in the disappearance of centriolar satellites that preceeds ciliary vesicle formation (PubMed:24421332). Involved in regulation of cell intracellular organization. Involved in regulation of cell polarity (By similarity). Required for asymmetrical localization of CEP120 to daughter centrioles (By similarity). {ECO:0000250|UniProtKB:E9PV87, ECO:0000250|UniProtKB:Q1G7G9, ECO:0000269|PubMed:24421332}. |
Q9BWT7 | CARD10 | S815 | ochoa | Caspase recruitment domain-containing protein 10 (CARD-containing MAGUK protein 3) (Carma 3) | Scaffold protein that plays an important role in mediating the activation of NF-kappa-B via BCL10 or EGFR. {ECO:0000269|PubMed:27991920}. |
Q9BX63 | BRIP1 | S990 | ochoa|psp | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BX66 | SORBS1 | S350 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXF3 | CECR2 | S422 | ochoa | Chromatin remodeling regulator CECR2 (Cat eye syndrome critical region protein 2) | Regulatory subunit of the ATP-dependent CERF-1 and CERF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:15640247, PubMed:22464331, PubMed:26365797, PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CERF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the CERF-5 ISWI chromatin remodeling complex (PubMed:28801535). Plays a role in various processes during development: required during embryogenesis for neural tube closure and inner ear development. In adults, required for spermatogenesis, via the formation of ISWI-type chromatin complexes (By similarity). In histone-modifying complexes, CECR2 recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:22464331, PubMed:26365797). May also be involved through its interaction with LRPPRC in the integration of cytoskeletal network with vesicular trafficking, nucleocytosolic shuttling, transcription, chromosome remodeling and cytokinesis (PubMed:11827465). {ECO:0000250|UniProtKB:E9Q2Z1, ECO:0000269|PubMed:11827465, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:28801535}. |
Q9BXK5 | BCL2L13 | S371 | ochoa | Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) | May promote the activation of caspase-3 and apoptosis. |
Q9BXL5 | HEMGN | S381 | ochoa | Hemogen (Erythroid differentiation-associated gene protein) (EDAG-1) (Hemopoietic gene protein) (Negative differentiation regulator protein) | Regulates the proliferation and differentiation of hematopoietic cells. Overexpression block the TPA-induced megakaryocytic differentiation in the K562 cell model. May also prevent cell apoptosis through the activation of the nuclear factor-kappa B (NF-kB). {ECO:0000269|PubMed:14730214, ECO:0000269|PubMed:15332117, ECO:0000269|PubMed:15920494}. |
Q9BXL7 | CARD11 | S512 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BXW6 | OSBPL1A | S465 | ochoa | Oxysterol-binding protein-related protein 1 (ORP-1) (OSBP-related protein 1) | Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (By similarity). Stabilizes GTP-bound RAB7A on late endosomes/lysosomes and alters functional properties of late endocytic compartments via its interaction with RAB7A (PubMed:16176980). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000250, ECO:0000269|PubMed:16176980, ECO:0000269|PubMed:17428193}. |
Q9BY66 | KDM5D | S884 | ochoa | Lysine-specific demethylase 5D (EC 1.14.11.67) (Histocompatibility Y antigen) (H-Y) (Histone demethylase JARID1D) (Jumonji/ARID domain-containing protein 1D) (Protein SmcY) ([histone H3]-trimethyl-L-lysine(4) demethylase 5D) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. May play a role in spermatogenesis. Involved in transcriptional repression of diverse metastasis-associated genes; in this function seems to cooperate with ZMYND8. Suppresses prostate cancer cell invasion. Regulates androgen receptor (AR) transcriptional activity by demethylating H3K4me3 active transcription marks. {ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320162, ECO:0000269|PubMed:17351630, ECO:0000269|PubMed:26747897, ECO:0000269|PubMed:27185910, ECO:0000269|PubMed:27427228, ECO:0000269|PubMed:27477906}. |
Q9BY89 | KIAA1671 | S404 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYV8 | CEP41 | S121 | ochoa | Centrosomal protein of 41 kDa (Cep41) (Testis-specific gene A14 protein) | Required during ciliogenesis for tubulin glutamylation in cilium. Probably acts by participating in the transport of TTLL6, a tubulin polyglutamylase, between the basal body and the cilium. {ECO:0000269|PubMed:22246503}. |
Q9BYV9 | BACH2 | S315 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BZ72 | PITPNM2 | S820 | ochoa | Membrane-associated phosphatidylinositol transfer protein 2 (Phosphatidylinositol transfer protein, membrane-associated 2) (PITPnm 2) (Pyk2 N-terminal domain-interacting receptor 3) (NIR-3) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro). Binds calcium ions. {ECO:0000269|PubMed:10022914}. |
Q9BZ95 | NSD3 | S561 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZ95 | NSD3 | S1415 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9BZA7 | PCDH11X | S932 | ochoa | Protocadherin-11 X-linked (Protocadherin-11) (Protocadherin on the X chromosome) (PCDH-X) (Protocadherin-S) | Potential calcium-dependent cell-adhesion protein. |
Q9BZA8 | PCDH11Y | S964 | ochoa | Protocadherin-11 Y-linked (Protocadherin-11) (Protocadherin on the Y chromosome) (PCDH-Y) (Protocadherin prostate cancer) (Protocadherin-PC) (Protocadherin-22) | Potential calcium-dependent cell-adhesion protein. |
Q9BZE0 | GLIS2 | S51 | ochoa | Zinc finger protein GLIS2 (GLI-similar 2) (Neuronal Krueppel-like protein) | Can act either as a transcriptional repressor or as a transcriptional activator, depending on the cell context. Acts as a repressor of the Hedgehog signaling pathway (By similarity). Represses the Hedgehog-dependent expression of Wnt4 (By similarity). Necessary to maintain the differentiated epithelial phenotype in renal cells through the inhibition of SNAI1, which itself induces the epithelial-to-mesenchymal transition (By similarity). Represses transcriptional activation mediated by CTNNB1 in the Wnt signaling pathway. May act by recruiting the corepressors CTBP1 and HDAC3. May be involved in neuron differentiation (By similarity). {ECO:0000250}. |
Q9BZE0 | GLIS2 | S54 | ochoa | Zinc finger protein GLIS2 (GLI-similar 2) (Neuronal Krueppel-like protein) | Can act either as a transcriptional repressor or as a transcriptional activator, depending on the cell context. Acts as a repressor of the Hedgehog signaling pathway (By similarity). Represses the Hedgehog-dependent expression of Wnt4 (By similarity). Necessary to maintain the differentiated epithelial phenotype in renal cells through the inhibition of SNAI1, which itself induces the epithelial-to-mesenchymal transition (By similarity). Represses transcriptional activation mediated by CTNNB1 in the Wnt signaling pathway. May act by recruiting the corepressors CTBP1 and HDAC3. May be involved in neuron differentiation (By similarity). {ECO:0000250}. |
Q9C086 | INO80B | S63 | ochoa | INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) | Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}. |
Q9C0B0 | UNK | S255 | psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0B5 | ZDHHC5 | S554 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0C2 | TNKS1BP1 | S178 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S672 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C9 | UBE2O | S401 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0H5 | ARHGAP39 | S115 | ochoa | Rho GTPase-activating protein 39 | None |
Q9C0K0 | BCL11B | S97 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9GZR7 | DDX24 | S94 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9GZR7 | DDX24 | S287 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9H0L4 | CSTF2T | S113 | ochoa | Cleavage stimulation factor subunit 2 tau variant (CF-1 64 kDa subunit tau variant) (Cleavage stimulation factor 64 kDa subunit tau variant) (CSTF 64 kDa subunit tau variant) (TauCstF-64) | May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity). {ECO:0000250}. |
Q9H165 | BCL11A | S608 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1B7 | IRF2BPL | S69 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H1I8 | ASCC2 | S713 | ochoa | Activating signal cointegrator 1 complex subunit 2 (ASC-1 complex subunit p100) (Trip4 complex subunit p100) | Ubiquitin-binding protein involved in DNA repair and rescue of stalled ribosomes (PubMed:29144457, PubMed:32099016, PubMed:32579943, PubMed:36302773). Plays a role in DNA damage repair as component of the ASCC complex (PubMed:29144457). Recruits ASCC3 and ALKBH3 to sites of DNA damage by binding to polyubiquitinated proteins that have 'Lys-63'-linked polyubiquitin chains (PubMed:29144457). Part of the ASC-1 complex that enhances NF-kappa-B, SRF and AP1 transactivation (PubMed:12077347). Involved in activation of the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). Specifically recognizes and binds RPS20/uS10 ubiquitinated by ZNF598, promoting recruitment of the RQT (ribosome quality control trigger) complex on stalled ribosomes, followed by disassembly of stalled ribosomes (PubMed:36302773). {ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:29144457, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}. |
Q9H211 | CDT1 | S491 | ochoa|psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H2B2 | SYT4 | S135 | psp | Synaptotagmin-4 (Synaptotagmin IV) (SytIV) | Synaptotagmin family member which does not bind Ca(2+) (By similarity) (PubMed:23999003). Involved in neuronal dense core vesicles (DCVs) mobility through its interaction with KIF1A. Upon increased neuronal activity, phosphorylation by MAPK8/JNK1 destabilizes the interaction with KIF1A and captures DCVs to synapses (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:P50232, ECO:0000269|PubMed:23999003}. |
Q9H2Y7 | ZNF106 | S1328 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H3D4 | TP63 | S395 | ochoa|psp | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H4L5 | OSBPL3 | S410 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H5H4 | ZNF768 | S23 | ochoa | Zinc finger protein 768 | Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}. |
Q9H5H4 | ZNF768 | S160 | ochoa | Zinc finger protein 768 | Binds to mammalian-wide interspersed repeat (MIRs) sequences in euchromatin and promoter regions of genes at the consensus sequence 5'-GCTGTGTG-[N20]-CCTCTCTG-3', consisting of two anchor regions connected by a linker region; the linker region probably does not contribute to the binding specificity (PubMed:30476274). Required for cell homeostasis (PubMed:34404770). May be involved in transcriptional regulation (Probable). {ECO:0000269|PubMed:30476274, ECO:0000269|PubMed:34404770, ECO:0000305}. |
Q9H5J0 | ZBTB3 | S439 | ochoa | Zinc finger and BTB domain-containing protein 3 | May be involved in transcriptional regulation. |
Q9H609 | ZNF576 | S23 | ochoa | Zinc finger protein 576 | May be involved in transcriptional regulation. |
Q9H6E5 | TUT1 | S133 | ochoa | Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) | Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}. |
Q9H6E5 | TUT1 | S138 | ochoa | Speckle targeted PIP5K1A-regulated poly(A) polymerase (Star-PAP) (EC 2.7.7.19) (RNA-binding motif protein 21) (RNA-binding protein 21) (U6 snRNA-specific terminal uridylyltransferase 1) (U6-TUTase) (EC 2.7.7.52) | Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs (PubMed:18288197, PubMed:21102410). Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1 (PubMed:18288197). In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs (PubMed:21102410). In addition to adenylyltransferase activity, also has uridylyltransferase activity (PubMed:16790842, PubMed:18288197, PubMed:28589955). However, the ATP ratio is higher than UTP in cells, suggesting that it functions primarily as a poly(A) polymerase (PubMed:18288197). Acts as a specific terminal uridylyltransferase for U6 snRNA in vitro: responsible for a controlled elongation reaction that results in the restoration of the four 3'-terminal UMP-residues found in newly transcribed U6 snRNA (PubMed:16790842, PubMed:18288197, PubMed:28589955). Not involved in replication-dependent histone mRNA degradation. {ECO:0000269|PubMed:16790842, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:21102410, ECO:0000269|PubMed:28589955}. |
Q9H706 | GAREM1 | S742 | ochoa | GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) | [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}. |
Q9H773 | DCTPP1 | S26 | ochoa | dCTP pyrophosphatase 1 (EC 3.6.1.12) (Deoxycytidine-triphosphatase 1) (dCTPase 1) (RS21C6) (XTP3-transactivated gene A protein) | Hydrolyzes deoxynucleoside triphosphates (dNTPs) to the corresponding nucleoside monophosphates. Has a strong preference for dCTP and its analogs including 5-iodo-dCTP and 5-methyl-dCTP for which it may even have a higher efficiency. May protect DNA or RNA against the incorporation of these genotoxic nucleotide analogs through their catabolism. {ECO:0000269|PubMed:24467396}. |
Q9H792 | PEAK1 | S898 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H7C4 | SYNC | S26 | ochoa | Syncoilin (Syncoilin intermediate filament 1) (Syncoilin-1) | Atypical type III intermediate filament (IF) protein that may play a supportive role in the efficient coupling of mechanical stress between the myofibril and fiber exterior. May facilitate lateral force transmission during skeletal muscle contraction. Does not form homofilaments nor heterofilaments with other IF proteins. {ECO:0000250|UniProtKB:Q9EPM5}. |
Q9H7C4 | SYNC | S132 | ochoa | Syncoilin (Syncoilin intermediate filament 1) (Syncoilin-1) | Atypical type III intermediate filament (IF) protein that may play a supportive role in the efficient coupling of mechanical stress between the myofibril and fiber exterior. May facilitate lateral force transmission during skeletal muscle contraction. Does not form homofilaments nor heterofilaments with other IF proteins. {ECO:0000250|UniProtKB:Q9EPM5}. |
Q9H7N4 | SCAF1 | S874 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7P9 | PLEKHG2 | S610 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H7P9 | PLEKHG2 | S911 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H7U1 | CCSER2 | S705 | ochoa | Serine-rich coiled-coil domain-containing protein 2 (Coiled-coil serine-rich protein 2) (Protein GCAP14 homolog) | Microtubule-binding protein which might play a role in microtubule bundling. {ECO:0000250|UniProtKB:Q3UHI0}. |
Q9H869 | YY1AP1 | S466 | ochoa | YY1-associated protein 1 (Hepatocellular carcinoma susceptibility protein) (Hepatocellular carcinoma-associated protein 2) | Associates with the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication (PubMed:27939641). Enhances transcription activation by YY1 (PubMed:14744866). Plays a role in cell cycle regulation (PubMed:17541814, PubMed:27939641). {ECO:0000269|PubMed:14744866, ECO:0000269|PubMed:17541814, ECO:0000269|PubMed:27939641}. |
Q9H8T0 | AKTIP | S30 | ochoa | AKT-interacting protein (Ft1) (Fused toes protein homolog) | Component of the FTS/Hook/FHIP complex (FHF complex) (PubMed:32073997). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). Regulates apoptosis by enhancing phosphorylation and activation of AKT1. Increases release of TNFSF6 via the AKT1/GSK3B/NFATC1 signaling cascade. FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:14749367, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q9H8Y5 | ANKZF1 | S56 | ochoa | tRNA endonuclease ANKZF1 (EC 3.1.-.-) (Ankyrin repeat and zinc finger domain-containing protein 1) (Zinc finger protein 744) | Endonuclease that cleaves polypeptidyl-tRNAs downstream of the ribosome-associated quality control (RQC) pathway to release incompletely synthesized polypeptides for degradation (PubMed:29632312, PubMed:30244831, PubMed:31011209). The RQC pathway disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts (PubMed:29632312, PubMed:30244831, PubMed:31011209). ANKZF1 acts downstream disassembly of stalled ribosomes and specifically cleaves off the terminal 3'-CCA nucleotides universal to all tRNAs from polypeptidyl-tRNAs, releasing (1) ubiquitinated polypeptides from 60S ribosomal subunit for degradation and (2) cleaved tRNAs (PubMed:31011209). ANKZF1-cleaved tRNAs are then repaired and recycled by ELAC1 and TRNT1 (PubMed:31011209, PubMed:32075755). Also plays a role in the cellular response to hydrogen peroxide and in the maintenance of mitochondrial integrity under conditions of cellular stress (PubMed:28302725). {ECO:0000269|PubMed:28302725, ECO:0000269|PubMed:29632312, ECO:0000269|PubMed:30244831, ECO:0000269|PubMed:31011209, ECO:0000269|PubMed:32075755}. |
Q9H8Y5 | ANKZF1 | S675 | ochoa | tRNA endonuclease ANKZF1 (EC 3.1.-.-) (Ankyrin repeat and zinc finger domain-containing protein 1) (Zinc finger protein 744) | Endonuclease that cleaves polypeptidyl-tRNAs downstream of the ribosome-associated quality control (RQC) pathway to release incompletely synthesized polypeptides for degradation (PubMed:29632312, PubMed:30244831, PubMed:31011209). The RQC pathway disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts (PubMed:29632312, PubMed:30244831, PubMed:31011209). ANKZF1 acts downstream disassembly of stalled ribosomes and specifically cleaves off the terminal 3'-CCA nucleotides universal to all tRNAs from polypeptidyl-tRNAs, releasing (1) ubiquitinated polypeptides from 60S ribosomal subunit for degradation and (2) cleaved tRNAs (PubMed:31011209). ANKZF1-cleaved tRNAs are then repaired and recycled by ELAC1 and TRNT1 (PubMed:31011209, PubMed:32075755). Also plays a role in the cellular response to hydrogen peroxide and in the maintenance of mitochondrial integrity under conditions of cellular stress (PubMed:28302725). {ECO:0000269|PubMed:28302725, ECO:0000269|PubMed:29632312, ECO:0000269|PubMed:30244831, ECO:0000269|PubMed:31011209, ECO:0000269|PubMed:32075755}. |
Q9H981 | ACTR8 | S132 | ochoa | Actin-related protein 8 (hArp8) (INO80 complex subunit N) | Plays an important role in the functional organization of mitotic chromosomes. Exhibits low basal ATPase activity, and unable to polymerize.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Required for the recruitment of INO80 (and probably the INO80 complex) to sites of DNA damage. Strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting it may act as a nucleosome recognition module within the complex. |
Q9H9E1 | ANKRA2 | S106 | ochoa | Ankyrin repeat family A protein 2 (RFXANK-like protein 2) | May regulate the interaction between the 3M complex and the histone deacetylases HDAC4 and HDAC5 (PubMed:25752541). May also regulate LRP2/megalin (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000269|PubMed:25752541}. |
Q9HAU0 | PLEKHA5 | S1037 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAW4 | CLSPN | S846 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HBI1 | PARVB | S51 | ochoa | Beta-parvin (Affixin) | Adapter protein that plays a role in integrin signaling via ILK and in activation of the GTPases CDC42 and RAC1 by guanine exchange factors, such as ARHGEF6. Is involved in the reorganization of the actin cytoskeleton and formation of lamellipodia. Plays a role in cell adhesion, cell spreading, establishment or maintenance of cell polarity, and cell migration. {ECO:0000269|PubMed:11402068, ECO:0000269|PubMed:15005707, ECO:0000269|PubMed:15159419, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:18325335}. |
Q9HBI1 | PARVB | S54 | ochoa | Beta-parvin (Affixin) | Adapter protein that plays a role in integrin signaling via ILK and in activation of the GTPases CDC42 and RAC1 by guanine exchange factors, such as ARHGEF6. Is involved in the reorganization of the actin cytoskeleton and formation of lamellipodia. Plays a role in cell adhesion, cell spreading, establishment or maintenance of cell polarity, and cell migration. {ECO:0000269|PubMed:11402068, ECO:0000269|PubMed:15005707, ECO:0000269|PubMed:15159419, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:18325335}. |
Q9HC44 | GPBP1L1 | S21 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9HCE3 | ZNF532 | S1256 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCE9 | ANO8 | S669 | ochoa | Anoctamin-8 (Transmembrane protein 16H) | Does not exhibit calcium-activated chloride channel (CaCC) activity. |
Q9HCH5 | SYTL2 | S460 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCM3 | KIAA1549 | S1503 | ochoa | UPF0606 protein KIAA1549 | May play a role in photoreceptor function. {ECO:0000269|PubMed:30120214}. |
Q9HCM7 | FBRSL1 | S844 | ochoa | Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) | None |
Q9HD67 | MYO10 | S1007 | ochoa | Unconventional myosin-X (Unconventional myosin-10) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as a plus end-directed motor. Moves with higher velocity and takes larger steps on actin bundles than on single actin filaments (PubMed:27580874). The tail domain binds to membranous compartments containing phosphatidylinositol 3,4,5-trisphosphate or integrins, and mediates cargo transport along actin filaments. Regulates cell shape, cell spreading and cell adhesion. Stimulates the formation and elongation of filopodia. In hippocampal neurons it induces the formation of dendritic filopodia by trafficking the actin-remodeling protein VASP to the tips of filopodia, where it promotes actin elongation. Plays a role in formation of the podosome belt in osteoclasts. {ECO:0000269|PubMed:16894163, ECO:0000269|PubMed:18570893, ECO:0000269|PubMed:27580874}.; FUNCTION: [Isoform Headless]: Functions as a dominant-negative regulator of isoform 1, suppressing its filopodia-inducing and axon outgrowth-promoting activities. In hippocampal neurons, it increases VASP retention in spine heads to induce spine formation and spine head expansion (By similarity). {ECO:0000250|UniProtKB:F8VQB6}. |
Q9NP66 | HMG20A | S105 | ochoa | High mobility group protein 20A (HMG box-containing protein 20A) (HMG domain-containing protein 1) (HMG domain-containing protein HMGX1) | Plays a role in neuronal differentiation as chromatin-associated protein. Acts as inhibitor of HMG20B. Overcomes the repressive effects of the neuronal silencer REST and induces the activation of neuronal-specific genes. Involved in the recruitment of the histone methyltransferase KMT2A/MLL1 and consequent increased methylation of histone H3 lysine 4 (By similarity). {ECO:0000250}. |
Q9NPG3 | UBN1 | S821 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQ66 | PLCB1 | S982 | ochoa|psp | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) | Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}. |
Q9NQ75 | CASS4 | S200 | ochoa | Cas scaffolding protein family member 4 (HEF-like protein) (HEF1-EFS-p130Cas-like protein) (HEPL) | Docking protein that plays a role in tyrosine kinase-based signaling related to cell adhesion and cell spreading. Regulates PTK2/FAK1 activity, focal adhesion integrity, and cell spreading. {ECO:0000269|PubMed:18256281}. |
Q9NQG7 | HPS4 | S313 | ochoa | BLOC-3 complex member HPS4 (Hermansky-Pudlak syndrome 4 protein) (Light-ear protein homolog) | Component of the BLOC-3 complex, a complex that acts as a guanine exchange factor (GEF) for RAB32 and RAB38, promotes the exchange of GDP to GTP, converting them from an inactive GDP-bound form into an active GTP-bound form. The BLOC-3 complex plays an important role in the control of melanin production and melanosome biogenesis and promotes the membrane localization of RAB32 and RAB38 (PubMed:23084991). {ECO:0000269|PubMed:23084991}. |
Q9NQL9 | DMRT3 | S220 | ochoa | Doublesex- and mab-3-related transcription factor 3 | Probable transcription factor that plays a role in configuring the spinal circuits controlling stride in vertebrates. Involved in neuronal specification within specific subdivision of spinal cord neurons and in the development of a coordinated locomotor network controlling limb movements. May regulate transcription during sexual development (By similarity). {ECO:0000250}. |
Q9NQQ7 | SLC35C2 | S336 | ochoa | Solute carrier family 35 member C2 (Ovarian cancer-overexpressed gene 1 protein) | May play an important role in the cellular response to tissue hypoxia. May be either a GDP-fucose transporter that competes with SLC35C1 for GDP-fucose, or a factor that otherwise enhances the fucosylation of Notch and is required for optimal Notch signaling in mammalian cells. {ECO:0000269|PubMed:20837470}. |
Q9NQS7 | INCENP | S481 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQT8 | KIF13B | S1644 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NQV8 | PRDM8 | S375 | ochoa | PR domain zinc finger protein 8 (EC 2.1.1.-) (PR domain-containing protein 8) | Probable histone methyltransferase, preferentially acting on 'Lys-9' of histone H3 (By similarity). Involved in the control of steroidogenesis through transcriptional repression of steroidogenesis marker genes such as CYP17A1 and LHCGR (By similarity). Forms with BHLHE22 a transcriptional repressor complex controlling genes involved in neural development and neuronal differentiation (By similarity). In the retina, it is required for rod bipolar and type 2 OFF-cone bipolar cell survival (By similarity). {ECO:0000250|UniProtKB:Q8BZ97}. |
Q9NQW6 | ANLN | S65 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S323 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQW6 | ANLN | S518 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQX5 | NPDC1 | S229 | ochoa | Neural proliferation differentiation and control protein 1 (NPDC-1) | Suppresses oncogenic transformation in neural and non-neural cells and down-regulates neural cell proliferation. Might be involved in transcriptional regulation (By similarity). {ECO:0000250}. |
Q9NQZ2 | UTP3 | S37 | ochoa | Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) (UTP3 homolog) | Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:Q12136, ECO:0000250|UniProtKB:Q9JI13, ECO:0000269|PubMed:34516797}. |
Q9NR30 | DDX21 | S89 | ochoa|psp | Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) | RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}. |
Q9NRA8 | EIF4ENIF1 | S611 | ochoa | Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) | EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}. |
Q9NRC1 | ST7 | S386 | ochoa | Suppressor of tumorigenicity 7 protein (Protein FAM4A1) (Protein HELG) | May act as a tumor suppressor. {ECO:0000269|PubMed:16474848}. |
Q9NRE2 | TSHZ2 | S980 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NRH2 | SNRK | S390 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NRL3 | STRN4 | S342 | ochoa | Striatin-4 (Zinedin) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:32640226). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:32640226). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). Key regulator of the expanded Hippo signaling pathway by interacting and allowing the inhibition of MAP4K kinases by the STRIPAK complex (PubMed:32640226). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:32640226, ECO:0000305|PubMed:26876214}. |
Q9NRM7 | LATS2 | S576 | ochoa | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NS37 | CREBZF | S50 | ochoa | CREB/ATF bZIP transcription factor (Host cell factor-binding transcription factor Zhangfei) (HCF-binding transcription factor Zhangfei) | Strongly activates transcription when bound to HCFC1. Suppresses the expression of HSV proteins in cells infected with the virus in a HCFC1-dependent manner. Also suppresses the HCFC1-dependent transcriptional activation by CREB3 and reduces the amount of CREB3 in the cell. Able to down-regulate expression of some cellular genes in CREBZF-expressing cells. {ECO:0000269|PubMed:10871379, ECO:0000269|PubMed:15705566}. |
Q9NS91 | RAD18 | S164 | ochoa | E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) | E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}. |
Q9NSI6 | BRWD1 | S701 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSY1 | BMP2K | S689 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NTI5 | PDS5B | S1417 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTI7 | INKA2 | S66 | ochoa | PAK4-inhibitor INKA2 (Induced in neural crest by AP2-alpha protein-related homolog) (Inca-r) (Inka-box actin regulator 2) | Inhibitor of the serine/threonine-protein kinase PAK4. Acts by binding PAK4 in a substrate-like manner, inhibiting the protein kinase activity. {ECO:0000250|UniProtKB:Q96EL1}. |
Q9NUA8 | ZBTB40 | S621 | ochoa | Zinc finger and BTB domain-containing protein 40 | May be involved in transcriptional regulation. |
Q9NUQ9 | CYRIB | S117 | ochoa | CYFIP-related Rac1 interactor B (L1) | Negatively regulates RAC1 signaling and RAC1-driven cytoskeletal remodeling (PubMed:30250061, PubMed:31285585). Regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity, plasticity, duration and extent of protrusions. Limits Rac1 mediated activation of the Scar/WAVE complex, focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization (PubMed:30250061). Protects against Salmonella bacterial infection. Attenuates processes such as macropinocytosis, phagocytosis and cell migration and restrict sopE-mediated bacterial entry (PubMed:31285585). Also restricts infection mediated by Mycobacterium tuberculosis and Listeria monocytogenes (By similarity). Involved in the regulation of mitochondrial dynamics and oxidative stress (PubMed:29059164). {ECO:0000250|UniProtKB:Q921M7, ECO:0000269|PubMed:29059164, ECO:0000269|PubMed:30250061, ECO:0000269|PubMed:31285585}. |
Q9NVH0 | EXD2 | S407 | ochoa | Exonuclease 3'-5' domain-containing protein 2 (EC 3.1.11.1) (3'-5' exoribonuclease EXD2) (EC 3.1.13.-) (Exonuclease 3'-5' domain-like-containing protein 2) | Exonuclease that has both 3'-5' exoribonuclease and exodeoxyribonuclease activities, depending on the divalent metal cation used as cofactor (PubMed:29335528, PubMed:31127291). In presence of Mg(2+), only shows 3'-5' exoribonuclease activity, while it shows both exoribonuclease and exodeoxyribonuclease activities in presence of Mn(2+) (PubMed:29335528, PubMed:31127291). Acts as an exoribonuclease in mitochondrion, possibly by regulating ATP production and mitochondrial translation (PubMed:29335528). Also involved in the response to DNA damage (PubMed:26807646, PubMed:31255466). Acts as 3'-5' exodeoxyribonuclease for double-strand breaks resection and efficient homologous recombination (PubMed:20603073, PubMed:26807646). Plays a key role in controlling the initial steps of chromosomal break repair, it is recruited to chromatin in a damage-dependent manner and functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks (PubMed:26807646). Also involved in response to replicative stress: recruited to stalled forks and is required to stabilize and restart stalled replication forks by restraining excessive fork regression, thereby suppressing their degradation (PubMed:31255466). {ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:26807646, ECO:0000269|PubMed:29335528, ECO:0000269|PubMed:31127291, ECO:0000269|PubMed:31255466}. |
Q9NVM9 | INTS13 | S626 | ochoa | Integrator complex subunit 13 (Cell cycle regulator Mat89Bb homolog) (Germ cell tumor 1) (Protein asunder homolog) (Sarcoma antigen NY-SAR-95) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:32647223). Within the integrator complex, INTS13 is part of the integrator tail module and acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386, PubMed:38906142). At prophase, mediates recruitment of cytoplasmic dynein to the nuclear envelope, a step important for proper centrosome-nucleus coupling (PubMed:23097494, PubMed:23904267). At G2/M phase, may be required for proper spindle formation and execution of cytokinesis (PubMed:23097494, PubMed:23904267). {ECO:0000269|PubMed:23097494, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386, ECO:0000269|PubMed:38906142}. |
Q9NVU0 | POLR3E | S522 | ochoa | DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}. |
Q9NWF9 | RNF216 | S719 | ochoa | E3 ubiquitin-protein ligase RNF216 (EC 2.3.2.27) (RING finger protein 216) (RING-type E3 ubiquitin transferase RNF216) (Triad domain-containing protein 3) (Ubiquitin-conjugating enzyme 7-interacting protein 1) (Zinc finger protein inhibiting NF-kappa-B) | [Isoform 1]: E3 ubiquitin ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their ubiquitination (PubMed:34998453). Plays a role in the regulation of antiviral responses by promoting the degradation of TRAF3, TLR4 and TLR9 (PubMed:15107846, PubMed:19893624). In turn, down-regulates NF-kappa-B and IRF3 activation as well as beta interferon production. Also participates in the regulation of autophagy by ubiquitinating BECN1 leading to its degradation and autophagy inhibition (PubMed:25484083). Plays a role in ARC-dependent synaptic plasticity by mediating ARC ubiquitination resulting in its rapid proteasomal degradation (PubMed:24945773). Plays aso an essential role in spermatogenesis and male fertility (By similarity). Mechanistically, regulates meiosis by promoting the degradation of PRKACB through the ubiquitin-mediated lysosome pathway (By similarity). Modulates the gonadotropin-releasing hormone signal pathway by affecting the stability of STAU2 that is required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite (By similarity). {ECO:0000250|UniProtKB:P58283, ECO:0000269|PubMed:15107846, ECO:0000269|PubMed:19893624, ECO:0000269|PubMed:24945773, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:34998453}.; FUNCTION: [Isoform 3]: Inhibits TNF and IL-1 mediated activation of NF-kappa-B. Promotes TNF and RIP mediated apoptosis. {ECO:0000269|PubMed:11854271}. |
Q9NWT1 | PAK1IP1 | S320 | ochoa | p21-activated protein kinase-interacting protein 1 (PAK/PLC-interacting protein 1) (hPIP1) (PAK1-interacting protein 1) (WD repeat-containing protein 84) | Negatively regulates the PAK1 kinase. PAK1 is a member of the PAK kinase family, which has been shown to play a positive role in the regulation of signaling pathways involving MAPK8 and RELA. PAK1 exists as an inactive homodimer, which is activated by binding of small GTPases such as CDC42 to an N-terminal regulatory domain. PAK1IP1 also binds to the N-terminus of PAK1, and inhibits the specific activation of PAK1 by CDC42. May be involved in ribosomal large subunit assembly (PubMed:24120868). {ECO:0000269|PubMed:11371639, ECO:0000269|PubMed:24120868}. |
Q9NWZ3 | IRAK4 | S152 | ochoa|psp | Interleukin-1 receptor-associated kinase 4 (IRAK-4) (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-64) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways (PubMed:17878374). Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation to form the Myddosome together with IRAK2. Phosphorylates initially IRAK1, thus stimulating the kinase activity and intensive autophosphorylation of IRAK1. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates NCF1 and regulates NADPH oxidase activation after LPS stimulation suggesting a similar mechanism during microbial infections. {ECO:0000269|PubMed:11960013, ECO:0000269|PubMed:12538665, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:17217339, ECO:0000269|PubMed:17337443, ECO:0000269|PubMed:17878374, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509, ECO:0000269|PubMed:24316379}. |
Q9NX95 | SYBU | S496 | ochoa | Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) | Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}. |
Q9NY59 | SMPD3 | S238 | ochoa | Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) | Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}. |
Q9NYA1 | SPHK1 | S225 | psp | Sphingosine kinase 1 (SK 1) (SPK 1) (EC 2.7.1.91) (Acetyltransferase SPHK1) (EC 2.3.1.-) | Catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (SPP), a lipid mediator with both intra- and extracellular functions. Also acts on D-erythro-sphingosine and to a lesser extent sphinganine, but not other lipids, such as D,L-threo-dihydrosphingosine, N,N-dimethylsphingosine, diacylglycerol, ceramide, or phosphatidylinositol (PubMed:11923095, PubMed:20577214, PubMed:23602659, PubMed:24929359, PubMed:29662056). In contrast to proapoptotic SPHK2, has a negative effect on intracellular ceramide levels, enhances cell growth and inhibits apoptosis (PubMed:16118219). Involved in the regulation of inflammatory response and neuroinflammation. Via the product sphingosine 1-phosphate, stimulates TRAF2 E3 ubiquitin ligase activity, and promotes activation of NF-kappa-B in response to TNF signaling leading to IL17 secretion (PubMed:20577214). In response to TNF and in parallel to NF-kappa-B activation, negatively regulates RANTES induction through p38 MAPK signaling pathway (PubMed:23935096). Involved in endocytic membrane trafficking induced by sphingosine, recruited to dilate endosomes, also plays a role on later stages of endosomal maturation and membrane fusion independently of its kinase activity (PubMed:24929359, PubMed:28049734). In Purkinje cells, seems to be also involved in the regulation of autophagosome-lysosome fusion upon VEGFA (PubMed:25417698). {ECO:0000269|PubMed:11923095, ECO:0000269|PubMed:16118219, ECO:0000269|PubMed:20577214, ECO:0000269|PubMed:23602659, ECO:0000269|PubMed:23935096, ECO:0000269|PubMed:24929359, ECO:0000269|PubMed:25417698, ECO:0000269|PubMed:28049734, ECO:0000269|PubMed:29662056}.; FUNCTION: Has serine acetyltransferase activity on PTGS2/COX2 in an acetyl-CoA dependent manner. The acetyltransferase activity increases in presence of the kinase substrate, sphingosine. During neuroinflammation, through PTGS2 acetylation, promotes neuronal secretion of specialized preresolving mediators (SPMs), especially 15-R-lipoxin A4, which results in an increase of phagocytic microglia. {ECO:0000250|UniProtKB:Q8CI15}. |
Q9NYB0 | TERF2IP | S203 | ochoa|psp | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NYD6 | HOXC10 | S189 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYF8 | BCLAF1 | S496 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYF8 | BCLAF1 | S512 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NZ52 | GGA3 | S159 | ochoa|psp | ADP-ribosylation factor-binding protein GGA3 (Golgi-localized, gamma ear-containing, ARF-binding protein 3) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:11301005). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:26811329). nvolved in BACE1 transport and sorting as well as regulation of BACE1 protein levels (PubMed:15615712, PubMed:17553422, PubMed:20484053). Regulates retrograde transport of BACE1 from endosomes to the trans-Golgi network via interaction through the VHS motif and dependent of BACE1 phosphorylation (PubMed:15615712). Modulates BACE1 protein levels independently of the interaction between VHS domain and DXXLL motif through recognition of ubiquitination (PubMed:20484053). Key player in a novel DXXLL-mediated endosomal sorting machinery to the recycling pathway that targets NTRK1 to the plasma membrane (By similarity). {ECO:0000250|UniProtKB:A0A0G2JV04, ECO:0000269|PubMed:11301005, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:17553422, ECO:0000269|PubMed:20484053, ECO:0000269|PubMed:26811329}. |
Q9NZJ0 | DTL | S656 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9NZJ5 | EIF2AK3 | S879 | psp | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9NZM4 | BICRA | S1413 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein (Glioma tumor suppressor candidate region gene 1 protein) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). May play a role in BRD4-mediated gene transcription (PubMed:21555454). {ECO:0000269|PubMed:21555454, ECO:0000269|PubMed:29374058}. |
Q9NZT2 | OGFR | S315 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P035 | HACD3 | S138 | ochoa | Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (EC 4.2.1.134) (3-hydroxyacyl-CoA dehydratase 3) (HACD3) (Butyrate-induced protein 1) (B-ind1) (hB-ind1) (Protein-tyrosine phosphatase-like A domain-containing protein 1) | Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. May be involved in Rac1-signaling pathways leading to the modulation of gene expression. Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10747961, ECO:0000269|PubMed:18554506, ECO:0000269|PubMed:25687571}. |
Q9P1Y5 | CAMSAP3 | S193 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P1Y6 | PHRF1 | S1229 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P209 | CEP72 | S404 | ochoa | Centrosomal protein of 72 kDa (Cep72) | Involved in the recruitment of key centrosomal proteins to the centrosome. Provides centrosomal microtubule-nucleation activity on the gamma-tubulin ring complexes (gamma-TuRCs) and has critical roles in forming a focused bipolar spindle, which is needed for proper tension generation between sister chromatids. Required for localization of KIZ, AKAP9 and gamma-tubulin ring complexes (gamma-TuRCs) (PubMed:19536135). Involved in centriole duplication. Required for CDK5RAP22, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). {ECO:0000269|PubMed:19536135, ECO:0000269|PubMed:26297806}. |
Q9P253 | VPS18 | S689 | ochoa | Vacuolar protein sorting-associated protein 18 homolog (hVPS18) | Plays a role in vesicle-mediated protein trafficking to lysosomal compartments including the endocytic membrane transport and autophagic pathways. Believed to act as a core component of the putative HOPS and CORVET endosomal tethering complexes which are proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The HOPS complex is proposed to be recruited to Rab7 on the late endosomal membrane and to regulate late endocytic, phagocytic and autophagic traffic towards lysosomes. The CORVET complex is proposed to function as a Rab5 effector to mediate early endosome fusion probably in specific endosome subpopulations (PubMed:11382755, PubMed:23351085, PubMed:24554770, PubMed:25783203). Required for fusion of endosomes and autophagosomes with lysosomes (PubMed:25783203). Involved in dendrite development of Pukinje cells (By similarity). {ECO:0000250|UniProtKB:Q8R307, ECO:0000269|PubMed:25783203, ECO:0000305|PubMed:11382755, ECO:0000305|PubMed:23351085, ECO:0000305|PubMed:25783203}. |
Q9P265 | DIP2B | S53 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P266 | JCAD | S1235 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P275 | USP36 | S871 | ochoa | Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) | Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}. |
