Motif 286 (n=598)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6NIX2 | WTIP | S96 | ochoa | Wilms tumor protein 1-interacting protein (WT1-interacting protein) | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates Hippo signaling pathway and antagonizes phosphorylation of YAP1. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. In podocytes, may play a role in the regulation of actin dynamics and/or foot process cytoarchitecture (By similarity). In the course of podocyte injury, shuttles into the nucleus and acts as a transcription regulator that represses WT1-dependent transcription regulation, thereby translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype. Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:A9LS46, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
A6NKD9 | CCDC85C | T161 | ochoa | Coiled-coil domain-containing protein 85C | May play a role in cell-cell adhesion and epithelium development through its interaction with proteins of the beta-catenin family (Probable). May play an important role in cortical development, especially in the maintenance of radial glia (By similarity). {ECO:0000250|UniProtKB:E9Q6B2, ECO:0000305|PubMed:25009281}. |
A6NKD9 | CCDC85C | S165 | ochoa | Coiled-coil domain-containing protein 85C | May play a role in cell-cell adhesion and epithelium development through its interaction with proteins of the beta-catenin family (Probable). May play an important role in cortical development, especially in the maintenance of radial glia (By similarity). {ECO:0000250|UniProtKB:E9Q6B2, ECO:0000305|PubMed:25009281}. |
A7E2V4 | ZSWIM8 | S53 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7E2V4 | ZSWIM8 | T55 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
K7EQG2 | None | S46 | ochoa | Uncharacterized protein | None |
O00267 | SUPT5H | S686 | ochoa | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O00429 | DNM1L | S572 | ochoa | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00571 | DDX3X | S621 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O00716 | E2F3 | S124 | psp | Transcription factor E2F3 (E2F-3) | Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from G1 to S phase. E2F3 binds specifically to RB1 in a cell-cycle dependent manner. Inhibits adipogenesis, probably through the repression of CEBPA binding to its target gene promoters (By similarity). {ECO:0000250|UniProtKB:O35261}. |
O14497 | ARID1A | S79 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14497 | ARID1A | S90 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14654 | IRS4 | S495 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14654 | IRS4 | S570 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O15211 | RGL2 | S755 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O15234 | CASC3 | S23 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15234 | CASC3 | S25 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15234 | CASC3 | S28 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15234 | CASC3 | S35 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15234 | CASC3 | S37 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15234 | CASC3 | S39 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15355 | PPM1G | S173 | ochoa | Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) | None |
O43524 | FOXO3 | S75 | ochoa | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43524 | FOXO3 | S85 | ochoa | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O60884 | DNAJA2 | S78 | ochoa | DnaJ homolog subfamily A member 2 (Cell cycle progression restoration gene 3 protein) (Dnj3) (Dj3) (HIRA-interacting protein 4) (Renal carcinoma antigen NY-REN-14) | Co-chaperone of Hsc70. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}. |
O75420 | GIGYF1 | S831 | ochoa | GRB10-interacting GYF protein 1 (PERQ amino acid-rich with GYF domain-containing protein 1) | May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling. May increase IGF1 receptor phosphorylation under IGF1 stimulation as well as phosphorylation of IRS1 and SHC1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:12771153}. |