Q9P278 | FNIP2 | S726 | ochoa | Folliculin-interacting protein 2 (FNIP1-like protein) (O6-methylguanine-induced apoptosis 1 protein) | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:18663353, PubMed:31672913, PubMed:36103527). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (By similarity). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (PubMed:31672913, PubMed:36103527). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:31672913). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:18403135). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:18403135). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:18403135). May play a role in the signal transduction pathway of apoptosis induced by O6-methylguanine-mispaired lesions (By similarity). {ECO:0000250|UniProtKB:Q80TD3, ECO:0000250|UniProtKB:Q8TF40, ECO:0000269|PubMed:18403135, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:36103527}. |
Q9P2F8 | SIPA1L2 | S1461 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2F8 | SIPA1L2 | S1652 | ochoa | Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) | None |
Q9P2H5 | USP35 | S982 | ochoa | Ubiquitin carboxyl-terminal hydrolase 35 (EC 3.4.19.12) (Deubiquitinating enzyme 35) (Ubiquitin thioesterase 35) (Ubiquitin-specific-processing protease 35) | Deubiquitinase that plays a role in different processes including cell cycle regulation, mitophagy or endoplasmic reticulum stress (PubMed:26348204, PubMed:29449677, PubMed:37004621). Inhibits TNFalpha-induced NF-kappa-B activation through stabilizing TNIP2 protein via deubiquitination (PubMed:26348204). Plays an essential role during mitosis by deubiquitinating and thereby regulating the levels of Aurora B/AURKB protein (PubMed:29449677). In addition, regulates the protein levels of other key component of the chromosomal passenger complex (CPC) such as survivin/BIRC5 or Borealin/CDCA8 by enhancing their stability (PubMed:34438346). Regulates the degradation of mitochondria through the process of autophagy termed mitophagy (PubMed:25915564). {ECO:0000269|PubMed:25915564, ECO:0000269|PubMed:26348204, ECO:0000269|PubMed:29449677, ECO:0000269|PubMed:34438346, ECO:0000269|PubMed:37004621}. |
Q9P2N6 | KANSL3 | S633 | ochoa | KAT8 regulatory NSL complex subunit 3 (NSL complex protein NSL3) (Non-specific lethal 3 homolog) (Serum inhibited-related protein) (Testis development protein PRTD) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). Within the NSL complex, KANSL3 is required to promote KAT8 association with mitochondrial DNA (PubMed:27768893). Required for transcription of intraciliary transport genes in both ciliated and non-ciliated cells (By similarity). This is necessary for cilium assembly in ciliated cells and for organization of the microtubule cytoskeleton in non-ciliated cells (By similarity). Also required within the NSL complex to maintain nuclear architecture stability by promoting KAT8-mediated acetylation of lamin LMNA (By similarity). Plays an essential role in spindle assembly during mitosis (PubMed:26243146). Acts as a microtubule minus-end binding protein which stabilizes microtubules and promotes their assembly (PubMed:26243146). Indispensable during early embryonic development where it is required for proper lineage specification and maintenance during peri-implantation development and is essential for implantation (By similarity). {ECO:0000250|UniProtKB:A2RSY1, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q9P2W9 | STX18 | S189 | ochoa | Syntaxin-18 (Cell growth-inhibiting gene 9 protein) | Syntaxin that may be involved in targeting and fusion of Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15029241}. |
Q9UBC3 | DNMT3B | S320 | ochoa | DNA (cytosine-5)-methyltransferase 3B (Dnmt3b) (EC 2.1.1.37) (DNA methyltransferase HsaIIIB) (DNA MTase HsaIIIB) (M.HsaIIIB) | Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Isoforms 4 and 5 are probably not functional due to the deletion of two conserved methyltransferase motifs. Functions as a transcriptional corepressor by associating with ZHX1. Required for DUX4 silencing in somatic cells (PubMed:27153398). {ECO:0000250, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:17303076, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18567530, ECO:0000269|PubMed:27153398}. |
Q9UBS8 | RNF14 | S451 | ochoa | E3 ubiquitin-protein ligase RNF14 (EC 2.3.2.31) (Androgen receptor-associated protein 54) (HFB30) (RING finger protein 14) | E3 ubiquitin-protein ligase that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Recruited to stalled ribosomes by the ribosome collision sensor GCN1 and mediates 'Lys-6'-linked ubiquitination of target proteins, leading to their degradation (PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Mediates ubiquitination of EEF1A1/eEF1A and ETF1/eRF1 translation factors on stalled ribosomes, leading to their degradation (PubMed:36638793, PubMed:37651229). Also catalyzes ubiquitination of ribosomal proteins RPL0, RPL1, RPL12, RPS13 and RPS17 (PubMed:36638793). Specifically required to resolve RNA-protein cross-links caused by reactive aldehydes, which trigger translation stress by stalling ribosomes: acts by catalying 'Lys-6'-linked ubiquitination of RNA-protein cross-links, leading to their removal by the ATP-dependent unfoldase VCP and subsequent degradation by the proteasome (PubMed:37951215, PubMed:37951216). Independently of its function in the response to stalled ribosomes, acts as a regulator of transcription in Wnt signaling via its interaction with TCF transcription factors (TCF7/TCF1, TCF7L1/TCF3 and TCF7L2/TCF4) (PubMed:23449499). May also play a role as a coactivator for androgen- and, to a lesser extent, progesterone-dependent transcription (PubMed:19345326). {ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:23449499, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q9UHD8 | SEPTIN9 | S85 | ochoa | Septin-9 (MLL septin-like fusion protein MSF-A) (MLL septin-like fusion protein) (Ovarian/Breast septin) (Ov/Br septin) (Septin D1) | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). May play a role in the internalization of 2 intracellular microbial pathogens, Listeria monocytogenes and Shigella flexneri. {ECO:0000250, ECO:0000305}. |
Q9UHK0 | NUFIP1 | S403 | ochoa | FMR1-interacting protein NUFIP1 (Nuclear FMR1-interacting protein 1) (Nuclear FMRP-interacting protein 1) | Binds RNA. {ECO:0000269|PubMed:10556305}. |
Q9UHL9 | GTF2IRD1 | S448 | ochoa | General transcription factor II-I repeat domain-containing protein 1 (GTF2I repeat domain-containing protein 1) (General transcription factor III) (MusTRD1/BEN) (Muscle TFII-I repeat domain-containing protein 1) (Slow-muscle-fiber enhancer-binding protein) (USE B1-binding protein) (Williams-Beuren syndrome chromosomal region 11 protein) (Williams-Beuren syndrome chromosomal region 12 protein) | May be a transcription regulator involved in cell-cycle progression and skeletal muscle differentiation. May repress GTF2I transcriptional functions, by preventing its nuclear residency, or by inhibiting its transcriptional activation. May contribute to slow-twitch fiber type specificity during myogenesis and in regenerating muscles. Binds troponin I slow-muscle fiber enhancer (USE B1). Binds specifically and with high affinity to the EFG sequences derived from the early enhancer of HOXC8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:11438732}. |
Q9UHN1 | POLG2 | S38 | ochoa | DNA polymerase subunit gamma-2 (DNA polymerase gamma accessory 55 kDa subunit) (p55) (Mitochondrial DNA polymerase accessory subunit) (MtPolB) (PolG-beta) | Accessory subunit of DNA polymerase gamma solely responsible for replication of mitochondrial DNA (mtDNA). Acts as an allosteric regulator of the holoenzyme activities. Enhances the polymerase activity and the processivity of POLG by increasing its interactions with the DNA template. Suppresses POLG exonucleolytic proofreading especially toward homopolymeric templates bearing mismatched termini. Binds to single-stranded DNA. {ECO:0000269|PubMed:11477093, ECO:0000269|PubMed:11477094, ECO:0000269|PubMed:11504725, ECO:0000269|PubMed:15167897, ECO:0000269|PubMed:19837034, ECO:0000269|PubMed:26056153, ECO:0000269|PubMed:30157269, ECO:0000269|PubMed:31778857, ECO:0000269|PubMed:37202477}. |
Q9UHV7 | MED13 | S1750 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UI26 | IPO11 | S343 | ochoa | Importin-11 (Imp11) (Ran-binding protein 11) (RanBP11) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Mediates the nuclear import of UBE2E3, and of RPL12 (By similarity). {ECO:0000250, ECO:0000269|PubMed:11032817}. |
Q9UJC3 | HOOK1 | S167 | ochoa | Protein Hook homolog 1 (h-hook1) (hHK1) | Component of the FTS/Hook/FHIP complex (FHF complex) (PubMed:18799622, PubMed:32073997). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex) (PubMed:18799622). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). Required for spermatid differentiation. Probably involved in the positioning of the microtubules of the manchette and the flagellum in relation to the membrane skeleton (By similarity). {ECO:0000250|UniProtKB:Q8BIL5, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q9UJX6 | ANAPC2 | S314 | ochoa | Anaphase-promoting complex subunit 2 (APC2) (Cyclosome subunit 2) | Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:11739784, PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:11739784, PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BZQ7, ECO:0000269|PubMed:11739784, ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UK61 | TASOR | S927 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKI2 | CDC42EP3 | S32 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKV0 | HDAC9 | S422 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9ULD4 | BRPF3 | S713 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULE3 | DENND2A | S404 | ochoa | DENN domain-containing protein 2A | Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May play a role in late endosomes back to trans-Golgi network/TGN transport. {ECO:0000269|PubMed:20937701}. |
Q9ULI0 | ATAD2B | S318 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULL1 | PLEKHG1 | S445 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULR3 | PPM1H | S221 | ochoa | Protein phosphatase 1H (EC 3.1.3.16) | Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}. |
Q9ULT8 | HECTD1 | S710 | ochoa | E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}. |
Q9ULU4 | ZMYND8 | S682 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULU8 | CADPS | S488 | ochoa | Calcium-dependent secretion activator 1 (Calcium-dependent activator protein for secretion 1) (CAPS-1) | Calcium-binding protein involved in exocytosis of vesicles filled with neurotransmitters and neuropeptides. Probably acts upstream of fusion in the biogenesis or maintenance of mature secretory vesicles. Regulates catecholamine loading of DCVs. May specifically mediate the Ca(2+)-dependent exocytosis of large dense-core vesicles (DCVs) and other dense-core vesicles by acting as a PtdIns(4,5)P2-binding protein that acts at prefusion step following ATP-dependent priming and participates in DCVs-membrane fusion. However, it may also participate in small clear synaptic vesicles (SVs) exocytosis and it is unclear whether its function is related to Ca(2+) triggering (By similarity). {ECO:0000250}. |
Q9ULW0 | TPX2 | S486 | ochoa|psp | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UM63 | PLAGL1 | S341 | ochoa | Zinc finger protein PLAGL1 (Lost on transformation 1) (LOT-1) (Pleiomorphic adenoma-like protein 1) (Tumor suppressor ZAC) | Acts as a transcriptional activator (PubMed:9722527). Involved in the transcriptional regulation of type 1 receptor for pituitary adenylate cyclase-activating polypeptide. {ECO:0000269|PubMed:18299245, ECO:0000269|PubMed:9722527}. |
Q9UNE0 | EDAR | S297 | ochoa | Tumor necrosis factor receptor superfamily member EDAR (Anhidrotic ectodysplasin receptor 1) (Downless homolog) (EDA-A1 receptor) (Ectodermal dysplasia receptor) (Ectodysplasin-A receptor) | Receptor for EDA isoform A1, but not for EDA isoform A2. Mediates the activation of NF-kappa-B and JNK. May promote caspase-independent cell death. |
Q9UNK9 | ANGEL1 | S38 | ochoa | Protein angel homolog 1 | None |
Q9UNY4 | TTF2 | S368 | ochoa | Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) | DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}. |
Q9UPM9 | B9D1 | S111 | ochoa | B9 domain-containing protein 1 (MKS1-related protein 1) | Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Required for ciliogenesis and sonic hedgehog/SHH signaling (By similarity). {ECO:0000250}. |
Q9UPN3 | MACF1 | S5808 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPQ0 | LIMCH1 | S718 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPU7 | TBC1D2B | S473 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UPY3 | DICER1 | S1852 | ochoa|psp | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UQ88 | CDK11A | S740 | ochoa | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9UQF2 | MAPK8IP1 | S29 | ochoa|psp | C-Jun-amino-terminal kinase-interacting protein 1 (JIP-1) (JNK-interacting protein 1) (Islet-brain 1) (IB-1) (JNK MAP kinase scaffold protein 1) (Mitogen-activated protein kinase 8-interacting protein 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module. Required for JNK activation in response to excitotoxic stress. Cytoplasmic MAPK8IP1 causes inhibition of JNK-regulated activity by retaining JNK in the cytoplasm and inhibiting JNK phosphorylation of c-Jun. May also participate in ApoER2-specific reelin signaling. Directly, or indirectly, regulates GLUT2 gene expression and beta-cell function. Appears to have a role in cell signaling in mature and developing nerve terminals. May function as a regulator of vesicle transport, through interactions with the JNK-signaling components and motor proteins. Functions as an anti-apoptotic protein and whose level seems to influence the beta-cell death or survival response. Acts as a scaffold protein that coordinates with SH3RF1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the activation of MAPK8/JNK1 and differentiation of CD8(+) T-cells. {ECO:0000250|UniProtKB:Q9WVI9}. |
Q9Y232 | CDYL | S201 | ochoa | Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) | [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}. |
Q9Y250 | LZTS1 | S254 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y2F5 | ICE1 | S516 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2G4 | ANKRD6 | S328 | ochoa | Ankyrin repeat domain-containing protein 6 (Diversin) | Recruits CKI-epsilon to the beta-catenin degradation complex that consists of AXN1 or AXN2 and GSK3-beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals. {ECO:0000250}. |
Q9Y2I7 | PIKFYVE | S1544 | ochoa | 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) | Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}. |
Q9Y388 | RBMX2 | S188 | ochoa | RNA-binding motif protein, X-linked 2 | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9Y3Q8 | TSC22D4 | S370 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y3T9 | NOC2L | S49 | ochoa | Nucleolar complex protein 2 homolog (Protein NOC2 homolog) (NOC2-like protein) (Novel INHAT repressor) | Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. {ECO:0000269|PubMed:16322561, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:20959462}. |
Q9Y4A5 | TRRAP | S1628 | ochoa | Transformation/transcription domain-associated protein (350/400 kDa PCAF-associated factor) (PAF350/400) (STAF40) (Tra1 homolog) | Adapter protein, which is found in various multiprotein chromatin complexes with histone acetyltransferase activity (HAT), which gives a specific tag for epigenetic transcription activation. Component of the NuA4 histone acetyltransferase complex which is responsible for acetylation of nucleosomal histones H4 and H2A. Plays a central role in MYC transcription activation, and also participates in cell transformation by MYC. Required for p53/TP53-, E2F1- and E2F4-mediated transcription activation. Also involved in transcription activation mediated by the adenovirus E1A, a viral oncoprotein that deregulates transcription of key genes. Probably acts by linking transcription factors such as E1A, MYC or E2F1 to HAT complexes such as STAGA thereby allowing transcription activation. Probably not required in the steps following histone acetylation in processes of transcription activation. May be required for the mitotic checkpoint and normal cell cycle progression. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. May play a role in the formation and maintenance of the auditory system (By similarity). {ECO:0000250|UniProtKB:A0A0R4ITC5, ECO:0000269|PubMed:11418595, ECO:0000269|PubMed:12138177, ECO:0000269|PubMed:12660246, ECO:0000269|PubMed:12743606, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:9708738}. |
Q9Y4D8 | HECTD4 | S1507 | ochoa | Probable E3 ubiquitin-protein ligase HECTD4 (EC 2.3.2.26) (HECT domain-containing protein 4) (HECT-type E3 ubiquitin transferase HECTD4) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000250}. |
Q9Y4E6 | WDR7 | S1456 | ochoa | WD repeat-containing protein 7 (Rabconnectin-3 beta) (TGF-beta resistance-associated protein TRAG) | None |
Q9Y4F3 | MARF1 | S45 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y4F5 | CEP170B | S425 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S829 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4G2 | PLEKHM1 | S435 | ochoa | Pleckstrin homology domain-containing family M member 1 (PH domain-containing family M member 1) (162 kDa adapter protein) (AP162) | Acts as a multivalent adapter protein that regulates Rab7-dependent and HOPS complex-dependent fusion events in the endolysosomal system and couples autophagic and the endocytic trafficking pathways. Acts as a dual effector of RAB7A and ARL8B that simultaneously binds these GTPases, bringing about clustering and fusion of late endosomes and lysosomes (PubMed:25498145, PubMed:28325809). Required for late stages of endolysosomal maturation, facilitating both endocytosis-mediated degradation of growth factor receptors and autophagosome clearance. Interaction with Arl8b is a crucial factor in the terminal maturation of autophagosomes and to mediate autophagosome-lysosome fusion (PubMed:25498145). Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). May be involved in negative regulation of endocytic transport from early endosome to late endosome/lysosome implicating its association with Rab7 (PubMed:20943950). May have a role in sialyl-lex-mediated transduction of apoptotic signals (PubMed:12820725). Involved in bone resorption (By similarity). {ECO:0000250|UniProtKB:Q5PQS0, ECO:0000250|UniProtKB:Q7TSI1, ECO:0000269|PubMed:12820725, ECO:0000269|PubMed:20943950, ECO:0000269|PubMed:25498145, ECO:0000269|PubMed:28325809}.; FUNCTION: (Microbial infection) In case of infection contributes to Salmonella typhimurium pathogenesis by supporting the integrity of the Salmonella-containing vacuole (SCV) probably in concert with the HOPS complex and Rab7. {ECO:0000269|PubMed:25500191}. |
Q9Y4H2 | IRS2 | S770 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4P8 | WIPI2 | S413 | ochoa|psp | WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) (WIPI49-like protein 2) | Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:20505359, PubMed:28561066). Involved in an early step of the formation of preautophagosomal structures (PubMed:20505359, PubMed:28561066). Binds and is activated by phosphatidylinositol 3-phosphate (PtdIns3P) forming on membranes of the endoplasmic reticulum upon activation of the upstream ULK1 and PI3 kinases (PubMed:28561066). Mediates ER-isolation membranes contacts by interacting with the ULK1:RB1CC1 complex and PtdIns3P (PubMed:28890335). Once activated, WIPI2 recruits at phagophore assembly sites the ATG12-ATG5-ATG16L1 complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:20505359, PubMed:28561066). {ECO:0000269|PubMed:20505359, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:28890335, ECO:0000269|PubMed:30968111}.; FUNCTION: [Isoform 4]: Recruits the ATG12-ATG5-ATG16L1 complex to omegasomes and preautophagosomal structures, resulting in ATG8 family proteins lipidation and starvation-induced autophagy. Isoform 4 is also required for autophagic clearance of pathogenic bacteria. Isoform 4 binds the membrane surrounding Salmonella and recruits the ATG12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella. {ECO:0000269|PubMed:24954904}. |
Q9Y534 | CSDC2 | S47 | ochoa | Cold shock domain-containing protein C2 (RNA-binding protein PIPPin) | RNA-binding factor which binds specifically to the very 3'-UTR ends of both histone H1 and H3.3 mRNAs, encompassing the polyadenylation signal. Might play a central role in the negative regulation of histone variant synthesis in the developing brain (By similarity). {ECO:0000250}. |
Q9Y548 | YIPF1 | S43 | ochoa | Protein YIPF1 (YIP1 family member 1) | None |
Q9Y566 | SHANK1 | S413 | ochoa | SH3 and multiple ankyrin repeat domains protein 1 (Shank1) (Somatostatin receptor-interacting protein) (SSTR-interacting protein) (SSTRIP) | Seems to be an adapter protein in the postsynaptic density (PSD) of excitatory synapses that interconnects receptors of the postsynaptic membrane including NMDA-type and metabotropic glutamate receptors via complexes with GKAP/PSD-95 and Homer, respectively, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction. |
Q9Y580 | RBM7 | S137 | ochoa | RNA-binding protein 7 (RNA-binding motif protein 7) | RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104, PubMed:27871484). NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:25189701, PubMed:25852104, PubMed:27871484). Binds preferentially polyuridine sequences and associates with newly synthesized RNAs, including pre-mRNAs and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from small nuclear RNAs (snRNAs) (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104). Participates in several biological processes including DNA damage response (DDR) and stress response (PubMed:25525152, PubMed:30824372). During stress response, activation of the p38MAPK-MK2 pathway decreases RBM7-RNA-binding and subsequently the RNA exosome degradation activities, thereby modulating the turnover of non-coding transcriptome (PubMed:25525152). Participates in DNA damage response (DDR), through its interaction with MEPCE and LARP7, the core subunits of 7SK snRNP complex, that release the positive transcription elongation factor b (P-TEFb) complex from the 7SK snRNP. In turn, activation of P-TEFb complex induces the transcription of P-TEFb-dependent DDR genes to promote cell viability (PubMed:30824372). {ECO:0000269|PubMed:25189701, ECO:0000269|PubMed:25525152, ECO:0000269|PubMed:25578728, ECO:0000269|PubMed:25852104, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:30824372}. |
Q9Y5B0 | CTDP1 | S740 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5W7 | SNX14 | S313 | ochoa | Sorting nexin-14 | Plays a role in maintaining normal neuronal excitability and synaptic transmission. May be involved in several stages of intracellular trafficking (By similarity). Required for autophagosome clearance, possibly by mediating the fusion of lysosomes with autophagosomes (Probable). Binds phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a key component of late endosomes/lysosomes (PubMed:25848753). Does not bind phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:25148684, PubMed:25848753). {ECO:0000250|UniProtKB:Q8BHY8, ECO:0000269|PubMed:25148684, ECO:0000269|PubMed:25848753, ECO:0000305|PubMed:25848753}. |
Q9Y678 | COPG1 | S633 | ochoa | Coatomer subunit gamma-1 (Gamma-1-coat protein) (Gamma-1-COP) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. Required for limiting lipid storage in lipid droplets. Involved in lipid homeostasis by regulating the presence of perilipin family members PLIN2 and PLIN3 at the lipid droplet surface and promoting the association of adipocyte triglyceride lipase (PNPLA2) with the lipid droplet surface to mediate lipolysis (By similarity). {ECO:0000250, ECO:0000269|PubMed:20674546}. |
Q9Y6D6 | ARFGEF1 | S52 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (Brefeldin A-inhibited GEP 1) (ADP-ribosylation factor guanine nucleotide-exchange factor 1) (p200 ARF guanine nucleotide exchange factor) (p200 ARF-GEP1) | Promotes guanine-nucleotide exchange on ARF1 and ARF3. Promotes the activation of ARF1/ARF3 through replacement of GDP with GTP. Involved in vesicular trafficking. Required for the maintenance of Golgi structure; the function may be independent of its GEF activity. Required for the maturation of integrin beta-1 in the Golgi. Involved in the establishment and persistence of cell polarity during directed cell movement in wound healing. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. Inhibits GAP activity of MYO9B probably through competitive RhoA binding. The function in the nucleus remains to be determined. {ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15644318, ECO:0000269|PubMed:17227842, ECO:0000269|PubMed:20360857, ECO:0000269|PubMed:22084092}. |
Q9Y6G9 | DYNC1LI1 | S207 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6J0 | CABIN1 | S1695 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6K0 | CEPT1 | S18 | ochoa | Choline/ethanolaminephosphotransferase 1 (hCEPT1) (EC 2.7.8.1) (EC 2.7.8.2) (1-alkenyl-2-acylglycerol choline phosphotransferase) (EC 2.7.8.22) | Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP-ethanolamine, respectively (PubMed:10191259, PubMed:10893425, PubMed:12216837, PubMed:37137909). Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface (PubMed:10191259, PubMed:10893425, PubMed:12216837). Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity (PubMed:10191259, PubMed:12216837). {ECO:0000269|PubMed:10191259, ECO:0000269|PubMed:10893425, ECO:0000269|PubMed:12216837, ECO:0000269|PubMed:37137909}. |
Q9Y6M9 | NDUFB9 | S85 | ochoa | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9 (Complex I-B22) (CI-B22) (LYR motif-containing protein 3) (NADH-ubiquinone oxidoreductase B22 subunit) | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}. |
Q9Y6R4 | MAP3K4 | S63 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
Q9Y6X9 | MORC2 | S856 | psp | ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) | Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}. |
R4GMW8 | BIVM-ERCC5 | S795 | ochoa | DNA excision repair protein ERCC-5 | None |
R4GMW8 | BIVM-ERCC5 | S980 | ochoa | DNA excision repair protein ERCC-5 | None |
Q9NW68 | BSDC1 | S232 | Sugiyama | BSD domain-containing protein 1 | None |
Q8TDU6 | GPBAR1 | S310 | PSP | G-protein coupled bile acid receptor 1 (G-protein coupled receptor GPCR19) (hGPCR19) (Membrane-type receptor for bile acids) (M-BAR) (hBG37) (BG37) | Receptor for bile acid. Bile acid-binding induces its internalization, activation of extracellular signal-regulated kinase and intracellular cAMP production. May be involved in the suppression of macrophage functions by bile acids. {ECO:0000269|PubMed:12419312, ECO:0000269|PubMed:12524422}. |
Q04721 | NOTCH2 | S838 | Sugiyama | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
P41279 | MAP3K8 | S358 | Sugiyama | Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.11.25) (Cancer Osaka thyroid oncogene) (Proto-oncogene c-Cot) (Serine/threonine-protein kinase cot) (Tumor progression locus 2) (TPL-2) | Required for lipopolysaccharide (LPS)-induced, TLR4-mediated activation of the MAPK/ERK pathway in macrophages, thus being critical for production of the pro-inflammatory cytokine TNF-alpha (TNF) during immune responses. Involved in the regulation of T-helper cell differentiation and IFNG expression in T-cells. Involved in mediating host resistance to bacterial infection through negative regulation of type I interferon (IFN) production. In vitro, activates MAPK/ERK pathway in response to IL1 in an IRAK1-independent manner, leading to up-regulation of IL8 and CCL4. Transduces CD40 and TNFRSF1A signals that activate ERK in B-cells and macrophages, and thus may play a role in the regulation of immunoglobulin production. May also play a role in the transduction of TNF signals that activate JNK and NF-kappa-B in some cell types. In adipocytes, activates MAPK/ERK pathway in an IKBKB-dependent manner in response to IL1B and TNF, but not insulin, leading to induction of lipolysis. Plays a role in the cell cycle. Isoform 1 shows some transforming activity, although it is much weaker than that of the activated oncogenic variant. {ECO:0000269|PubMed:11342626, ECO:0000269|PubMed:12667451, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:16371247, ECO:0000269|PubMed:1833717, ECO:0000269|PubMed:19001140, ECO:0000269|PubMed:19808894}. |
P35658 | NUP214 | S430 | Sugiyama | Nuclear pore complex protein Nup214 (214 kDa nucleoporin) (Nucleoporin Nup214) (Protein CAN) | Part of the nuclear pore complex (PubMed:9049309). Has a critical role in nucleocytoplasmic transport (PubMed:31178128). May serve as a docking site in the receptor-mediated import of substrates across the nuclear pore complex (PubMed:31178128, PubMed:8108440). {ECO:0000269|PubMed:31178128, ECO:0000269|PubMed:9049309, ECO:0000303|PubMed:8108440}.; FUNCTION: (Microbial infection) Required for capsid disassembly of the human adenovirus 5 (HadV-5) leading to release of the viral genome to the nucleus (in vitro). {ECO:0000269|PubMed:25410864}. |
P35813 | PPM1A | S216 | Sugiyama | Protein phosphatase 1A (EC 3.1.3.16) (Protein phosphatase 2C isoform alpha) (PP2C-alpha) (Protein phosphatase IA) | Enzyme with a broad specificity. Negatively regulates TGF-beta signaling through dephosphorylating SMAD2 and SMAD3, resulting in their dissociation from SMAD4, nuclear export of the SMADs and termination of the TGF-beta-mediated signaling. Dephosphorylates PRKAA1 and PRKAA2. Plays an important role in the termination of TNF-alpha-mediated NF-kappa-B activation through dephosphorylating and inactivating IKBKB/IKKB. {ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:18930133}. |
O14745 | NHERF1 | S186 | Sugiyama | Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules. Involved in sperm capacitation. May participate in the regulation of the chloride and bicarbonate homeostasis in spermatozoa. {ECO:0000250, ECO:0000269|PubMed:10499588, ECO:0000269|PubMed:18784102, ECO:0000269|PubMed:9096337, ECO:0000269|PubMed:9430655}. |
P55786 | NPEPPS | S684 | Sugiyama | Puromycin-sensitive aminopeptidase (PSA) (EC 3.4.11.14) (Cytosol alanyl aminopeptidase) (AAP-S) | Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. {ECO:0000269|PubMed:10978616, ECO:0000269|PubMed:11062501, ECO:0000269|PubMed:17154549, ECO:0000269|PubMed:17318184, ECO:0000269|PubMed:19917696}. |
Q03112 | MECOM | S726 | SIGNOR | Histone-lysine N-methyltransferase MECOM (EC 2.1.1.367) (Ecotropic virus integration site 1 protein homolog) (EVI-1) (MDS1 and EVI1 complex locus protein) (Myelodysplasia syndrome 1 protein) (Myelodysplasia syndrome-associated protein 1) | [Isoform 1]: Functions as a transcriptional regulator binding to DNA sequences in the promoter region of target genes and regulating positively or negatively their expression. Oncogene which plays a role in development, cell proliferation and differentiation. May also play a role in apoptosis through regulation of the JNK and TGF-beta signaling. Involved in hematopoiesis. {ECO:0000269|PubMed:10856240, ECO:0000269|PubMed:11568182, ECO:0000269|PubMed:15897867, ECO:0000269|PubMed:16462766, ECO:0000269|PubMed:19767769, ECO:0000269|PubMed:9665135}.; FUNCTION: [Isoform 7]: Displays histone methyltransferase activity and monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. Probably catalyzes the monomethylation of free histone H3 in the cytoplasm which is then transported to the nucleus and incorporated into nucleosomes where SUV39H methyltransferases use it as a substrate to catalyze histone H3 'Lys-9' trimethylation. Likely to be one of the primary histone methyltransferases along with PRDM16 that direct cytoplasmic H3K9me1 methylation. {ECO:0000250|UniProtKB:P14404}. |
Q12852 | MAP3K12 | S64 | Sugiyama | Mitogen-activated protein kinase kinase kinase 12 (EC 2.7.11.25) (Dual leucine zipper bearing kinase) (DLK) (Leucine-zipper protein kinase) (ZPK) (MAPK-upstream kinase) (MUK) (Mixed lineage kinase) | Part of a non-canonical MAPK signaling pathway (PubMed:28111074). Activated by APOE, enhances the AP-1-mediated transcription of APP, via a MAP kinase signal transduction pathway composed of MAP2K7 and MAPK1/ERK2 and MAPK3/ERK1 (PubMed:28111074). May be an activator of the JNK/SAPK pathway. {ECO:0000269|PubMed:28111074}. |
P08151 | GLI1 | S927 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
Q15120 | PDK3 | S25 | Sugiyama | [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial (EC 2.7.11.2) (Pyruvate dehydrogenase kinase isoform 3) | Inhibits pyruvate dehydrogenase activity by phosphorylation of the E1 subunit PDHA1, and thereby regulates glucose metabolism and aerobic respiration. Can also phosphorylate PDHA2. Decreases glucose utilization and increases fat metabolism in response to prolonged fasting, and as adaptation to a high-fat diet. Plays a role in glucose homeostasis and in maintaining normal blood glucose levels in function of nutrient levels and under starvation. Plays a role in the generation of reactive oxygen species. {ECO:0000269|PubMed:10748134, ECO:0000269|PubMed:11486000, ECO:0000269|PubMed:15861126, ECO:0000269|PubMed:16436377, ECO:0000269|PubMed:17683942, ECO:0000269|PubMed:18718909, ECO:0000269|PubMed:22865452}. |
Q8NE63 | HIPK4 | S411 | Sugiyama | Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) | Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}. |
Q8NG66 | NEK11 | S414 | Sugiyama | Serine/threonine-protein kinase Nek11 (EC 2.7.11.1) (Never in mitosis A-related kinase 11) (NimA-related protein kinase 11) | Protein kinase which plays an important role in the G2/M checkpoint response to DNA damage. Controls degradation of CDC25A by directly phosphorylating it on residues whose phosphorylation is required for BTRC-mediated polyubiquitination and degradation. {ECO:0000269|PubMed:12154088, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422}. |
Q3KR16 | PLEKHG6 | S697 | PSP | Pleckstrin homology domain-containing family G member 6 (PH domain-containing family G member 6) (Myosin-interacting guanine nucleotide exchange factor) (MyoGEF) | Guanine nucleotide exchange factor activating the small GTPase RHOA, which, in turn, induces myosin filament formation. Also activates RHOG. Does not activate RAC1, or to a much lower extent than RHOA and RHOG. Part of a functional unit, involving PLEKHG6, MYH10 and RHOA, at the cleavage furrow to advance furrow ingression during cytokinesis. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with EZR, required for normal macropinocytosis. {ECO:0000269|PubMed:16721066, ECO:0000269|PubMed:17881735}. |
Q96J92 | WNK4 | S168 | Sugiyama | Serine/threonine-protein kinase WNK4 (EC 2.7.11.1) (Protein kinase lysine-deficient 4) (Protein kinase with no lysine 4) | Serine/threonine-protein kinase component of the WNK4-SPAK/OSR1 kinase cascade, which acts as a key regulator of ion transport in the distal nephron and blood pressure (By similarity). The WNK4-SPAK/OSR1 kinase cascade is composed of WNK4, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:16832045). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16832045, PubMed:22989884). Acts as a molecular switch that regulates the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter SLC12A3/NCC and the K(+) channel, KCNJ1/ROMK (By similarity). Regulates NaCl reabsorption in the distal nephron by activating the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney: activates SLC12A3/NCC in a OXSR1/OSR1- and STK39/SPAK-dependent process (By similarity). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels (CFTR, KCNJ1/ROMK, SLC4A4, SLC26A9 and TRPV4) by clathrin-dependent endocytosis (By similarity). Also inhibits the activity of the epithelial Na(+) channel (ENaC) SCNN1A, SCNN1B, SCNN1D in a inase-independent mechanism (By similarity). May also phosphorylate NEDD4L (PubMed:20525693). {ECO:0000250|UniProtKB:Q80UE6, ECO:0000269|PubMed:16832045, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:22989884}. |
A1L020 | MEX3A | S462 | ochoa | RNA-binding protein MEX3A (RING finger and KH domain-containing protein 4) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. |
A2VDJ0 | TMEM131L | S1212 | ochoa | Transmembrane protein 131-like | [Isoform 1]: Membrane-associated form that antagonizes canonical Wnt signaling by triggering lysosome-dependent degradation of Wnt-activated LRP6. Regulates thymocyte proliferation. {ECO:0000269|PubMed:23690469}. |
A6NHQ4 | EPOP | S36 | ochoa | Elongin BC and Polycomb repressive complex 2-associated protein (Proline-rich protein 28) | Scaffold protein that serves as a bridging partner between the PRC2/EZH2 complex and the elongin BC complex: required to fine-tune the transcriptional status of Polycomb group (PcG) target genes in embryonic stem cells (ESCs). Plays a key role in genomic regions that display both active and repressive chromatin properties in pluripotent stem cells by sustaining low level expression at PcG target genes: acts by recruiting the elongin BC complex, thereby restricting excessive activity of the PRC2/EZH2 complex. Interaction with USP7 promotes deubiquitination of H2B at promoter sites. Acts as a regulator of neuronal differentiation. {ECO:0000250|UniProtKB:Q7TNS8}. |
A6NJZ7 | RIMBP3C | S1228 | ochoa | RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A6NNM3 | RIMBP3B | S1228 | ochoa | RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
A7KAX9 | ARHGAP32 | S1203 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
D6RIA3 | C4orf54 | S242 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
H3BU86 | STX16-NPEPL1 | S35 | ochoa | Syntaxin-16 | SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000256|ARBA:ARBA00037772}. |
K7EQG2 | None | S86 | ochoa | Uncharacterized protein | None |
K7ERQ8 | None | S124 | ochoa | PCAF N-terminal domain-containing protein | None |
O00512 | BCL9 | S62 | ochoa | B-cell CLL/lymphoma 9 protein (B-cell lymphoma 9 protein) (Bcl-9) (Protein legless homolog) | Involved in signal transduction through the Wnt pathway. Promotes beta-catenin's transcriptional activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11955446}. |
O14607 | UTY | S765 | ochoa | Histone demethylase UTY (EC 1.14.11.68) (Ubiquitously-transcribed TPR protein on the Y chromosome) (Ubiquitously-transcribed Y chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase UTY) | Male-specific histone demethylase that catalyzes trimethylated 'Lys-27' (H3K27me3) demethylation in histone H3. Has relatively low lysine demethylase activity. {ECO:0000269|PubMed:24798337}. |
O14662 | STX16 | S35 | ochoa | Syntaxin-16 (Syn16) | SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000269|PubMed:18195106}. |
O14974 | PPP1R12A | S525 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15042 | U2SURP | S934 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15119 | TBX3 | S680 | ochoa | T-box transcription factor TBX3 (T-box protein 3) | Transcriptional repressor involved in developmental processes (PubMed:10468588). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:12000749). Probably plays a role in limb pattern formation (PubMed:10468588). Required for mammary placode induction, and maintenance of the mammary buds during development (By similarity). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX2 (By similarity). Required, together with TBX2, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with, TBX2 in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). {ECO:0000250|UniProtKB:P70324, ECO:0000269|PubMed:10468588, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537}. |
O15525 | MAFG | S124 | ochoa|psp | Transcription factor MafG (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G) (hMAF) | Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:11154691). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1 and NFE2L2, and recruiting them to specific DNA-binding sites (PubMed:11154691, PubMed:8932385, PubMed:9421508). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NFE2L2 transcription factor (PubMed:11154691). Transcription factor, component of erythroid-specific transcription factor NFE2L2 (PubMed:11154691). Activates globin gene expression when associated with NFE2L2 (PubMed:11154691). May be involved in signal transduction of extracellular H(+) (By similarity). {ECO:0000250|UniProtKB:Q76MX4, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:8932385, ECO:0000269|PubMed:9421508}. |
O43379 | WDR62 | S445 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43493 | TGOLN2 | S306 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O43586 | PSTPIP1 | S298 | ochoa | Proline-serine-threonine phosphatase-interacting protein 1 (PEST phosphatase-interacting protein 1) (CD2-binding protein 1) (H-PIP) | Involved in regulation of the actin cytoskeleton. May regulate WAS actin-bundling activity. Bridges the interaction between ABL1 and PTPN18 leading to ABL1 dephosphorylation. May play a role as a scaffold protein between PTPN12 and WAS and allow PTPN12 to dephosphorylate WAS. Has the potential to physically couple CD2 and CD2AP to WAS. Acts downstream of CD2 and CD2AP to recruit WAS to the T-cell:APC contact site so as to promote the actin polymerization required for synapse induction during T-cell activation (By similarity). Down-regulates CD2-stimulated adhesion through the coupling of PTPN12 to CD2. Also has a role in innate immunity and the inflammatory response. Recruited to inflammasomes by MEFV. Induces formation of pyroptosomes, large supramolecular structures composed of oligomerized PYCARD dimers which form prior to inflammatory apoptosis. Binding to MEFV allows MEFV to bind to PYCARD and facilitates pyroptosome formation. Regulates endocytosis and cell migration in neutrophils. {ECO:0000250, ECO:0000269|PubMed:17964261, ECO:0000269|PubMed:18480402, ECO:0000269|PubMed:19109554, ECO:0000269|PubMed:19584923, ECO:0000269|PubMed:9857189}. |
O43586 | PSTPIP1 | S318 | ochoa | Proline-serine-threonine phosphatase-interacting protein 1 (PEST phosphatase-interacting protein 1) (CD2-binding protein 1) (H-PIP) | Involved in regulation of the actin cytoskeleton. May regulate WAS actin-bundling activity. Bridges the interaction between ABL1 and PTPN18 leading to ABL1 dephosphorylation. May play a role as a scaffold protein between PTPN12 and WAS and allow PTPN12 to dephosphorylate WAS. Has the potential to physically couple CD2 and CD2AP to WAS. Acts downstream of CD2 and CD2AP to recruit WAS to the T-cell:APC contact site so as to promote the actin polymerization required for synapse induction during T-cell activation (By similarity). Down-regulates CD2-stimulated adhesion through the coupling of PTPN12 to CD2. Also has a role in innate immunity and the inflammatory response. Recruited to inflammasomes by MEFV. Induces formation of pyroptosomes, large supramolecular structures composed of oligomerized PYCARD dimers which form prior to inflammatory apoptosis. Binding to MEFV allows MEFV to bind to PYCARD and facilitates pyroptosome formation. Regulates endocytosis and cell migration in neutrophils. {ECO:0000250, ECO:0000269|PubMed:17964261, ECO:0000269|PubMed:18480402, ECO:0000269|PubMed:19109554, ECO:0000269|PubMed:19584923, ECO:0000269|PubMed:9857189}. |