O94913 | PCF11 | S851 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O95071 | UBR5 | S134 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95071 | UBR5 | S139 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95365 | ZBTB7A | S567 | ochoa | Zinc finger and BTB domain-containing protein 7A (Factor binding IST protein 1) (FBI-1) (Factor that binds to inducer of short transcripts protein 1) (HIV-1 1st-binding protein 1) (Leukemia/lymphoma-related factor) (POZ and Krueppel erythroid myeloid ontogenic factor) (POK erythroid myeloid ontogenic factor) (Pokemon) (Pokemon 1) (TTF-I-interacting peptide 21) (TIP21) (Zinc finger protein 857A) | Transcription factor that represses the transcription of a wide range of genes involved in cell proliferation and differentiation (PubMed:14701838, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26455326, PubMed:26816381). Directly and specifically binds to the consensus sequence 5'-[GA][CA]GACCCCCCCCC-3' and represses transcription both by regulating the organization of chromatin and through the direct recruitment of transcription factors to gene regulatory regions (PubMed:12004059, PubMed:17595526, PubMed:20812024, PubMed:25514493, PubMed:26816381). Negatively regulates SMAD4 transcriptional activity in the TGF-beta signaling pathway through these two mechanisms (PubMed:25514493). That is, recruits the chromatin regulator HDAC1 to the SMAD4-DNA complex and in parallel prevents the recruitment of the transcriptional activators CREBBP and EP300 (PubMed:25514493). Collaborates with transcription factors like RELA to modify the accessibility of gene transcription regulatory regions to secondary transcription factors (By similarity). Also directly interacts with transcription factors like SP1 to prevent their binding to DNA (PubMed:12004059). Functions as an androgen receptor/AR transcriptional corepressor by recruiting NCOR1 and NCOR2 to the androgen response elements/ARE on target genes (PubMed:20812024). Thereby, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Involved in the switch between fetal and adult globin expression during erythroid cells maturation (PubMed:26816381). Through its interaction with the NuRD complex regulates chromatin at the fetal globin genes to repress their transcription (PubMed:26816381). Specifically represses the transcription of the tumor suppressor ARF isoform from the CDKN2A gene (By similarity). Efficiently abrogates E2F1-dependent CDKN2A transactivation (By similarity). Regulates chondrogenesis through the transcriptional repression of specific genes via a mechanism that also requires histone deacetylation (By similarity). Regulates cell proliferation through the transcriptional regulation of genes involved in glycolysis (PubMed:26455326). Involved in adipogenesis through the regulation of genes involved in adipocyte differentiation (PubMed:14701838). Plays a key role in the differentiation of lymphoid progenitors into B and T lineages (By similarity). Promotes differentiation towards the B lineage by inhibiting the T-cell instructive Notch signaling pathway through the specific transcriptional repression of Notch downstream target genes (By similarity). Also regulates osteoclast differentiation (By similarity). May also play a role, independently of its transcriptional activity, in double-strand break repair via classical non-homologous end joining/cNHEJ (By similarity). Recruited to double-strand break sites on damage DNA, interacts with the DNA-dependent protein kinase complex and directly regulates its stability and activity in DNA repair (By similarity). May also modulate the splicing activity of KHDRBS1 toward BCL2L1 in a mechanism which is histone deacetylase-dependent and thereby negatively regulates the pro-apoptotic effect of KHDRBS1 (PubMed:24514149). {ECO:0000250|UniProtKB:O88939, ECO:0000250|UniProtKB:Q9QZ48, ECO:0000269|PubMed:12004059, ECO:0000269|PubMed:14701838, ECO:0000269|PubMed:17595526, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:24514149, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:26455326, ECO:0000269|PubMed:26816381}. |
O96011 | PEX11B | S160 | ochoa | Peroxisomal membrane protein 11B (Peroxin-11B) (Peroxisomal biogenesis factor 11B) (Protein PEX11 homolog beta) (PEX11-beta) | Involved in peroxisomal proliferation (PubMed:9792670). May regulate peroxisome division by recruiting the dynamin-related GTPase DNM1L to the peroxisomal membrane (PubMed:12618434). Promotes membrane protrusion and elongation on the peroxisomal surface (PubMed:20826455). {ECO:0000269|PubMed:12618434, ECO:0000269|PubMed:20826455, ECO:0000269|PubMed:9792670}. |
P02538 | KRT6A | S37 | psp | Keratin, type II cytoskeletal 6A (Cytokeratin-6A) (CK-6A) (Cytokeratin-6D) (CK-6D) (Keratin-6A) (K6A) (Type-II keratin Kb6) (allergen Hom s 5) | Epidermis-specific type I keratin involved in wound healing. Involved in the activation of follicular keratinocytes after wounding, while it does not play a major role in keratinocyte proliferation or migration. Participates in the regulation of epithelial migration by inhibiting the activity of SRC during wound repair. {ECO:0000250|UniProtKB:P50446}. |