O43639 | NCK2 | S90 | ochoa | Cytoplasmic protein NCK2 (Growth factor receptor-bound protein 4) (NCK adaptor protein 2) (Nck-2) (SH2/SH3 adaptor protein NCK-beta) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16835242}. |
O43776 | NARS1 | S61 | ochoa | Asparagine--tRNA ligase, cytoplasmic (EC 6.1.1.22) (Asparaginyl-tRNA synthetase) (AsnRS) (Asparaginyl-tRNA synthetase 1) | Catalyzes the attachment of asparagine to tRNA(Asn) in a two-step reaction: asparagine is first activated by ATP to form Asn-AMP and then transferred to the acceptor end of tRNA(Asn) (PubMed:32738225, PubMed:32788587, PubMed:9421509). In addition to its essential role in protein synthesis, acts as a signaling molecule that induced migration of CCR3-expressing cells (PubMed:12235211, PubMed:30171954). Has an essential role in the development of the cerebral cortex, being required for proper proliferation of radial glial cells (PubMed:32788587). {ECO:0000269|PubMed:12235211, ECO:0000269|PubMed:30171954, ECO:0000269|PubMed:32738225, ECO:0000269|PubMed:32788587, ECO:0000269|PubMed:9421509}. |
O60285 | NUAK1 | S481 | ochoa | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
O75132 | ZBED4 | S523 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75132 | ZBED4 | S624 | ochoa | Zinc finger BED domain-containing protein 4 | Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}. |
O75351 | VPS4B | S93 | ochoa | Vacuolar protein sorting-associated protein 4B (EC 3.6.4.6) (Cell migration-inducing gene 1 protein) (Suppressor of K(+) transport growth defect 1) (Protein SKD1) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their ATP-dependent disassembly, possibly in combination with membrane fission (PubMed:18687924). Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:18687924, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:16193069, ECO:0000269|PubMed:18606141}. |
O75376 | NCOR1 | S1196 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75534 | CSDE1 | S445 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O75665 | OFD1 | S669 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75683 | SURF6 | S74 | ochoa | Surfeit locus protein 6 | Binds to both DNA and RNA in vitro, with a stronger binding capacity for RNA. May represent a nucleolar constitutive protein involved in ribosomal biosynthesis or assembly (By similarity). {ECO:0000250}. |
O75899 | GABBR2 | S779 | ochoa | Gamma-aminobutyric acid type B receptor subunit 2 (GABA-B receptor 2) (GABA-B-R2) (GABA-BR2) (GABABR2) (Gb2) (G-protein coupled receptor 51) (HG20) | Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2 (PubMed:15617512, PubMed:18165688, PubMed:22660477, PubMed:24305054, PubMed:9872316, PubMed:9872744). Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins (PubMed:18165688). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (PubMed:10075644, PubMed:10773016, PubMed:24305054). Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis (PubMed:10075644, PubMed:10773016, PubMed:10906333, PubMed:9872744). Plays a critical role in the fine-tuning of inhibitory synaptic transmission (PubMed:22660477, PubMed:9872744). Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials (PubMed:10075644, PubMed:22660477, PubMed:9872316, PubMed:9872744). Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception (Probable). {ECO:0000269|PubMed:10075644, ECO:0000269|PubMed:10328880, ECO:0000269|PubMed:15617512, ECO:0000269|PubMed:18165688, ECO:0000269|PubMed:22660477, ECO:0000269|PubMed:24305054, ECO:0000269|PubMed:9872316, ECO:0000269|PubMed:9872744, ECO:0000305}. |
O75962 | TRIO | S1745 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O76041 | NEBL | S953 | ochoa | Nebulette (Actin-binding Z-disk protein) | Binds to actin and plays an important role in the assembly of the Z-disk. May functionally link sarcomeric actin to the desmin intermediate filaments in the heart muscle sarcomeres (PubMed:27733623). {ECO:0000269|PubMed:27733623}.; FUNCTION: [Isoform 2]: May play a role in the assembly of focal adhesions. {ECO:0000269|PubMed:15004028}. |
O94826 | TOMM70 | S253 | ochoa | Mitochondrial import receptor subunit TOM70 (Mitochondrial precursor proteins import receptor) (Translocase of outer membrane 70 kDa subunit) (Translocase of outer mitochondrial membrane protein 70) | Acts as a receptor of the preprotein translocase complex of the outer mitochondrial membrane (TOM complex) (PubMed:12526792). Recognizes and mediates the translocation of mitochondrial preproteins from the cytosol into the mitochondria in a chaperone dependent manner (PubMed:12526792, PubMed:35025629). Mediates TBK1 and IRF3 activation induced by MAVS in response to Sendai virus infection and promotes host antiviral responses during virus infection (PubMed:20628368, PubMed:25609812, PubMed:32728199). Upon Sendai virus infection, recruits HSP90AA1:IRF3:BAX in mitochondrion and the complex induces apoptosis (PubMed:25609812). {ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:32728199, ECO:0000269|PubMed:35025629}. |
O94850 | DDN | S508 | ochoa | Dendrin | Promotes apoptosis of kidney glomerular podocytes. Podocytes are highly specialized cells essential to the ultrafiltration of blood, resulting in the extraction of urine and the retention of protein (By similarity). {ECO:0000250}. |
O95197 | RTN3 | S243 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95359 | TACC2 | S2011 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S2512 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95793 | STAU1 | S278 | ochoa | Double-stranded RNA-binding protein Staufen homolog 1 | Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}. |
P02786 | TFRC | S106 | ochoa | Transferrin receptor protein 1 (TR) (TfR) (TfR1) (Trfr) (T9) (p90) (CD antigen CD71) [Cleaved into: Transferrin receptor protein 1, serum form (sTfR)] | Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes (PubMed:26214738). Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the hereditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Positively regulates T and B cell proliferation through iron uptake (PubMed:26642240). Acts as a lipid sensor that regulates mitochondrial fusion by regulating activation of the JNK pathway (PubMed:26214738). When dietary levels of stearate (C18:0) are low, promotes activation of the JNK pathway, resulting in HUWE1-mediated ubiquitination and subsequent degradation of the mitofusin MFN2 and inhibition of mitochondrial fusion (PubMed:26214738). When dietary levels of stearate (C18:0) are high, TFRC stearoylation inhibits activation of the JNK pathway and thus degradation of the mitofusin MFN2 (PubMed:26214738). Mediates uptake of NICOL1 into fibroblasts where it may regulate extracellular matrix production (By similarity). {ECO:0000250|UniProtKB:Q62351, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:26642240, ECO:0000269|PubMed:3568132}.; FUNCTION: (Microbial infection) Acts as a receptor for new-world arenaviruses: Guanarito, Junin and Machupo virus. {ECO:0000269|PubMed:17287727, ECO:0000269|PubMed:18268337}.; FUNCTION: (Microbial infection) Acts as a host entry factor for rabies virus that hijacks the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762, ECO:0000269|PubMed:36779763}.; FUNCTION: (Microbial infection) Acts as a host entry factor for SARS-CoV, MERS-CoV and SARS-CoV-2 viruses that hijack the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762}. |
P06733 | ENO1 | S263 | ochoa | Alpha-enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (C-myc promoter-binding protein) (Enolase 1) (MBP-1) (MPB-1) (Non-neural enolase) (NNE) (Phosphopyruvate hydratase) (Plasminogen-binding protein) | Glycolytic enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate (PubMed:1369209, PubMed:29775581). In addition to glycolysis, involved in various processes such as growth control, hypoxia tolerance and allergic responses (PubMed:10802057, PubMed:12666133, PubMed:2005901, PubMed:29775581). May also function in the intravascular and pericellular fibrinolytic system due to its ability to serve as a receptor and activator of plasminogen on the cell surface of several cell-types such as leukocytes and neurons (PubMed:12666133). Stimulates immunoglobulin production (PubMed:1369209). {ECO:0000269|PubMed:10802057, ECO:0000269|PubMed:12666133, ECO:0000269|PubMed:1369209, ECO:0000269|PubMed:2005901, ECO:0000269|PubMed:29775581}.; FUNCTION: [Isoform MBP-1]: Binds to the myc promoter and acts as a transcriptional repressor. May be a tumor suppressor. {ECO:0000269|PubMed:10082554}. |
P07197 | NEFM | S620 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P10070 | GLI2 | S92 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P11137 | MAP2 | S1653 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11387 | TOP1 | S112 | ochoa|psp | DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) | Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}. |
P12036 | NEFH | S532 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S546 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S566 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S620 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S710 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P12036 | NEFH | S801 | ochoa | Neurofilament heavy polypeptide (NF-H) (200 kDa neurofilament protein) (Neurofilament triplet H protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P19246}. |
P15822 | HIVEP1 | S687 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15884 | TCF4 | S66 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P15923 | TCF3 | S529 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P18848 | ATF4 | S224 | psp | Cyclic AMP-dependent transcription factor ATF-4 (cAMP-dependent transcription factor ATF-4) (Activating transcription factor 4) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (Tax-responsive enhancer element-binding protein 67) (TaxREB67) | Transcription factor that binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3') and displays two biological functions, as regulator of metabolic and redox processes under normal cellular conditions, and as master transcription factor during integrated stress response (ISR) (PubMed:16682973, PubMed:17684156, PubMed:31023583, PubMed:31444471, PubMed:32132707). Binds to asymmetric CRE's as a heterodimer and to palindromic CRE's as a homodimer (By similarity). Core effector of the ISR, which is required for adaptation to various stress such as endoplasmic reticulum (ER) stress, amino acid starvation, mitochondrial stress or oxidative stress (PubMed:31023583, PubMed:32132707). During ISR, ATF4 translation is induced via an alternative ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced ATF4 acts as a master transcription factor of stress-responsive genes in order to promote cell recovery (PubMed:31023583, PubMed:32132706, PubMed:32132707). Promotes the transcription of genes linked to amino acid sufficiency and resistance to oxidative stress to protect cells against metabolic consequences of ER oxidation (By similarity). Activates the transcription of NLRP1, possibly in concert with other factors in response to ER stress (PubMed:26086088). Activates the transcription of asparagine synthetase (ASNS) in response to amino acid deprivation or ER stress (PubMed:11960987). However, when associated with DDIT3/CHOP, the transcriptional activation of the ASNS gene is inhibited in response to amino acid deprivation (PubMed:18940792). Together with DDIT3/CHOP, mediates programmed cell death by promoting the expression of genes involved in cellular amino acid metabolic processes, mRNA translation and the terminal unfolded protein response (terminal UPR), a cellular response that elicits programmed cell death when ER stress is prolonged and unresolved (By similarity). Activates the expression of COX7A2L/SCAF1 downstream of the EIF2AK3/PERK-mediated unfolded protein response, thereby promoting formation of respiratory chain supercomplexes and increasing mitochondrial oxidative phosphorylation (PubMed:31023583). Together with DDIT3/CHOP, activates the transcription of the IRS-regulator TRIB3 and promotes ER stress-induced neuronal cell death by regulating the expression of BBC3/PUMA in response to ER stress (PubMed:15775988). May cooperate with the UPR transcriptional regulator QRICH1 to regulate ER protein homeostasis which is critical for cell viability in response to ER stress (PubMed:33384352). In the absence of stress, ATF4 translation is at low levels and it is required for normal metabolic processes such as embryonic lens formation, fetal liver hematopoiesis, bone development and synaptic plasticity (By similarity). Acts as a regulator of osteoblast differentiation in response to phosphorylation by RPS6KA3/RSK2: phosphorylation in osteoblasts enhances transactivation activity and promotes expression of osteoblast-specific genes and post-transcriptionally regulates the synthesis of Type I collagen, the main constituent of the bone matrix (PubMed:15109498). Cooperates with FOXO1 in osteoblasts to regulate glucose homeostasis through suppression of beta-cell production and decrease in insulin production (By similarity). Activates transcription of SIRT4 (By similarity). Regulates the circadian expression of the core clock component PER2 and the serotonin transporter SLC6A4 (By similarity). Binds in a circadian time-dependent manner to the cAMP response elements (CRE) in the SLC6A4 and PER2 promoters and periodically activates the transcription of these genes (By similarity). Mainly acts as a transcriptional activator in cellular stress adaptation, but it can also act as a transcriptional repressor: acts as a regulator of synaptic plasticity by repressing transcription, thereby inhibiting induction and maintenance of long-term memory (By similarity). Regulates synaptic functions via interaction with DISC1 in neurons, which inhibits ATF4 transcription factor activity by disrupting ATF4 dimerization and DNA-binding (PubMed:31444471). {ECO:0000250|UniProtKB:Q06507, ECO:0000269|PubMed:11960987, ECO:0000269|PubMed:15109498, ECO:0000269|PubMed:15775988, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17684156, ECO:0000269|PubMed:18940792, ECO:0000269|PubMed:26086088, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:31444471, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:33384352}.; FUNCTION: (Microbial infection) Binds to a Tax-responsive enhancer element in the long terminal repeat of HTLV-I. {ECO:0000269|PubMed:1847461}. |
P20810 | CAST | S243 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P20929 | NEB | S2359 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P26640 | VARS1 | S301 | ochoa | Valine--tRNA ligase (EC 6.1.1.9) (Protein G7a) (Valyl-tRNA synthetase) (ValRS) | Catalyzes the attachment of valine to tRNA(Val). {ECO:0000269|PubMed:8428657}. |
P29374 | ARID4A | S864 | ochoa|psp | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P31629 | HIVEP2 | S1070 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P32519 | ELF1 | S187 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P33240 | CSTF2 | S524 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P35251 | RFC1 | S312 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35498 | SCN1A | S551 | ochoa | Sodium channel protein type 1 subunit alpha (Sodium channel protein brain I subunit alpha) (Sodium channel protein type I subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.1) | Pore-forming subunit of Nav1.1, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:14672992). By regulating the excitability of neurons, ensures that they respond appropriately to synaptic inputs, maintaining the balance between excitation and inhibition in brain neural circuits (By similarity). Nav1.1 plays a role in controlling the excitability and action potential propagation from somatosensory neurons, thereby contributing to the sensory perception of mechanically-induced pain (By similarity). {ECO:0000250|UniProtKB:A2APX8, ECO:0000269|PubMed:14672992}. |
P35523 | CLCN1 | S886 | ochoa | Chloride channel protein 1 (ClC-1) (Chloride channel protein, skeletal muscle) | Voltage-gated chloride channel involved in skeletal muscle excitability. Generates most of the plasma membrane chloride conductance in skeletal muscle fibers, stabilizes the resting membrane potential and contributes to the repolarization phase during action potential firing (PubMed:12456816, PubMed:16027167, PubMed:22521272, PubMed:22641783, PubMed:26007199, PubMed:26502825, PubMed:26510092, PubMed:7951242, PubMed:8112288, PubMed:8130334, PubMed:9122265, PubMed:9565403, PubMed:9736777). Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Has a significant open probability at muscle resting potential and is further activated upon membrane depolarization (PubMed:10051520, PubMed:10962018, PubMed:29809153, PubMed:31022181). Permeable to small monovalent anions with ion selectivity for chloride > thiocyanate > bromide > nitrate > iodide (PubMed:9122265, PubMed:9565403). {ECO:0000269|PubMed:10051520, ECO:0000269|PubMed:10962018, ECO:0000269|PubMed:12456816, ECO:0000269|PubMed:16027167, ECO:0000269|PubMed:22521272, ECO:0000269|PubMed:22641783, ECO:0000269|PubMed:26007199, ECO:0000269|PubMed:26502825, ECO:0000269|PubMed:26510092, ECO:0000269|PubMed:29809153, ECO:0000269|PubMed:31022181, ECO:0000269|PubMed:7951242, ECO:0000269|PubMed:8112288, ECO:0000269|PubMed:8130334, ECO:0000269|PubMed:9122265, ECO:0000269|PubMed:9565403, ECO:0000269|PubMed:9736777}. |
P42858 | HTT | S1199 | ochoa|psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P43034 | PAFAH1B1 | S109 | ochoa | Platelet-activating factor acetylhydrolase IB subunit beta (Lissencephaly-1 protein) (LIS-1) (PAF acetylhydrolase 45 kDa subunit) (PAF-AH 45 kDa subunit) (PAF-AH alpha) (PAFAH alpha) | Regulatory subunit (beta subunit) of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)), an enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and participates in PAF inactivation. Regulates the PAF-AH (I) activity in a catalytic dimer composition-dependent manner (By similarity). Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing. Required for dynein recruitment to microtubule plus ends and BICD2-bound cargos (PubMed:22956769). May modulate the Reelin pathway through interaction of the PAF-AH (I) catalytic dimer with VLDLR (By similarity). {ECO:0000250|UniProtKB:P43033, ECO:0000250|UniProtKB:P63005, ECO:0000269|PubMed:15173193, ECO:0000269|PubMed:22956769}. |
P46527 | CDKN1B | S178 | ochoa|psp | Cyclin-dependent kinase inhibitor 1B (Cyclin-dependent kinase inhibitor p27) (p27Kip1) | Important regulator of cell cycle progression. Inhibits the kinase activity of CDK2 bound to cyclin A, but has little inhibitory activity on CDK2 bound to SPDYA (PubMed:28666995). Involved in G1 arrest. Potent inhibitor of cyclin E- and cyclin A-CDK2 complexes. Forms a complex with cyclin type D-CDK4 complexes and is involved in the assembly, stability, and modulation of CCND1-CDK4 complex activation. Acts either as an inhibitor or an activator of cyclin type D-CDK4 complexes depending on its phosphorylation state and/or stoichometry. {ECO:0000269|PubMed:10831586, ECO:0000269|PubMed:12244301, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:17254966, ECO:0000269|PubMed:19075005, ECO:0000269|PubMed:28666995}. |
P46821 | MAP1B | S832 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S1298 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2024 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P49757 | NUMB | S425 | ochoa | Protein numb homolog (h-Numb) (Protein S171) | Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}. |
P49790 | NUP153 | S619 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P51148 | RAB5C | S124 | ochoa | Ras-related protein Rab-5C (EC 3.6.5.2) (L1880) (RAB5L) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. {ECO:0000250|UniProtKB:P20339}. |
P51451 | BLK | S24 | ochoa | Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) | Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}. |
P57682 | KLF3 | S216 | ochoa|psp | Krueppel-like factor 3 (Basic krueppel-like factor) (CACCC-box-binding protein BKLF) (TEF-2) | Binds to the CACCC box of erythroid cell-expressed genes. May play a role in hematopoiesis (By similarity). {ECO:0000250}. |
Q01484 | ANK2 | S1810 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2243 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02952 | AKAP12 | S283 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S286 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q05209 | PTPN12 | S571 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q12830 | BPTF | S1673 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13188 | STK3 | S385 | ochoa|psp | Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}. |
Q13428 | TCOF1 | S503 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q14103 | HNRNPD | S83 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
Q14153 | FAM53B | S212 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14669 | TRIP12 | S77 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14669 | TRIP12 | S942 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14674 | ESPL1 | S1153 | psp | Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) | Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}. |
Q14687 | GSE1 | S850 | ochoa | Genetic suppressor element 1 | None |
Q14938 | NFIX | S250 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14938 | NFIX | S288 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q14966 | ZNF638 | S128 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15311 | RALBP1 | S48 | ochoa | RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) | Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}. |
Q15596 | NCOA2 | S699 | ochoa | Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) | Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}. |
Q15695 | ZRSR2P1 | S389 | ochoa | U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 1 (CCCH type zinc finger, RNA-binding motif and serine/arginine rich protein 1) (U2(RNU2) small nuclear RNA auxiliary factor 1-like 1) | None |
Q15723 | ELF2 | S185 | ochoa | ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) | Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation. |
Q15811 | ITSN1 | S986 | ochoa | Intersectin-1 (SH3 domain-containing protein 1A) (SH3P17) | Adapter protein that provides a link between the endocytic membrane traffic and the actin assembly machinery (PubMed:11584276, PubMed:29887380). Acts as a guanine nucleotide exchange factor (GEF) for CDC42, and thereby stimulates actin nucleation mediated by WASL and the ARP2/3 complex (PubMed:11584276). Plays a role in the assembly and maturation of clathrin-coated vesicles (By similarity). Recruits FCHSD2 to clathrin-coated pits (PubMed:29887380). Involved in endocytosis of activated EGFR, and probably also other growth factor receptors (By similarity). Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR may involve association with DAB2 (PubMed:22648170). Promotes ubiquitination and subsequent degradation of EGFR, and thereby contributes to the down-regulation of EGFR-dependent signaling pathways. In chromaffin cells, required for normal exocytosis of catecholamines. Required for rapid replenishment of release-ready synaptic vesicles at presynaptic active zones (By similarity). Inhibits ARHGAP31 activity toward RAC1 (PubMed:11744688). {ECO:0000250|UniProtKB:Q9WVE9, ECO:0000250|UniProtKB:Q9Z0R4, ECO:0000269|PubMed:11584276, ECO:0000269|PubMed:11744688, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:29887380}.; FUNCTION: [Isoform 1]: Plays a role in synaptic vesicle endocytosis in brain neurons. {ECO:0000250|UniProtKB:Q9Z0R4}. |
Q16625 | OCLN | S310 | ochoa | Occludin | May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions. {ECO:0000269|PubMed:19114660}.; FUNCTION: (Microbial infection) Acts as a coreceptor for hepatitis C virus (HCV) in hepatocytes. {ECO:0000269|PubMed:19182773, ECO:0000269|PubMed:20375010}. |
Q16849 | PTPRN | S226 | ochoa | Receptor-type tyrosine-protein phosphatase-like N (R-PTP-N) (Islet cell antigen 512) (ICA 512) (Islet cell autoantigen 3) (PTP IA-2) [Cleaved into: ICA512-N-terminal fragment (ICA512-NTF); ICA512-transmembrane fragment (ICA512-TMF); ICA512-cleaved cytosolic fragment (ICA512-CCF)] | Plays a role in vesicle-mediated secretory processes (PubMed:24843546). Required for normal accumulation of secretory vesicles in hippocampus, pituitary and pancreatic islets (By similarity). Required for the accumulation of normal levels of insulin-containing vesicles and preventing their degradation (PubMed:24843546). Plays a role in insulin secretion in response to glucose stimuli (PubMed:24843546). Required for normal accumulation of the neurotransmitters norepinephrine, dopamine and serotonin in the brain (By similarity). In females, but not in males, required for normal accumulation and secretion of pituitary hormones, such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (By similarity). Required to maintain normal levels of renin expression and renin release (By similarity). Seems to lack intrinsic enzyme activity (By similarity). May regulate catalytic active protein-tyrosine phosphatases such as PTPRA through dimerization (By similarity). {ECO:0000250|UniProtKB:Q60673, ECO:0000269|PubMed:24843546}.; FUNCTION: [ICA512-transmembrane fragment]: ICA512-TMF regulates dynamics and exocytosis of insulin secretory granules (SGs); binding of ICA512-TMF to SNTB2/beta-2-syntrophin is proposed to restrain SGs mobility and exocytosis by tethering them to the actin cytoskeleton depending on UTRN; the function is inhibited by cytoplasmic ICA512-CFF dimerizing with ICA512-TMF and displacing SNTB2. {ECO:0000269|PubMed:18824546, ECO:0000269|PubMed:20886068}.; FUNCTION: [ICA512-cleaved cytosolic fragment]: ICA512-CCF translocated to the nucleus promotes expression of insulin and other granule-related genes; the function implicates binding to and regulating activity of STAT5B probably by preventing its dephosphorylation and potentially by inducing its sumoylation by recruiting PIAS4 (PubMed:15596545, PubMed:16622421, PubMed:18178618). Enhances pancreatic beta-cell proliferation by converging with signaling by STAT5B and STAT3 (PubMed:15596545, PubMed:16622421, PubMed:18178618). ICA512-CCF located in the cytoplasm regulates dynamics and exocytosis of insulin secretory granules (SGs) by dimerizing with ICA512-TMF and displacing SNTB2 thus enhancing SGs mobility and exocytosis (PubMed:18824546, PubMed:20886068). {ECO:0000269|PubMed:15596545, ECO:0000269|PubMed:16622421, ECO:0000269|PubMed:18178618, ECO:0000269|PubMed:18824546, ECO:0000269|PubMed:20886068}. |
Q16891 | IMMT | S121 | ochoa | MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}. |
Q2KHR3 | QSER1 | S509 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2M1P5 | KIF7 | S1289 | ochoa | Kinesin-like protein KIF7 | Essential for hedgehog signaling regulation: acts both as a negative and positive regulator of sonic hedgehog (Shh) and Indian hedgehog (Ihh) pathways, acting downstream of SMO, through both SUFU-dependent and -independent mechanisms (PubMed:21633164). Involved in the regulation of microtubular dynamics. Required for proper organization of the ciliary tip and control of ciliary localization of SUFU-GLI2 complexes (By similarity). Required for localization of GLI3 to cilia in response to Shh. Negatively regulates Shh signaling by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates Shh signaling by preventing the processing of the transcription factor GLI3 into its repressor form. In keratinocytes, promotes the dissociation of SUFU-GLI2 complexes, GLI2 nuclear translocation and Shh signaling activation (By similarity). Involved in the regulation of epidermal differentiation and chondrocyte development (By similarity). {ECO:0000250|UniProtKB:B7ZNG0, ECO:0000269|PubMed:21633164}. |
Q460N5 | PARP14 | S33 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q4G163 | FBXO43 | S53 | ochoa | F-box only protein 43 (Endogenous meiotic inhibitor 2) | Required to establish and maintain the arrest of oocytes at the second meiotic metaphase until fertilization. Acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. Probably recognizes and binds to some phosphorylated proteins and promotes their ubiquitination and degradation (PubMed:34052850, PubMed:34595750). Plays a vital role in modulating the ubiquitilation of CCNB1 and CDK1 during gametogenesis. {ECO:0000250|UniProtKB:Q8CDI2, ECO:0000269|PubMed:34052850, ECO:0000269|PubMed:34595750}. |
Q53QZ3 | ARHGAP15 | S243 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q5BKZ1 | ZNF326 | S270 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5CZC0 | FSIP2 | Y347 | ochoa | Fibrous sheath-interacting protein 2 | Plays a role in spermatogenesis. {ECO:0000305|PubMed:30137358}. |
Q5T5C0 | STXBP5 | S719 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T8A7 | PPP1R26 | S1132 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5THJ4 | VPS13D | S1600 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5THJ4 | VPS13D | S2692 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5UIP0 | RIF1 | S2265 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VT06 | CEP350 | S1024 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT06 | CEP350 | S2341 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q63HK5 | TSHZ3 | S682 | ochoa | Teashirt homolog 3 (Zinc finger protein 537) | Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}. |
Q68DQ2 | CRYBG3 | S1007 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6AWC2 | WWC2 | S1006 | ochoa | Protein WWC2 (BH-3-only member B) (WW domain-containing protein 2) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway. Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway. {ECO:0000269|PubMed:24682284}. |
Q6RI45 | BRWD3 | S685 | ochoa | Bromodomain and WD repeat-containing protein 3 | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}. |
Q6UB98 | ANKRD12 | Y129 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6VMQ6 | ATF7IP | S673 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6VY07 | PACS1 | S495 | ochoa | Phosphofurin acidic cluster sorting protein 1 (PACS-1) | Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}. |
Q6ZMB5 | TMEM184A | S355 | ochoa | Transmembrane protein 184A | Acts as a heparin receptor in vascular cells (By similarity). May be involved in vesicle transport in exocrine cells and Sertoli cells (By similarity). {ECO:0000250|UniProtKB:Q3UFJ6, ECO:0000250|UniProtKB:Q4QQS1}. |
Q6ZMS4 | ZNF852 | S145 | ochoa | Zinc finger protein 852 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q6ZNL6 | FGD5 | S718 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZSZ5 | ARHGEF18 | S146 | ochoa | Rho guanine nucleotide exchange factor 18 (114 kDa Rho-specific guanine nucleotide exchange factor) (p114-Rho-GEF) (p114RhoGEF) (Septin-associated RhoGEF) (SA-RhoGEF) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. Its activation induces formation of actin stress fibers. Also acts as a GEF for RAC1, inducing production of reactive oxygen species (ROS). Does not act as a GEF for CDC42. The G protein beta-gamma (Gbetagamma) subunits of heterotrimeric G proteins act as activators, explaining the integrated effects of LPA and other G-protein coupled receptor agonists on actin stress fiber formation, cell shape change and ROS production. Required for EPB41L4B-mediated regulation of the circumferential actomyosin belt in epithelial cells (PubMed:22006950). {ECO:0000269|PubMed:11085924, ECO:0000269|PubMed:14512443, ECO:0000269|PubMed:15558029, ECO:0000269|PubMed:22006950, ECO:0000269|PubMed:28132693}. |
Q6ZUT6 | CCDC9B | S55 | ochoa | Coiled-coil domain-containing protein 9B | None |
Q70EK9 | USP51 | S26 | ochoa | Ubiquitin carboxyl-terminal hydrolase 51 (EC 3.4.19.12) (Deubiquitinating enzyme 51) (Ubiquitin thioesterase 51) (Ubiquitin-specific-processing protease 51) | Specifically deubiquitinates 'Lys-14' (H2AK13Ub) and 'Lys-16'(H2AK15Ub) of histone H2A regulating the DNA damage response at double-strand breaks (DSBs) (PubMed:27083998, PubMed:33022275). USP51 is recruited to chromatin after DNA damage and regulates the dynamic assembly/disassembly of TP53BP1 and BRCA1. Functions in DNA double-strand break repair also by mediating the deubiquitination and subsequent stabilization of DGCR8, leading to the recruitment of DGCR8 binding partners to double strand breaks such as RNF168 or MDC1 (PubMed:34188037). In addition, promotes the deubiquitination and stabilization of the transcriptional repressor ZEB1 (PubMed:29119051). {ECO:0000269|PubMed:27083998, ECO:0000269|PubMed:29119051, ECO:0000269|PubMed:33022275, ECO:0000269|PubMed:34188037}. |
Q711Q0 | CEFIP | S252 | ochoa | Cardiac-enriched FHL2-interacting protein | Plays an important role in cardiomyocyte hypertrophy via activation of the calcineurin/NFAT signaling pathway. {ECO:0000250|UniProtKB:M0RD54}. |
Q71RC2 | LARP4 | S583 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q76L83 | ASXL2 | S139 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L590 | MCM10 | S593 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7L591 | DOK3 | S407 | ochoa | Docking protein 3 (Downstream of tyrosine kinase 3) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}. |
Q7L7X3 | TAOK1 | S965 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7LBC6 | KDM3B | S779 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7Z2W4 | ZC3HAV1 | S459 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z2Z1 | TICRR | S1303 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z2Z1 | TICRR | S1314 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3B3 | KANSL1 | S268 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z401 | DENND4A | S1303 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z4V0 | ZNF438 | S698 | ochoa | Zinc finger protein 438 | Isoform 1 acts as a transcriptional repressor. |
Q7Z591 | AKNA | S997 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z5L9 | IRF2BP2 | S71 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86TB9 | PATL1 | S278 | ochoa | Protein PAT1 homolog 1 (PAT1-like protein 1) (Protein PAT1 homolog b) (Pat1b) (hPat1b) | RNA-binding protein involved in deadenylation-dependent decapping of mRNAs, leading to the degradation of mRNAs (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Acts as a scaffold protein that connects deadenylation and decapping machinery (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). Required for cytoplasmic mRNA processing body (P-body) assembly (PubMed:17936923, PubMed:20543818, PubMed:20584987, PubMed:20852261). {ECO:0000269|PubMed:17936923, ECO:0000269|PubMed:20543818, ECO:0000269|PubMed:20584987, ECO:0000269|PubMed:20852261}.; FUNCTION: (Microbial infection) In case of infection, required for translation and replication of hepatitis C virus (HCV). {ECO:0000269|PubMed:19628699}. |
Q86UW6 | N4BP2 | S607 | ochoa | NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) | Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}. |
Q86VM9 | ZC3H18 | S534 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86W56 | PARG | S22 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86WG5 | SBF2 | S1214 | ochoa | Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) | Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}. |
Q8IUG5 | MYO18B | S2245 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IV32 | CCDC71 | S264 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IV63 | VRK3 | S122 | ochoa|psp | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IV63 | VRK3 | S129 | ochoa|psp | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IWC1 | MAP7D3 | S500 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IXI1 | RHOT2 | S538 | ochoa | Mitochondrial Rho GTPase 2 (MIRO-2) (hMiro-2) (EC 3.6.5.-) (Ras homolog gene family member T2) | Atypical mitochondrial nucleoside-triphosphatase (NTPase) involved in mitochondrial trafficking (PubMed:16630562, PubMed:22396657, PubMed:30513825). Probably involved in control of anterograde transport of mitochondria and their subcellular distribution (PubMed:22396657). Can hydrolyze GTP (By similarity). Can hydrolyze ATP and UTP (PubMed:30513825). {ECO:0000250|UniProtKB:Q8IXI2, ECO:0000269|PubMed:16630562, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:30513825}. |
Q8IY67 | RAVER1 | S512 | ochoa | Ribonucleoprotein PTB-binding 1 (Protein raver-1) | Cooperates with PTBP1 to modulate regulated alternative splicing events. Promotes exon skipping. Cooperates with PTBP1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA (By similarity). {ECO:0000250}. |
Q8IZD2 | KMT2E | S795 | ochoa | Inactive histone-lysine N-methyltransferase 2E (Inactive lysine N-methyltransferase 2E) (Myeloid/lymphoid or mixed-lineage leukemia protein 5) | Associates with chromatin regions downstream of transcriptional start sites of active genes and thus regulates gene transcription (PubMed:23629655, PubMed:23798402, PubMed:24130829). Chromatin interaction is mediated via the binding to tri-methylated histone H3 at 'Lys-4' (H3K4me3) (PubMed:23798402, PubMed:24130829). Key regulator of hematopoiesis involved in terminal myeloid differentiation and in the regulation of hematopoietic stem cell (HSCs) self-renewal by a mechanism that involves DNA methylation (By similarity). Also acts as an important cell cycle regulator, participating in cell cycle regulatory network machinery at multiple cell cycle stages including G1/S transition, S phase progression and mitotic entry (PubMed:14718661, PubMed:18573682, PubMed:19264965, PubMed:23629655). Recruited to E2F1 responsive promoters by HCFC1 where it stimulates tri-methylation of histone H3 at 'Lys-4' and transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). During myoblast differentiation, required to suppress inappropriate expression of S-phase-promoting genes and maintain expression of determination genes in quiescent cells (By similarity). {ECO:0000250|UniProtKB:Q3UG20, ECO:0000269|PubMed:14718661, ECO:0000269|PubMed:18573682, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:23798402, ECO:0000269|PubMed:24130829}.; FUNCTION: [Isoform NKp44L]: Cellular ligand for NCR2/NKp44, may play a role as a danger signal in cytotoxicity and NK-cell-mediated innate immunity. {ECO:0000269|PubMed:23958951}. |
Q8IZP0 | ABI1 | S216 | ochoa|psp | Abl interactor 1 (Abelson interactor 1) (Abi-1) (Abl-binding protein 4) (AblBP4) (Eps8 SH3 domain-binding protein) (Eps8-binding protein) (Nap1-binding protein) (Nap1BP) (Spectrin SH3 domain-binding protein 1) (e3B1) | May act in negative regulation of cell growth and transformation by interacting with nonreceptor tyrosine kinases ABL1 and/or ABL2. May play a role in regulation of EGF-induced Erk pathway activation. Involved in cytoskeletal reorganization and EGFR signaling. Together with EPS8 participates in transduction of signals from Ras to Rac. In vitro, a trimeric complex of ABI1, EPS8 and SOS1 exhibits Rac specific guanine nucleotide exchange factor (GEF) activity and ABI1 seems to act as an adapter in the complex. Regulates ABL1/c-Abl-mediated phosphorylation of ENAH. Recruits WASF1 to lamellipodia and there seems to regulate WASF1 protein level. In brain, seems to regulate the dendritic outgrowth and branching as well as to determine the shape and number of synaptic contacts of developing neurons. {ECO:0000269|PubMed:11003655, ECO:0000269|PubMed:18328268}. |
Q8IZT6 | ASPM | S35 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZW8 | TNS4 | S253 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N122 | RPTOR | S711 | ochoa|psp | Regulatory-associated protein of mTOR (Raptor) (p150 target of rapamycin (TOR)-scaffold protein) | Component of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:32561715, PubMed:37541260). In response to nutrients, growth factors or amino acids, mTORC1 is recruited to the lysosome membrane and promotes protein, lipid and nucleotide synthesis by phosphorylating several substrates, such as ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). In the same time, it inhibits catabolic pathways by phosphorylating the autophagy initiation components ULK1 and ATG13, as well as transcription factor TFEB, a master regulators of lysosomal biogenesis and autophagy (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:32561715, PubMed:37541260). The mTORC1 complex is inhibited in response to starvation and amino acid depletion (PubMed:12150925, PubMed:12150926, PubMed:12747827, PubMed:24403073, PubMed:37541260). Within the mTORC1 complex, RPTOR acts both as a molecular adapter, which (1) mediates recruitment of mTORC1 to lysosomal membranes via interaction with small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD), and a (2) substrate-specific adapter, which promotes substrate specificity by binding to TOS motif-containing proteins and direct them towards the active site of the MTOR kinase domain for phosphorylation (PubMed:12747827, PubMed:24403073, PubMed:26588989, PubMed:37541260). mTORC1 complex regulates many cellular processes, such as odontoblast and osteoclast differentiation or neuronal transmission (By similarity). mTORC1 complex in excitatory neuronal transmission is required for the prosocial behavior induced by the psychoactive substance lysergic acid diethylamide (LSD) (By similarity). {ECO:0000250|UniProtKB:Q8K4Q0, ECO:0000269|PubMed:12150925, ECO:0000269|PubMed:12150926, ECO:0000269|PubMed:12747827, ECO:0000269|PubMed:24403073, ECO:0000269|PubMed:26588989, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37541260}. |
Q8N1F8 | STK11IP | S404 | psp | Serine/threonine-protein kinase 11-interacting protein (LKB1-interacting protein 1) | May regulate STK11/LKB1 function by controlling its subcellular localization. {ECO:0000269|PubMed:11741830}. |
Q8N1G1 | REXO1 | S422 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N302 | AGGF1 | S344 | ochoa | Angiogenic factor with G patch and FHA domains 1 (Angiogenic factor VG5Q) (hVG5Q) (G patch domain-containing protein 7) (Vasculogenesis gene on 5q protein) | Promotes angiogenesis and the proliferation of endothelial cells. Able to bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. {ECO:0000269|PubMed:14961121}. |