P02671 | FGA | S297 | ochoa | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P04156 | PRNP | S43 | psp | Major prion protein (PrP) (ASCR) (PrP27-30) (PrP33-35C) (CD antigen CD230) | Its primary physiological function is unclear. May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May promote myelin homeostasis through acting as an agonist for ADGRG6 receptor. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (By similarity). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or Zn(2+) for the ascorbate-mediated GPC1 deaminase degradation of its heparan sulfate side chains (By similarity). {ECO:0000250|UniProtKB:P04925, ECO:0000269|PubMed:12732622, ECO:0000269|PubMed:19936054, ECO:0000269|PubMed:20564047, ECO:0000305}. |
P05783 | KRT18 | S51 | ochoa|psp | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P05783 | KRT18 | S53 | ochoa|psp | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P05783 | KRT18 | S60 | ochoa | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P05783 | KRT18 | T65 | ochoa | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P08727 | KRT19 | S57 | ochoa | Keratin, type I cytoskeletal 19 (Cytokeratin-19) (CK-19) (Keratin-19) (K19) | Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}. |
P08727 | KRT19 | S58 | ochoa | Keratin, type I cytoskeletal 19 (Cytokeratin-19) (CK-19) (Keratin-19) (K19) | Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}. |
P09651 | HNRNPA1 | S197 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P09651 | HNRNPA1 | S199 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P09651 | HNRNPA1 | S337 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P09651 | HNRNPA1 | S338 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P09651 | HNRNPA1 | Y341 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P0DMV8 | HSPA1A | Y611 | ochoa | Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DMV9 | HSPA1B | Y611 | ochoa | Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P12109 | COL6A1 | S388 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P12109 | COL6A1 | S391 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P16150 | SPN | T318 | ochoa | Leukosialin (GPL115) (Galactoglycoprotein) (GALGP) (Leukocyte sialoglycoprotein) (Sialophorin) (CD antigen CD43) [Cleaved into: CD43 cytoplasmic tail (CD43-ct) (CD43ct)] | Predominant cell surface sialoprotein of leukocytes which regulates multiple T-cell functions, including T-cell activation, proliferation, differentiation, trafficking and migration. Positively regulates T-cell trafficking to lymph-nodes via its association with ERM proteins (EZR, RDX and MSN) (By similarity). Negatively regulates Th2 cell differentiation and predisposes the differentiation of T-cells towards a Th1 lineage commitment. Promotes the expression of IFN-gamma by T-cells during T-cell receptor (TCR) activation of naive cells and induces the expression of IFN-gamma by CD4(+) T-cells and to a lesser extent by CD8(+) T-cells (PubMed:18036228). Plays a role in preparing T-cells for cytokine sensing and differentiation into effector cells by inducing the expression of cytokine receptors IFNGR and IL4R, promoting IFNGR and IL4R signaling and by mediating the clustering of IFNGR with TCR (PubMed:24328034). Acts as a major E-selectin ligand responsible for Th17 cell rolling on activated vasculature and recruitment during inflammation. Mediates Th17 cells, but not Th1 cells, adhesion to E-selectin. Acts as a T-cell counter-receptor for SIGLEC1 (By similarity). {ECO:0000250|UniProtKB:P15702, ECO:0000269|PubMed:18036228, ECO:0000269|PubMed:24328034}.; FUNCTION: [CD43 cytoplasmic tail]: Protects cells from apoptotic signals, promoting cell survival. {ECO:0000250|UniProtKB:P15702}. |
P16150 | SPN | S322 | ochoa | Leukosialin (GPL115) (Galactoglycoprotein) (GALGP) (Leukocyte sialoglycoprotein) (Sialophorin) (CD antigen CD43) [Cleaved into: CD43 cytoplasmic tail (CD43-ct) (CD43ct)] | Predominant cell surface sialoprotein of leukocytes which regulates multiple T-cell functions, including T-cell activation, proliferation, differentiation, trafficking and migration. Positively regulates T-cell trafficking to lymph-nodes via its association with ERM proteins (EZR, RDX and MSN) (By similarity). Negatively regulates Th2 cell differentiation and predisposes the differentiation of T-cells towards a Th1 lineage commitment. Promotes the expression of IFN-gamma by T-cells during T-cell receptor (TCR) activation of naive cells and induces the expression of IFN-gamma by CD4(+) T-cells and to a lesser extent by CD8(+) T-cells (PubMed:18036228). Plays a role in preparing T-cells for cytokine sensing and differentiation into effector cells by inducing the expression of cytokine receptors IFNGR and IL4R, promoting IFNGR and IL4R signaling and by mediating the clustering of IFNGR with TCR (PubMed:24328034). Acts as a major E-selectin ligand responsible for Th17 cell rolling on activated vasculature and recruitment during inflammation. Mediates Th17 cells, but not Th1 cells, adhesion to E-selectin. Acts as a T-cell counter-receptor for SIGLEC1 (By similarity). {ECO:0000250|UniProtKB:P15702, ECO:0000269|PubMed:18036228, ECO:0000269|PubMed:24328034}.; FUNCTION: [CD43 cytoplasmic tail]: Protects cells from apoptotic signals, promoting cell survival. {ECO:0000250|UniProtKB:P15702}. |