Q8N3K9 | CMYA5 | S1551 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N568 | DCLK2 | S375 | ochoa | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8N6S5 | ARL6IP6 | S80 | ochoa | ADP-ribosylation factor-like protein 6-interacting protein 6 (ARL-6-interacting protein 6) (Aip-6) (Phosphonoformate immuno-associated protein 1) | None |
Q8NCF5 | NFATC2IP | S198 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NEV8 | EXPH5 | S362 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NEV8 | EXPH5 | S604 | ochoa | Exophilin-5 (Synaptotagmin-like protein homolog lacking C2 domains b) (SlaC2-b) (Slp homolog lacking C2 domains b) | May act as Rab effector protein and play a role in vesicle trafficking. |
Q8NF91 | SYNE1 | S5989 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8TAD4 | SLC30A5 | S378 | ochoa | Proton-coupled zinc antiporter SLC30A5 (Solute carrier family 30 member 5) (Zinc transporter 5) (ZnT-5) (ZnT-like transporter 1) (hZTL1) | Together with SLC30A6 forms a functional proton-coupled zinc ion antiporter mediating zinc entry into the lumen of organelles along the secretory pathway (PubMed:11904301, PubMed:15525635, PubMed:15994300, PubMed:19366695, PubMed:22529353). By contributing to zinc ion homeostasis within the early secretory pathway, regulates the activation and folding of enzymes like alkaline phosphatases and enzymes involved in phosphatidylinositol glycan anchor biosynthesis (PubMed:15525635, PubMed:15994300, PubMed:16636052, PubMed:35525268). Through the transport of zinc into secretory granules of pancreatic beta-cells, plays an important role in the storage and secretion of insulin (PubMed:11904301). {ECO:0000269|PubMed:11904301, ECO:0000269|PubMed:15525635, ECO:0000269|PubMed:15994300, ECO:0000269|PubMed:16636052, ECO:0000269|PubMed:19366695, ECO:0000269|PubMed:22529353, ECO:0000269|PubMed:35525268}.; FUNCTION: [Isoform 2]: Zinc ion:proton antiporter mediating influx and efflux of zinc at the plasma membrane. {ECO:0000269|PubMed:11937503, ECO:0000269|PubMed:17355957}. |
Q8TB45 | DEPTOR | S145 | ochoa | DEP domain-containing mTOR-interacting protein (hDEPTOR) (DEP domain-containing protein 6) | Negative regulator of the mTORC1 and mTORC2 complexes: inhibits the protein kinase activity of MTOR, thereby inactivating both complexes (PubMed:19446321, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:25936805, PubMed:29382726, PubMed:34519268, PubMed:34519269). DEPTOR inhibits mTORC1 and mTORC2 to induce autophagy (PubMed:22017875, PubMed:22017876, PubMed:22017877). In contrast to AKT1S1/PRAS40, only partially inhibits mTORC1 activity (PubMed:34519268, PubMed:34519269). {ECO:0000269|PubMed:19446321, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:34519268, ECO:0000269|PubMed:34519269}. |
Q8TDC3 | BRSK1 | S563 | ochoa | Serine/threonine-protein kinase BRSK1 (EC 2.7.11.1) (Brain-selective kinase 1) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 1) (BR serine/threonine-protein kinase 1) (Serine/threonine-protein kinase SAD-B) (Synapses of Amphids Defective homolog 1) (SAD1 homolog) (hSAD1) | Serine/threonine-protein kinase that plays a key role in polarization of neurons and centrosome duplication. Phosphorylates CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. In neurons, localizes to synaptic vesicles and plays a role in neurotransmitter release, possibly by phosphorylating RIMS1. Also acts as a positive regulator of centrosome duplication by mediating phosphorylation of gamma-tubulin (TUBG1 and TUBG2) at 'Ser-131', leading to translocation of gamma-tubulin and its associated proteins to the centrosome. Involved in the UV-induced DNA damage checkpoint response, probably by inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15150265, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311}. |
Q8TEK3 | DOT1L | S902 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TEK3 | DOT1L | S1246 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-79 specific (EC 2.1.1.360) (DOT1-like protein) (Histone H3-K79 methyltransferase) (H3-K79-HMTase) (Lysine N-methyltransferase 4) | Histone methyltransferase. Methylates 'Lys-79' of histone H3. Nucleosomes are preferred as substrate compared to free histones (PubMed:12123582). Binds to DNA (PubMed:12628190). {ECO:0000269|PubMed:12123582, ECO:0000269|PubMed:12628190}. |
Q8TES7 | FBF1 | S334 | ochoa|psp | Fas-binding factor 1 (FBF-1) (Protein albatross) | Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis. {ECO:0000269|PubMed:18838552, ECO:0000269|PubMed:23348840}. |
Q8TF40 | FNIP1 | S743 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8WTV1 | THAP3 | S122 | ochoa | THAP domain-containing protein 3 | Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. {ECO:0000269|PubMed:20200153}. |
Q8WU79 | SMAP2 | S177 | ochoa | Stromal membrane-associated protein 2 (Stromal membrane-associated protein 1-like) | GTPase activating protein that acts on ARF1. Can also activate ARF6 (in vitro). May play a role in clathrin-dependent retrograde transport from early endosomes to the trans-Golgi network (By similarity). {ECO:0000250}. |
Q8WUY3 | PRUNE2 | S1842 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S2189 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WWQ0 | PHIP | S1457 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q92835 | INPP5D | S289 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (EC 3.1.3.86) (Inositol polyphosphate-5-phosphatase D) (EC 3.1.3.56) (Inositol polyphosphate-5-phosphatase of 145 kDa) (SIP-145) (Phosphatidylinositol 4,5-bisphosphate 5-phosphatase) (EC 3.1.3.36) (SH2 domain-containing inositol 5'-phosphatase 1) (SH2 domain-containing inositol phosphatase 1) (SHIP-1) (p150Ship) (hp51CN) | Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways (PubMed:10764818, PubMed:8723348, PubMed:8769125). Able also to hydrolyzes the 5-phosphate of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (PubMed:10764818, PubMed:8769125, PubMed:9108392). Acts as a negative regulator of B-cell antigen receptor signaling. Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Acts as a negative regulator of myeloid cell proliferation/survival and chemotaxis, mast cell degranulation, immune cells homeostasis, integrin alpha-IIb/beta-3 signaling in platelets and JNK signaling in B-cells. Regulates proliferation of osteoclast precursors, macrophage programming, phagocytosis and activation and is required for endotoxin tolerance. Involved in the control of cell-cell junctions, CD32a signaling in neutrophils and modulation of EGF-induced phospholipase C activity (PubMed:16682172). Key regulator of neutrophil migration, by governing the formation of the leading edge and polarization required for chemotaxis. Modulates FCGR3/CD16-mediated cytotoxicity in NK cells. Mediates the activin/TGF-beta-induced apoptosis through its Smad-dependent expression. {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:12421919, ECO:0000269|PubMed:16682172, ECO:0000269|PubMed:8723348, ECO:0000269|PubMed:8769125, ECO:0000269|PubMed:9108392}. |
Q92994 | BRF1 | S553 | ochoa | Transcription factor IIIB 90 kDa subunit (TFIIIB90) (hTFIIIB90) (B-related factor 1) (BRF-1) (hBRF) (TAF3B2) (TATA box-binding protein-associated factor, RNA polymerase III, subunit 2) | General activator of RNA polymerase which utilizes different TFIIIB complexes at structurally distinct promoters. The isoform 1 is involved in the transcription of tRNA, adenovirus VA1, 7SL and 5S RNA. Isoform 2 is required for transcription of the U6 promoter. |
Q96A00 | PPP1R14A | S128 | ochoa | Protein phosphatase 1 regulatory subunit 14A (17 kDa PKC-potentiated inhibitory protein of PP1) (Protein kinase C-potentiated inhibitor protein of 17 kDa) (CPI-17) | Inhibitor of PPP1CA. Has over 1000-fold higher inhibitory activity when phosphorylated, creating a molecular switch for regulating the phosphorylation status of PPP1CA substrates and smooth muscle contraction. |
Q96DR7 | ARHGEF26 | S80 | ochoa | Rho guanine nucleotide exchange factor 26 (SH3 domain-containing guanine exchange factor) | Activates RhoG GTPase by promoting the exchange of GDP by GTP. Required for the formation of membrane ruffles during macropinocytosis. Required for the formation of cup-like structures during trans-endothelial migration of leukocytes. In case of Salmonella enterica infection, activated by SopB, which induces cytoskeleton rearrangements and promotes bacterial entry. {ECO:0000269|PubMed:15133129, ECO:0000269|PubMed:17074883, ECO:0000269|PubMed:17875742}. |
Q96GA3 | LTV1 | S408 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96II8 | LRCH3 | S583 | ochoa | DISP complex protein LRCH3 (Leucine-rich repeat and calponin homology domain-containing protein 3) | As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton. {ECO:0000269|PubMed:29467281}. |
Q96JA1 | LRIG1 | S975 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 1 (LIG-1) | Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation. {ECO:0000269|PubMed:15282549}. |
Q96JB3 | HIC2 | S348 | ochoa | Hypermethylated in cancer 2 protein (Hic-2) (HIC1-related gene on chromosome 22 protein) (Hic-3) (Zinc finger and BTB domain-containing protein 30) | Transcriptional repressor. |
Q96KR1 | ZFR | S960 | ochoa | Zinc finger RNA-binding protein (hZFR) (M-phase phosphoprotein homolog) | Involved in postimplantation and gastrulation stages of development. Involved in the nucleocytoplasmic shuttling of STAU2. Binds to DNA and RNA (By similarity). {ECO:0000250}. |
Q96KS0 | EGLN2 | S130 | ochoa|psp | Prolyl hydroxylase EGLN2 (EC 1.14.11.-) (Egl nine homolog 2) (EC 1.14.11.29) (Estrogen-induced tag 6) (EIT-6) (HPH-3) (Hypoxia-inducible factor prolyl hydroxylase 1) (HIF-PH1) (HIF-prolyl hydroxylase 1) (HPH-1) (Prolyl hydroxylase domain-containing protein 1) (PHD1) | Prolyl hydroxylase that mediates hydroxylation of proline residues in target proteins, such as ATF4, IKBKB, CEP192 and HIF1A (PubMed:11595184, PubMed:12039559, PubMed:15925519, PubMed:16509823, PubMed:17114296, PubMed:23932902). Target proteins are preferentially recognized via a LXXLAP motif (PubMed:11595184, PubMed:12039559, PubMed:15925519). Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519, PubMed:19339211). Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A (PubMed:11595184, PubMed:12039559, PubMed:12181324, PubMed:15925519). Also hydroxylates HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Has a preference for the CODD site for both HIF1A and HIF2A (PubMed:11595184, PubMed:12039559, PubMed:15925519). Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:11595184, PubMed:12039559, PubMed:15925519). Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes (PubMed:11595184, PubMed:12039559, PubMed:15925519). EGLN2 is involved in regulating hypoxia tolerance and apoptosis in cardiac and skeletal muscle (PubMed:11595184, PubMed:12039559, PubMed:15925519). Also regulates susceptibility to normoxic oxidative neuronal death (PubMed:11595184, PubMed:12039559, PubMed:15925519). Links oxygen sensing to cell cycle and primary cilia formation by hydroxylating the critical centrosome component CEP192 which promotes its ubiquitination and subsequent proteasomal degradation (PubMed:23932902). Hydroxylates IKBKB, mediating NF-kappa-B activation in hypoxic conditions (PubMed:17114296). Also mediates hydroxylation of ATF4, leading to decreased protein stability of ATF4 (By similarity). {ECO:0000250|UniProtKB:Q91YE2, ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12039559, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:15925519, ECO:0000269|PubMed:16509823, ECO:0000269|PubMed:17114296, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:23932902}. |
Q96MU7 | YTHDC1 | S308 | ochoa | YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) | Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}. |
Q96N67 | DOCK7 | S946 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96PY6 | NEK1 | S1008 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96QT6 | PHF12 | S131 | ochoa | PHD finger protein 12 (PHD factor 1) (Pf1) | Transcriptional repressor acting as key scaffolding subunit of SIN3 complexes which contributes to complex assembly by contacting each core subunit domain, stabilizes the complex and constitutes the substrate receptor by recruiting the H3 histone tail (PubMed:37137925). SIN3 complexes are composed of a SIN3 scaffold subunit, one catalytic core (HDAC1 or HDAC2) and 2 chromatin targeting modules (PubMed:11390640, PubMed:37137925). SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). May also repress transcription in a SIN3A-independent manner through recruitment of functional TLE5 complexes to DNA (PubMed:11390640). May also play a role in ribosomal biogenesis (By similarity). {ECO:0000250|UniProtKB:Q5SPL2, ECO:0000269|PubMed:11390640, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}. |
Q96QZ7 | MAGI1 | S612 | ochoa | Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (Atrophin-1-interacting protein 3) (AIP-3) (BAI1-associated protein 1) (BAP-1) (Membrane-associated guanylate kinase inverted 1) (MAGI-1) (Trinucleotide repeat-containing gene 19 protein) (WW domain-containing protein 3) (WWP3) | Plays a role in coupling actin fibers to cell junctions in endothelial cells, via its interaction with AMOTL2 and CDH5 (By similarity). May regulate acid-induced ASIC3 currents by modulating its expression at the cell surface (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q6RHR9}. |
Q96T23 | RSF1 | S397 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1375 | ochoa|psp | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T37 | RBM15 | S741 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T88 | UHRF1 | S287 | ochoa | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q9BQ04 | RBM4B | S86 | ochoa | RNA-binding protein 4B (RNA-binding motif protein 30) (RNA-binding motif protein 4B) (RNA-binding protein 30) | Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA (By similarity). {ECO:0000250}. |
Q9BQI5 | SGIP1 | S151 | ochoa | SH3-containing GRB2-like protein 3-interacting protein 1 (Endophilin-3-interacting protein) | May function in clathrin-mediated endocytosis. Has both a membrane binding/tubulating activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a preference for membranes enriched in phosphatidylserine and phosphoinositides and is required for the endocytosis of the transferrin receptor. May also bind tubulin. May play a role in the regulation of energy homeostasis. {ECO:0000250|UniProtKB:Q8VD37}. |
Q9BRD0 | BUD13 | S299 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BTX1 | NDC1 | S445 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BWE0 | REPIN1 | S27 | ochoa | DNA-binding protein REPIN1 (60 kDa origin-specific DNA-binding protein) (60 kDa replication initiation region protein) (ATT-binding protein) (DHFR oribeta-binding protein RIP60) (Zinc finger protein 464) | Sequence-specific double-stranded DNA-binding protein (PubMed:10606657, PubMed:11328883, PubMed:2174103, PubMed:2247056, PubMed:8355269). Binds ATT-rich and T-rich DNA sequences and facilitates DNA bending (PubMed:10606657, PubMed:11328883, PubMed:2174103, PubMed:2247056, PubMed:8355269). May regulate the expression of genes involved in cellular fatty acid import, including SCARB1/CD36, and genes involved in lipid droplet formation (By similarity). May regulate the expression of LCN2, and thereby influence iron metabolism and apoptosis-related pathways (By similarity). May regulate the expression of genes involved in glucose transport (By similarity). {ECO:0000250|UniProtKB:Q5U4E2, ECO:0000269|PubMed:10606657, ECO:0000269|PubMed:11328883, ECO:0000269|PubMed:2174103, ECO:0000269|PubMed:2247056, ECO:0000269|PubMed:8355269}. |
Q9BWF3 | RBM4 | S86 | ochoa | RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) | RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}. |
Q9BX63 | BRIP1 | S128 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BZ71 | PITPNM3 | S612 | ochoa | Membrane-associated phosphatidylinositol transfer protein 3 (Phosphatidylinositol transfer protein, membrane-associated 3) (PITPnm 3) (Pyk2 N-terminal domain-interacting receptor 1) (NIR-1) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (in vitro) (By similarity). Binds calcium ions. {ECO:0000250}. |
Q9H2X6 | HIPK2 | S934 | ochoa|psp | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9H4L5 | OSBPL3 | S372 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H501 | ESF1 | S694 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H816 | DCLRE1B | S356 | ochoa | 5' exonuclease Apollo (EC 3.1.-.-) (Beta-lactamase DCLRE1B) (EC 3.5.2.6) (DNA cross-link repair 1B protein) (SNM1 homolog B) (SNMIB) (hSNM1B) | 5'-3' exonuclease that plays a central role in telomere maintenance and protection during S-phase. Participates in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair, thereby ensuring that telomeres do not fuse. Plays a key role in telomeric loop (T loop) formation by being recruited by TERF2 at the leading end telomeres and by processing leading-end telomeres immediately after their replication via its exonuclease activity: generates 3' single-stranded overhang at the leading end telomeres avoiding blunt leading-end telomeres that are vulnerable to end-joining reactions and expose the telomere end in a manner that activates the DNA repair pathways. Together with TERF2, required to protect telomeres from replicative damage during replication by controlling the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology. Also involved in response to DNA damage: plays a role in response to DNA interstrand cross-links (ICLs) by facilitating double-strand break formation. In case of spindle stress, involved in prophase checkpoint. Possesses beta-lactamase activity, catalyzing the hydrolysis of penicillin G and nitrocefin (PubMed:31434986). Exhibits no activity towards other beta-lactam antibiotic classes including cephalosporins (cefotaxime) and carbapenems (imipenem) (PubMed:31434986). {ECO:0000269|PubMed:15467758, ECO:0000269|PubMed:15572677, ECO:0000269|PubMed:16730175, ECO:0000269|PubMed:16730176, ECO:0000269|PubMed:18468965, ECO:0000269|PubMed:18469862, ECO:0000269|PubMed:19197158, ECO:0000269|PubMed:19411856, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:31434986}. |
Q9H9B1 | EHMT1 | S435 | ochoa | Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}. |
Q9HAU0 | PLEKHA5 | S126 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HB07 | MYG1 | S284 | ochoa | MYG1 exonuclease (EC 3.1.-.-) | 3'-5' RNA exonuclease which cleaves in situ on specific transcripts in both nucleus and mitochondrion. Involved in regulating spatially segregated organellar RNA processing, acts as a coordinator of nucleo-mitochondrial crosstalk (PubMed:31081026). In nucleolus, processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins (Probable). {ECO:0000269|PubMed:31081026, ECO:0000305|PubMed:31081026}. |
Q9HCU4 | CELSR2 | S2648 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 2 (Cadherin family member 10) (Epidermal growth factor-like protein 2) (EGF-like protein 2) (Flamingo homolog 3) (Multiple epidermal growth factor-like domains protein 3) (Multiple EGF-like domains protein 3) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NP71 | MLXIPL | S631 | ochoa | Carbohydrate-responsive element-binding protein (ChREBP) (Class D basic helix-loop-helix protein 14) (bHLHd14) (MLX interactor) (MLX-interacting protein-like) (WS basic-helix-loop-helix leucine zipper protein) (WS-bHLH) (Williams-Beuren syndrome chromosomal region 14 protein) | Binds DNA as a heterodimer with MLX/TCFL4 and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation (By similarity). Regulates transcription in response to changes in cellular carbohydrate abundance such as occurs during fasting to feeding metabolic transition. Refeeding stimulates MLXIPL/ChREBP transcription factor, leading to increased BCKDK to PPM1K expression ratio, phosphorylation and activation of ACLY that ultimately results in the generation of malonyl-CoA and oxaloacetate immediate substrates of de novo lipogenesis and gluconeogenesis, respectively (By similarity). {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000250|UniProtKB:Q9HAP2}. |
Q9NQS7 | INCENP | S899 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQX5 | NPDC1 | S236 | ochoa | Neural proliferation differentiation and control protein 1 (NPDC-1) | Suppresses oncogenic transformation in neural and non-neural cells and down-regulates neural cell proliferation. Might be involved in transcriptional regulation (By similarity). {ECO:0000250}. |
Q9NR82 | KCNQ5 | S457 | ochoa | Potassium voltage-gated channel subfamily KQT member 5 (KQT-like 5) (Potassium channel subunit alpha KvLQT5) (Voltage-gated potassium channel subunit Kv7.5) | Pore-forming subunit of the voltage-gated potassium (Kv) channel broadly expressed in brain and involved in the regulation of neuronal excitability (PubMed:10787416, PubMed:10816588, PubMed:11159685, PubMed:28669405). Associates with KCNQ3/Kv7.3 pore-forming subunit to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons (PubMed:10816588, PubMed:11159685). Contributes, with other potassium channels, to the molecular diversity of a heterogeneous population of M-channels, varying in kinetic and pharmacological properties, which underlie this physiologically important current (PubMed:10816588). Also forms a functional channel with KCNQ1/Kv7.1 subunit that may contribute to vasoconstriction and hypertension (PubMed:24855057). Channel may be selectively permeable in vitro to other cations besides potassium, in decreasing order of affinity K(+) = Rb(+) > Cs(+) > Na(+) (PubMed:10816588). Similar to the native M-channel, KCNQ3-KCNQ5 potassium channel is suppressed by activation of the muscarinic acetylcholine receptor CHRM1 (PubMed:10816588). {ECO:0000269|PubMed:10787416, ECO:0000269|PubMed:10816588, ECO:0000269|PubMed:11159685, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:28669405}. |
Q9NRE2 | TSHZ2 | S332 | ochoa | Teashirt homolog 2 (Ovarian cancer-related protein 10-2) (OVC10-2) (Zinc finger protein 218) | Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}. |
Q9NVU0 | POLR3E | Y30 | ochoa | DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}. |
Q9NWH9 | SLTM | S553 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ4 | GPATCH2L | S426 | ochoa | G patch domain-containing protein 2-like | None |
Q9NYJ8 | TAB2 | S450 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 2) (TAK1-binding protein 2) (TAB-2) (TGF-beta-activated kinase 1-binding protein 2) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020, PubMed:33184450, PubMed:36681779). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). Also recognizes and binds Lys-63'-linked polyubiquitin chains of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains (PubMed:27746020). Regulates the IL1-mediated translocation of NCOR1 out of the nucleus (By similarity). Involved in heart development (PubMed:20493459). {ECO:0000250|UniProtKB:Q99K90, ECO:0000269|PubMed:10882101, ECO:0000269|PubMed:11460167, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:20493459, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:33184450, ECO:0000269|PubMed:36681779}. |
Q9NYL2 | MAP3K20 | S599 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NZM3 | ITSN2 | S889 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9P227 | ARHGAP23 | S843 | ochoa | Rho GTPase-activating protein 23 (Rho-type GTPase-activating protein 23) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q9P2J2 | IGSF9 | S797 | ochoa | Protein turtle homolog A (Immunoglobulin superfamily member 9A) (IgSF9A) | Functions in dendrite outgrowth and synapse maturation. {ECO:0000250}. |
Q9UBU7 | DBF4 | S130 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UBU7 | DBF4 | S359 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UFD9 | RIMBP3 | S1228 | ochoa | RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) | Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}. |
Q9UGU0 | TCF20 | S871 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU5 | HMGXB4 | S118 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHB7 | AFF4 | S549 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHF7 | TRPS1 | S115 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHN6 | CEMIP2 | S63 | ochoa | Cell surface hyaluronidase CEMIP2 (EC 3.2.1.35) (Cell migration-inducing hyaluronidase 2) (Transmembrane protein 2) | Cell surface hyaluronidase that mediates the initial cleavage of extracellular high-molecular-weight hyaluronan into intermediate-size hyaluronan of approximately 10-5 kDa fragments (PubMed:37527776). Very specific to hyaluronan; not able to cleave chondroitin sulfate or dermatan sulfate. Has an essential function in systemic hyaluronan catabolism and turnover and regulates cell adhesion and migration via hyaluronan degradation at focal adhesion sites (By similarity). Acts as a regulator of angiogenesis and heart morphogenesis by mediating degradation of extracellular hyaluronan, thereby regulating VEGF signaling (By similarity). {ECO:0000250|UniProtKB:A3KPQ7, ECO:0000250|UniProtKB:Q5FWI3, ECO:0000269|PubMed:37527776}. |
Q9UIG0 | BAZ1B | S330 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UK61 | TASOR | S945 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKI2 | CDC42EP3 | S27 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKV0 | HDAC9 | S22 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9ULH0 | KIDINS220 | S1555 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULH0 | KIDINS220 | S1662 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULX6 | AKAP8L | S283 | ochoa | A-kinase anchor protein 8-like (AKAP8-like protein) (Helicase A-binding protein 95) (HAP95) (Homologous to AKAP95 protein) (HA95) (Neighbor of A-kinase-anchoring protein 95) (Neighbor of AKAP95) | Could play a role in constitutive transport element (CTE)-mediated gene expression by association with DHX9. Increases CTE-dependent nuclear unspliced mRNA export (PubMed:10748171, PubMed:11402034). Proposed to target PRKACA to the nucleus but does not seem to be implicated in the binding of regulatory subunit II of PKA (PubMed:10761695, PubMed:11884601). May be involved in nuclear envelope breakdown and chromatin condensation. May be involved in anchoring nuclear membranes to chromatin in interphase and in releasing membranes from chromating at mitosis (PubMed:11034899). May regulate the initiation phase of DNA replication when associated with TMPO isoform Beta (PubMed:12538639). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function seems to act redundantly with AKAP8 (PubMed:16980585). May be involved in regulation of pre-mRNA splicing (PubMed:17594903). {ECO:0000269|PubMed:10748171, ECO:0000269|PubMed:11034899, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11884601, ECO:0000269|PubMed:12538639, ECO:0000269|PubMed:16980585, ECO:0000305|PubMed:10761695}.; FUNCTION: (Microbial infection) In case of EBV infection, may target PRKACA to EBNA-LP-containing nuclear sites to modulate transcription from specific promoters. {ECO:0000269|PubMed:11884601}.; FUNCTION: (Microbial infection) Can synergize with DHX9 to activate the CTE-mediated gene expression of type D retroviruses. {ECO:0000269|PubMed:11402034}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, involved in the DHX9-promoted annealing of host tRNA(Lys3) to viral genomic RNA as a primer in reverse transcription; in vitro negatively regulates DHX9 annealing activity. {ECO:0000269|PubMed:25034436}. |
Q9UPN3 | MACF1 | S3914 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPQ9 | TNRC6B | S879 | ochoa | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
Q9Y3S1 | WNK2 | S1798 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y3T9 | NOC2L | S240 | ochoa | Nucleolar complex protein 2 homolog (Protein NOC2 homolog) (NOC2-like protein) (Novel INHAT repressor) | Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. {ECO:0000269|PubMed:16322561, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:20959462}. |
Q9Y490 | TLN1 | S1589 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y580 | RBM7 | S113 | ochoa | RNA-binding protein 7 (RNA-binding motif protein 7) | RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104, PubMed:27871484). NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:25189701, PubMed:25852104, PubMed:27871484). Binds preferentially polyuridine sequences and associates with newly synthesized RNAs, including pre-mRNAs and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from small nuclear RNAs (snRNAs) (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104). Participates in several biological processes including DNA damage response (DDR) and stress response (PubMed:25525152, PubMed:30824372). During stress response, activation of the p38MAPK-MK2 pathway decreases RBM7-RNA-binding and subsequently the RNA exosome degradation activities, thereby modulating the turnover of non-coding transcriptome (PubMed:25525152). Participates in DNA damage response (DDR), through its interaction with MEPCE and LARP7, the core subunits of 7SK snRNP complex, that release the positive transcription elongation factor b (P-TEFb) complex from the 7SK snRNP. In turn, activation of P-TEFb complex induces the transcription of P-TEFb-dependent DDR genes to promote cell viability (PubMed:30824372). {ECO:0000269|PubMed:25189701, ECO:0000269|PubMed:25525152, ECO:0000269|PubMed:25578728, ECO:0000269|PubMed:25852104, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:30824372}. |
Q9Y666 | SLC12A7 | S78 | ochoa | Solute carrier family 12 member 7 (Electroneutral potassium-chloride cotransporter 4) (K-Cl cotransporter 4) | Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10913127). May mediate K(+) uptake into Deiters' cells in the cochlea and contribute to K(+) recycling in the inner ear. Important for the survival of cochlear outer and inner hair cells and the maintenance of the organ of Corti. May be required for basolateral Cl(-) extrusion in the kidney and contribute to renal acidification (By similarity). {ECO:0000250, ECO:0000269|PubMed:10913127}. |
Q7Z4V5 | HDGFL2 | S183 | Sugiyama | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q86UP2 | KTN1 | S722 | Sugiyama | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
A2A3N6 | PIPSL | S405 | ochoa | Putative PIP5K1A and PSMD4-like protein (PIP5K1A-PSMD4) | Has negligible PIP5 kinase activity. Binds to ubiquitinated proteins. |
A6NEL2 | SOWAHB | S742 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
O14686 | KMT2D | S2640 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O43572 | AKAP10 | S187 | ochoa | A-kinase anchor protein 10, mitochondrial (AKAP-10) (Dual specificity A kinase-anchoring protein 2) (D-AKAP-2) (Protein kinase A-anchoring protein 10) (PRKA10) | Differentially targeted protein that binds to type I and II regulatory subunits of protein kinase A and anchors them to the mitochondria or the plasma membrane. Although the physiological relevance between PKA and AKAPS with mitochondria is not fully understood, one idea is that BAD, a proapoptotic member, is phosphorylated and inactivated by mitochondria-anchored PKA. It cannot be excluded too that it may facilitate PKA as well as G protein signal transduction, by acting as an adapter for assembling multiprotein complexes. With its RGS domain, it could lead to the interaction to G-alpha proteins, providing a link between the signaling machinery and the downstream kinase (By similarity). {ECO:0000250}. |
O60336 | MAPKBP1 | S1314 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
P06576 | ATP5F1B | S51 | ochoa | ATP synthase F(1) complex subunit beta, mitochondrial (EC 7.1.2.2) (ATP synthase F1 subunit beta) | Catalytic subunit beta, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable) (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the subunit alpha (ATP5F1A), forms the catalytic core in the F(1) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:25168243, ECO:0000305|PubMed:36239646, ECO:0000305|PubMed:37244256}. |
P35228 | NOS2 | S81 | ochoa | Nitric oxide synthase, inducible (EC 1.14.13.39) (Hepatocyte NOS) (HEP-NOS) (Inducible NO synthase) (Inducible NOS) (iNOS) (NOS type II) (Peptidyl-cysteine S-nitrosylase NOS2) | Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body (PubMed:7504305, PubMed:7531687, PubMed:7544004, PubMed:7682706). In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (PubMed:25417112). Involved in inflammation, enhances the synthesis of pro-inflammatory mediators such as IL6 and IL8 (PubMed:19688109). {ECO:0000250|UniProtKB:P29477, ECO:0000269|PubMed:19688109, ECO:0000269|PubMed:25417112, ECO:0000269|PubMed:7504305, ECO:0000269|PubMed:7531687, ECO:0000269|PubMed:7544004, ECO:0000269|PubMed:7682706}. |
Q09666 | AHNAK | S559 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q6IAA8 | LAMTOR1 | S27 | ochoa | Ragulator complex protein LAMTOR1 (Late endosomal/lysosomal adaptor and MAPK and MTOR activator 1) (Lipid raft adaptor protein p18) (Protein associated with DRMs and endosomes) (p27Kip1-releasing factor from RhoA) (p27RF-Rho) | Key component of the Ragulator complex, a multiprotein complex involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids (PubMed:20381137, PubMed:22980980, PubMed:29158492). Activated by amino acids through a mechanism involving the lysosomal V-ATPase, the Ragulator plays a dual role for the small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD): it (1) acts as a guanine nucleotide exchange factor (GEF), activating the small GTPases Rag and (2) mediates recruitment of Rag GTPases to the lysosome membrane (PubMed:22980980, PubMed:28935770, PubMed:29158492, PubMed:30181260, PubMed:31001086, PubMed:32686708, PubMed:36476874). Activated Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated (PubMed:20381137, PubMed:22980980, PubMed:29158492). LAMTOR1 is directly responsible for anchoring the Ragulator complex to the lysosomal membrane (PubMed:31001086, PubMed:32686708). LAMTOR1 wraps around the other subunits of the Ragulator complex to hold them in place and interacts with the Rag GTPases, thereby playing a key role in the recruitment of the mTORC1 complex to lysosomes (PubMed:28935770, PubMed:29107538, PubMed:29123114, PubMed:29285400). Also involved in the control of embryonic stem cells differentiation via non-canonical RagC/RRAGC and RagD/RRAGD activation: together with FLCN, it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation (By similarity). Also required for late endosomes/lysosomes biogenesis it may regulate both the recycling of receptors through endosomes and the MAPK signaling pathway through recruitment of some of its components to late endosomes (PubMed:20381137, PubMed:22980980). May be involved in cholesterol homeostasis regulating LDL uptake and cholesterol release from late endosomes/lysosomes (PubMed:20544018). May also play a role in RHOA activation (PubMed:19654316). {ECO:0000250|UniProtKB:Q9CQ22, ECO:0000269|PubMed:19654316, ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:20544018, ECO:0000269|PubMed:22980980, ECO:0000269|PubMed:28935770, ECO:0000269|PubMed:29107538, ECO:0000269|PubMed:29123114, ECO:0000269|PubMed:29158492, ECO:0000269|PubMed:29285400, ECO:0000269|PubMed:30181260, ECO:0000269|PubMed:31001086, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:36476874}. |
Q6V0I7 | FAT4 | S4655 | ochoa | Protocadherin Fat 4 (hFat4) (Cadherin family member 14) (FAT tumor suppressor homolog 4) (Fat-like cadherin protein FAT-J) | Cadherins are calcium-dependent cell adhesion proteins. FAT4 plays a role in the maintenance of planar cell polarity as well as in inhibition of YAP1-mediated neuroprogenitor cell proliferation and differentiation (By similarity). {ECO:0000250}. |
Q7Z353 | HDX | S398 | ochoa | Highly divergent homeobox | None |
Q8N3R9 | PALS1 | S25 | ochoa | Protein PALS1 (MAGUK p55 subfamily member 5) (Membrane protein, palmitoylated 5) (Protein associated with Lin-7 1) | Plays a role in tight junction biogenesis and in the establishment of cell polarity in epithelial cells (PubMed:16678097, PubMed:25385611). Also involved in adherens junction biogenesis by ensuring correct localization of the exocyst complex protein EXOC4/SEC8 which allows trafficking of adherens junction structural component CDH1 to the cell surface (By similarity). Plays a role through its interaction with CDH5 in vascular lumen formation and endothelial membrane polarity (PubMed:27466317). Required during embryonic and postnatal retinal development (By similarity). Required for the maintenance of cerebellar progenitor cells in an undifferentiated proliferative state, preventing premature differentiation, and is required for cerebellar histogenesis, fissure formation, cerebellar layer organization and cortical development (By similarity). Plays a role in neuronal progenitor cell survival, potentially via promotion of mTOR signaling (By similarity). Plays a role in the radial and longitudinal extension of the myelin sheath in Schwann cells (By similarity). May modulate SC6A1/GAT1-mediated GABA uptake by stabilizing the transporter (By similarity). Plays a role in the T-cell receptor-mediated activation of NF-kappa-B (PubMed:21479189). Required for localization of EZR to the apical membrane of parietal cells and may play a role in the dynamic remodeling of the apical cytoskeleton (By similarity). Required for the normal polarized localization of the vesicular marker STX4 (By similarity). Required for the correct trafficking of the myelin proteins PMP22 and MAG (By similarity). Involved in promoting phosphorylation and cytoplasmic retention of transcriptional coactivators YAP1 and WWTR1/TAZ which leads to suppression of TGFB1-dependent transcription of target genes such as CCN2/CTGF, SERPINE1/PAI1, SNAI1/SNAIL1 and SMAD7 (By similarity). {ECO:0000250|UniProtKB:B4F7E7, ECO:0000250|UniProtKB:Q9JLB2, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21479189, ECO:0000269|PubMed:25385611, ECO:0000269|PubMed:27466317}.; FUNCTION: (Microbial infection) Acts as an interaction partner for human coronaviruses SARS-CoV and, probably, SARS-CoV-2 envelope protein E which results in delayed formation of tight junctions and disregulation of cell polarity. {ECO:0000269|PubMed:20861307, ECO:0000303|PubMed:32891874}. |
Q8N4X5 | AFAP1L2 | S640 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q9C0C2 | TNKS1BP1 | S1138 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZR2 | REXO4 | S111 | ochoa | RNA exonuclease 4 (EC 3.1.-.-) (Exonuclease XPMC2) (Prevents mitotic catastrophe 2 protein homolog) (hPMC2) | None |
Q9HC62 | SENP2 | S123 | ochoa | Sentrin-specific protease 2 (EC 3.4.22.-) (Axam2) (SMT3-specific isopeptidase 2) (Smt3ip2) (Sentrin/SUMO-specific protease SENP2) | Protease that catalyzes two essential functions in the SUMO pathway (PubMed:11896061, PubMed:12192048, PubMed:15296745, PubMed:20194620, PubMed:21965678). The first is the hydrolysis of an alpha-linked peptide bond at the C-terminal end of the small ubiquitin-like modifier (SUMO) propeptides, SUMO1, SUMO2 and SUMO3 leading to the mature form of the proteins (PubMed:15296745). The second is the deconjugation of SUMO1, SUMO2 and SUMO3 from targeted proteins, by cleaving an epsilon-linked peptide bond between the C-terminal glycine of the mature SUMO and the lysine epsilon-amino group of the target protein (PubMed:15296745, PubMed:20194620, PubMed:21965678). May down-regulate CTNNB1 levels and thereby modulate the Wnt pathway (By similarity). Deconjugates SUMO2 from MTA1 (PubMed:21965678). Plays a dynamic role in adipogenesis by desumoylating and promoting the stabilization of CEBPB (PubMed:20194620). Acts as a regulator of the cGAS-STING pathway by catalyzing desumoylation of CGAS and STING1 during the late phase of viral infection (By similarity). {ECO:0000250|UniProtKB:Q91ZX6, ECO:0000269|PubMed:11896061, ECO:0000269|PubMed:12192048, ECO:0000269|PubMed:15296745, ECO:0000269|PubMed:20194620, ECO:0000269|PubMed:21965678}. |
Q9P212 | PLCE1 | S2271 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}. |
Q9P266 | JCAD | S1002 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2D0 | IBTK | S1083 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9UHV7 | MED13 | S749 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9ULM3 | YEATS2 | S519 | ochoa | YEATS domain-containing protein 2 | Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}. |
Q9UQC2 | GAB2 | S543 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y3R0 | GRIP1 | S433 | ochoa | Glutamate receptor-interacting protein 1 (GRIP-1) | May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}. |
P05129 | PRKCG | S70 | Sugiyama | Protein kinase C gamma type (PKC-gamma) (EC 2.7.11.13) | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1, modulation of receptors and neuronal functions related to sensitivity to opiates, pain and alcohol, mediation of synaptic function and cell survival after ischemia, and inhibition of gap junction activity after oxidative stress. Binds and phosphorylates GRIA4/GLUR4 glutamate receptor and regulates its function by increasing plasma membrane-associated GRIA4 expression. In primary cerebellar neurons treated with the agonist 3,5-dihyidroxyphenylglycine, functions downstream of the metabotropic glutamate receptor GRM5/MGLUR5 and phosphorylates GRIN1/NMDAR1 receptor which plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. May be involved in the regulation of hippocampal long-term potentiation (LTP), but may be not necessary for the process of synaptic plasticity. May be involved in desensitization of mu-type opioid receptor-mediated G-protein activation in the spinal cord, and may be critical for the development and/or maintenance of morphine-induced reinforcing effects in the limbic forebrain. May modulate the functionality of mu-type-opioid receptors by participating in a signaling pathway which leads to the phosphorylation and degradation of opioid receptors. May also contributes to chronic morphine-induced changes in nociceptive processing. Plays a role in neuropathic pain mechanisms and contributes to the maintenance of the allodynia pain produced by peripheral inflammation. Plays an important role in initial sensitivity and tolerance to ethanol, by mediating the behavioral effects of ethanol as well as the effects of this drug on the GABA(A) receptors. During and after cerebral ischemia modulate neurotransmission and cell survival in synaptic membranes, and is involved in insulin-induced inhibition of necrosis, an important mechanism for minimizing ischemic injury. Required for the elimination of multiple climbing fibers during innervation of Purkinje cells in developing cerebellum. Is activated in lens epithelial cells upon hydrogen peroxide treatment, and phosphorylates connexin-43 (GJA1/CX43), resulting in disassembly of GJA1 gap junction plaques and inhibition of gap junction activity which could provide a protective effect against oxidative stress (By similarity). Phosphorylates p53/TP53 and promotes p53/TP53-dependent apoptosis in response to DNA damage. Involved in the phase resetting of the cerebral cortex circadian clock during temporally restricted feeding. Stabilizes the core clock component BMAL1 by interfering with its ubiquitination, thus suppressing its degradation, resulting in phase resetting of the cerebral cortex clock (By similarity). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P63318, ECO:0000250|UniProtKB:P63319, ECO:0000269|PubMed:16377624, ECO:0000269|PubMed:36040231}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-1640170 | Cell Cycle | 9.036105e-13 | 12.044 |
R-HSA-69278 | Cell Cycle, Mitotic | 2.257194e-11 | 10.646 |
R-HSA-4839726 | Chromatin organization | 2.266271e-07 | 6.645 |
R-HSA-3247509 | Chromatin modifying enzymes | 4.157226e-07 | 6.381 |
R-HSA-453274 | Mitotic G2-G2/M phases | 7.811478e-06 | 5.107 |
R-HSA-68877 | Mitotic Prometaphase | 7.506663e-06 | 5.125 |
R-HSA-69275 | G2/M Transition | 1.426723e-05 | 4.846 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 1.540937e-05 | 4.812 |
R-HSA-68886 | M Phase | 1.970792e-05 | 4.705 |
R-HSA-69620 | Cell Cycle Checkpoints | 2.599473e-05 | 4.585 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 4.896903e-05 | 4.310 |
R-HSA-1538133 | G0 and Early G1 | 6.826910e-05 | 4.166 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 1.253818e-04 | 3.902 |
R-HSA-5633007 | Regulation of TP53 Activity | 1.345622e-04 | 3.871 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 1.623904e-04 | 3.789 |
R-HSA-8854518 | AURKA Activation by TPX2 | 2.671514e-04 | 3.573 |
R-HSA-141424 | Amplification of signal from the kinetochores | 2.897564e-04 | 3.538 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 2.897564e-04 | 3.538 |
R-HSA-69206 | G1/S Transition | 2.841803e-04 | 3.546 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 2.901941e-04 | 3.537 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 3.260134e-04 | 3.487 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 3.722549e-04 | 3.429 |
R-HSA-68882 | Mitotic Anaphase | 3.714802e-04 | 3.430 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 3.816380e-04 | 3.418 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 4.031014e-04 | 3.395 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 4.348451e-04 | 3.362 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 4.348451e-04 | 3.362 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 4.565568e-04 | 3.341 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 4.601817e-04 | 3.337 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 5.642150e-04 | 3.249 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 6.085950e-04 | 3.216 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 7.126677e-04 | 3.147 |
R-HSA-380287 | Centrosome maturation | 7.327058e-04 | 3.135 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 7.217702e-04 | 3.142 |
R-HSA-74160 | Gene expression (Transcription) | 7.567994e-04 | 3.121 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 7.774232e-04 | 3.109 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 7.921637e-04 | 3.101 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 9.317271e-04 | 3.031 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 1.187405e-03 | 2.925 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 1.187405e-03 | 2.925 |
R-HSA-198753 | ERK/MAPK targets | 1.350006e-03 | 2.870 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 1.447352e-03 | 2.839 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 1.320600e-03 | 2.879 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 1.320600e-03 | 2.879 |
R-HSA-69205 | G1/S-Specific Transcription | 9.900606e-04 | 3.004 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.222337e-03 | 2.913 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 1.222337e-03 | 2.913 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 1.146951e-03 | 2.940 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 9.996117e-04 | 3.000 |
R-HSA-180746 | Nuclear import of Rev protein | 1.091882e-03 | 2.962 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 1.222337e-03 | 2.913 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 1.538960e-03 | 2.813 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 1.639617e-03 | 2.785 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 1.646194e-03 | 2.784 |
R-HSA-2467813 | Separation of Sister Chromatids | 2.066004e-03 | 2.685 |
R-HSA-3214841 | PKMTs methylate histone lysines | 2.190734e-03 | 2.659 |
R-HSA-350054 | Notch-HLH transcription pathway | 2.942142e-03 | 2.531 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 2.527424e-03 | 2.597 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 2.527424e-03 | 2.597 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 2.739244e-03 | 2.562 |
R-HSA-450294 | MAP kinase activation | 2.962813e-03 | 2.528 |
R-HSA-75153 | Apoptotic execution phase | 2.966627e-03 | 2.528 |
R-HSA-9675135 | Diseases of DNA repair | 2.966627e-03 | 2.528 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 3.191408e-03 | 2.496 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 3.458032e-03 | 2.461 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.418543e-03 | 2.466 |
R-HSA-69242 | S Phase | 3.306543e-03 | 2.481 |
R-HSA-6802957 | Oncogenic MAPK signaling | 3.425307e-03 | 2.465 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 3.418543e-03 | 2.466 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 3.895766e-03 | 2.409 |
R-HSA-983189 | Kinesins | 4.158272e-03 | 2.381 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 4.228960e-03 | 2.374 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 4.559580e-03 | 2.341 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 4.559580e-03 | 2.341 |
R-HSA-9700206 | Signaling by ALK in cancer | 4.749163e-03 | 2.323 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 4.749163e-03 | 2.323 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 5.049137e-03 | 2.297 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 5.049137e-03 | 2.297 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 5.049137e-03 | 2.297 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 5.049137e-03 | 2.297 |
R-HSA-73887 | Death Receptor Signaling | 5.070946e-03 | 2.295 |
R-HSA-176187 | Activation of ATR in response to replication stress | 5.110463e-03 | 2.292 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 5.110463e-03 | 2.292 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 5.110463e-03 | 2.292 |
R-HSA-5688426 | Deubiquitination | 5.126425e-03 | 2.290 |
R-HSA-193648 | NRAGE signals death through JNK | 5.291773e-03 | 2.276 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 5.500547e-03 | 2.260 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 6.097205e-03 | 2.215 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 5.779800e-03 | 2.238 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 6.135093e-03 | 2.212 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 6.135093e-03 | 2.212 |
R-HSA-69231 | Cyclin D associated events in G1 | 6.158452e-03 | 2.211 |
R-HSA-69236 | G1 Phase | 6.158452e-03 | 2.211 |
R-HSA-202670 | ERKs are inactivated | 7.161719e-03 | 2.145 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 6.824193e-03 | 2.166 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 6.824193e-03 | 2.166 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 6.412063e-03 | 2.193 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 6.916523e-03 | 2.160 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 6.597139e-03 | 2.181 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 6.916523e-03 | 2.160 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 7.359871e-03 | 2.133 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 7.591610e-03 | 2.120 |
R-HSA-69481 | G2/M Checkpoints | 8.141130e-03 | 2.089 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 8.537836e-03 | 2.069 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 8.585656e-03 | 2.066 |
R-HSA-9008059 | Interleukin-37 signaling | 8.537836e-03 | 2.069 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 9.045528e-03 | 2.044 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 9.359062e-03 | 2.029 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 9.924705e-03 | 2.003 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 1.000557e-02 | 2.000 |
R-HSA-6784531 | tRNA processing in the nucleus | 1.053138e-02 | 1.978 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 1.060244e-02 | 1.975 |
R-HSA-448424 | Interleukin-17 signaling | 1.060244e-02 | 1.975 |
R-HSA-199991 | Membrane Trafficking | 1.087139e-02 | 1.964 |
R-HSA-4641265 | Repression of WNT target genes | 1.116090e-02 | 1.952 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 1.132105e-02 | 1.946 |
R-HSA-156711 | Polo-like kinase mediated events | 1.239265e-02 | 1.907 |
R-HSA-9700645 | ALK mutants bind TKIs | 1.239889e-02 | 1.907 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 1.259091e-02 | 1.900 |
R-HSA-5693537 | Resolution of D-Loop Structures | 1.280294e-02 | 1.893 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 1.409371e-02 | 1.851 |
R-HSA-3371556 | Cellular response to heat stress | 1.417054e-02 | 1.849 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 1.417170e-02 | 1.849 |
R-HSA-73857 | RNA Polymerase II Transcription | 1.466965e-02 | 1.834 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 1.490867e-02 | 1.827 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 1.611698e-02 | 1.793 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 1.639814e-02 | 1.785 |
R-HSA-5673000 | RAF activation | 1.630847e-02 | 1.788 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 1.596508e-02 | 1.797 |
R-HSA-3214842 | HDMs demethylate histones | 1.611698e-02 | 1.793 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 1.709844e-02 | 1.767 |
R-HSA-9707616 | Heme signaling | 1.710221e-02 | 1.767 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 1.764359e-02 | 1.753 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 1.768182e-02 | 1.752 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 1.803959e-02 | 1.744 |
R-HSA-4839735 | Signaling by AXIN mutants | 1.819408e-02 | 1.740 |
R-HSA-4839748 | Signaling by AMER1 mutants | 1.819408e-02 | 1.740 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 1.819408e-02 | 1.740 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 1.848782e-02 | 1.733 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 1.848782e-02 | 1.733 |
R-HSA-2028269 | Signaling by Hippo | 1.923565e-02 | 1.716 |
R-HSA-9827857 | Specification of primordial germ cells | 1.923565e-02 | 1.716 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 2.138092e-02 | 1.670 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 2.153140e-02 | 1.667 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 2.032343e-02 | 1.692 |
R-HSA-3214847 | HATs acetylate histones | 2.138082e-02 | 1.670 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 2.104892e-02 | 1.677 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 2.017743e-02 | 1.695 |
R-HSA-5357801 | Programmed Cell Death | 2.040948e-02 | 1.690 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 2.138082e-02 | 1.670 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 2.160705e-02 | 1.665 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 2.160705e-02 | 1.665 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 2.302875e-02 | 1.638 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 2.340547e-02 | 1.631 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 2.340547e-02 | 1.631 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 2.401021e-02 | 1.620 |
R-HSA-109581 | Apoptosis | 2.444871e-02 | 1.612 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 2.506992e-02 | 1.601 |
R-HSA-191859 | snRNP Assembly | 2.581426e-02 | 1.588 |
R-HSA-194441 | Metabolism of non-coding RNA | 2.581426e-02 | 1.588 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 2.623890e-02 | 1.581 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 2.953576e-02 | 1.530 |
R-HSA-4839744 | Signaling by APC mutants | 2.953576e-02 | 1.530 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 2.953576e-02 | 1.530 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 2.953576e-02 | 1.530 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 2.953576e-02 | 1.530 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 2.669927e-02 | 1.574 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 2.669927e-02 | 1.574 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 2.669927e-02 | 1.574 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 2.669927e-02 | 1.574 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 2.669927e-02 | 1.574 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 2.892036e-02 | 1.539 |
R-HSA-5693538 | Homology Directed Repair | 2.781960e-02 | 1.556 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 2.741142e-02 | 1.562 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 2.901584e-02 | 1.537 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 2.963258e-02 | 1.528 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 2.975076e-02 | 1.527 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 2.975076e-02 | 1.527 |
R-HSA-68962 | Activation of the pre-replicative complex | 3.009882e-02 | 1.521 |
R-HSA-6807070 | PTEN Regulation | 3.067130e-02 | 1.513 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 3.076976e-02 | 1.512 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 3.076976e-02 | 1.512 |
R-HSA-72187 | mRNA 3'-end processing | 3.129287e-02 | 1.505 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.171185e-02 | 1.499 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 3.189662e-02 | 1.496 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 3.241393e-02 | 1.489 |
R-HSA-6804754 | Regulation of TP53 Expression | 3.488285e-02 | 1.457 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 3.344847e-02 | 1.476 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 3.344847e-02 | 1.476 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 3.517803e-02 | 1.454 |
R-HSA-68875 | Mitotic Prophase | 3.488750e-02 | 1.457 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 3.660371e-02 | 1.436 |
R-HSA-212436 | Generic Transcription Pathway | 3.280149e-02 | 1.484 |
R-HSA-9909396 | Circadian clock | 3.308244e-02 | 1.480 |
R-HSA-9733709 | Cardiogenesis | 3.299081e-02 | 1.482 |
R-HSA-1169408 | ISG15 antiviral mechanism | 3.622580e-02 | 1.441 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 3.721291e-02 | 1.429 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 3.721291e-02 | 1.429 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 3.721291e-02 | 1.429 |
R-HSA-416482 | G alpha (12/13) signalling events | 3.722214e-02 | 1.429 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 3.772095e-02 | 1.423 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 3.772095e-02 | 1.423 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 3.779682e-02 | 1.423 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 3.868623e-02 | 1.412 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 3.868623e-02 | 1.412 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 3.868623e-02 | 1.412 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 3.903818e-02 | 1.409 |
R-HSA-1980143 | Signaling by NOTCH1 | 4.160290e-02 | 1.381 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 4.247102e-02 | 1.372 |
R-HSA-8941326 | RUNX2 regulates bone development | 4.352088e-02 | 1.361 |
R-HSA-73894 | DNA Repair | 4.500206e-02 | 1.347 |
R-HSA-69473 | G2/M DNA damage checkpoint | 4.649313e-02 | 1.333 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 4.768824e-02 | 1.322 |
R-HSA-2132295 | MHC class II antigen presentation | 4.800342e-02 | 1.319 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 4.879749e-02 | 1.312 |
R-HSA-199920 | CREB phosphorylation | 5.904842e-02 | 1.229 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 5.875274e-02 | 1.231 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 5.632096e-02 | 1.249 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 5.247657e-02 | 1.280 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 5.399980e-02 | 1.268 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 5.803926e-02 | 1.236 |
R-HSA-9018519 | Estrogen-dependent gene expression | 5.453021e-02 | 1.263 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 5.823025e-02 | 1.235 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 5.632096e-02 | 1.249 |
R-HSA-5617833 | Cilium Assembly | 5.185812e-02 | 1.285 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 5.543917e-02 | 1.256 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 5.195060e-02 | 1.284 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 5.961087e-02 | 1.225 |
R-HSA-6807878 | COPI-mediated anterograde transport | 5.981016e-02 | 1.223 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 6.015411e-02 | 1.221 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 6.017476e-02 | 1.221 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 6.266466e-02 | 1.203 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 6.435517e-02 | 1.191 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 6.435517e-02 | 1.191 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 6.435517e-02 | 1.191 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 6.671241e-02 | 1.176 |
R-HSA-9754189 | Germ layer formation at gastrulation | 6.675554e-02 | 1.176 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 6.836584e-02 | 1.165 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 6.836584e-02 | 1.165 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 6.836584e-02 | 1.165 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 6.870862e-02 | 1.163 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 6.873265e-02 | 1.163 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 7.034667e-02 | 1.153 |
R-HSA-9796292 | Formation of axial mesoderm | 7.857640e-02 | 1.105 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 7.307092e-02 | 1.136 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 8.080339e-02 | 1.093 |
R-HSA-9856651 | MITF-M-dependent gene expression | 7.184075e-02 | 1.144 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 7.414392e-02 | 1.130 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 7.591133e-02 | 1.120 |
R-HSA-9006925 | Intracellular signaling by second messengers | 7.964406e-02 | 1.099 |
R-HSA-1059683 | Interleukin-6 signaling | 7.857640e-02 | 1.105 |
R-HSA-176974 | Unwinding of DNA | 7.644758e-02 | 1.117 |
R-HSA-8953854 | Metabolism of RNA | 8.222054e-02 | 1.085 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 8.389419e-02 | 1.076 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 8.412393e-02 | 1.075 |
R-HSA-1592230 | Mitochondrial biogenesis | 8.432160e-02 | 1.074 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 8.695970e-02 | 1.061 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 8.695970e-02 | 1.061 |
R-HSA-9022707 | MECP2 regulates transcription factors | 8.715202e-02 | 1.060 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 8.715202e-02 | 1.060 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 8.715202e-02 | 1.060 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 8.715202e-02 | 1.060 |
R-HSA-75893 | TNF signaling | 8.727807e-02 | 1.059 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 8.727807e-02 | 1.059 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 8.797893e-02 | 1.056 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 8.832088e-02 | 1.054 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 8.832088e-02 | 1.054 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 9.054086e-02 | 1.043 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 9.205439e-02 | 1.036 |
R-HSA-9833482 | PKR-mediated signaling | 9.627958e-02 | 1.016 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 9.909260e-02 | 1.004 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 9.909260e-02 | 1.004 |
R-HSA-9652817 | Signaling by MAPK mutants | 9.909260e-02 | 1.004 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 1.006938e-01 | 0.997 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 1.006938e-01 | 0.997 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 1.006938e-01 | 0.997 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 1.006938e-01 | 0.997 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 1.006938e-01 | 0.997 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 1.011423e-01 | 0.995 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 1.118117e-01 | 0.952 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 1.118117e-01 | 0.952 |
R-HSA-8866911 | TFAP2 (AP-2) family regulates transcription of cell cycle factors | 1.118117e-01 | 0.952 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 1.118117e-01 | 0.952 |
R-HSA-9707587 | Regulation of HMOX1 expression and activity | 1.118117e-01 | 0.952 |
R-HSA-444257 | RSK activation | 1.213735e-01 | 0.916 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 1.213735e-01 | 0.916 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 1.213735e-01 | 0.916 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 1.020142e-01 | 0.991 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 1.020142e-01 | 0.991 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 1.035671e-01 | 0.985 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 1.035671e-01 | 0.985 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 1.192334e-01 | 0.924 |
R-HSA-9656223 | Signaling by RAF1 mutants | 1.167055e-01 | 0.933 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 1.057607e-01 | 0.976 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 1.057607e-01 | 0.976 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 1.057607e-01 | 0.976 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.092756e-01 | 0.961 |
R-HSA-437239 | Recycling pathway of L1 | 1.208089e-01 | 0.918 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 1.057607e-01 | 0.976 |
R-HSA-2559583 | Cellular Senescence | 1.192537e-01 | 0.924 |
R-HSA-5689880 | Ub-specific processing proteases | 1.123418e-01 | 0.949 |
R-HSA-913531 | Interferon Signaling | 1.183020e-01 | 0.927 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 1.118117e-01 | 0.952 |
R-HSA-2262752 | Cellular responses to stress | 1.175746e-01 | 0.930 |
R-HSA-6794362 | Protein-protein interactions at synapses | 1.191227e-01 | 0.924 |
R-HSA-6802949 | Signaling by RAS mutants | 1.057607e-01 | 0.976 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 1.081964e-01 | 0.966 |
R-HSA-6794361 | Neurexins and neuroligins | 1.094281e-01 | 0.961 |
R-HSA-4791275 | Signaling by WNT in cancer | 1.228959e-01 | 0.910 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 1.233101e-01 | 0.909 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 1.233101e-01 | 0.909 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 1.240286e-01 | 0.906 |
R-HSA-9605310 | Defective Base Excision Repair Associated with MUTYH | 1.240286e-01 | 0.906 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 1.240286e-01 | 0.906 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 1.240286e-01 | 0.906 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 1.240286e-01 | 0.906 |
R-HSA-9608290 | Defective MUTYH substrate processing | 1.240286e-01 | 0.906 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 1.240286e-01 | 0.906 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 1.240286e-01 | 0.906 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 1.240286e-01 | 0.906 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 1.240286e-01 | 0.906 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 1.240286e-01 | 0.906 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 1.245606e-01 | 0.905 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 1.250352e-01 | 0.903 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 1.252696e-01 | 0.902 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 1.257393e-01 | 0.901 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 1.257393e-01 | 0.901 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 1.295622e-01 | 0.888 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 1.296886e-01 | 0.887 |
R-HSA-373760 | L1CAM interactions | 1.300074e-01 | 0.886 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 1.311998e-01 | 0.882 |
R-HSA-114452 | Activation of BH3-only proteins | 1.397035e-01 | 0.855 |
R-HSA-9669937 | Drug resistance of KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9700649 | Drug resistance of ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9616334 | Defective Base Excision Repair Associated with NEIL1 | 2.615817e-01 | 0.582 |
R-HSA-9669921 | KIT mutants bind TKIs | 2.615817e-01 | 0.582 |
R-HSA-9636003 | NEIL3-mediated resolution of ICLs | 2.615817e-01 | 0.582 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 2.615817e-01 | 0.582 |
R-HSA-9669936 | Sorafenib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 2.615817e-01 | 0.582 |
R-HSA-9717264 | ASP-3026-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9717319 | brigatinib-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9669926 | Nilotinib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9717326 | crizotinib-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 2.615817e-01 | 0.582 |
R-HSA-9717329 | lorlatinib-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9717316 | alectinib-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9629232 | Defective Base Excision Repair Associated with NEIL3 | 2.615817e-01 | 0.582 |
R-HSA-5467343 | Deletions in the AMER1 gene destabilize the destruction complex | 2.615817e-01 | 0.582 |
R-HSA-9608287 | Defective MUTYH substrate binding | 2.615817e-01 | 0.582 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 2.615817e-01 | 0.582 |
R-HSA-9717323 | ceritinib-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9669924 | Masitinib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9669929 | Regorafenib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9661070 | Defective translocation of RB1 mutants to the nucleus | 2.615817e-01 | 0.582 |
R-HSA-9669914 | Dasatinib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9669917 | Imatinib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9717301 | NVP-TAE684-resistant ALK mutants | 2.615817e-01 | 0.582 |
R-HSA-9669934 | Sunitinib-resistant KIT mutants | 2.615817e-01 | 0.582 |
R-HSA-9603505 | NTRK3 as a dependence receptor | 2.310681e-01 | 0.636 |
R-HSA-190704 | Oligomerization of connexins into connexons | 2.310681e-01 | 0.636 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 2.310681e-01 | 0.636 |
R-HSA-9636667 | Manipulation of host energy metabolism | 2.310681e-01 | 0.636 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 2.310681e-01 | 0.636 |
R-HSA-5545619 | XAV939 stabilizes AXIN | 2.310681e-01 | 0.636 |
R-HSA-3304347 | Loss of Function of SMAD4 in Cancer | 2.310681e-01 | 0.636 |
R-HSA-3311021 | SMAD4 MH2 Domain Mutants in Cancer | 2.310681e-01 | 0.636 |
R-HSA-3315487 | SMAD2/3 MH2 Domain Mutants in Cancer | 2.310681e-01 | 0.636 |
R-HSA-9636249 | Inhibition of nitric oxide production | 1.952058e-01 | 0.710 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 1.952058e-01 | 0.710 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 1.656221e-01 | 0.781 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 1.656221e-01 | 0.781 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 1.414020e-01 | 0.850 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 1.414020e-01 | 0.850 |
R-HSA-190873 | Gap junction degradation | 1.611960e-01 | 0.793 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 1.901512e-01 | 0.721 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 1.901512e-01 | 0.721 |
R-HSA-9758920 | Formation of lateral plate mesoderm | 2.266743e-01 | 0.645 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 2.266743e-01 | 0.645 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 2.266743e-01 | 0.645 |
R-HSA-193670 | p75NTR negatively regulates cell cycle via SC1 | 2.745737e-01 | 0.561 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 2.745737e-01 | 0.561 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 2.745737e-01 | 0.561 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 2.745737e-01 | 0.561 |
R-HSA-2644607 | Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling | 2.745737e-01 | 0.561 |
R-HSA-69200 | Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... | 2.745737e-01 | 0.561 |
R-HSA-2644605 | FBXW7 Mutants and NOTCH1 in Cancer | 2.745737e-01 | 0.561 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 3.420547e-01 | 0.466 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 3.420547e-01 | 0.466 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 3.420547e-01 | 0.466 |
R-HSA-75102 | C6 deamination of adenosine | 3.420547e-01 | 0.466 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 3.420547e-01 | 0.466 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 3.420547e-01 | 0.466 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 3.420547e-01 | 0.466 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 3.420547e-01 | 0.466 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 3.420547e-01 | 0.466 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 3.420547e-01 | 0.466 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 3.420547e-01 | 0.466 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 3.420547e-01 | 0.466 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 3.420547e-01 | 0.466 |
R-HSA-9948011 | CASP5 inflammasome assembly | 4.547487e-01 | 0.342 |
R-HSA-211728 | Regulation of PAK-2p34 activity by PS-GAP/RHG10 | 4.547487e-01 | 0.342 |
R-HSA-5632987 | Defective Mismatch Repair Associated With PMS2 | 4.547487e-01 | 0.342 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 4.547487e-01 | 0.342 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 4.547487e-01 | 0.342 |
R-HSA-9692912 | SARS-CoV-1 targets PDZ proteins in cell-cell junction | 4.547487e-01 | 0.342 |
R-HSA-9636467 | Blockage of phagosome acidification | 4.547487e-01 | 0.342 |
R-HSA-5545483 | Defective Mismatch Repair Associated With MLH1 | 4.547487e-01 | 0.342 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 4.547487e-01 | 0.342 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 4.547487e-01 | 0.342 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 1.499466e-01 | 0.824 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 1.499466e-01 | 0.824 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 1.499466e-01 | 0.824 |
R-HSA-2586552 | Signaling by Leptin | 2.058151e-01 | 0.687 |
R-HSA-196025 | Formation of annular gap junctions | 2.438783e-01 | 0.613 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 2.923208e-01 | 0.534 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 2.923208e-01 | 0.534 |
R-HSA-69478 | G2/M DNA replication checkpoint | 2.923208e-01 | 0.534 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 1.446319e-01 | 0.840 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 2.163977e-01 | 0.665 |
R-HSA-9697154 | Disorders of Nervous System Development | 2.163977e-01 | 0.665 |
R-HSA-9005895 | Pervasive developmental disorders | 2.163977e-01 | 0.665 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 2.163977e-01 | 0.665 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 1.503507e-01 | 0.823 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 1.503507e-01 | 0.823 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 1.928593e-01 | 0.715 |
R-HSA-9675151 | Disorders of Developmental Biology | 1.928593e-01 | 0.715 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 2.542319e-01 | 0.595 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 2.542319e-01 | 0.595 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 3.564876e-01 | 0.448 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 3.564876e-01 | 0.448 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 3.564876e-01 | 0.448 |
R-HSA-111463 | SMAC (DIABLO) binds to IAPs | 3.564876e-01 | 0.448 |
R-HSA-74713 | IRS activation | 3.564876e-01 | 0.448 |
R-HSA-111464 | SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes | 3.564876e-01 | 0.448 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 3.564876e-01 | 0.448 |
R-HSA-68911 | G2 Phase | 3.564876e-01 | 0.448 |
R-HSA-9823739 | Formation of the anterior neural plate | 2.237884e-01 | 0.650 |
R-HSA-418885 | DCC mediated attractive signaling | 2.237884e-01 | 0.650 |
R-HSA-1295596 | Spry regulation of FGF signaling | 2.237884e-01 | 0.650 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 3.009754e-01 | 0.521 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 3.009754e-01 | 0.521 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 3.009754e-01 | 0.521 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 3.009754e-01 | 0.521 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 3.009754e-01 | 0.521 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 2.607473e-01 | 0.584 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 2.607473e-01 | 0.584 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 1.430110e-01 | 0.845 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 2.029787e-01 | 0.693 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 2.029787e-01 | 0.693 |
R-HSA-399719 | Trafficking of AMPA receptors | 1.621673e-01 | 0.790 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 2.648952e-01 | 0.577 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 3.053455e-01 | 0.515 |
R-HSA-428540 | Activation of RAC1 | 3.053455e-01 | 0.515 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 3.053455e-01 | 0.515 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 3.053455e-01 | 0.515 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 3.600186e-01 | 0.444 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 3.600186e-01 | 0.444 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 3.600186e-01 | 0.444 |
R-HSA-8948747 | Regulation of PTEN localization | 3.600186e-01 | 0.444 |
R-HSA-418886 | Netrin mediated repulsion signals | 3.600186e-01 | 0.444 |
R-HSA-8849473 | PTK6 Expression | 3.600186e-01 | 0.444 |
R-HSA-75157 | FasL/ CD95L signaling | 4.476010e-01 | 0.349 |
R-HSA-1839120 | Signaling by FGFR1 amplification mutants | 4.476010e-01 | 0.349 |
R-HSA-844455 | The NLRP1 inflammasome | 4.476010e-01 | 0.349 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 4.476010e-01 | 0.349 |
R-HSA-9034793 | Activated NTRK3 signals through PLCG1 | 4.476010e-01 | 0.349 |
R-HSA-8875513 | MET interacts with TNS proteins | 4.476010e-01 | 0.349 |
R-HSA-8866906 | TFAP2 (AP-2) family regulates transcription of other transcription factors | 4.476010e-01 | 0.349 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 4.476010e-01 | 0.349 |
R-HSA-5660862 | Defective SLC7A7 causes lysinuric protein intolerance (LPI) | 4.476010e-01 | 0.349 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 4.476010e-01 | 0.349 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 4.476010e-01 | 0.349 |
R-HSA-5603037 | IRAK4 deficiency (TLR5) | 4.476010e-01 | 0.349 |
R-HSA-74158 | RNA Polymerase III Transcription | 1.670447e-01 | 0.777 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 1.670447e-01 | 0.777 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 2.674839e-01 | 0.573 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 2.108216e-01 | 0.676 |
R-HSA-1433559 | Regulation of KIT signaling | 3.073678e-01 | 0.512 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 1.703532e-01 | 0.769 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 2.122486e-01 | 0.673 |
R-HSA-9664873 | Pexophagy | 3.598406e-01 | 0.444 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 3.598406e-01 | 0.444 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 3.079785e-01 | 0.511 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.079785e-01 | 0.511 |
R-HSA-877312 | Regulation of IFNG signaling | 3.580357e-01 | 0.446 |
R-HSA-111469 | SMAC, XIAP-regulated apoptotic response | 4.370664e-01 | 0.359 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 4.370664e-01 | 0.359 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 4.370664e-01 | 0.359 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 4.370664e-01 | 0.359 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 4.370664e-01 | 0.359 |
R-HSA-8849470 | PTK6 Regulates Cell Cycle | 4.370664e-01 | 0.359 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 4.370664e-01 | 0.359 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 4.370664e-01 | 0.359 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 4.370664e-01 | 0.359 |
R-HSA-111459 | Activation of caspases through apoptosome-mediated cleavage | 4.370664e-01 | 0.359 |
R-HSA-69052 | Switching of origins to a post-replicative state | 1.585232e-01 | 0.800 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 3.554234e-01 | 0.449 |
R-HSA-429947 | Deadenylation of mRNA | 3.054805e-01 | 0.515 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 3.038779e-01 | 0.517 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 3.038779e-01 | 0.517 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 3.523866e-01 | 0.453 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 3.523866e-01 | 0.453 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 4.275361e-01 | 0.369 |
R-HSA-446107 | Type I hemidesmosome assembly | 4.275361e-01 | 0.369 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 4.275361e-01 | 0.369 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 2.660500e-01 | 0.575 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 2.359017e-01 | 0.627 |
R-HSA-389513 | Co-inhibition by CTLA4 | 3.491241e-01 | 0.457 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 1.895786e-01 | 0.722 |
R-HSA-381042 | PERK regulates gene expression | 2.980391e-01 | 0.526 |
R-HSA-9669938 | Signaling by KIT in disease | 3.457473e-01 | 0.461 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 3.457473e-01 | 0.461 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 4.189901e-01 | 0.378 |
R-HSA-9839394 | TGFBR3 expression | 3.423216e-01 | 0.466 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 4.112301e-01 | 0.386 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 2.222820e-01 | 0.653 |
R-HSA-68949 | Orc1 removal from chromatin | 2.846592e-01 | 0.546 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 2.846592e-01 | 0.546 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 3.320819e-01 | 0.479 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 3.320819e-01 | 0.479 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 2.417027e-01 | 0.617 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 2.778570e-01 | 0.556 |
R-HSA-3928664 | Ephrin signaling | 3.974712e-01 | 0.401 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 3.974712e-01 | 0.401 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 3.974712e-01 | 0.401 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.399805e-01 | 0.620 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 3.097458e-01 | 0.509 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 3.601323e-01 | 0.444 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 3.556707e-01 | 0.449 |
R-HSA-72649 | Translation initiation complex formation | 3.354622e-01 | 0.474 |
R-HSA-1989781 | PPARA activates gene expression | 2.384405e-01 | 0.623 |
R-HSA-5696398 | Nucleotide Excision Repair | 2.982083e-01 | 0.525 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 3.572763e-01 | 0.447 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 3.572763e-01 | 0.447 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 3.759057e-01 | 0.425 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 4.336081e-01 | 0.363 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 4.336081e-01 | 0.363 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 4.526207e-01 | 0.344 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 4.526207e-01 | 0.344 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 4.526207e-01 | 0.344 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 4.639540e-01 | 0.334 |
R-HSA-418457 | cGMP effects | 4.639540e-01 | 0.334 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 4.771308e-01 | 0.321 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 4.771308e-01 | 0.321 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 4.771308e-01 | 0.321 |
R-HSA-430116 | GP1b-IX-V activation signalling | 4.930562e-01 | 0.307 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 4.930562e-01 | 0.307 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 4.930562e-01 | 0.307 |
R-HSA-112411 | MAPK1 (ERK2) activation | 4.930562e-01 | 0.307 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 5.135310e-01 | 0.289 |
R-HSA-9645135 | STAT5 Activation | 5.135310e-01 | 0.289 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 5.135310e-01 | 0.289 |
R-HSA-191650 | Regulation of gap junction activity | 5.429592e-01 | 0.265 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 5.429592e-01 | 0.265 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 5.429592e-01 | 0.265 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 5.429592e-01 | 0.265 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 5.429592e-01 | 0.265 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 5.429592e-01 | 0.265 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 5.429592e-01 | 0.265 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 5.429592e-01 | 0.265 |
R-HSA-9652169 | Signaling by MAP2K mutants | 5.429592e-01 | 0.265 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 5.429592e-01 | 0.265 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 5.429592e-01 | 0.265 |
R-HSA-1483196 | PI and PC transport between ER and Golgi membranes | 5.973916e-01 | 0.224 |
R-HSA-8853334 | Signaling by FGFR3 fusions in cancer | 5.973916e-01 | 0.224 |
R-HSA-2033515 | t(4;14) translocations of FGFR3 | 5.973916e-01 | 0.224 |
R-HSA-73930 | Abasic sugar-phosphate removal via the single-nucleotide replacement pathway | 5.973916e-01 | 0.224 |
R-HSA-9669935 | Signaling by juxtamembrane domain KIT mutants | 5.973916e-01 | 0.224 |
R-HSA-9680187 | Signaling by extracellular domain mutants of KIT | 5.973916e-01 | 0.224 |
R-HSA-9845622 | Defective VWF binding to collagen type I | 5.973916e-01 | 0.224 |
R-HSA-5603027 | IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... | 5.973916e-01 | 0.224 |
R-HSA-5619111 | Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) | 5.973916e-01 | 0.224 |
R-HSA-9953111 | MPS IV - Morquio syndrome B (CS/DS degradation) | 5.973916e-01 | 0.224 |
R-HSA-2206308 | MPS IV - Morquio syndrome B (Keratin metabolism) | 5.973916e-01 | 0.224 |
R-HSA-5619050 | Defective SLC4A1 causes hereditary spherocytosis type 4 (HSP4), distal renal tu... | 5.973916e-01 | 0.224 |
R-HSA-5602680 | MyD88 deficiency (TLR5) | 5.973916e-01 | 0.224 |
R-HSA-5674404 | PTEN Loss of Function in Cancer | 5.973916e-01 | 0.224 |
R-HSA-6791055 | TALDO1 deficiency: failed conversion of SH7P, GA3P to Fru(6)P, E4P | 5.973916e-01 | 0.224 |
R-HSA-5619081 | Defective SLC6A3 causes Parkinsonism-dystonia infantile (PKDYS) | 5.973916e-01 | 0.224 |
R-HSA-6791462 | TALDO1 deficiency: failed conversion of Fru(6)P, E4P to SH7P, GA3P | 5.973916e-01 | 0.224 |
R-HSA-9669933 | Signaling by kinase domain mutants of KIT | 5.973916e-01 | 0.224 |
R-HSA-5602636 | IKBKB deficiency causes SCID | 5.973916e-01 | 0.224 |
R-HSA-5660724 | Defective SLC6A3 causes Parkinsonism-dystonia infantile (PKDYS) | 5.973916e-01 | 0.224 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 5.973916e-01 | 0.224 |
R-HSA-4549380 | Defective ALG1 causes CDG-1k | 5.973916e-01 | 0.224 |
R-HSA-9916722 | 3-hydroxyisobutyryl-CoA hydrolase deficiency | 5.973916e-01 | 0.224 |
R-HSA-8942233 | Intestinal infectious diseases | 5.973916e-01 | 0.224 |
R-HSA-5619109 | Defective SLC6A2 causes orthostatic intolerance (OI) | 5.973916e-01 | 0.224 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 5.973916e-01 | 0.224 |
R-HSA-5619052 | Defective SLC9A9 causes autism 16 (AUTS16) | 5.973916e-01 | 0.224 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 5.973916e-01 | 0.224 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 2.650743e-01 | 0.577 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 3.782420e-01 | 0.422 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 4.174005e-01 | 0.379 |
R-HSA-167161 | HIV Transcription Initiation | 4.174005e-01 | 0.379 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 4.174005e-01 | 0.379 |
R-HSA-72172 | mRNA Splicing | 2.834476e-01 | 0.548 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 4.312622e-01 | 0.365 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 4.557246e-01 | 0.341 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 4.557246e-01 | 0.341 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 4.557246e-01 | 0.341 |
R-HSA-113418 | Formation of the Early Elongation Complex | 4.557246e-01 | 0.341 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 4.557246e-01 | 0.341 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 4.341621e-01 | 0.362 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 4.562983e-01 | 0.341 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 5.003104e-01 | 0.301 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 3.780800e-01 | 0.422 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 4.734528e-01 | 0.325 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 4.486626e-01 | 0.348 |
R-HSA-69183 | Processive synthesis on the lagging strand | 5.153635e-01 | 0.288 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 5.153635e-01 | 0.288 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 5.153635e-01 | 0.288 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 4.795063e-01 | 0.319 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 4.765061e-01 | 0.322 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 4.765061e-01 | 0.322 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 5.331994e-01 | 0.273 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 5.331994e-01 | 0.273 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 5.331994e-01 | 0.273 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 5.331994e-01 | 0.273 |
R-HSA-5658442 | Regulation of RAS by GAPs | 4.924725e-01 | 0.308 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 4.846381e-01 | 0.315 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 5.102305e-01 | 0.292 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 5.185026e-01 | 0.285 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 5.308515e-01 | 0.275 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 5.552046e-01 | 0.256 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 5.552046e-01 | 0.256 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 5.552046e-01 | 0.256 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 5.552046e-01 | 0.256 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 5.123979e-01 | 0.290 |
R-HSA-5674135 | MAP2K and MAPK activation | 5.199250e-01 | 0.284 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 5.302266e-01 | 0.276 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 5.302635e-01 | 0.276 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 5.465739e-01 | 0.262 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 5.465739e-01 | 0.262 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 5.465739e-01 | 0.262 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 5.430460e-01 | 0.265 |
R-HSA-167172 | Transcription of the HIV genome | 5.317391e-01 | 0.274 |
R-HSA-73864 | RNA Polymerase I Transcription | 5.324022e-01 | 0.274 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 5.405052e-01 | 0.267 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 5.401466e-01 | 0.267 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 5.840905e-01 | 0.234 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 5.840905e-01 | 0.234 |
R-HSA-9632974 | NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis | 5.840905e-01 | 0.234 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 5.840905e-01 | 0.234 |
R-HSA-114516 | Disinhibition of SNARE formation | 5.840905e-01 | 0.234 |
R-HSA-112412 | SOS-mediated signalling | 5.840905e-01 | 0.234 |
R-HSA-72731 | Recycling of eIF2:GDP | 5.840905e-01 | 0.234 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 5.663911e-01 | 0.247 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 5.804028e-01 | 0.236 |
R-HSA-167169 | HIV Transcription Elongation | 5.622013e-01 | 0.250 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 5.622013e-01 | 0.250 |
R-HSA-182971 | EGFR downregulation | 5.662266e-01 | 0.247 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 5.674137e-01 | 0.246 |
R-HSA-4641257 | Degradation of AXIN | 5.741882e-01 | 0.241 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 5.774268e-01 | 0.239 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 5.774268e-01 | 0.239 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 5.774268e-01 | 0.239 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 5.851260e-01 | 0.233 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 5.803734e-01 | 0.236 |
R-HSA-167287 | HIV elongation arrest and recovery | 5.803734e-01 | 0.236 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 5.803734e-01 | 0.236 |
R-HSA-5696400 | Dual Incision in GG-NER | 5.870904e-01 | 0.231 |
R-HSA-9842860 | Regulation of endogenous retroelements | 6.090323e-01 | 0.215 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 6.368406e-01 | 0.196 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 5.959706e-01 | 0.225 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 6.010605e-01 | 0.221 |
R-HSA-69002 | DNA Replication Pre-Initiation | 6.327914e-01 | 0.199 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 6.193247e-01 | 0.208 |
R-HSA-6782135 | Dual incision in TC-NER | 6.200684e-01 | 0.208 |
R-HSA-9006335 | Signaling by Erythropoietin | 6.162916e-01 | 0.210 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 6.162916e-01 | 0.210 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 6.162916e-01 | 0.210 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 6.162916e-01 | 0.210 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 6.133525e-01 | 0.212 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 6.130283e-01 | 0.213 |
R-HSA-112308 | Presynaptic depolarization and calcium channel opening | 6.130283e-01 | 0.213 |
R-HSA-9636569 | Suppression of autophagy | 6.262367e-01 | 0.203 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 6.262367e-01 | 0.203 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 6.262367e-01 | 0.203 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 6.422750e-01 | 0.192 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 6.664283e-01 | 0.176 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 6.330322e-01 | 0.199 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 6.668337e-01 | 0.176 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 6.668337e-01 | 0.176 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 6.360662e-01 | 0.196 |
R-HSA-69166 | Removal of the Flap Intermediate | 6.360662e-01 | 0.196 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 6.516085e-01 | 0.186 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 6.516085e-01 | 0.186 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 6.516085e-01 | 0.186 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 6.930798e-01 | 0.159 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 6.930798e-01 | 0.159 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 6.681735e-01 | 0.175 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 6.681735e-01 | 0.175 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 6.681735e-01 | 0.175 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 6.555040e-01 | 0.183 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 6.555040e-01 | 0.183 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 6.555040e-01 | 0.183 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 6.555040e-01 | 0.183 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 6.477612e-01 | 0.189 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 6.831157e-01 | 0.166 |
R-HSA-69186 | Lagging Strand Synthesis | 6.724598e-01 | 0.172 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 6.875714e-01 | 0.163 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 6.875714e-01 | 0.163 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 6.659456e-01 | 0.177 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 6.659456e-01 | 0.177 |
R-HSA-9027284 | Erythropoietin activates RAS | 6.818991e-01 | 0.166 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 6.818991e-01 | 0.166 |
R-HSA-73780 | RNA Polymerase III Chain Elongation | 6.818991e-01 | 0.166 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 6.961937e-01 | 0.157 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 6.972279e-01 | 0.157 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 6.972279e-01 | 0.157 |
R-HSA-111957 | Cam-PDE 1 activation | 6.972279e-01 | 0.157 |
R-HSA-176417 | Phosphorylation of Emi1 | 6.972279e-01 | 0.157 |
R-HSA-211736 | Stimulation of the cell death response by PAK-2p34 | 7.027234e-01 | 0.153 |
R-HSA-3560796 | Defective PAPSS2 causes SEMD-PA | 7.027234e-01 | 0.153 |
R-HSA-198765 | Signalling to ERK5 | 7.027234e-01 | 0.153 |
R-HSA-9034013 | NTF3 activates NTRK3 signaling | 7.027234e-01 | 0.153 |
R-HSA-2206291 | MPS IIIC - Sanfilippo syndrome C | 7.027234e-01 | 0.153 |
R-HSA-3858516 | Glycogen storage disease type 0 (liver GYS2) | 7.027234e-01 | 0.153 |
R-HSA-4755609 | Defective DHDDS causes RP59 | 7.027234e-01 | 0.153 |
R-HSA-5658034 | HHAT G278V doesn't palmitoylate Hh-Np | 7.027234e-01 | 0.153 |
R-HSA-9674519 | Defective F8 sulfation at Y1699 | 7.027234e-01 | 0.153 |
R-HSA-5619089 | Defective SLC6A5 causes hyperekplexia 3 (HKPX3) | 7.027234e-01 | 0.153 |
R-HSA-5690338 | Defective ABCC6 causes PXE | 7.027234e-01 | 0.153 |
R-HSA-3878781 | Glycogen storage disease type IV (GBE1) | 7.027234e-01 | 0.153 |
R-HSA-9918449 | Defective visual phototransduction due to STRA6 loss of function | 7.027234e-01 | 0.153 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 7.027234e-01 | 0.153 |
R-HSA-9845621 | Defective VWF cleavage by ADAMTS13 variant | 7.027234e-01 | 0.153 |
R-HSA-9845619 | Enhanced cleavage of VWF variant by ADAMTS13 | 7.027234e-01 | 0.153 |
R-HSA-177929 | Signaling by EGFR | 4.765061e-01 | 0.322 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 1.858645e-01 | 0.731 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 3.863910e-01 | 0.413 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 3.358659e-01 | 0.474 |
R-HSA-453276 | Regulation of mitotic cell cycle | 6.052179e-01 | 0.218 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 6.052179e-01 | 0.218 |
R-HSA-9007101 | Rab regulation of trafficking | 1.408415e-01 | 0.851 |
R-HSA-73893 | DNA Damage Bypass | 4.633891e-01 | 0.334 |
R-HSA-5610787 | Hedgehog 'off' state | 7.006375e-01 | 0.155 |
R-HSA-1257604 | PIP3 activates AKT signaling | 1.760256e-01 | 0.754 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 5.933001e-01 | 0.227 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 3.695866e-01 | 0.432 |
R-HSA-69239 | Synthesis of DNA | 3.349127e-01 | 0.475 |
R-HSA-1266695 | Interleukin-7 signaling | 3.423216e-01 | 0.466 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 1.897870e-01 | 0.722 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 1.924389e-01 | 0.716 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 2.980391e-01 | 0.526 |
R-HSA-201556 | Signaling by ALK | 3.254392e-01 | 0.488 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 2.872106e-01 | 0.542 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 2.337923e-01 | 0.631 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 2.331598e-01 | 0.632 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 5.045646e-01 | 0.297 |
R-HSA-2682334 | EPH-Ephrin signaling | 3.781268e-01 | 0.422 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 2.699118e-01 | 0.569 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 6.346252e-01 | 0.197 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 6.234073e-01 | 0.205 |
R-HSA-8983432 | Interleukin-15 signaling | 3.580357e-01 | 0.446 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 4.040961e-01 | 0.394 |
R-HSA-9614085 | FOXO-mediated transcription | 6.823846e-01 | 0.166 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 3.246735e-01 | 0.489 |
R-HSA-5693606 | DNA Double Strand Break Response | 3.448717e-01 | 0.462 |
R-HSA-69190 | DNA strand elongation | 2.690845e-01 | 0.570 |
R-HSA-9646399 | Aggrephagy | 3.556707e-01 | 0.449 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 3.371922e-01 | 0.472 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 5.933001e-01 | 0.227 |
R-HSA-525793 | Myogenesis | 1.810060e-01 | 0.742 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 1.648366e-01 | 0.783 |
R-HSA-8854214 | TBC/RABGAPs | 1.519439e-01 | 0.818 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.897870e-01 | 0.722 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 3.457473e-01 | 0.461 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 4.526207e-01 | 0.344 |
R-HSA-180786 | Extension of Telomeres | 6.452674e-01 | 0.190 |
R-HSA-4086398 | Ca2+ pathway | 4.122101e-01 | 0.385 |
R-HSA-381070 | IRE1alpha activates chaperones | 2.365542e-01 | 0.626 |
R-HSA-8985947 | Interleukin-9 signaling | 2.438783e-01 | 0.613 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 2.392497e-01 | 0.621 |
R-HSA-1433557 | Signaling by SCF-KIT | 2.145302e-01 | 0.669 |
R-HSA-9823730 | Formation of definitive endoderm | 3.491241e-01 | 0.457 |
R-HSA-193639 | p75NTR signals via NF-kB | 6.818991e-01 | 0.166 |
R-HSA-194138 | Signaling by VEGF | 3.123138e-01 | 0.505 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 2.354555e-01 | 0.628 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 3.974712e-01 | 0.401 |
R-HSA-877300 | Interferon gamma signaling | 2.940911e-01 | 0.532 |
R-HSA-8939211 | ESR-mediated signaling | 6.465924e-01 | 0.189 |
R-HSA-373752 | Netrin-1 signaling | 4.110188e-01 | 0.386 |
R-HSA-9843745 | Adipogenesis | 1.489764e-01 | 0.827 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 2.869347e-01 | 0.542 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 2.869347e-01 | 0.542 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 3.431701e-01 | 0.464 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 3.053455e-01 | 0.515 |
R-HSA-6804757 | Regulation of TP53 Degradation | 1.670447e-01 | 0.777 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 3.491241e-01 | 0.457 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 2.603823e-01 | 0.584 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 4.727438e-01 | 0.325 |
R-HSA-171319 | Telomere Extension By Telomerase | 7.012418e-01 | 0.154 |
R-HSA-165159 | MTOR signalling | 3.513649e-01 | 0.454 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 2.163977e-01 | 0.665 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 2.327944e-01 | 0.633 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 1.427750e-01 | 0.845 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 6.243469e-01 | 0.205 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 6.162916e-01 | 0.210 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 6.116074e-01 | 0.214 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 6.659456e-01 | 0.177 |
R-HSA-8984722 | Interleukin-35 Signalling | 5.331994e-01 | 0.273 |
R-HSA-201451 | Signaling by BMP | 6.681735e-01 | 0.175 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 2.042813e-01 | 0.690 |
R-HSA-451927 | Interleukin-2 family signaling | 6.662045e-01 | 0.176 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 1.998107e-01 | 0.699 |
R-HSA-157118 | Signaling by NOTCH | 6.419120e-01 | 0.193 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 1.896772e-01 | 0.722 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 2.674839e-01 | 0.573 |
R-HSA-166208 | mTORC1-mediated signalling | 3.457473e-01 | 0.461 |
R-HSA-418360 | Platelet calcium homeostasis | 4.933005e-01 | 0.307 |
R-HSA-3371571 | HSF1-dependent transactivation | 6.155574e-01 | 0.211 |
R-HSA-157858 | Gap junction trafficking and regulation | 6.542311e-01 | 0.184 |
R-HSA-6783310 | Fanconi Anemia Pathway | 4.411406e-01 | 0.355 |
R-HSA-376176 | Signaling by ROBO receptors | 5.808761e-01 | 0.236 |
R-HSA-69541 | Stabilization of p53 | 6.367635e-01 | 0.196 |
R-HSA-9012852 | Signaling by NOTCH3 | 2.823847e-01 | 0.549 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 5.430780e-01 | 0.265 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 2.042813e-01 | 0.690 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 2.480847e-01 | 0.605 |
R-HSA-74749 | Signal attenuation | 2.058151e-01 | 0.687 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 3.038779e-01 | 0.517 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 1.431478e-01 | 0.844 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 3.513649e-01 | 0.454 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 4.872421e-01 | 0.312 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 4.488716e-01 | 0.348 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 5.237348e-01 | 0.281 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 5.237348e-01 | 0.281 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 6.477612e-01 | 0.189 |
R-HSA-190828 | Gap junction trafficking | 6.108844e-01 | 0.214 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 3.782420e-01 | 0.422 |
R-HSA-9020558 | Interleukin-2 signaling | 2.542319e-01 | 0.595 |
R-HSA-2559585 | Oncogene Induced Senescence | 1.458206e-01 | 0.836 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 1.914191e-01 | 0.718 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 5.510069e-01 | 0.259 |
R-HSA-169893 | Prolonged ERK activation events | 5.647623e-01 | 0.248 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 2.480847e-01 | 0.605 |
R-HSA-111461 | Cytochrome c-mediated apoptotic response | 1.751290e-01 | 0.757 |
R-HSA-9627069 | Regulation of the apoptosome activity | 2.058151e-01 | 0.687 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 3.073678e-01 | 0.512 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 3.001068e-01 | 0.523 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 4.040961e-01 | 0.394 |
R-HSA-8853659 | RET signaling | 3.287367e-01 | 0.483 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 3.854245e-01 | 0.414 |
R-HSA-5689901 | Metalloprotease DUBs | 3.798876e-01 | 0.420 |
R-HSA-9832991 | Formation of the posterior neural plate | 6.130283e-01 | 0.213 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 6.544755e-01 | 0.184 |
R-HSA-9020933 | Interleukin-23 signaling | 6.477612e-01 | 0.189 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 6.875714e-01 | 0.163 |
R-HSA-5578775 | Ion homeostasis | 4.765061e-01 | 0.322 |
R-HSA-5358508 | Mismatch Repair | 6.961937e-01 | 0.157 |
R-HSA-982772 | Growth hormone receptor signaling | 1.772750e-01 | 0.751 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 4.177428e-01 | 0.379 |
R-HSA-5689603 | UCH proteinases | 6.418959e-01 | 0.193 |
R-HSA-5683057 | MAPK family signaling cascades | 2.723993e-01 | 0.565 |
R-HSA-5675482 | Regulation of necroptotic cell death | 6.345267e-01 | 0.198 |
R-HSA-9663891 | Selective autophagy | 4.814610e-01 | 0.317 |
R-HSA-164944 | Nef and signal transduction | 1.414020e-01 | 0.850 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 2.266743e-01 | 0.645 |
R-HSA-111458 | Formation of apoptosome | 2.058151e-01 | 0.687 |
R-HSA-9020958 | Interleukin-21 signaling | 3.009754e-01 | 0.521 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 3.053455e-01 | 0.515 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 3.600186e-01 | 0.444 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 1.745258e-01 | 0.758 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 3.146681e-01 | 0.502 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 4.930562e-01 | 0.307 |
R-HSA-9762292 | Regulation of CDH11 function | 5.552046e-01 | 0.256 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 5.054283e-01 | 0.296 |
R-HSA-9758941 | Gastrulation | 1.657537e-01 | 0.781 |
R-HSA-6783589 | Interleukin-6 family signaling | 3.054805e-01 | 0.515 |
R-HSA-9006936 | Signaling by TGFB family members | 5.716069e-01 | 0.243 |
R-HSA-1834941 | STING mediated induction of host immune responses | 4.426131e-01 | 0.354 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 3.076863e-01 | 0.512 |
R-HSA-170968 | Frs2-mediated activation | 5.863741e-01 | 0.232 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 5.478235e-01 | 0.261 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 2.276561e-01 | 0.643 |
R-HSA-9612973 | Autophagy | 5.055001e-01 | 0.296 |
R-HSA-5673001 | RAF/MAP kinase cascade | 5.432539e-01 | 0.265 |
R-HSA-422475 | Axon guidance | 2.937872e-01 | 0.532 |
R-HSA-9675108 | Nervous system development | 2.098642e-01 | 0.678 |
R-HSA-9711123 | Cellular response to chemical stress | 6.551500e-01 | 0.184 |
R-HSA-8953897 | Cellular responses to stimuli | 2.364706e-01 | 0.626 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 2.745737e-01 | 0.561 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 3.420547e-01 | 0.466 |
R-HSA-180024 | DARPP-32 events | 2.696608e-01 | 0.569 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 2.376841e-01 | 0.624 |
R-HSA-6807004 | Negative regulation of MET activity | 3.491241e-01 | 0.457 |
R-HSA-210745 | Regulation of gene expression in beta cells | 3.746189e-01 | 0.426 |
R-HSA-211000 | Gene Silencing by RNA | 3.965595e-01 | 0.402 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 5.153635e-01 | 0.288 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 5.331994e-01 | 0.273 |
R-HSA-1632852 | Macroautophagy | 4.565836e-01 | 0.340 |
R-HSA-110056 | MAPK3 (ERK1) activation | 5.552046e-01 | 0.256 |
R-HSA-9764561 | Regulation of CDH1 Function | 5.940877e-01 | 0.226 |
R-HSA-187687 | Signalling to ERKs | 6.197404e-01 | 0.208 |
R-HSA-425381 | Bicarbonate transporters | 6.130283e-01 | 0.213 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 6.477612e-01 | 0.189 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 5.468591e-01 | 0.262 |
R-HSA-168898 | Toll-like Receptor Cascades | 6.494076e-01 | 0.187 |
R-HSA-1226099 | Signaling by FGFR in disease | 5.160391e-01 | 0.287 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 2.354555e-01 | 0.628 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 4.882464e-01 | 0.311 |
R-HSA-8848021 | Signaling by PTK6 | 4.882464e-01 | 0.311 |
R-HSA-9930044 | Nuclear RNA decay | 1.430110e-01 | 0.845 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 5.571986e-01 | 0.254 |
R-HSA-8863678 | Neurodegenerative Diseases | 5.571986e-01 | 0.254 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 6.555040e-01 | 0.183 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 1.779969e-01 | 0.750 |
R-HSA-9830674 | Formation of the ureteric bud | 1.772750e-01 | 0.751 |
R-HSA-9620244 | Long-term potentiation | 2.372996e-01 | 0.625 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 2.696608e-01 | 0.569 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 2.936969e-01 | 0.532 |
R-HSA-111471 | Apoptotic factor-mediated response | 5.465739e-01 | 0.262 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 5.863741e-01 | 0.232 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 5.430460e-01 | 0.265 |
R-HSA-112040 | G-protein mediated events | 5.903252e-01 | 0.229 |
R-HSA-5632684 | Hedgehog 'on' state | 6.052179e-01 | 0.218 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 2.697371e-01 | 0.569 |
R-HSA-446353 | Cell-extracellular matrix interactions | 3.554234e-01 | 0.449 |
R-HSA-9013694 | Signaling by NOTCH4 | 3.601231e-01 | 0.444 |
R-HSA-9607240 | FLT3 Signaling | 2.143563e-01 | 0.669 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 3.001068e-01 | 0.523 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 2.325692e-01 | 0.633 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 1.831092e-01 | 0.737 |
R-HSA-3214858 | RMTs methylate histone arginines | 5.102305e-01 | 0.292 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 1.814074e-01 | 0.741 |
R-HSA-352238 | Breakdown of the nuclear lamina | 2.310681e-01 | 0.636 |
R-HSA-376172 | DSCAM interactions | 3.420547e-01 | 0.466 |
R-HSA-2025928 | Calcineurin activates NFAT | 3.009754e-01 | 0.521 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 4.476010e-01 | 0.349 |
R-HSA-844456 | The NLRP3 inflammasome | 3.076863e-01 | 0.512 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 3.974712e-01 | 0.401 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 4.526207e-01 | 0.344 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 5.003104e-01 | 0.301 |
R-HSA-9706369 | Negative regulation of FLT3 | 5.647623e-01 | 0.248 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 6.262367e-01 | 0.203 |
R-HSA-71737 | Pyrophosphate hydrolysis | 6.262367e-01 | 0.203 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 6.662045e-01 | 0.176 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 6.477612e-01 | 0.189 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 6.972279e-01 | 0.157 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 6.972279e-01 | 0.157 |
R-HSA-446652 | Interleukin-1 family signaling | 5.495577e-01 | 0.260 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 2.137226e-01 | 0.670 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 2.058151e-01 | 0.687 |
R-HSA-1489509 | DAG and IP3 signaling | 1.924389e-01 | 0.716 |
R-HSA-622312 | Inflammasomes | 4.557246e-01 | 0.341 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 2.774730e-01 | 0.557 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 6.875714e-01 | 0.163 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 1.421941e-01 | 0.847 |
R-HSA-186763 | Downstream signal transduction | 3.354686e-01 | 0.474 |
R-HSA-112043 | PLC beta mediated events | 5.225307e-01 | 0.282 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 6.818991e-01 | 0.166 |
R-HSA-9793380 | Formation of paraxial mesoderm | 5.225307e-01 | 0.282 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 5.430460e-01 | 0.265 |
R-HSA-9682385 | FLT3 signaling in disease | 3.287367e-01 | 0.483 |
R-HSA-400685 | Sema4D in semaphorin signaling | 5.959706e-01 | 0.225 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 3.448804e-01 | 0.462 |
R-HSA-111885 | Opioid Signalling | 5.818062e-01 | 0.235 |
R-HSA-111933 | Calmodulin induced events | 2.396314e-01 | 0.620 |
R-HSA-166520 | Signaling by NTRKs | 3.204181e-01 | 0.494 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 2.266743e-01 | 0.645 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 4.275361e-01 | 0.369 |
R-HSA-9830369 | Kidney development | 4.234807e-01 | 0.373 |
R-HSA-9766229 | Degradation of CDH1 | 4.633891e-01 | 0.334 |
R-HSA-9761174 | Formation of intermediate mesoderm | 5.552046e-01 | 0.256 |
R-HSA-3214815 | HDACs deacetylate histones | 5.401466e-01 | 0.267 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 6.133525e-01 | 0.212 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 6.360662e-01 | 0.196 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 6.967412e-01 | 0.157 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 6.818991e-01 | 0.166 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 6.818991e-01 | 0.166 |
R-HSA-438064 | Post NMDA receptor activation events | 1.578992e-01 | 0.802 |
R-HSA-936837 | Ion transport by P-type ATPases | 6.820288e-01 | 0.166 |
R-HSA-5218859 | Regulated Necrosis | 6.146322e-01 | 0.211 |
R-HSA-111997 | CaM pathway | 2.396314e-01 | 0.620 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 1.611960e-01 | 0.793 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 2.237884e-01 | 0.650 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 5.135310e-01 | 0.289 |
R-HSA-379724 | tRNA Aminoacylation | 4.959283e-01 | 0.305 |
R-HSA-9635465 | Suppression of apoptosis | 6.130283e-01 | 0.213 |
R-HSA-162906 | HIV Infection | 3.318742e-01 | 0.479 |
R-HSA-9945266 | Differentiation of T cells | 5.647623e-01 | 0.248 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 5.647623e-01 | 0.248 |
R-HSA-111996 | Ca-dependent events | 3.513649e-01 | 0.454 |
R-HSA-162587 | HIV Life Cycle | 2.656320e-01 | 0.576 |
R-HSA-186712 | Regulation of beta-cell development | 3.038419e-01 | 0.517 |
R-HSA-373753 | Nephrin family interactions | 4.872421e-01 | 0.312 |
R-HSA-162909 | Host Interactions of HIV factors | 1.509550e-01 | 0.821 |
R-HSA-1483249 | Inositol phosphate metabolism | 1.664164e-01 | 0.779 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 6.801522e-01 | 0.167 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 5.747746e-01 | 0.241 |
R-HSA-447038 | NrCAM interactions | 1.656221e-01 | 0.781 |
R-HSA-373756 | SDK interactions | 4.547487e-01 | 0.342 |
R-HSA-169131 | Inhibition of PKR | 4.547487e-01 | 0.342 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 2.438783e-01 | 0.613 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 2.029787e-01 | 0.693 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 3.600186e-01 | 0.444 |
R-HSA-9020956 | Interleukin-27 signaling | 3.598406e-01 | 0.444 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 3.079785e-01 | 0.511 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 1.575875e-01 | 0.802 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 4.930562e-01 | 0.307 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 5.973916e-01 | 0.224 |
R-HSA-163282 | Mitochondrial transcription initiation | 5.973916e-01 | 0.224 |
R-HSA-9839397 | TGFBR3 regulates FGF2 signaling | 5.973916e-01 | 0.224 |
R-HSA-168315 | Inhibition of Host mRNA Processing and RNA Silencing | 5.973916e-01 | 0.224 |
R-HSA-9634600 | Regulation of glycolysis by fructose 2,6-bisphosphate metabolism | 5.647623e-01 | 0.248 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 5.990544e-01 | 0.223 |
R-HSA-9679191 | Potential therapeutics for SARS | 6.269176e-01 | 0.203 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 6.262367e-01 | 0.203 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 6.555040e-01 | 0.183 |
R-HSA-194313 | VEGF ligand-receptor interactions | 6.972279e-01 | 0.157 |
R-HSA-9014843 | Interleukin-33 signaling | 7.027234e-01 | 0.153 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 7.027234e-01 | 0.153 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 7.027234e-01 | 0.153 |
R-HSA-70171 | Glycolysis | 1.560353e-01 | 0.807 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 3.598406e-01 | 0.444 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 1.772750e-01 | 0.751 |
R-HSA-210990 | PECAM1 interactions | 6.130283e-01 | 0.213 |
R-HSA-9605308 | Diseases of Base Excision Repair | 2.266743e-01 | 0.645 |
R-HSA-9671555 | Signaling by PDGFR in disease | 4.336081e-01 | 0.363 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 4.112301e-01 | 0.386 |
R-HSA-70326 | Glucose metabolism | 5.037779e-01 | 0.298 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 5.840905e-01 | 0.234 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 6.130283e-01 | 0.213 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 6.477612e-01 | 0.189 |
R-HSA-5620971 | Pyroptosis | 4.557246e-01 | 0.341 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 6.831157e-01 | 0.166 |
R-HSA-9694631 | Maturation of nucleoprotein | 5.909238e-01 | 0.228 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 2.689957e-01 | 0.570 |
R-HSA-9635644 | Inhibition of membrane repair | 5.973916e-01 | 0.224 |
R-HSA-432142 | Platelet sensitization by LDL | 5.465739e-01 | 0.262 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 5.909238e-01 | 0.228 |
R-HSA-75944 | Transcription from mitochondrial promoters | 7.027234e-01 | 0.153 |
R-HSA-264876 | Insulin processing | 6.681735e-01 | 0.175 |
R-HSA-420597 | Nectin/Necl trans heterodimerization | 6.262367e-01 | 0.203 |
R-HSA-844615 | The AIM2 inflammasome | 7.027234e-01 | 0.153 |
R-HSA-75108 | Activation, myristolyation of BID and translocation to mitochondria | 7.027234e-01 | 0.153 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 7.041745e-01 | 0.152 |
R-HSA-170984 | ARMS-mediated activation | 7.041745e-01 | 0.152 |
R-HSA-448706 | Interleukin-1 processing | 7.041745e-01 | 0.152 |
R-HSA-193697 | p75NTR regulates axonogenesis | 7.041745e-01 | 0.152 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 7.041745e-01 | 0.152 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 7.041745e-01 | 0.152 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 7.044072e-01 | 0.152 |
R-HSA-3928662 | EPHB-mediated forward signaling | 7.065996e-01 | 0.151 |
R-HSA-9907900 | Proteasome assembly | 7.065996e-01 | 0.151 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 7.091830e-01 | 0.149 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 7.091830e-01 | 0.149 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 7.102566e-01 | 0.149 |
R-HSA-209543 | p75NTR recruits signalling complexes | 7.136834e-01 | 0.146 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 7.136834e-01 | 0.146 |
R-HSA-69109 | Leading Strand Synthesis | 7.136834e-01 | 0.146 |
R-HSA-69091 | Polymerase switching | 7.136834e-01 | 0.146 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 7.136834e-01 | 0.146 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 7.136834e-01 | 0.146 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 7.137445e-01 | 0.146 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 7.151404e-01 | 0.146 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 7.154732e-01 | 0.145 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 7.156713e-01 | 0.145 |
R-HSA-168255 | Influenza Infection | 7.176150e-01 | 0.144 |
R-HSA-5620924 | Intraflagellar transport | 7.180768e-01 | 0.144 |
R-HSA-389356 | Co-stimulation by CD28 | 7.180768e-01 | 0.144 |
R-HSA-9020702 | Interleukin-1 signaling | 7.182958e-01 | 0.144 |
R-HSA-6811438 | Intra-Golgi traffic | 7.208732e-01 | 0.142 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 7.211070e-01 | 0.142 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 7.211070e-01 | 0.142 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 7.236795e-01 | 0.140 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 7.236795e-01 | 0.140 |
R-HSA-5656121 | Translesion synthesis by POLI | 7.236795e-01 | 0.140 |
R-HSA-176412 | Phosphorylation of the APC/C | 7.236795e-01 | 0.140 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 7.236795e-01 | 0.140 |
R-HSA-6806834 | Signaling by MET | 7.251592e-01 | 0.140 |
R-HSA-169911 | Regulation of Apoptosis | 7.252751e-01 | 0.139 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 7.252751e-01 | 0.139 |
R-HSA-72737 | Cap-dependent Translation Initiation | 7.293880e-01 | 0.137 |
R-HSA-72613 | Eukaryotic Translation Initiation | 7.293880e-01 | 0.137 |
R-HSA-110320 | Translesion Synthesis by POLH | 7.335389e-01 | 0.135 |
R-HSA-912631 | Regulation of signaling by CBL | 7.335389e-01 | 0.135 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 7.335389e-01 | 0.135 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 7.335389e-01 | 0.135 |
R-HSA-9834899 | Specification of the neural plate border | 7.335389e-01 | 0.135 |
R-HSA-392517 | Rap1 signalling | 7.335389e-01 | 0.135 |
R-HSA-1483255 | PI Metabolism | 7.353373e-01 | 0.134 |
R-HSA-204005 | COPII-mediated vesicle transport | 7.356368e-01 | 0.133 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 7.359889e-01 | 0.133 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 7.359889e-01 | 0.133 |
R-HSA-373755 | Semaphorin interactions | 7.369051e-01 | 0.133 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 7.388723e-01 | 0.131 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 7.424049e-01 | 0.129 |
R-HSA-6803529 | FGFR2 alternative splicing | 7.430496e-01 | 0.129 |
R-HSA-68867 | Assembly of the pre-replicative complex | 7.433882e-01 | 0.129 |
R-HSA-1227986 | Signaling by ERBB2 | 7.483488e-01 | 0.126 |
R-HSA-1221632 | Meiotic synapsis | 7.512599e-01 | 0.124 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 7.521439e-01 | 0.124 |
R-HSA-3295583 | TRP channels | 7.521439e-01 | 0.124 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 7.534018e-01 | 0.123 |
R-HSA-198203 | PI3K/AKT activation | 7.534018e-01 | 0.123 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 7.534018e-01 | 0.123 |
R-HSA-68952 | DNA replication initiation | 7.534018e-01 | 0.123 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 7.534018e-01 | 0.123 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 7.534018e-01 | 0.123 |
R-HSA-5689877 | Josephin domain DUBs | 7.534018e-01 | 0.123 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 7.551927e-01 | 0.122 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 7.562117e-01 | 0.121 |
R-HSA-6793080 | rRNA modification in the mitochondrion | 7.562117e-01 | 0.121 |
R-HSA-9683610 | Maturation of nucleoprotein | 7.562117e-01 | 0.121 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 7.566612e-01 | 0.121 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 7.566612e-01 | 0.121 |
R-HSA-447043 | Neurofascin interactions | 7.566612e-01 | 0.121 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 7.566612e-01 | 0.121 |
R-HSA-210746 | Regulation of gene expression in endocrine-committed (NEUROG3+) progenitor cells | 7.566612e-01 | 0.121 |
R-HSA-9842640 | Signaling by LTK in cancer | 7.566612e-01 | 0.121 |
R-HSA-5653656 | Vesicle-mediated transport | 7.579944e-01 | 0.120 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 7.608103e-01 | 0.119 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 7.610270e-01 | 0.119 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 7.613658e-01 | 0.118 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 7.657611e-01 | 0.116 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 7.657611e-01 | 0.116 |
R-HSA-909733 | Interferon alpha/beta signaling | 7.671483e-01 | 0.115 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 7.674317e-01 | 0.115 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 7.695263e-01 | 0.114 |
R-HSA-69306 | DNA Replication | 7.695730e-01 | 0.114 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 7.740342e-01 | 0.111 |
R-HSA-8854691 | Interleukin-20 family signaling | 7.740342e-01 | 0.111 |
R-HSA-4641258 | Degradation of DVL | 7.769150e-01 | 0.110 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 7.805021e-01 | 0.108 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 7.805021e-01 | 0.108 |
R-HSA-8875791 | MET activates STAT3 | 7.805021e-01 | 0.108 |
R-HSA-167021 | PLC-gamma1 signalling | 7.805021e-01 | 0.108 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 7.805021e-01 | 0.108 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 7.805021e-01 | 0.108 |
R-HSA-139910 | Activation of BMF and translocation to mitochondria | 7.805021e-01 | 0.108 |
R-HSA-209563 | Axonal growth stimulation | 7.805021e-01 | 0.108 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 7.805021e-01 | 0.108 |
R-HSA-5578999 | Defective GCLC causes HAGGSD | 7.805021e-01 | 0.108 |
R-HSA-4719360 | Defective DPM3 causes DPM3-CDG | 7.805021e-01 | 0.108 |
R-HSA-198745 | Signalling to STAT3 | 7.805021e-01 | 0.108 |
R-HSA-4719377 | Defective DPM2 causes DPM2-CDG | 7.805021e-01 | 0.108 |
R-HSA-8941237 | Invadopodia formation | 7.805021e-01 | 0.108 |
R-HSA-1296053 | Classical Kir channels | 7.805021e-01 | 0.108 |
R-HSA-8865999 | MET activates PTPN11 | 7.805021e-01 | 0.108 |
R-HSA-392023 | Adrenaline signalling through Alpha-2 adrenergic receptor | 7.805021e-01 | 0.108 |
R-HSA-4717374 | Defective DPM1 causes DPM1-CDG | 7.805021e-01 | 0.108 |
R-HSA-5579006 | Defective GSS causes GSS deficiency | 7.805021e-01 | 0.108 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 7.805021e-01 | 0.108 |
R-HSA-844623 | The IPAF inflammasome | 7.805021e-01 | 0.108 |
R-HSA-390650 | Histamine receptors | 7.805021e-01 | 0.108 |
R-HSA-8949613 | Cristae formation | 7.806657e-01 | 0.108 |
R-HSA-9020591 | Interleukin-12 signaling | 7.814204e-01 | 0.107 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 7.843979e-01 | 0.105 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 7.872501e-01 | 0.104 |
R-HSA-5358351 | Signaling by Hedgehog | 7.876265e-01 | 0.104 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 7.917735e-01 | 0.101 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 7.936818e-01 | 0.100 |
R-HSA-177504 | Retrograde neurotrophin signalling | 7.936818e-01 | 0.100 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 7.937082e-01 | 0.100 |
R-HSA-190861 | Gap junction assembly | 7.937082e-01 | 0.100 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 7.950359e-01 | 0.100 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 7.950359e-01 | 0.100 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 7.958082e-01 | 0.099 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 7.958082e-01 | 0.099 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 7.958082e-01 | 0.099 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 7.958082e-01 | 0.099 |
R-HSA-1483226 | Synthesis of PI | 7.958082e-01 | 0.099 |
R-HSA-75205 | Dissolution of Fibrin Clot | 7.958082e-01 | 0.099 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 7.959897e-01 | 0.099 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 7.959897e-01 | 0.099 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 7.981397e-01 | 0.098 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 7.981397e-01 | 0.098 |
R-HSA-167044 | Signalling to RAS | 7.981397e-01 | 0.098 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 7.981397e-01 | 0.098 |
R-HSA-210991 | Basigin interactions | 7.981397e-01 | 0.098 |
R-HSA-9031628 | NGF-stimulated transcription | 7.983435e-01 | 0.098 |
R-HSA-8875878 | MET promotes cell motility | 7.999979e-01 | 0.097 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 7.999979e-01 | 0.097 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 8.016409e-01 | 0.096 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 8.021727e-01 | 0.096 |
R-HSA-447115 | Interleukin-12 family signaling | 8.022178e-01 | 0.096 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 8.048508e-01 | 0.094 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 8.057246e-01 | 0.094 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 8.057246e-01 | 0.094 |
R-HSA-9031525 | NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake | 8.057246e-01 | 0.094 |
R-HSA-9031528 | NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... | 8.057246e-01 | 0.094 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 8.057246e-01 | 0.094 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 8.057246e-01 | 0.094 |
R-HSA-9686347 | Microbial modulation of RIPK1-mediated regulated necrosis | 8.057246e-01 | 0.094 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 8.060978e-01 | 0.094 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 8.067025e-01 | 0.093 |
R-HSA-5654736 | Signaling by FGFR1 | 8.110746e-01 | 0.091 |
R-HSA-1500620 | Meiosis | 8.111019e-01 | 0.091 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 8.119988e-01 | 0.090 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 8.119988e-01 | 0.090 |
R-HSA-5654741 | Signaling by FGFR3 | 8.119988e-01 | 0.090 |
R-HSA-9824272 | Somitogenesis | 8.119988e-01 | 0.090 |
R-HSA-4086400 | PCP/CE pathway | 8.142344e-01 | 0.089 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 8.170332e-01 | 0.088 |
R-HSA-72312 | rRNA processing | 8.185545e-01 | 0.087 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 8.222586e-01 | 0.085 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 8.231994e-01 | 0.084 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 8.231994e-01 | 0.084 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 8.248575e-01 | 0.084 |
R-HSA-163615 | PKA activation | 8.248575e-01 | 0.084 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 8.248575e-01 | 0.084 |
R-HSA-9831926 | Nephron development | 8.248575e-01 | 0.084 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 8.248575e-01 | 0.084 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 8.255581e-01 | 0.083 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 8.263721e-01 | 0.083 |
R-HSA-110312 | Translesion synthesis by REV1 | 8.263721e-01 | 0.083 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 8.263721e-01 | 0.083 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 8.263721e-01 | 0.083 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 8.263721e-01 | 0.083 |
R-HSA-1502540 | Signaling by Activin | 8.263721e-01 | 0.083 |
R-HSA-171007 | p38MAPK events | 8.263721e-01 | 0.083 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 8.275502e-01 | 0.082 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 8.275502e-01 | 0.082 |
R-HSA-9830364 | Formation of the nephric duct | 8.275502e-01 | 0.082 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 8.303225e-01 | 0.081 |
R-HSA-9615710 | Late endosomal microautophagy | 8.303225e-01 | 0.081 |
R-HSA-72086 | mRNA Capping | 8.303225e-01 | 0.081 |
R-HSA-9839373 | Signaling by TGFBR3 | 8.309484e-01 | 0.080 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 8.312656e-01 | 0.080 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 8.312656e-01 | 0.080 |
R-HSA-209560 | NF-kB is activated and signals survival | 8.319375e-01 | 0.080 |
R-HSA-391251 | Protein folding | 8.363279e-01 | 0.078 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 8.371091e-01 | 0.077 |
R-HSA-3371511 | HSF1 activation | 8.371091e-01 | 0.077 |
R-HSA-5660489 | MTF1 activates gene expression | 8.379340e-01 | 0.077 |
R-HSA-9026527 | Activated NTRK2 signals through PLCG1 | 8.379340e-01 | 0.077 |
R-HSA-1296061 | HCN channels | 8.379340e-01 | 0.077 |
R-HSA-5579024 | Defective MAT1A causes MATD | 8.379340e-01 | 0.077 |
R-HSA-9851151 | MDK and PTN in ALK signaling | 8.379340e-01 | 0.077 |
R-HSA-8964540 | Alanine metabolism | 8.379340e-01 | 0.077 |
R-HSA-9692913 | SARS-CoV-1-mediated effects on programmed cell death | 8.379340e-01 | 0.077 |
R-HSA-9729555 | Sensory perception of sour taste | 8.379340e-01 | 0.077 |
R-HSA-205025 | NADE modulates death signalling | 8.379340e-01 | 0.077 |
R-HSA-73886 | Chromosome Maintenance | 8.441992e-01 | 0.074 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 8.446015e-01 | 0.073 |
R-HSA-3371378 | Regulation by c-FLIP | 8.457755e-01 | 0.073 |
R-HSA-69416 | Dimerization of procaspase-8 | 8.457755e-01 | 0.073 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 8.457755e-01 | 0.073 |
R-HSA-8875656 | MET receptor recycling | 8.457755e-01 | 0.073 |
R-HSA-190370 | FGFR1b ligand binding and activation | 8.457755e-01 | 0.073 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 8.457755e-01 | 0.073 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 8.457755e-01 | 0.073 |
R-HSA-425986 | Sodium/Proton exchangers | 8.457755e-01 | 0.073 |
R-HSA-9857377 | Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... | 8.499228e-01 | 0.071 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 8.499228e-01 | 0.071 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 8.502901e-01 | 0.070 |
R-HSA-9637687 | Suppression of phagosomal maturation | 8.502901e-01 | 0.070 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 8.510619e-01 | 0.070 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 8.510619e-01 | 0.070 |
R-HSA-449836 | Other interleukin signaling | 8.510619e-01 | 0.070 |
R-HSA-2424491 | DAP12 signaling | 8.516239e-01 | 0.070 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 8.516239e-01 | 0.070 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 8.535925e-01 | 0.069 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 8.535925e-01 | 0.069 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 8.535925e-01 | 0.069 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 8.546421e-01 | 0.068 |
R-HSA-9708530 | Regulation of BACH1 activity | 8.546421e-01 | 0.068 |
R-HSA-5635838 | Activation of SMO | 8.546421e-01 | 0.068 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 8.559824e-01 | 0.068 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 8.568818e-01 | 0.067 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 8.586514e-01 | 0.066 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 8.586514e-01 | 0.066 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 8.620262e-01 | 0.064 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 8.620262e-01 | 0.064 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 8.624254e-01 | 0.064 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 8.624254e-01 | 0.064 |
R-HSA-3000484 | Scavenging by Class F Receptors | 8.624254e-01 | 0.064 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 8.624254e-01 | 0.064 |
R-HSA-8866427 | VLDLR internalisation and degradation | 8.624254e-01 | 0.064 |
R-HSA-8983711 | OAS antiviral response | 8.624254e-01 | 0.064 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 8.652401e-01 | 0.063 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 8.671449e-01 | 0.062 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 8.674917e-01 | 0.062 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 8.705432e-01 | 0.060 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 8.705432e-01 | 0.060 |
R-HSA-195721 | Signaling by WNT | 8.705770e-01 | 0.060 |
R-HSA-912526 | Interleukin receptor SHC signaling | 8.714308e-01 | 0.060 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 8.716471e-01 | 0.060 |
R-HSA-5205647 | Mitophagy | 8.716471e-01 | 0.060 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 8.716471e-01 | 0.060 |
R-HSA-162582 | Signal Transduction | 8.719863e-01 | 0.059 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 8.723105e-01 | 0.059 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 8.728769e-01 | 0.059 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 8.739196e-01 | 0.059 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 8.739209e-01 | 0.059 |
R-HSA-445144 | Signal transduction by L1 | 8.739209e-01 | 0.059 |
R-HSA-1181150 | Signaling by NODAL | 8.739209e-01 | 0.059 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 8.748721e-01 | 0.058 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 8.748721e-01 | 0.058 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 8.765789e-01 | 0.057 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 8.765789e-01 | 0.057 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 8.769181e-01 | 0.057 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 8.769181e-01 | 0.057 |
R-HSA-9659379 | Sensory processing of sound | 8.772619e-01 | 0.057 |
R-HSA-5218900 | CASP8 activity is inhibited | 8.781709e-01 | 0.056 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 8.781709e-01 | 0.056 |
R-HSA-75072 | mRNA Editing | 8.781709e-01 | 0.056 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 8.781709e-01 | 0.056 |
R-HSA-9613354 | Lipophagy | 8.781709e-01 | 0.056 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 8.781709e-01 | 0.056 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 8.781709e-01 | 0.056 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 8.781709e-01 | 0.056 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 8.781709e-01 | 0.056 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 8.781709e-01 | 0.056 |
R-HSA-5655862 | Translesion synthesis by POLK | 8.788964e-01 | 0.056 |
R-HSA-5576893 | Phase 2 - plateau phase | 8.788964e-01 | 0.056 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 8.788964e-01 | 0.056 |
R-HSA-156842 | Eukaryotic Translation Elongation | 8.795458e-01 | 0.056 |
R-HSA-399710 | Activation of AMPA receptors | 8.803410e-01 | 0.055 |
R-HSA-9818025 | NFE2L2 regulating TCA cycle genes | 8.803410e-01 | 0.055 |
R-HSA-190374 | FGFR1c and Klotho ligand binding and activation | 8.803410e-01 | 0.055 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 8.803410e-01 | 0.055 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 8.803410e-01 | 0.055 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 8.803410e-01 | 0.055 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 8.803410e-01 | 0.055 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 8.803410e-01 | 0.055 |
R-HSA-8849474 | PTK6 Activates STAT3 | 8.803410e-01 | 0.055 |
R-HSA-8849472 | PTK6 Down-Regulation | 8.803410e-01 | 0.055 |
R-HSA-174577 | Activation of C3 and C5 | 8.803410e-01 | 0.055 |
R-HSA-390648 | Muscarinic acetylcholine receptors | 8.803410e-01 | 0.055 |
R-HSA-9014826 | Interleukin-36 pathway | 8.803410e-01 | 0.055 |
R-HSA-435368 | Zinc efflux and compartmentalization by the SLC30 family | 8.803410e-01 | 0.055 |
R-HSA-8849468 | PTK6 Regulates Proteins Involved in RNA Processing | 8.803410e-01 | 0.055 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 8.807902e-01 | 0.055 |
R-HSA-1474165 | Reproduction | 8.819216e-01 | 0.055 |
R-HSA-9694516 | SARS-CoV-2 Infection | 8.834112e-01 | 0.054 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 8.864777e-01 | 0.052 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 8.878491e-01 | 0.052 |
R-HSA-2033514 | FGFR3 mutant receptor activation | 8.879381e-01 | 0.052 |
R-HSA-1839130 | Signaling by activated point mutants of FGFR3 | 8.879381e-01 | 0.052 |
R-HSA-170660 | Adenylate cyclase activating pathway | 8.879381e-01 | 0.052 |
R-HSA-5676594 | TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway | 8.879381e-01 | 0.052 |
R-HSA-174490 | Membrane binding and targetting of GAG proteins | 8.879381e-01 | 0.052 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 8.884968e-01 | 0.051 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 8.884968e-01 | 0.051 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 8.895589e-01 | 0.051 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 8.902999e-01 | 0.050 |
R-HSA-9836573 | Mitochondrial RNA degradation | 8.902999e-01 | 0.050 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 8.909248e-01 | 0.050 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 8.937285e-01 | 0.049 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 8.959015e-01 | 0.048 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 8.980355e-01 | 0.047 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 8.980870e-01 | 0.047 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 8.980870e-01 | 0.047 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 8.995568e-01 | 0.046 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 9.002886e-01 | 0.046 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 9.021381e-01 | 0.045 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 9.021381e-01 | 0.045 |
R-HSA-114604 | GPVI-mediated activation cascade | 9.023210e-01 | 0.045 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 9.023210e-01 | 0.045 |
R-HSA-3371568 | Attenuation phase | 9.023390e-01 | 0.045 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 9.023390e-01 | 0.045 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 9.023390e-01 | 0.045 |
R-HSA-5654743 | Signaling by FGFR4 | 9.028023e-01 | 0.044 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 9.036016e-01 | 0.044 |
R-HSA-9948001 | CASP4 inflammasome assembly | 9.041745e-01 | 0.044 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 9.041745e-01 | 0.044 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 9.041745e-01 | 0.044 |
R-HSA-9693928 | Defective RIPK1-mediated regulated necrosis | 9.041745e-01 | 0.044 |
R-HSA-9683686 | Maturation of spike protein | 9.041745e-01 | 0.044 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 9.041745e-01 | 0.044 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 9.042768e-01 | 0.044 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 9.046559e-01 | 0.044 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 9.046559e-01 | 0.044 |
R-HSA-9686114 | Non-canonical inflammasome activation | 9.091303e-01 | 0.041 |
R-HSA-1170546 | Prolactin receptor signaling | 9.091303e-01 | 0.041 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 9.091303e-01 | 0.041 |
R-HSA-5654227 | Phospholipase C-mediated cascade; FGFR3 | 9.091303e-01 | 0.041 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 9.091303e-01 | 0.041 |
R-HSA-391160 | Signal regulatory protein family interactions | 9.091303e-01 | 0.041 |
R-HSA-174495 | Synthesis And Processing Of GAG, GAGPOL Polyproteins | 9.091303e-01 | 0.041 |
R-HSA-5578768 | Physiological factors | 9.091303e-01 | 0.041 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 9.107863e-01 | 0.041 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 9.116533e-01 | 0.040 |
R-HSA-109703 | PKB-mediated events | 9.116533e-01 | 0.040 |
R-HSA-165160 | PDE3B signalling | 9.116533e-01 | 0.040 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 9.116533e-01 | 0.040 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 9.116533e-01 | 0.040 |
R-HSA-5340588 | Signaling by RNF43 mutants | 9.116533e-01 | 0.040 |
R-HSA-3359467 | Defective MTRR causes HMAE | 9.116533e-01 | 0.040 |
R-HSA-4341670 | Defective NEU1 causes sialidosis | 9.116533e-01 | 0.040 |
R-HSA-163358 | PKA-mediated phosphorylation of key metabolic factors | 9.116533e-01 | 0.040 |
R-HSA-6791465 | Pentose phosphate pathway disease | 9.116533e-01 | 0.040 |
R-HSA-162699 | Synthesis of dolichyl-phosphate mannose | 9.116533e-01 | 0.040 |
R-HSA-1483101 | Synthesis of PS | 9.116533e-01 | 0.040 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 9.116533e-01 | 0.040 |
R-HSA-5362798 | Release of Hh-Np from the secreting cell | 9.116533e-01 | 0.040 |
R-HSA-8981373 | Intestinal hexose absorption | 9.116533e-01 | 0.040 |
R-HSA-187706 | Signalling to p38 via RIT and RIN | 9.116533e-01 | 0.040 |
R-HSA-444821 | Relaxin receptors | 9.116533e-01 | 0.040 |
R-HSA-9667769 | Acetylcholine inhibits contraction of outer hair cells | 9.116533e-01 | 0.040 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 9.116533e-01 | 0.040 |
R-HSA-75158 | TRAIL signaling | 9.116533e-01 | 0.040 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 9.116533e-01 | 0.040 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 9.117114e-01 | 0.040 |
R-HSA-1296072 | Voltage gated Potassium channels | 9.151900e-01 | 0.038 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 9.151900e-01 | 0.038 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 9.156412e-01 | 0.038 |
R-HSA-9711097 | Cellular response to starvation | 9.162244e-01 | 0.038 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 9.164114e-01 | 0.038 |
R-HSA-180292 | GAB1 signalosome | 9.170412e-01 | 0.038 |
R-HSA-164378 | PKA activation in glucagon signalling | 9.170412e-01 | 0.038 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 9.170412e-01 | 0.038 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 9.170412e-01 | 0.038 |
R-HSA-210993 | Tie2 Signaling | 9.170412e-01 | 0.038 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 9.174523e-01 | 0.037 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 9.181220e-01 | 0.037 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 9.210378e-01 | 0.036 |
R-HSA-8874081 | MET activates PTK2 signaling | 9.210378e-01 | 0.036 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 9.210378e-01 | 0.036 |
R-HSA-9948299 | Ribosome-associated quality control | 9.219891e-01 | 0.035 |
R-HSA-202403 | TCR signaling | 9.240233e-01 | 0.034 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 9.249129e-01 | 0.034 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 9.249129e-01 | 0.034 |
R-HSA-1483248 | Synthesis of PIPs at the ER membrane | 9.249129e-01 | 0.034 |
R-HSA-192905 | vRNP Assembly | 9.249129e-01 | 0.034 |
R-HSA-5658623 | FGFRL1 modulation of FGFR1 signaling | 9.249129e-01 | 0.034 |
R-HSA-77108 | Utilization of Ketone Bodies | 9.249129e-01 | 0.034 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 9.253405e-01 | 0.034 |
R-HSA-774815 | Nucleosome assembly | 9.253405e-01 | 0.034 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 9.253405e-01 | 0.034 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 9.253923e-01 | 0.034 |
R-HSA-71384 | Ethanol oxidation | 9.253923e-01 | 0.034 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 9.253923e-01 | 0.034 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 9.257360e-01 | 0.034 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 9.257360e-01 | 0.034 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 9.258442e-01 | 0.033 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 9.265853e-01 | 0.033 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 9.266182e-01 | 0.033 |
R-HSA-174362 | Transport and metabolism of PAPS | 9.266182e-01 | 0.033 |
R-HSA-196780 | Biotin transport and metabolism | 9.266182e-01 | 0.033 |
R-HSA-9837092 | FASTK family proteins regulate processing and stability of mitochondrial RNAs | 9.266182e-01 | 0.033 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 9.266182e-01 | 0.033 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 9.266182e-01 | 0.033 |
R-HSA-8876725 | Protein methylation | 9.266182e-01 | 0.033 |
R-HSA-390466 | Chaperonin-mediated protein folding | 9.266917e-01 | 0.033 |
R-HSA-1980145 | Signaling by NOTCH2 | 9.280158e-01 | 0.032 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 9.280158e-01 | 0.032 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 9.280158e-01 | 0.032 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 9.280158e-01 | 0.032 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 9.281451e-01 | 0.032 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 9.301978e-01 | 0.031 |
R-HSA-162588 | Budding and maturation of HIV virion | 9.301978e-01 | 0.031 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 9.304090e-01 | 0.031 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 9.317501e-01 | 0.031 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 9.333632e-01 | 0.030 |
R-HSA-156902 | Peptide chain elongation | 9.338726e-01 | 0.030 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 9.344478e-01 | 0.029 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 9.346266e-01 | 0.029 |
R-HSA-177539 | Autointegration results in viral DNA circles | 9.347730e-01 | 0.029 |
R-HSA-3359469 | Defective MTR causes HMAG | 9.347730e-01 | 0.029 |
R-HSA-3595174 | Defective CHST14 causes EDS, musculocontractural type | 9.347730e-01 | 0.029 |
R-HSA-3595172 | Defective CHST3 causes SEDCJD | 9.347730e-01 | 0.029 |
R-HSA-480985 | Synthesis of dolichyl-phosphate-glucose | 9.347730e-01 | 0.029 |
R-HSA-2161517 | Abacavir transmembrane transport | 9.347730e-01 | 0.029 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 9.347730e-01 | 0.029 |
R-HSA-1483152 | Hydrolysis of LPE | 9.347730e-01 | 0.029 |
R-HSA-389542 | NADPH regeneration | 9.347730e-01 | 0.029 |
R-HSA-8964011 | HDL clearance | 9.347730e-01 | 0.029 |
R-HSA-8874211 | CREB3 factors activate genes | 9.347730e-01 | 0.029 |
R-HSA-9662001 | Defective factor VIII causes hemophilia A | 9.347730e-01 | 0.029 |
R-HSA-186797 | Signaling by PDGF | 9.349903e-01 | 0.029 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 9.350833e-01 | 0.029 |
R-HSA-9678108 | SARS-CoV-1 Infection | 9.351224e-01 | 0.029 |
R-HSA-190236 | Signaling by FGFR | 9.375420e-01 | 0.028 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 9.378325e-01 | 0.028 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 9.378325e-01 | 0.028 |
R-HSA-3000170 | Syndecan interactions | 9.378325e-01 | 0.028 |
R-HSA-200425 | Carnitine shuttle | 9.378325e-01 | 0.028 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 9.385612e-01 | 0.028 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 9.406827e-01 | 0.027 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 9.409647e-01 | 0.026 |
R-HSA-9664420 | Killing mechanisms | 9.409647e-01 | 0.026 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 9.409647e-01 | 0.026 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 9.409647e-01 | 0.026 |
R-HSA-5358493 | Synthesis of diphthamide-EEF2 | 9.413609e-01 | 0.026 |
R-HSA-1839122 | Signaling by activated point mutants of FGFR1 | 9.413609e-01 | 0.026 |
R-HSA-162592 | Integration of provirus | 9.413609e-01 | 0.026 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 9.413609e-01 | 0.026 |
R-HSA-9679506 | SARS-CoV Infections | 9.420037e-01 | 0.026 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 9.427026e-01 | 0.026 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 9.427886e-01 | 0.026 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 9.432590e-01 | 0.025 |
R-HSA-77387 | Insulin receptor recycling | 9.439517e-01 | 0.025 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 9.440565e-01 | 0.025 |
R-HSA-9629569 | Protein hydroxylation | 9.440565e-01 | 0.025 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 9.454626e-01 | 0.024 |
R-HSA-202433 | Generation of second messenger molecules | 9.454626e-01 | 0.024 |
R-HSA-418346 | Platelet homeostasis | 9.456042e-01 | 0.024 |
R-HSA-8951664 | Neddylation | 9.488532e-01 | 0.023 |
R-HSA-397795 | G-protein beta:gamma signalling | 9.497474e-01 | 0.022 |
R-HSA-354192 | Integrin signaling | 9.497474e-01 | 0.022 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 9.500011e-01 | 0.022 |
R-HSA-449147 | Signaling by Interleukins | 9.508074e-01 | 0.022 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 9.518434e-01 | 0.021 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 9.518434e-01 | 0.021 |
R-HSA-3595177 | Defective CHSY1 causes TPBS | 9.518434e-01 | 0.021 |
R-HSA-190371 | FGFR3b ligand binding and activation | 9.518434e-01 | 0.021 |
R-HSA-5619108 | Defective SLC27A4 causes ichthyosis prematurity syndrome (IPS) | 9.518434e-01 | 0.021 |
R-HSA-9032845 | Activated NTRK2 signals through CDK5 | 9.518434e-01 | 0.021 |
R-HSA-1614603 | Cysteine formation from homocysteine | 9.518434e-01 | 0.021 |
R-HSA-1296052 | Ca2+ activated K+ channels | 9.518434e-01 | 0.021 |
R-HSA-163754 | Insulin effects increased synthesis of Xylulose-5-Phosphate | 9.518434e-01 | 0.021 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 9.518434e-01 | 0.021 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 9.518434e-01 | 0.021 |
R-HSA-447041 | CHL1 interactions | 9.518434e-01 | 0.021 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 9.526719e-01 | 0.021 |
R-HSA-1483148 | Synthesis of PG | 9.526719e-01 | 0.021 |
R-HSA-400511 | Synthesis, secretion, and inactivation of Glucose-dependent Insulinotropic Polyp... | 9.526719e-01 | 0.021 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 9.530075e-01 | 0.021 |
R-HSA-157579 | Telomere Maintenance | 9.532888e-01 | 0.021 |
R-HSA-2408557 | Selenocysteine synthesis | 9.539953e-01 | 0.020 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 9.543013e-01 | 0.020 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 9.543013e-01 | 0.020 |
R-HSA-179812 | GRB2 events in EGFR signaling | 9.543436e-01 | 0.020 |
R-HSA-8851805 | MET activates RAS signaling | 9.543436e-01 | 0.020 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 9.543436e-01 | 0.020 |
R-HSA-9842663 | Signaling by LTK | 9.543436e-01 | 0.020 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 9.543436e-01 | 0.020 |
R-HSA-1234174 | Cellular response to hypoxia | 9.553012e-01 | 0.020 |
R-HSA-445355 | Smooth Muscle Contraction | 9.564727e-01 | 0.019 |
R-HSA-5576891 | Cardiac conduction | 9.570348e-01 | 0.019 |
R-HSA-3000157 | Laminin interactions | 9.572701e-01 | 0.019 |
R-HSA-1482801 | Acyl chain remodelling of PS | 9.572701e-01 | 0.019 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 9.574684e-01 | 0.019 |
R-HSA-390522 | Striated Muscle Contraction | 9.575523e-01 | 0.019 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 9.604305e-01 | 0.018 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 9.621797e-01 | 0.017 |
R-HSA-5654219 | Phospholipase C-mediated cascade: FGFR1 | 9.621797e-01 | 0.017 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 9.621797e-01 | 0.017 |
R-HSA-418990 | Adherens junctions interactions | 9.627405e-01 | 0.016 |
R-HSA-174403 | Glutathione synthesis and recycling | 9.627904e-01 | 0.016 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 9.642467e-01 | 0.016 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 9.642467e-01 | 0.016 |
R-HSA-112126 | ALKBH3 mediated reversal of alkylation damage | 9.644470e-01 | 0.016 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 9.644470e-01 | 0.016 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 9.644470e-01 | 0.016 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 9.644470e-01 | 0.016 |
R-HSA-8866904 | Negative regulation of activity of TFAP2 (AP-2) family transcription factors | 9.644470e-01 | 0.016 |
R-HSA-9927354 | Co-stimulation by ICOS | 9.644470e-01 | 0.016 |
R-HSA-5652227 | Fructose biosynthesis | 9.644470e-01 | 0.016 |
R-HSA-1253288 | Downregulation of ERBB4 signaling | 9.644470e-01 | 0.016 |
R-HSA-9839383 | TGFBR3 PTM regulation | 9.644470e-01 | 0.016 |
R-HSA-9958517 | SLC-mediated bile acid transport | 9.644470e-01 | 0.016 |
R-HSA-111995 | phospho-PLA2 pathway | 9.644470e-01 | 0.016 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 9.644470e-01 | 0.016 |
R-HSA-390696 | Adrenoceptors | 9.644470e-01 | 0.016 |
R-HSA-8963676 | Intestinal absorption | 9.644470e-01 | 0.016 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 9.645480e-01 | 0.016 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 9.645480e-01 | 0.016 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 9.645480e-01 | 0.016 |
R-HSA-9956593 | Microbial factors inhibit CASP4 activity | 9.645480e-01 | 0.016 |
R-HSA-190373 | FGFR1c ligand binding and activation | 9.645480e-01 | 0.016 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 9.645480e-01 | 0.016 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 9.647411e-01 | 0.016 |
R-HSA-70635 | Urea cycle | 9.647411e-01 | 0.016 |
R-HSA-73884 | Base Excision Repair | 9.653968e-01 | 0.015 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 9.669634e-01 | 0.015 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 9.672618e-01 | 0.014 |
R-HSA-5694530 | Cargo concentration in the ER | 9.672618e-01 | 0.014 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 9.676559e-01 | 0.014 |
R-HSA-5654738 | Signaling by FGFR2 | 9.691435e-01 | 0.014 |
R-HSA-8964038 | LDL clearance | 9.697944e-01 | 0.013 |
R-HSA-190242 | FGFR1 ligand binding and activation | 9.698678e-01 | 0.013 |
R-HSA-1500931 | Cell-Cell communication | 9.701564e-01 | 0.013 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 9.701976e-01 | 0.013 |
R-HSA-74751 | Insulin receptor signalling cascade | 9.702926e-01 | 0.013 |
R-HSA-2672351 | Stimuli-sensing channels | 9.703445e-01 | 0.013 |
R-HSA-72306 | tRNA processing | 9.708768e-01 | 0.013 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 9.709910e-01 | 0.013 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 9.709910e-01 | 0.013 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 9.725390e-01 | 0.012 |
R-HSA-399956 | CRMPs in Sema3A signaling | 9.725390e-01 | 0.012 |
R-HSA-77310 | Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA | 9.725390e-01 | 0.012 |
R-HSA-77348 | Beta oxidation of octanoyl-CoA to hexanoyl-CoA | 9.725390e-01 | 0.012 |
R-HSA-77350 | Beta oxidation of hexanoyl-CoA to butanoyl-CoA | 9.725390e-01 | 0.012 |
R-HSA-9856872 | Malate-aspartate shuttle | 9.725390e-01 | 0.012 |
R-HSA-435354 | Zinc transporters | 9.725390e-01 | 0.012 |
R-HSA-417957 | P2Y receptors | 9.725390e-01 | 0.012 |
R-HSA-201688 | WNT mediated activation of DVL | 9.737524e-01 | 0.012 |
R-HSA-204626 | Hypusine synthesis from eIF5A-lysine | 9.737524e-01 | 0.012 |
R-HSA-9911233 | Expression of NOTCH2NL genes | 9.737524e-01 | 0.012 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 9.737524e-01 | 0.012 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 9.737524e-01 | 0.012 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 9.737524e-01 | 0.012 |
R-HSA-446728 | Cell junction organization | 9.741847e-01 | 0.011 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 9.755501e-01 | 0.011 |
R-HSA-9937008 | Mitochondrial mRNA modification | 9.755501e-01 | 0.011 |
R-HSA-72764 | Eukaryotic Translation Termination | 9.757575e-01 | 0.011 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 9.760596e-01 | 0.011 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 9.760596e-01 | 0.011 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 9.760596e-01 | 0.011 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 9.760596e-01 | 0.011 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 9.760596e-01 | 0.011 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 9.761996e-01 | 0.010 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 9.769465e-01 | 0.010 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 9.782294e-01 | 0.010 |
R-HSA-180336 | SHC1 events in EGFR signaling | 9.787761e-01 | 0.009 |
R-HSA-9857492 | Protein lipoylation | 9.787761e-01 | 0.009 |
R-HSA-190239 | FGFR3 ligand binding and activation | 9.787761e-01 | 0.009 |
R-HSA-416700 | Other semaphorin interactions | 9.787761e-01 | 0.009 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 9.787761e-01 | 0.009 |
R-HSA-389948 | Co-inhibition by PD-1 | 9.788696e-01 | 0.009 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 9.789462e-01 | 0.009 |
R-HSA-110331 | Cleavage of the damaged purine | 9.789737e-01 | 0.009 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 9.790079e-01 | 0.009 |
R-HSA-983712 | Ion channel transport | 9.794153e-01 | 0.009 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 9.802625e-01 | 0.009 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 9.805248e-01 | 0.009 |
R-HSA-390450 | Folding of actin by CCT/TriC | 9.806227e-01 | 0.008 |
R-HSA-6803544 | Ion influx/efflux at host-pathogen interface | 9.806227e-01 | 0.008 |
R-HSA-426048 | Arachidonate production from DAG | 9.806227e-01 | 0.008 |
R-HSA-1236973 | Cross-presentation of particulate exogenous antigens (phagosomes) | 9.806227e-01 | 0.008 |
R-HSA-164843 | 2-LTR circle formation | 9.806227e-01 | 0.008 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 9.806227e-01 | 0.008 |
R-HSA-390666 | Serotonin receptors | 9.806227e-01 | 0.008 |
R-HSA-109704 | PI3K Cascade | 9.809674e-01 | 0.008 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 9.810283e-01 | 0.008 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 9.810283e-01 | 0.008 |
R-HSA-71288 | Creatine metabolism | 9.810283e-01 | 0.008 |
R-HSA-2022857 | Keratan sulfate degradation | 9.810283e-01 | 0.008 |
R-HSA-9033241 | Peroxisomal protein import | 9.819111e-01 | 0.008 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 9.822452e-01 | 0.008 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 9.822452e-01 | 0.008 |
R-HSA-73927 | Depurination | 9.824717e-01 | 0.008 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 9.826170e-01 | 0.008 |
R-HSA-418597 | G alpha (z) signalling events | 9.827975e-01 | 0.008 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 9.836299e-01 | 0.007 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 9.836299e-01 | 0.007 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 9.836299e-01 | 0.007 |
R-HSA-9733458 | Induction of Cell-Cell Fusion | 9.836299e-01 | 0.007 |
R-HSA-9678110 | Attachment and Entry | 9.836299e-01 | 0.007 |
R-HSA-9754706 | Atorvastatin ADME | 9.836299e-01 | 0.007 |
R-HSA-70350 | Fructose catabolism | 9.836299e-01 | 0.007 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 9.836299e-01 | 0.007 |
R-HSA-163685 | Integration of energy metabolism | 9.838510e-01 | 0.007 |
R-HSA-351202 | Metabolism of polyamines | 9.844868e-01 | 0.007 |
R-HSA-5365859 | RA biosynthesis pathway | 9.846191e-01 | 0.007 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 9.850021e-01 | 0.007 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 9.850021e-01 | 0.007 |
R-HSA-9636383 | Prevention of phagosomal-lysosomal fusion | 9.850021e-01 | 0.007 |
R-HSA-74752 | Signaling by Insulin receptor | 9.853902e-01 | 0.006 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 9.855865e-01 | 0.006 |
R-HSA-192814 | vRNA Synthesis | 9.856949e-01 | 0.006 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 9.856949e-01 | 0.006 |
R-HSA-5682910 | LGI-ADAM interactions | 9.856949e-01 | 0.006 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 9.858511e-01 | 0.006 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 9.862879e-01 | 0.006 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 9.862879e-01 | 0.006 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 9.867215e-01 | 0.006 |
R-HSA-397014 | Muscle contraction | 9.869153e-01 | 0.006 |
R-HSA-1236394 | Signaling by ERBB4 | 9.869482e-01 | 0.006 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 9.872340e-01 | 0.006 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 9.872340e-01 | 0.006 |
R-HSA-202424 | Downstream TCR signaling | 9.873887e-01 | 0.006 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 9.873972e-01 | 0.006 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 9.873972e-01 | 0.006 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 9.873972e-01 | 0.006 |
R-HSA-964975 | Vitamin B6 activation to pyridoxal phosphate | 9.873972e-01 | 0.006 |
R-HSA-6783984 | Glycine degradation | 9.873972e-01 | 0.006 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 9.873972e-01 | 0.006 |
R-HSA-77346 | Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA | 9.873972e-01 | 0.006 |
R-HSA-6787450 | tRNA modification in the mitochondrion | 9.873972e-01 | 0.006 |
R-HSA-112399 | IRS-mediated signalling | 9.875072e-01 | 0.005 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 9.879033e-01 | 0.005 |
R-HSA-5260271 | Diseases of Immune System | 9.879033e-01 | 0.005 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 9.881000e-01 | 0.005 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 9.881000e-01 | 0.005 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 9.881000e-01 | 0.005 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 9.881703e-01 | 0.005 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 9.881703e-01 | 0.005 |
R-HSA-9694614 | Attachment and Entry | 9.881703e-01 | 0.005 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 9.881703e-01 | 0.005 |
R-HSA-175474 | Assembly Of The HIV Virion | 9.881703e-01 | 0.005 |
R-HSA-9833110 | RSV-host interactions | 9.883065e-01 | 0.005 |
R-HSA-8956320 | Nucleotide biosynthesis | 9.883971e-01 | 0.005 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 9.884253e-01 | 0.005 |
R-HSA-2172127 | DAP12 interactions | 9.886133e-01 | 0.005 |
R-HSA-1268020 | Mitochondrial protein import | 9.886559e-01 | 0.005 |
R-HSA-8852135 | Protein ubiquitination | 9.887200e-01 | 0.005 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 9.887200e-01 | 0.005 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 9.887566e-01 | 0.005 |
R-HSA-2022923 | DS-GAG biosynthesis | 9.894397e-01 | 0.005 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 9.894397e-01 | 0.005 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 9.894397e-01 | 0.005 |
R-HSA-433692 | Proton-coupled monocarboxylate transport | 9.894397e-01 | 0.005 |
R-HSA-2214320 | Anchoring fibril formation | 9.894397e-01 | 0.005 |
R-HSA-425561 | Sodium/Calcium exchangers | 9.894397e-01 | 0.005 |
R-HSA-171306 | Packaging Of Telomere Ends | 9.897691e-01 | 0.004 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 9.897691e-01 | 0.004 |
R-HSA-9828806 | Maturation of hRSV A proteins | 9.897691e-01 | 0.004 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 9.898750e-01 | 0.004 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 9.903141e-01 | 0.004 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 9.903141e-01 | 0.004 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 9.903141e-01 | 0.004 |
R-HSA-3229121 | Glycogen storage diseases | 9.903141e-01 | 0.004 |
R-HSA-1614517 | Sulfide oxidation to sulfate | 9.903141e-01 | 0.004 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 9.903141e-01 | 0.004 |
R-HSA-9645723 | Diseases of programmed cell death | 9.906278e-01 | 0.004 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 9.906891e-01 | 0.004 |
R-HSA-5652084 | Fructose metabolism | 9.906891e-01 | 0.004 |
R-HSA-2408522 | Selenoamino acid metabolism | 9.909989e-01 | 0.004 |
R-HSA-192823 | Viral mRNA Translation | 9.910572e-01 | 0.004 |
R-HSA-421270 | Cell-cell junction organization | 9.915292e-01 | 0.004 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 9.917245e-01 | 0.004 |
R-HSA-2428924 | IGF1R signaling cascade | 9.917659e-01 | 0.004 |
R-HSA-1236974 | ER-Phagosome pathway | 9.918553e-01 | 0.004 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 9.921000e-01 | 0.003 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 9.922043e-01 | 0.003 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 9.922043e-01 | 0.003 |
R-HSA-77305 | Beta oxidation of palmitoyl-CoA to myristoyl-CoA | 9.922043e-01 | 0.003 |
R-HSA-77285 | Beta oxidation of myristoyl-CoA to lauroyl-CoA | 9.922043e-01 | 0.003 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 9.922043e-01 | 0.003 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 9.922043e-01 | 0.003 |
R-HSA-70688 | Proline catabolism | 9.922043e-01 | 0.003 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 9.922043e-01 | 0.003 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 9.922043e-01 | 0.003 |
R-HSA-446205 | Synthesis of GDP-mannose | 9.922043e-01 | 0.003 |
R-HSA-937039 | IRAK1 recruits IKK complex | 9.922043e-01 | 0.003 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 9.922043e-01 | 0.003 |
R-HSA-193144 | Estrogen biosynthesis | 9.922043e-01 | 0.003 |
R-HSA-5362517 | Signaling by Retinoic Acid | 9.923795e-01 | 0.003 |
R-HSA-8873719 | RAB geranylgeranylation | 9.923795e-01 | 0.003 |
R-HSA-912446 | Meiotic recombination | 9.925557e-01 | 0.003 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 9.925676e-01 | 0.003 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 9.925676e-01 | 0.003 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 9.925676e-01 | 0.003 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 9.925676e-01 | 0.003 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 9.926862e-01 | 0.003 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 9.926862e-01 | 0.003 |
R-HSA-1369062 | ABC transporters in lipid homeostasis | 9.926862e-01 | 0.003 |
R-HSA-74182 | Ketone body metabolism | 9.926862e-01 | 0.003 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 9.927838e-01 | 0.003 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 9.929951e-01 | 0.003 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 9.930036e-01 | 0.003 |
R-HSA-189483 | Heme degradation | 9.931069e-01 | 0.003 |
R-HSA-5223345 | Miscellaneous transport and binding events | 9.931069e-01 | 0.003 |
R-HSA-73928 | Depyrimidination | 9.931764e-01 | 0.003 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 9.931764e-01 | 0.003 |
R-HSA-5334118 | DNA methylation | 9.934709e-01 | 0.003 |
R-HSA-9861559 | PDH complex synthesizes acetyl-CoA from PYR | 9.942452e-01 | 0.003 |
R-HSA-8949664 | Processing of SMDT1 | 9.942452e-01 | 0.003 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 9.942452e-01 | 0.003 |
R-HSA-8963901 | Chylomicron remodeling | 9.942452e-01 | 0.003 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 9.942452e-01 | 0.003 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 9.942657e-01 | 0.002 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 9.942657e-01 | 0.002 |
R-HSA-5669034 | TNFs bind their physiological receptors | 9.942657e-01 | 0.002 |
R-HSA-2243919 | Crosslinking of collagen fibrils | 9.943052e-01 | 0.002 |
R-HSA-500753 | Pyrimidine biosynthesis | 9.943052e-01 | 0.002 |
R-HSA-1237112 | Methionine salvage pathway | 9.943052e-01 | 0.002 |
R-HSA-9671793 | Diseases of hemostasis | 9.943052e-01 | 0.002 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 9.943232e-01 | 0.002 |
R-HSA-901042 | Calnexin/calreticulin cycle | 9.944358e-01 | 0.002 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 9.953776e-01 | 0.002 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 9.953776e-01 | 0.002 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 9.955120e-01 | 0.002 |
R-HSA-420029 | Tight junction interactions | 9.955120e-01 | 0.002 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 9.955120e-01 | 0.002 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 9.955172e-01 | 0.002 |
R-HSA-917977 | Transferrin endocytosis and recycling | 9.955172e-01 | 0.002 |
R-HSA-1482839 | Acyl chain remodelling of PE | 9.955172e-01 | 0.002 |
R-HSA-3322077 | Glycogen synthesis | 9.956425e-01 | 0.002 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 9.956828e-01 | 0.002 |
R-HSA-1663150 | The activation of arylsulfatases | 9.957519e-01 | 0.002 |
R-HSA-190372 | FGFR3c ligand binding and activation | 9.957519e-01 | 0.002 |
R-HSA-804914 | Transport of fatty acids | 9.957519e-01 | 0.002 |
R-HSA-196843 | Vitamin B2 (riboflavin) metabolism | 9.957519e-01 | 0.002 |
R-HSA-1483115 | Hydrolysis of LPC | 9.957519e-01 | 0.002 |
R-HSA-9793528 | Ciprofloxacin ADME | 9.957519e-01 | 0.002 |
R-HSA-1855191 | Synthesis of IPs in the nucleus | 9.957519e-01 | 0.002 |
R-HSA-1482798 | Acyl chain remodeling of CL | 9.957519e-01 | 0.002 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 9.957519e-01 | 0.002 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 9.959070e-01 | 0.002 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 9.959070e-01 | 0.002 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 9.962328e-01 | 0.002 |
R-HSA-9694548 | Maturation of spike protein | 9.962432e-01 | 0.002 |
R-HSA-9748787 | Azathioprine ADME | 9.962847e-01 | 0.002 |
R-HSA-212300 | PRC2 methylates histones and DNA | 9.963952e-01 | 0.002 |
R-HSA-2161522 | Abacavir ADME | 9.964933e-01 | 0.002 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 9.964933e-01 | 0.002 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 9.966700e-01 | 0.001 |
R-HSA-2161541 | Abacavir metabolism | 9.966700e-01 | 0.001 |
R-HSA-1482925 | Acyl chain remodelling of PG | 9.966700e-01 | 0.001 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 9.966737e-01 | 0.001 |
R-HSA-9609690 | HCMV Early Events | 9.966895e-01 | 0.001 |
R-HSA-5654228 | Phospholipase C-mediated cascade; FGFR4 | 9.968642e-01 | 0.001 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 9.968642e-01 | 0.001 |
R-HSA-73942 | DNA Damage Reversal | 9.968642e-01 | 0.001 |
R-HSA-2142712 | Synthesis of 12-eicosatetraenoic acid derivatives | 9.968642e-01 | 0.001 |
R-HSA-77352 | Beta oxidation of butanoyl-CoA to acetyl-CoA | 9.968642e-01 | 0.001 |
R-HSA-379401 | Dopamine clearance from the synaptic cleft | 9.968642e-01 | 0.001 |
R-HSA-5676934 | Protein repair | 9.968642e-01 | 0.001 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 9.969054e-01 | 0.001 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 9.969371e-01 | 0.001 |
R-HSA-189451 | Heme biosynthesis | 9.969522e-01 | 0.001 |
R-HSA-9683701 | Translation of Structural Proteins | 9.969522e-01 | 0.001 |
R-HSA-196757 | Metabolism of folate and pterines | 9.971063e-01 | 0.001 |
R-HSA-419037 | NCAM1 interactions | 9.971063e-01 | 0.001 |
R-HSA-8948216 | Collagen chain trimerization | 9.971063e-01 | 0.001 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 9.972644e-01 | 0.001 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 9.972644e-01 | 0.001 |
R-HSA-1483213 | Synthesis of PE | 9.972644e-01 | 0.001 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 9.974012e-01 | 0.001 |
R-HSA-977347 | Serine metabolism | 9.974583e-01 | 0.001 |
R-HSA-977444 | GABA B receptor activation | 9.975317e-01 | 0.001 |
R-HSA-991365 | Activation of GABAB receptors | 9.975317e-01 | 0.001 |
R-HSA-168275 | Entry of Influenza Virion into Host Cell via Endocytosis | 9.976853e-01 | 0.001 |
R-HSA-975577 | N-Glycan antennae elongation | 9.976853e-01 | 0.001 |
R-HSA-1266738 | Developmental Biology | 9.977996e-01 | 0.001 |
R-HSA-73614 | Pyrimidine salvage | 9.978691e-01 | 0.001 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 9.979446e-01 | 0.001 |
R-HSA-2024101 | CS/DS degradation | 9.979446e-01 | 0.001 |
R-HSA-1482788 | Acyl chain remodelling of PC | 9.979446e-01 | 0.001 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 9.979622e-01 | 0.001 |
R-HSA-9694635 | Translation of Structural Proteins | 9.979978e-01 | 0.001 |
R-HSA-9710421 | Defective pyroptosis | 9.980044e-01 | 0.001 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 9.980620e-01 | 0.001 |
R-HSA-6807062 | Cholesterol biosynthesis via lathosterol | 9.980620e-01 | 0.001 |
R-HSA-8964043 | Plasma lipoprotein clearance | 9.981449e-01 | 0.001 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 9.982914e-01 | 0.001 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 9.982914e-01 | 0.001 |
R-HSA-77288 | mitochondrial fatty acid beta-oxidation of unsaturated fatty acids | 9.982914e-01 | 0.001 |
R-HSA-432047 | Passive transport by Aquaporins | 9.982914e-01 | 0.001 |
R-HSA-1566977 | Fibronectin matrix formation | 9.982914e-01 | 0.001 |
R-HSA-5661270 | Formation of xylulose-5-phosphate | 9.982914e-01 | 0.001 |
R-HSA-70370 | Galactose catabolism | 9.982914e-01 | 0.001 |
R-HSA-9027307 | Biosynthesis of maresin-like SPMs | 9.982914e-01 | 0.001 |
R-HSA-5660526 | Response to metal ions | 9.982914e-01 | 0.001 |
R-HSA-9651496 | Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) | 9.982914e-01 | 0.001 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 9.983210e-01 | 0.001 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 9.983426e-01 | 0.001 |
R-HSA-392518 | Signal amplification | 9.983769e-01 | 0.001 |
R-HSA-5683826 | Surfactant metabolism | 9.983892e-01 | 0.001 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 9.985239e-01 | 0.001 |
R-HSA-156590 | Glutathione conjugation | 9.986133e-01 | 0.001 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 9.987018e-01 | 0.001 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 9.987125e-01 | 0.001 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 9.987125e-01 | 0.001 |
R-HSA-112311 | Neurotransmitter clearance | 9.987125e-01 | 0.001 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 9.987125e-01 | 0.001 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 9.987202e-01 | 0.001 |
R-HSA-2142770 | Synthesis of 15-eicosatetraenoic acid derivatives | 9.987389e-01 | 0.001 |
R-HSA-209905 | Catecholamine biosynthesis | 9.987389e-01 | 0.001 |
R-HSA-6798163 | Choline catabolism | 9.987389e-01 | 0.001 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 9.987389e-01 | 0.001 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.988450e-01 | 0.001 |
R-HSA-1442490 | Collagen degradation | 9.988587e-01 | 0.000 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 9.988769e-01 | 0.000 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 9.988769e-01 | 0.000 |
R-HSA-446199 | Synthesis of dolichyl-phosphate | 9.988769e-01 | 0.000 |
R-HSA-9865881 | Complex III assembly | 9.988769e-01 | 0.000 |
R-HSA-189445 | Metabolism of porphyrins | 9.989084e-01 | 0.000 |
R-HSA-163560 | Triglyceride catabolism | 9.989923e-01 | 0.000 |
R-HSA-162710 | Synthesis of glycosylphosphatidylinositol (GPI) | 9.990012e-01 | 0.000 |
R-HSA-2142700 | Biosynthesis of Lipoxins (LX) | 9.990691e-01 | 0.000 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 9.990691e-01 | 0.000 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 9.990710e-01 | 0.000 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 9.991462e-01 | 0.000 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 9.991462e-01 | 0.000 |
R-HSA-1296059 | G protein gated Potassium channels | 9.991462e-01 | 0.000 |
R-HSA-2160916 | Hyaluronan degradation | 9.991462e-01 | 0.000 |
R-HSA-549127 | SLC-mediated transport of organic cations | 9.992077e-01 | 0.000 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 9.992517e-01 | 0.000 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 9.992517e-01 | 0.000 |
R-HSA-5619084 | ABC transporter disorders | 9.992715e-01 | 0.000 |
R-HSA-9610379 | HCMV Late Events | 9.993029e-01 | 0.000 |
R-HSA-6798695 | Neutrophil degranulation | 9.993118e-01 | 0.000 |
R-HSA-2142688 | Synthesis of 5-eicosatetraenoic acids | 9.993129e-01 | 0.000 |
R-HSA-727802 | Transport of nucleotide sugars | 9.993129e-01 | 0.000 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 9.993129e-01 | 0.000 |
R-HSA-9609507 | Protein localization | 9.993235e-01 | 0.000 |
R-HSA-70263 | Gluconeogenesis | 9.993265e-01 | 0.000 |
R-HSA-425410 | Metal ion SLC transporters | 9.993265e-01 | 0.000 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 9.993778e-01 | 0.000 |
R-HSA-9931953 | Biofilm formation | 9.993778e-01 | 0.000 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 9.994011e-01 | 0.000 |
R-HSA-159418 | Recycling of bile acids and salts | 9.994011e-01 | 0.000 |
R-HSA-1236975 | Antigen processing-Cross presentation | 9.994386e-01 | 0.000 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.994715e-01 | 0.000 |
R-HSA-917937 | Iron uptake and transport | 9.994848e-01 | 0.000 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 9.994929e-01 | 0.000 |
R-HSA-5654221 | Phospholipase C-mediated cascade; FGFR2 | 9.994929e-01 | 0.000 |
R-HSA-1362409 | Mitochondrial iron-sulfur cluster biogenesis | 9.994929e-01 | 0.000 |
R-HSA-1482922 | Acyl chain remodelling of PI | 9.994929e-01 | 0.000 |
R-HSA-196108 | Pregnenolone biosynthesis | 9.994929e-01 | 0.000 |
R-HSA-77111 | Synthesis of Ketone Bodies | 9.994929e-01 | 0.000 |
R-HSA-5662702 | Melanin biosynthesis | 9.994929e-01 | 0.000 |
R-HSA-977443 | GABA receptor activation | 9.994982e-01 | 0.000 |
R-HSA-83936 | Transport of nucleosides and free purine and pyrimidine bases across the plasma ... | 9.995078e-01 | 0.000 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 9.995078e-01 | 0.000 |
R-HSA-9648002 | RAS processing | 9.995121e-01 | 0.000 |
R-HSA-375280 | Amine ligand-binding receptors | 9.995287e-01 | 0.000 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 9.995681e-01 | 0.000 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.995780e-01 | 0.000 |
R-HSA-8982491 | Glycogen metabolism | 9.996178e-01 | 0.000 |
R-HSA-392170 | ADP signalling through P2Y purinoceptor 12 | 9.996257e-01 | 0.000 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 9.996257e-01 | 0.000 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 9.996257e-01 | 0.000 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 9.996257e-01 | 0.000 |
R-HSA-196836 | Vitamin C (ascorbate) metabolism | 9.996257e-01 | 0.000 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 9.996267e-01 | 0.000 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 9.996424e-01 | 0.000 |
R-HSA-203615 | eNOS activation | 9.996424e-01 | 0.000 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 9.996424e-01 | 0.000 |
R-HSA-8957275 | Post-translational protein phosphorylation | 9.996469e-01 | 0.000 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.996611e-01 | 0.000 |
R-HSA-1483166 | Synthesis of PA | 9.996922e-01 | 0.000 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 9.997010e-01 | 0.000 |
R-HSA-209968 | Thyroxine biosynthesis | 9.997172e-01 | 0.000 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 9.997172e-01 | 0.000 |
R-HSA-72766 | Translation | 9.997199e-01 | 0.000 |
R-HSA-2022870 | CS-GAG biosynthesis | 9.997238e-01 | 0.000 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 9.997238e-01 | 0.000 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 9.997238e-01 | 0.000 |
R-HSA-9755088 | Ribavirin ADME | 9.997238e-01 | 0.000 |
R-HSA-211979 | Eicosanoids | 9.997238e-01 | 0.000 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 9.997242e-01 | 0.000 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 9.997242e-01 | 0.000 |
R-HSA-9609646 | HCMV Infection | 9.997524e-01 | 0.000 |
R-HSA-2206281 | Mucopolysaccharidoses | 9.997858e-01 | 0.000 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 9.997874e-01 | 0.000 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 9.997937e-01 | 0.000 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 9.997961e-01 | 0.000 |
R-HSA-189200 | Cellular hexose transport | 9.997961e-01 | 0.000 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 9.998013e-01 | 0.000 |
R-HSA-9634597 | GPER1 signaling | 9.998158e-01 | 0.000 |
R-HSA-5619102 | SLC transporter disorders | 9.998259e-01 | 0.000 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 9.998363e-01 | 0.000 |
R-HSA-9837999 | Mitochondrial protein degradation | 9.998433e-01 | 0.000 |
R-HSA-422356 | Regulation of insulin secretion | 9.998479e-01 | 0.000 |
R-HSA-879518 | Organic anion transport by SLCO transporters | 9.998495e-01 | 0.000 |
R-HSA-9018682 | Biosynthesis of maresins | 9.998495e-01 | 0.000 |
R-HSA-112315 | Transmission across Chemical Synapses | 9.998529e-01 | 0.000 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 9.998548e-01 | 0.000 |
R-HSA-73621 | Pyrimidine catabolism | 9.998577e-01 | 0.000 |
R-HSA-445717 | Aquaporin-mediated transport | 9.998723e-01 | 0.000 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 9.998741e-01 | 0.000 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 9.998774e-01 | 0.000 |
R-HSA-2024096 | HS-GAG degradation | 9.998774e-01 | 0.000 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 9.998890e-01 | 0.000 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 9.998890e-01 | 0.000 |
R-HSA-156581 | Methylation | 9.998892e-01 | 0.000 |
R-HSA-191273 | Cholesterol biosynthesis | 9.998952e-01 | 0.000 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 9.999009e-01 | 0.000 |
R-HSA-71336 | Pentose phosphate pathway | 9.999032e-01 | 0.000 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 9.999032e-01 | 0.000 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 9.999074e-01 | 0.000 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 9.999083e-01 | 0.000 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.999147e-01 | 0.000 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 9.999180e-01 | 0.000 |
R-HSA-3296469 | Defects in cobalamin (B12) metabolism | 9.999180e-01 | 0.000 |
R-HSA-389599 | Alpha-oxidation of phytanate | 9.999180e-01 | 0.000 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 9.999180e-01 | 0.000 |
R-HSA-2453864 | Retinoid cycle disease events | 9.999180e-01 | 0.000 |
R-HSA-9675143 | Diseases of the neuronal system | 9.999180e-01 | 0.000 |
R-HSA-2474795 | Diseases associated with visual transduction | 9.999180e-01 | 0.000 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 9.999212e-01 | 0.000 |
R-HSA-9854311 | Maturation of TCA enzymes and regulation of TCA cycle | 9.999257e-01 | 0.000 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 9.999300e-01 | 0.000 |
R-HSA-114608 | Platelet degranulation | 9.999328e-01 | 0.000 |
R-HSA-9845614 | Sphingolipid catabolism | 9.999395e-01 | 0.000 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 9.999395e-01 | 0.000 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 9.999407e-01 | 0.000 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 9.999430e-01 | 0.000 |
R-HSA-2142845 | Hyaluronan metabolism | 9.999472e-01 | 0.000 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 9.999554e-01 | 0.000 |
R-HSA-9759218 | Cobalamin (Cbl) metabolism | 9.999554e-01 | 0.000 |
R-HSA-75109 | Triglyceride biosynthesis | 9.999554e-01 | 0.000 |
R-HSA-193775 | Synthesis of bile acids and bile salts via 24-hydroxycholesterol | 9.999601e-01 | 0.000 |
R-HSA-211976 | Endogenous sterols | 9.999656e-01 | 0.000 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.999659e-01 | 0.000 |
R-HSA-1296071 | Potassium Channels | 9.999659e-01 | 0.000 |
R-HSA-9753281 | Paracetamol ADME | 9.999659e-01 | 0.000 |
R-HSA-196807 | Nicotinate metabolism | 9.999670e-01 | 0.000 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 9.999671e-01 | 0.000 |
R-HSA-9638334 | Iron assimilation using enterobactin | 9.999671e-01 | 0.000 |
R-HSA-9757110 | Prednisone ADME | 9.999671e-01 | 0.000 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 9.999705e-01 | 0.000 |
R-HSA-112316 | Neuronal System | 9.999714e-01 | 0.000 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 9.999725e-01 | 0.000 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.999728e-01 | 0.000 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 9.999743e-01 | 0.000 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 9.999757e-01 | 0.000 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.999770e-01 | 0.000 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 9.999773e-01 | 0.000 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 9.999773e-01 | 0.000 |
R-HSA-1474290 | Collagen formation | 9.999778e-01 | 0.000 |
R-HSA-6799198 | Complex I biogenesis | 9.999786e-01 | 0.000 |
R-HSA-5621480 | Dectin-2 family | 9.999791e-01 | 0.000 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 9.999821e-01 | 0.000 |
R-HSA-9840310 | Glycosphingolipid catabolism | 9.999834e-01 | 0.000 |
R-HSA-2980736 | Peptide hormone metabolism | 9.999842e-01 | 0.000 |
R-HSA-1280218 | Adaptive Immune System | 9.999848e-01 | 0.000 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 9.999850e-01 | 0.000 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 9.999850e-01 | 0.000 |
R-HSA-2129379 | Molecules associated with elastic fibres | 9.999868e-01 | 0.000 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 9.999868e-01 | 0.000 |
R-HSA-3781860 | Diseases associated with N-glycosylation of proteins | 9.999871e-01 | 0.000 |
R-HSA-70268 | Pyruvate metabolism | 9.999872e-01 | 0.000 |
R-HSA-8979227 | Triglyceride metabolism | 9.999873e-01 | 0.000 |
R-HSA-71240 | Tryptophan catabolism | 9.999903e-01 | 0.000 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 9.999910e-01 | 0.000 |
R-HSA-1483191 | Synthesis of PC | 9.999912e-01 | 0.000 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.999916e-01 | 0.000 |
R-HSA-5423646 | Aflatoxin activation and detoxification | 9.999927e-01 | 0.000 |
R-HSA-1483257 | Phospholipid metabolism | 9.999930e-01 | 0.000 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 9.999933e-01 | 0.000 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 9.999935e-01 | 0.000 |
R-HSA-5419276 | Mitochondrial translation termination | 9.999942e-01 | 0.000 |
R-HSA-3000480 | Scavenging by Class A Receptors | 9.999945e-01 | 0.000 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 9.999947e-01 | 0.000 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 9.999948e-01 | 0.000 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 9.999948e-01 | 0.000 |
R-HSA-1638074 | Keratan sulfate/keratin metabolism | 9.999949e-01 | 0.000 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 9.999953e-01 | 0.000 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 9.999960e-01 | 0.000 |
R-HSA-2393930 | Phosphate bond hydrolysis by NUDT proteins | 9.999961e-01 | 0.000 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.999968e-01 | 0.000 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 9.999969e-01 | 0.000 |
R-HSA-3000178 | ECM proteoglycans | 9.999969e-01 | 0.000 |
R-HSA-9864848 | Complex IV assembly | 9.999970e-01 | 0.000 |
R-HSA-9734767 | Developmental Cell Lineages | 9.999971e-01 | 0.000 |
R-HSA-2142691 | Synthesis of Leukotrienes (LT) and Eoxins (EX) | 9.999977e-01 | 0.000 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.999977e-01 | 0.000 |
R-HSA-2022928 | HS-GAG biosynthesis | 9.999979e-01 | 0.000 |
R-HSA-9845576 | Glycosphingolipid transport | 9.999979e-01 | 0.000 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 9.999979e-01 | 0.000 |
R-HSA-9664407 | Parasite infection | 9.999981e-01 | 0.000 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.999981e-01 | 0.000 |
R-HSA-9664417 | Leishmania phagocytosis | 9.999981e-01 | 0.000 |
R-HSA-112310 | Neurotransmitter release cycle | 9.999981e-01 | 0.000 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 9.999982e-01 | 0.000 |
R-HSA-77286 | mitochondrial fatty acid beta-oxidation of saturated fatty acids | 9.999983e-01 | 0.000 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 9.999983e-01 | 0.000 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 9.999987e-01 | 0.000 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.999988e-01 | 0.000 |
R-HSA-1566948 | Elastic fibre formation | 9.999988e-01 | 0.000 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 9.999988e-01 | 0.000 |
R-HSA-9824446 | Viral Infection Pathways | 9.999991e-01 | 0.000 |
R-HSA-209776 | Metabolism of amine-derived hormones | 9.999992e-01 | 0.000 |
R-HSA-211981 | Xenobiotics | 9.999994e-01 | 0.000 |
R-HSA-975576 | N-glycan antennae elongation in the medial/trans-Golgi | 9.999994e-01 | 0.000 |
R-HSA-975634 | Retinoid metabolism and transport | 9.999994e-01 | 0.000 |
R-HSA-6783783 | Interleukin-10 signaling | 9.999994e-01 | 0.000 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 9.999995e-01 | 0.000 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.999996e-01 | 0.000 |
R-HSA-4085001 | Sialic acid metabolism | 9.999997e-01 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.999997e-01 | 0.000 |
R-HSA-70895 | Branched-chain amino acid catabolism | 9.999997e-01 | 0.000 |
R-HSA-2514856 | The phototransduction cascade | 9.999997e-01 | 0.000 |
R-HSA-109582 | Hemostasis | 9.999997e-01 | 0.000 |
R-HSA-8956321 | Nucleotide salvage | 9.999998e-01 | 0.000 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.999998e-01 | 0.000 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 9.999999e-01 | 0.000 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.999999e-01 | 0.000 |
R-HSA-2453902 | The canonical retinoid cycle in rods (twilight vision) | 9.999999e-01 | 0.000 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.999999e-01 | 0.000 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.999999e-01 | 0.000 |
R-HSA-8978934 | Metabolism of cofactors | 9.999999e-01 | 0.000 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 9.999999e-01 | 0.000 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 1.000000e+00 | 0.000 |
R-HSA-425397 | Transport of vitamins, nucleosides, and related molecules | 1.000000e+00 | 0.000 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 1.000000e+00 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 1.000000e+00 | 0.000 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 1.000000e+00 | 0.000 |
R-HSA-913709 | O-linked glycosylation of mucins | 1.000000e+00 | 0.000 |
R-HSA-77289 | Mitochondrial Fatty Acid Beta-Oxidation | 1.000000e+00 | 0.000 |
R-HSA-1474228 | Degradation of the extracellular matrix | 1.000000e+00 | 0.000 |
R-HSA-216083 | Integrin cell surface interactions | 1.000000e+00 | 0.000 |
R-HSA-5368287 | Mitochondrial translation | 1.000000e+00 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 1.000000e+00 | 0.000 |
R-HSA-9658195 | Leishmania infection | 1.000000e+00 | 0.000 |
R-HSA-9824443 | Parasitic Infection Pathways | 1.000000e+00 | 0.000 |
R-HSA-8963743 | Digestion and absorption | 1.000000e+00 | 0.000 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 1.000000e+00 | 0.000 |
R-HSA-74259 | Purine catabolism | 1.000000e+00 | 0.000 |
R-HSA-194068 | Bile acid and bile salt metabolism | 1.000000e+00 | 0.000 |
R-HSA-5690714 | CD22 mediated BCR regulation | 1.000000e+00 | 0.000 |
R-HSA-977225 | Amyloid fiber formation | 1.000000e+00 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 1.000000e+00 | 0.000 |
R-HSA-8935690 | Digestion | 1.000000e+00 | 0.000 |
R-HSA-6809371 | Formation of the cornified envelope | 1.000000e+00 | 0.000 |
R-HSA-196071 | Metabolism of steroid hormones | 1.000000e+00 | 0.000 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 1.000000e+00 | 0.000 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 1.000000e+00 | 0.000 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 1.000000e+00 | 0.000 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 1.000000e+00 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 1.000000e+00 | 0.000 |
R-HSA-9749641 | Aspirin ADME | 1.000000e+00 | 0.000 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 1.000000e+00 | 0.000 |
R-HSA-9840309 | Glycosphingolipid biosynthesis | 1.000000e+00 | 0.000 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 1.000000e+00 | 0.000 |
R-HSA-1660662 | Glycosphingolipid metabolism | 1.000000e+00 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 1.000000e+00 | 0.000 |
R-HSA-9638482 | Metal ion assimilation from the host | 1.000000e+00 | 0.000 |
R-HSA-2029481 | FCGR activation | 1.000000e+00 | 0.000 |
R-HSA-418555 | G alpha (s) signalling events | 1.000000e+00 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 1.000000e+00 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 1.000000e+00 | 0.000 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 1.000000e+00 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 1.000000e+00 | 0.000 |
R-HSA-9018677 | Biosynthesis of DHA-derived SPMs | 1.000000e+00 | 0.000 |
R-HSA-8956319 | Nucleotide catabolism | 1.000000e+00 | 0.000 |
R-HSA-611105 | Respiratory electron transport | 1.000000e+00 | 0.000 |
R-HSA-168256 | Immune System | 1.000000e+00 | 0.000 |
R-HSA-977606 | Regulation of Complement cascade | 1.000000e+00 | 0.000 |
R-HSA-6803157 | Antimicrobial peptides | 1.000000e+00 | 0.000 |
R-HSA-420499 | Class C/3 (Metabotropic glutamate/pheromone receptors) | 1.000000e+00 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 1.000000e+00 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 1.000000e+00 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 1.000000e+00 | 0.000 |
R-HSA-168249 | Innate Immune System | 1.000000e+00 | 0.000 |
R-HSA-2187338 | Visual phototransduction | 1.000000e+00 | 0.000 |
R-HSA-9748784 | Drug ADME | 1.000000e+00 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 1.000000e+00 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 1.000000e+00 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 1.000000e+00 | 0.000 |
R-HSA-5173105 | O-linked glycosylation | 1.000000e+00 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 1.000000e+00 | 0.000 |
R-HSA-166658 | Complement cascade | 1.000000e+00 | 0.000 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 1.000000e+00 | 0.000 |
R-HSA-9717189 | Sensory perception of taste | 1.000000e+00 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 1.000000e+00 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 1.000000e+00 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 1.000000e+00 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 1.000000e+00 | -0.000 |
R-HSA-418594 | G alpha (i) signalling events | 1.000000e+00 | -0.000 |
R-HSA-392499 | Metabolism of proteins | 1.000000e+00 | -0.000 |
R-HSA-6805567 | Keratinization | 1.000000e+00 | -0.000 |
R-HSA-9752946 | Expression and translocation of olfactory receptors | 1.000000e+00 | -0.000 |
R-HSA-1643685 | Disease | 1.000000e+00 | -0.000 |
R-HSA-1474244 | Extracellular matrix organization | 1.000000e+00 | -0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 1.000000e+00 | -0.000 |
R-HSA-372790 | Signaling by GPCR | 1.000000e+00 | -0.000 |
R-HSA-5663205 | Infectious disease | 1.000000e+00 | -0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000e+00 | -0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 1.000000e+00 | -0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | -0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | -0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000e+00 | -0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000e+00 | -0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000e+00 | -0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 1.000000e+00 | -0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 1.000000e+00 | -0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 1.000000e+00 | -0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
R-HSA-381753 | Olfactory Signaling Pathway | 1.000000e+00 | -0.000 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 1.000000e+00 | -0.000 |
R-HSA-166663 | Initial triggering of complement | 1.000000e+00 | -0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 1.000000e+00 | -0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | -0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 1.000000e+00 | -0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 1.000000e+00 | -0.000 |
R-HSA-9018678 | Biosynthesis of specialized proresolving mediators (SPMs) | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK17 |
0.897 | 0.908 | 1 | 0.841 |
P38G |
0.896 | 0.926 | 1 | 0.850 |
CDK18 |
0.895 | 0.885 | 1 | 0.806 |
CDK19 |
0.894 | 0.865 | 1 | 0.789 |
CDK3 |
0.892 | 0.808 | 1 | 0.833 |
KIS |
0.891 | 0.796 | 1 | 0.723 |
JNK2 |
0.891 | 0.930 | 1 | 0.802 |
CDK8 |
0.890 | 0.870 | 1 | 0.750 |
CDK16 |
0.888 | 0.872 | 1 | 0.826 |
CDK1 |
0.887 | 0.870 | 1 | 0.782 |
P38D |
0.887 | 0.901 | 1 | 0.848 |
HIPK2 |
0.886 | 0.802 | 1 | 0.785 |
ERK1 |
0.885 | 0.878 | 1 | 0.785 |
CDK7 |
0.885 | 0.858 | 1 | 0.753 |
CDK13 |
0.883 | 0.873 | 1 | 0.777 |
CDK5 |
0.883 | 0.846 | 1 | 0.722 |
P38B |
0.882 | 0.879 | 1 | 0.768 |
CDK12 |
0.881 | 0.871 | 1 | 0.800 |
JNK3 |
0.880 | 0.915 | 1 | 0.771 |
DYRK2 |
0.876 | 0.789 | 1 | 0.690 |
CDK14 |
0.875 | 0.858 | 1 | 0.760 |
CDK9 |
0.874 | 0.857 | 1 | 0.769 |
CDK10 |
0.873 | 0.810 | 1 | 0.778 |
P38A |
0.872 | 0.851 | 1 | 0.690 |
DYRK4 |
0.872 | 0.803 | 1 | 0.795 |
ERK2 |
0.872 | 0.879 | 1 | 0.730 |
CDK4 |
0.867 | 0.857 | 1 | 0.809 |
DYRK1B |
0.867 | 0.773 | 1 | 0.748 |
HIPK1 |
0.866 | 0.730 | 1 | 0.669 |
CDK6 |
0.866 | 0.834 | 1 | 0.781 |
NLK |
0.865 | 0.790 | 1 | 0.465 |
CLK3 |
0.863 | 0.515 | 1 | 0.429 |
CDK2 |
0.861 | 0.692 | 1 | 0.648 |
JNK1 |
0.860 | 0.821 | 1 | 0.804 |
HIPK4 |
0.860 | 0.496 | 1 | 0.461 |
HIPK3 |
0.858 | 0.713 | 1 | 0.640 |
DYRK1A |
0.856 | 0.644 | 1 | 0.648 |
ERK5 |
0.853 | 0.438 | 1 | 0.380 |
SRPK1 |
0.852 | 0.359 | -3 | 0.775 |
DYRK3 |
0.846 | 0.578 | 1 | 0.630 |
CLK1 |
0.845 | 0.443 | -3 | 0.770 |
MTOR |
0.842 | 0.237 | 1 | 0.255 |
SRPK2 |
0.841 | 0.291 | -3 | 0.697 |
CLK4 |
0.840 | 0.402 | -3 | 0.790 |
CLK2 |
0.838 | 0.424 | -3 | 0.769 |
ICK |
0.838 | 0.375 | -3 | 0.866 |
CDKL5 |
0.835 | 0.176 | -3 | 0.825 |
COT |
0.835 | -0.074 | 2 | 0.906 |
MAK |
0.834 | 0.516 | -2 | 0.785 |
CDKL1 |
0.832 | 0.154 | -3 | 0.832 |
PRP4 |
0.831 | 0.490 | -3 | 0.797 |
SRPK3 |
0.828 | 0.252 | -3 | 0.747 |
MOK |
0.827 | 0.485 | 1 | 0.552 |
CDC7 |
0.827 | -0.112 | 1 | 0.081 |
TBK1 |
0.826 | -0.159 | 1 | 0.050 |
PRPK |
0.825 | -0.091 | -1 | 0.891 |
MOS |
0.825 | -0.036 | 1 | 0.120 |
ERK7 |
0.822 | 0.291 | 2 | 0.574 |
GCN2 |
0.822 | -0.183 | 2 | 0.830 |
MST4 |
0.822 | -0.022 | 2 | 0.886 |
IKKE |
0.822 | -0.168 | 1 | 0.050 |
ATR |
0.821 | -0.058 | 1 | 0.118 |
DSTYK |
0.820 | -0.123 | 2 | 0.914 |
PRKD1 |
0.820 | -0.013 | -3 | 0.854 |
CAMK1B |
0.819 | -0.034 | -3 | 0.894 |
ULK2 |
0.819 | -0.178 | 2 | 0.829 |
PKN3 |
0.819 | -0.041 | -3 | 0.855 |
RAF1 |
0.819 | -0.198 | 1 | 0.063 |
PDHK4 |
0.819 | -0.164 | 1 | 0.129 |
BMPR2 |
0.818 | -0.150 | -2 | 0.930 |
NEK6 |
0.818 | -0.074 | -2 | 0.896 |
PIM3 |
0.818 | -0.052 | -3 | 0.857 |
WNK1 |
0.818 | -0.073 | -2 | 0.920 |
NUAK2 |
0.818 | 0.013 | -3 | 0.864 |
IKKB |
0.817 | -0.172 | -2 | 0.806 |
NDR2 |
0.817 | -0.043 | -3 | 0.861 |
NIK |
0.816 | -0.058 | -3 | 0.911 |
PRKD2 |
0.815 | 0.001 | -3 | 0.796 |
PDHK1 |
0.815 | -0.175 | 1 | 0.108 |
TGFBR2 |
0.815 | -0.082 | -2 | 0.837 |
PKCD |
0.815 | -0.021 | 2 | 0.831 |
CHAK2 |
0.814 | -0.061 | -1 | 0.886 |
NEK7 |
0.814 | -0.160 | -3 | 0.879 |
PKN2 |
0.813 | -0.063 | -3 | 0.864 |
NDR1 |
0.813 | -0.064 | -3 | 0.858 |
CAMLCK |
0.812 | -0.027 | -2 | 0.890 |
RSK2 |
0.812 | -0.017 | -3 | 0.799 |
CAMK2G |
0.812 | -0.106 | 2 | 0.831 |
MLK1 |
0.811 | -0.145 | 2 | 0.854 |
PIM1 |
0.810 | 0.010 | -3 | 0.802 |
P90RSK |
0.810 | -0.018 | -3 | 0.801 |
RIPK3 |
0.810 | -0.153 | 3 | 0.797 |
ULK1 |
0.810 | -0.166 | -3 | 0.857 |
IRE1 |
0.810 | -0.088 | 1 | 0.062 |
AMPKA1 |
0.810 | -0.071 | -3 | 0.878 |
SKMLCK |
0.809 | -0.075 | -2 | 0.894 |
MARK4 |
0.809 | -0.075 | 4 | 0.873 |
MAPKAPK3 |
0.809 | -0.063 | -3 | 0.803 |
DAPK2 |
0.809 | -0.060 | -3 | 0.899 |
WNK3 |
0.808 | -0.190 | 1 | 0.063 |
RSK3 |
0.808 | -0.035 | -3 | 0.795 |
HUNK |
0.807 | -0.164 | 2 | 0.837 |
NEK9 |
0.807 | -0.171 | 2 | 0.877 |
IKKA |
0.806 | -0.106 | -2 | 0.794 |
MLK2 |
0.806 | -0.131 | 2 | 0.860 |
BCKDK |
0.806 | -0.158 | -1 | 0.833 |
PINK1 |
0.806 | 0.193 | 1 | 0.282 |
IRE2 |
0.806 | -0.072 | 2 | 0.804 |
MLK3 |
0.806 | -0.057 | 2 | 0.785 |
DNAPK |
0.806 | -0.041 | 1 | 0.120 |
NIM1 |
0.806 | -0.082 | 3 | 0.824 |
P70S6KB |
0.805 | -0.027 | -3 | 0.824 |
AMPKA2 |
0.805 | -0.053 | -3 | 0.845 |
TSSK1 |
0.805 | -0.054 | -3 | 0.897 |
BMPR1B |
0.805 | -0.043 | 1 | 0.055 |
PRKD3 |
0.805 | -0.009 | -3 | 0.771 |
ATM |
0.805 | -0.078 | 1 | 0.091 |
PHKG1 |
0.805 | -0.065 | -3 | 0.849 |
LATS2 |
0.805 | -0.062 | -5 | 0.800 |
MAPKAPK2 |
0.804 | -0.038 | -3 | 0.753 |
GRK5 |
0.804 | -0.176 | -3 | 0.883 |
TSSK2 |
0.804 | -0.086 | -5 | 0.885 |
GRK1 |
0.803 | -0.059 | -2 | 0.828 |
NUAK1 |
0.803 | -0.037 | -3 | 0.816 |
CAMK2D |
0.803 | -0.111 | -3 | 0.873 |
ALK4 |
0.803 | -0.051 | -2 | 0.881 |
PKR |
0.803 | -0.080 | 1 | 0.079 |
AURC |
0.802 | -0.008 | -2 | 0.682 |
PKCB |
0.802 | -0.033 | 2 | 0.783 |
TGFBR1 |
0.802 | -0.045 | -2 | 0.854 |
MNK2 |
0.802 | -0.046 | -2 | 0.828 |
MASTL |
0.802 | -0.195 | -2 | 0.865 |
PKACG |
0.802 | -0.053 | -2 | 0.775 |
PKCA |
0.802 | -0.028 | 2 | 0.774 |
MELK |
0.801 | -0.077 | -3 | 0.833 |
ANKRD3 |
0.801 | -0.182 | 1 | 0.077 |
VRK2 |
0.801 | 0.031 | 1 | 0.165 |
SMG1 |
0.800 | -0.068 | 1 | 0.107 |
PAK6 |
0.800 | -0.020 | -2 | 0.743 |
RIPK1 |
0.800 | -0.210 | 1 | 0.052 |
PKCG |
0.800 | -0.047 | 2 | 0.779 |
MPSK1 |
0.799 | 0.033 | 1 | 0.136 |
LATS1 |
0.799 | -0.017 | -3 | 0.875 |
DLK |
0.799 | -0.227 | 1 | 0.076 |
PKCZ |
0.799 | -0.058 | 2 | 0.823 |
PAK3 |
0.799 | -0.091 | -2 | 0.819 |
GRK6 |
0.798 | -0.153 | 1 | 0.062 |
YSK4 |
0.798 | -0.161 | 1 | 0.053 |
NEK2 |
0.798 | -0.134 | 2 | 0.853 |
GRK7 |
0.798 | -0.024 | 1 | 0.100 |
CAMK4 |
0.797 | -0.127 | -3 | 0.846 |
QIK |
0.797 | -0.103 | -3 | 0.865 |
MNK1 |
0.797 | -0.035 | -2 | 0.838 |
PAK1 |
0.797 | -0.073 | -2 | 0.816 |
PKCH |
0.797 | -0.062 | 2 | 0.770 |
CHAK1 |
0.796 | -0.138 | 2 | 0.814 |
QSK |
0.796 | -0.053 | 4 | 0.855 |
TTBK2 |
0.796 | -0.204 | 2 | 0.738 |
AKT2 |
0.795 | 0.014 | -3 | 0.711 |
SGK3 |
0.795 | -0.026 | -3 | 0.786 |
FAM20C |
0.794 | -0.011 | 2 | 0.651 |
MEK1 |
0.794 | -0.150 | 2 | 0.866 |
PLK1 |
0.794 | -0.149 | -2 | 0.846 |
SIK |
0.794 | -0.057 | -3 | 0.786 |
MSK2 |
0.794 | -0.065 | -3 | 0.766 |
MLK4 |
0.793 | -0.116 | 2 | 0.764 |
ACVR2A |
0.793 | -0.095 | -2 | 0.833 |
PIM2 |
0.793 | 0.006 | -3 | 0.773 |
ACVR2B |
0.793 | -0.096 | -2 | 0.845 |
PKG2 |
0.793 | -0.030 | -2 | 0.705 |
RSK4 |
0.793 | -0.022 | -3 | 0.761 |
AURB |
0.792 | -0.035 | -2 | 0.679 |
GSK3A |
0.792 | 0.183 | 4 | 0.431 |
CAMK2B |
0.791 | -0.081 | 2 | 0.797 |
PHKG2 |
0.791 | -0.072 | -3 | 0.825 |
ALK2 |
0.791 | -0.075 | -2 | 0.859 |
IRAK4 |
0.791 | -0.118 | 1 | 0.043 |
PKACB |
0.791 | -0.010 | -2 | 0.700 |
MST3 |
0.790 | -0.052 | 2 | 0.870 |
BRSK2 |
0.790 | -0.106 | -3 | 0.844 |
CHK1 |
0.790 | -0.072 | -3 | 0.855 |
GRK4 |
0.790 | -0.193 | -2 | 0.856 |
PLK4 |
0.790 | -0.137 | 2 | 0.665 |
CAMK2A |
0.789 | -0.056 | 2 | 0.806 |
HRI |
0.789 | -0.152 | -2 | 0.892 |
WNK4 |
0.789 | -0.122 | -2 | 0.912 |
PKCT |
0.789 | -0.058 | 2 | 0.780 |
ZAK |
0.789 | -0.155 | 1 | 0.061 |
MARK3 |
0.789 | -0.060 | 4 | 0.811 |
PAK2 |
0.788 | -0.101 | -2 | 0.802 |
MEKK1 |
0.788 | -0.155 | 1 | 0.074 |
DCAMKL1 |
0.788 | -0.060 | -3 | 0.806 |
PERK |
0.788 | -0.150 | -2 | 0.882 |
BRSK1 |
0.788 | -0.086 | -3 | 0.816 |
MYLK4 |
0.788 | -0.059 | -2 | 0.804 |
MARK2 |
0.788 | -0.068 | 4 | 0.774 |
BMPR1A |
0.788 | -0.057 | 1 | 0.048 |
TLK2 |
0.788 | -0.153 | 1 | 0.056 |
CAMK1G |
0.787 | -0.067 | -3 | 0.789 |
TAO3 |
0.787 | -0.052 | 1 | 0.098 |
MEK5 |
0.787 | -0.163 | 2 | 0.860 |
MAPKAPK5 |
0.787 | -0.099 | -3 | 0.749 |
DRAK1 |
0.787 | -0.158 | 1 | 0.046 |
MEKK2 |
0.786 | -0.124 | 2 | 0.845 |
AKT1 |
0.786 | -0.007 | -3 | 0.728 |
MSK1 |
0.786 | -0.051 | -3 | 0.772 |
PKCI |
0.786 | -0.035 | 2 | 0.790 |
NEK5 |
0.786 | -0.150 | 1 | 0.058 |
SNRK |
0.785 | -0.168 | 2 | 0.720 |
PLK3 |
0.785 | -0.138 | 2 | 0.787 |
BRAF |
0.784 | -0.141 | -4 | 0.865 |
PRKX |
0.784 | 0.008 | -3 | 0.691 |
MEKK3 |
0.783 | -0.180 | 1 | 0.070 |
DCAMKL2 |
0.783 | -0.065 | -3 | 0.834 |
SSTK |
0.783 | -0.066 | 4 | 0.849 |
TAO2 |
0.782 | -0.054 | 2 | 0.888 |
GRK2 |
0.782 | -0.105 | -2 | 0.744 |
GAK |
0.782 | -0.040 | 1 | 0.120 |
MARK1 |
0.781 | -0.096 | 4 | 0.833 |
PKN1 |
0.781 | -0.037 | -3 | 0.753 |
SMMLCK |
0.781 | -0.052 | -3 | 0.849 |
AURA |
0.781 | -0.054 | -2 | 0.644 |
PKCE |
0.781 | -0.007 | 2 | 0.766 |
TLK1 |
0.779 | -0.161 | -2 | 0.863 |
NEK11 |
0.779 | -0.146 | 1 | 0.091 |
PAK5 |
0.779 | -0.057 | -2 | 0.672 |
P70S6K |
0.779 | -0.050 | -3 | 0.736 |
PDK1 |
0.779 | -0.080 | 1 | 0.105 |
LKB1 |
0.779 | -0.066 | -3 | 0.871 |
HGK |
0.778 | -0.069 | 3 | 0.921 |
MAP3K15 |
0.778 | -0.107 | 1 | 0.076 |
TNIK |
0.778 | -0.043 | 3 | 0.923 |
BUB1 |
0.777 | 0.016 | -5 | 0.841 |
NEK8 |
0.777 | -0.160 | 2 | 0.859 |
MEKK6 |
0.777 | -0.106 | 1 | 0.074 |
GSK3B |
0.777 | 0.026 | 4 | 0.423 |
NEK4 |
0.776 | -0.150 | 1 | 0.049 |
GCK |
0.776 | -0.093 | 1 | 0.076 |
MINK |
0.775 | -0.111 | 1 | 0.051 |
PKACA |
0.775 | -0.023 | -2 | 0.649 |
PASK |
0.775 | -0.081 | -3 | 0.873 |
PAK4 |
0.774 | -0.049 | -2 | 0.674 |
PBK |
0.774 | -0.039 | 1 | 0.108 |
LOK |
0.774 | -0.075 | -2 | 0.823 |
TTBK1 |
0.774 | -0.171 | 2 | 0.656 |
CK1E |
0.773 | -0.055 | -3 | 0.540 |
CAMKK1 |
0.773 | -0.186 | -2 | 0.825 |
SBK |
0.773 | 0.105 | -3 | 0.590 |
HPK1 |
0.773 | -0.086 | 1 | 0.078 |
KHS1 |
0.773 | -0.057 | 1 | 0.071 |
LRRK2 |
0.773 | -0.037 | 2 | 0.882 |
MST2 |
0.772 | -0.137 | 1 | 0.059 |
AKT3 |
0.772 | 0.001 | -3 | 0.643 |
CAMK1D |
0.772 | -0.056 | -3 | 0.708 |
EEF2K |
0.772 | -0.080 | 3 | 0.886 |
IRAK1 |
0.771 | -0.213 | -1 | 0.794 |
CAMKK2 |
0.771 | -0.151 | -2 | 0.823 |
NEK1 |
0.771 | -0.145 | 1 | 0.043 |
KHS2 |
0.771 | -0.031 | 1 | 0.083 |
HASPIN |
0.770 | 0.010 | -1 | 0.726 |
SGK1 |
0.770 | 0.016 | -3 | 0.627 |
CK2A2 |
0.770 | -0.077 | 1 | 0.050 |
CHK2 |
0.769 | -0.030 | -3 | 0.656 |
BIKE |
0.769 | -0.017 | 1 | 0.122 |
MRCKB |
0.769 | -0.019 | -3 | 0.762 |
YSK1 |
0.768 | -0.106 | 2 | 0.850 |
DAPK3 |
0.768 | -0.064 | -3 | 0.821 |
TAK1 |
0.767 | -0.181 | 1 | 0.052 |
CK1D |
0.767 | -0.030 | -3 | 0.486 |
MST1 |
0.766 | -0.141 | 1 | 0.050 |
AAK1 |
0.766 | 0.017 | 1 | 0.140 |
NEK3 |
0.766 | -0.108 | 1 | 0.077 |
SLK |
0.766 | -0.080 | -2 | 0.764 |
MRCKA |
0.766 | -0.031 | -3 | 0.778 |
VRK1 |
0.766 | -0.175 | 2 | 0.881 |
ROCK2 |
0.765 | -0.031 | -3 | 0.809 |
CAMK1A |
0.765 | -0.037 | -3 | 0.675 |
RIPK2 |
0.763 | -0.205 | 1 | 0.048 |
CK1G1 |
0.763 | -0.096 | -3 | 0.531 |
GRK3 |
0.762 | -0.114 | -2 | 0.693 |
PDHK3_TYR |
0.761 | 0.109 | 4 | 0.920 |
DMPK1 |
0.760 | 0.008 | -3 | 0.781 |
MEK2 |
0.760 | -0.196 | 2 | 0.845 |
DAPK1 |
0.760 | -0.071 | -3 | 0.803 |
CK1A2 |
0.760 | -0.058 | -3 | 0.485 |
CK2A1 |
0.759 | -0.088 | 1 | 0.044 |
STK33 |
0.759 | -0.146 | 2 | 0.639 |
TAO1 |
0.757 | -0.080 | 1 | 0.072 |
LIMK2_TYR |
0.757 | 0.116 | -3 | 0.926 |
PKG1 |
0.756 | -0.051 | -2 | 0.622 |
TESK1_TYR |
0.755 | 0.026 | 3 | 0.924 |
MYO3B |
0.755 | -0.073 | 2 | 0.865 |
ASK1 |
0.755 | -0.129 | 1 | 0.077 |
OSR1 |
0.754 | -0.092 | 2 | 0.833 |
CRIK |
0.754 | -0.008 | -3 | 0.726 |
PKMYT1_TYR |
0.754 | 0.108 | 3 | 0.895 |
PLK2 |
0.754 | -0.093 | -3 | 0.830 |
ROCK1 |
0.753 | -0.037 | -3 | 0.776 |
MYO3A |
0.753 | -0.081 | 1 | 0.070 |
TTK |
0.753 | -0.088 | -2 | 0.854 |
PDHK4_TYR |
0.750 | 0.020 | 2 | 0.899 |
MAP2K4_TYR |
0.749 | -0.022 | -1 | 0.908 |
MAP2K7_TYR |
0.748 | -0.096 | 2 | 0.888 |
PINK1_TYR |
0.747 | -0.111 | 1 | 0.120 |
MAP2K6_TYR |
0.747 | -0.007 | -1 | 0.909 |
BMPR2_TYR |
0.746 | -0.005 | -1 | 0.895 |
LIMK1_TYR |
0.745 | -0.001 | 2 | 0.892 |
RET |
0.744 | -0.135 | 1 | 0.090 |
JAK2 |
0.744 | -0.109 | 1 | 0.100 |
PDHK1_TYR |
0.743 | -0.079 | -1 | 0.921 |
MST1R |
0.743 | -0.097 | 3 | 0.866 |
TYK2 |
0.743 | -0.178 | 1 | 0.077 |
ALPHAK3 |
0.743 | -0.105 | -1 | 0.797 |
NEK10_TYR |
0.742 | -0.092 | 1 | 0.082 |
CSF1R |
0.742 | -0.085 | 3 | 0.853 |
ROS1 |
0.740 | -0.121 | 3 | 0.838 |
EPHA6 |
0.739 | -0.100 | -1 | 0.888 |
JAK1 |
0.739 | -0.080 | 1 | 0.075 |
TYRO3 |
0.738 | -0.147 | 3 | 0.863 |
TNNI3K_TYR |
0.738 | -0.038 | 1 | 0.105 |
JAK3 |
0.737 | -0.116 | 1 | 0.085 |
STLK3 |
0.736 | -0.187 | 1 | 0.048 |
YES1 |
0.735 | -0.091 | -1 | 0.886 |
EPHB4 |
0.735 | -0.136 | -1 | 0.869 |
ABL2 |
0.735 | -0.112 | -1 | 0.843 |
TXK |
0.735 | -0.086 | 1 | 0.048 |
FGFR1 |
0.734 | -0.034 | 3 | 0.817 |
FGFR2 |
0.734 | -0.045 | 3 | 0.834 |
DDR1 |
0.733 | -0.136 | 4 | 0.843 |
TNK1 |
0.733 | -0.077 | 3 | 0.838 |
TEK |
0.732 | -0.007 | 3 | 0.792 |
LCK |
0.732 | -0.085 | -1 | 0.868 |
ABL1 |
0.731 | -0.118 | -1 | 0.837 |
HCK |
0.730 | -0.131 | -1 | 0.868 |
FLT3 |
0.730 | -0.153 | 3 | 0.857 |
KDR |
0.730 | -0.086 | 3 | 0.814 |
FGR |
0.729 | -0.176 | 1 | 0.052 |
BLK |
0.729 | -0.075 | -1 | 0.874 |
INSRR |
0.729 | -0.139 | 3 | 0.802 |
PDGFRB |
0.729 | -0.189 | 3 | 0.864 |
TNK2 |
0.729 | -0.128 | 3 | 0.809 |
YANK3 |
0.728 | -0.087 | 2 | 0.410 |
KIT |
0.728 | -0.130 | 3 | 0.848 |
ITK |
0.727 | -0.145 | -1 | 0.840 |
FER |
0.726 | -0.200 | 1 | 0.064 |
PDGFRA |
0.725 | -0.193 | 3 | 0.863 |
EPHB1 |
0.724 | -0.180 | 1 | 0.046 |
EPHA4 |
0.724 | -0.113 | 2 | 0.782 |
WEE1_TYR |
0.724 | -0.080 | -1 | 0.780 |
SRMS |
0.723 | -0.187 | 1 | 0.040 |
AXL |
0.723 | -0.171 | 3 | 0.829 |
EPHB3 |
0.722 | -0.175 | -1 | 0.855 |
EPHB2 |
0.721 | -0.160 | -1 | 0.848 |
FGFR3 |
0.721 | -0.066 | 3 | 0.807 |
MERTK |
0.721 | -0.159 | 3 | 0.824 |
MET |
0.721 | -0.127 | 3 | 0.839 |
TEC |
0.721 | -0.136 | -1 | 0.783 |
DDR2 |
0.720 | -0.053 | 3 | 0.785 |
BTK |
0.719 | -0.192 | -1 | 0.810 |
FYN |
0.719 | -0.087 | -1 | 0.845 |
BMX |
0.719 | -0.126 | -1 | 0.754 |
FRK |
0.719 | -0.136 | -1 | 0.878 |
ALK |
0.718 | -0.162 | 3 | 0.776 |
CK1A |
0.718 | -0.084 | -3 | 0.389 |
ERBB2 |
0.718 | -0.162 | 1 | 0.065 |
FLT1 |
0.716 | -0.143 | -1 | 0.854 |
FLT4 |
0.716 | -0.148 | 3 | 0.796 |
LTK |
0.715 | -0.174 | 3 | 0.792 |
EGFR |
0.715 | -0.110 | 1 | 0.050 |
EPHA7 |
0.715 | -0.146 | 2 | 0.791 |
EPHA1 |
0.715 | -0.164 | 3 | 0.820 |
INSR |
0.714 | -0.164 | 3 | 0.781 |
NTRK2 |
0.714 | -0.203 | 3 | 0.807 |
NTRK1 |
0.713 | -0.221 | -1 | 0.843 |
LYN |
0.713 | -0.135 | 3 | 0.768 |
MUSK |
0.712 | -0.127 | 1 | 0.033 |
PTK2B |
0.712 | -0.118 | -1 | 0.817 |
NTRK3 |
0.711 | -0.165 | -1 | 0.792 |
PTK6 |
0.711 | -0.215 | -1 | 0.765 |
SRC |
0.710 | -0.122 | -1 | 0.844 |
EPHA3 |
0.709 | -0.164 | 2 | 0.760 |
MATK |
0.708 | -0.116 | -1 | 0.762 |
EPHA8 |
0.707 | -0.132 | -1 | 0.835 |
FGFR4 |
0.706 | -0.114 | -1 | 0.793 |
EPHA5 |
0.704 | -0.161 | 2 | 0.769 |
CSK |
0.703 | -0.163 | 2 | 0.795 |
PTK2 |
0.702 | -0.078 | -1 | 0.808 |
ERBB4 |
0.701 | -0.100 | 1 | 0.048 |
SYK |
0.700 | -0.103 | -1 | 0.793 |
CK1G3 |
0.697 | -0.087 | -3 | 0.337 |
IGF1R |
0.696 | -0.158 | 3 | 0.714 |
EPHA2 |
0.696 | -0.145 | -1 | 0.795 |
YANK2 |
0.695 | -0.105 | 2 | 0.427 |
ZAP70 |
0.687 | -0.079 | -1 | 0.710 |
FES |
0.683 | -0.157 | -1 | 0.732 |
CK1G2 |
0.673 | -0.092 | -3 | 0.441 |