P17275 | JUNB | Y109 | psp | Transcription factor JunB (Transcription factor AP-1 subunit JunB) | Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5'-TGA[GC]TCA-3'. Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to an AP-1 consensus sequence and its transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P09450}. |
P17275 | JUNB | S117 | ochoa | Transcription factor JunB (Transcription factor AP-1 subunit JunB) | Transcription factor involved in regulating gene activity following the primary growth factor response. Binds to the DNA sequence 5'-TGA[GC]TCA-3'. Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to an AP-1 consensus sequence and its transcriptional activity (By similarity). {ECO:0000250|UniProtKB:P09450}. |
P22059 | OSBP | T76 | ochoa | Oxysterol-binding protein 1 | Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}. |
P22059 | OSBP | S79 | ochoa | Oxysterol-binding protein 1 | Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}. |
P22059 | OSBP | S82 | ochoa | Oxysterol-binding protein 1 | Lipid transporter involved in lipid countertransport between the Golgi complex and membranes of the endoplasmic reticulum: specifically exchanges sterol with phosphatidylinositol 4-phosphate (PI4P), delivering sterol to the Golgi in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum (PubMed:24209621). Binds cholesterol and a range of oxysterols including 25-hydroxycholesterol (PubMed:15746430, PubMed:17428193). Cholesterol binding promotes the formation of a complex with PP2A and a tyrosine phosphatase which dephosphorylates ERK1/2, whereas 25-hydroxycholesterol causes its disassembly (PubMed:15746430). Regulates cholesterol efflux by decreasing ABCA1 stability (PubMed:18450749). {ECO:0000269|PubMed:15746430, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18450749, ECO:0000269|PubMed:24209621}. |
P22626 | HNRNPA2B1 | S198 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S199 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S212 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S231 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S236 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | Y244 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | Y247 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S259 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | Y262 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S318 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | S324 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | Y331 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22626 | HNRNPA2B1 | Y336 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P23246 | SFPQ | S225 | ochoa | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
P25440 | BRD2 | S593 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P25490 | YY1 | S187 | ochoa | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P31260 | HOXA10 | S93 | ochoa | Homeobox protein Hox-A10 (Homeobox protein Hox-1.8) (Homeobox protein Hox-1H) (PL) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to the DNA sequence 5'-AA[AT]TTTTATTAC-3'. |
P31260 | HOXA10 | S96 | ochoa | Homeobox protein Hox-A10 (Homeobox protein Hox-1.8) (Homeobox protein Hox-1H) (PL) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to the DNA sequence 5'-AA[AT]TTTTATTAC-3'. |
P31942 | HNRNPH3 | S269 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | T270 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | S275 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | S280 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | S298 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | Y308 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | S309 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | Y312 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | T314 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | S328 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P35637 | FUS | S221 | ochoa | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35637 | FUS | S462 | ochoa | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P36578 | RPL4 | S87 | ochoa | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P38159 | RBMX | S116 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P40424 | PBX1 | S23 | ochoa | Pre-B-cell leukemia transcription factor 1 (Homeobox protein PBX1) (Homeobox protein PRL) | Transcription factor which binds the DNA sequence 5'-TGATTGAT-3' as part of a heterodimer with HOX proteins such as HOXA1, HOXA5, HOXB7 and HOXB8 (PubMed:9191052). Binds to the DNA sequence 5'-TGATTGAC-3' in complex with a nuclear factor which is not a class I HOX protein (PubMed:9191052). Has also been shown to bind the DNA sequence 5'-ATCAATCAA-3' cooperatively with HOXA5, HOXB7, HOXB8, HOXC8 and HOXD4 (PubMed:7791786, PubMed:8327485). Acts as a transcriptional activator of PF4 in complex with MEIS1 (PubMed:12609849). Also activates transcription of SOX3 in complex with MEIS1 by binding to the 5'-TGATTGAC-3' consensus sequence (By similarity). In natural killer cells, binds to the NFIL3 promoter and acts as a transcriptional activator of NFIL3, promoting natural killer cell development (By similarity). Plays a role in the cAMP-dependent regulation of CYP17A1 gene expression via its cAMP-regulatory sequence (CRS1) (By similarity). Probably in complex with MEIS2, involved in transcriptional regulation by KLF4 (PubMed:21746878). Acts as a transcriptional activator of NKX2-5 and a transcriptional repressor of CDKN2B (By similarity). Together with NKX2-5, required for spleen development through a mechanism that involves CDKN2B repression (By similarity). {ECO:0000250|UniProtKB:P41778, ECO:0000269|PubMed:12609849, ECO:0000269|PubMed:21746878, ECO:0000269|PubMed:7791786, ECO:0000269|PubMed:8327485, ECO:0000269|PubMed:9191052}.; FUNCTION: [Isoform PBX1b]: As part of a PDX1:PBX1b:MEIS2B complex in pancreatic acinar cells, is involved in the transcriptional activation of the ELA1 enhancer; the complex binds to the enhancer B element and cooperates with the transcription factor 1 complex (PTF1) bound to the enhancer A element. {ECO:0000250|UniProtKB:P41778}. |
P40425 | PBX2 | S41 | ochoa | Pre-B-cell leukemia transcription factor 2 (Homeobox protein PBX2) (Protein G17) | Transcriptional activator that binds the sequence 5'-ATCAATCAA-3'. Activates transcription of PF4 in complex with MEIS1. {ECO:0000269|PubMed:12609849}. |
P48634 | PRRC2A | T1353 | ochoa|psp | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P49023 | PXN | S302 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49840 | GSK3A | T19 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S20 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S21 | ochoa|psp | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S63 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S64 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S65 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S72 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P50219 | MNX1 | S39 | ochoa | Motor neuron and pancreas homeobox protein 1 (Homeobox protein HB9) | Transcription factor (By similarity). Recognizes and binds to the regulatory elements of target genes, such as visual system homeobox CHX10, negatively modulating transcription (By similarity). Plays a role in establishing motor neuron identity, in concert with LIM domain transcription factor LMO4 (By similarity). Involved in negatively modulating transcription of interneuron genes in motor neurons, acting, at least in part, by blocking regulatory sequence interactions of the ISL1-LHX3 complex (By similarity). Involved in pancreas development and function; may play a role in pancreatic cell fate specification (By similarity). {ECO:0000250|UniProtKB:Q9QZW9}. |
P50219 | MNX1 | T41 | ochoa | Motor neuron and pancreas homeobox protein 1 (Homeobox protein HB9) | Transcription factor (By similarity). Recognizes and binds to the regulatory elements of target genes, such as visual system homeobox CHX10, negatively modulating transcription (By similarity). Plays a role in establishing motor neuron identity, in concert with LIM domain transcription factor LMO4 (By similarity). Involved in negatively modulating transcription of interneuron genes in motor neurons, acting, at least in part, by blocking regulatory sequence interactions of the ISL1-LHX3 complex (By similarity). Involved in pancreas development and function; may play a role in pancreatic cell fate specification (By similarity). {ECO:0000250|UniProtKB:Q9QZW9}. |
P50895 | BCAM | T606 | ochoa | Basal cell adhesion molecule (Auberger B antigen) (B-CAM cell surface glycoprotein) (F8/G253 antigen) (Lutheran antigen) (Lutheran blood group glycoprotein) (CD antigen CD239) | Transmembrane glycoprotein that functions as both a receptor and an adhesion molecule playing a crucial role in cell adhesion, motility, migration and invasion (PubMed:9616226, PubMed:31413112). Extracellular domain enables binding to extracellular matrix proteins, such as laminin, integrin and other ligands while its intracellular domain interacts with cytoskeletal proteins like hemoglobin, facilitating cell signal transduction (PubMed:17158232). Serves as a receptor for laminin alpha-5/LAMA5 to promote cell adhesion (PubMed:15975931). Mechanistically, JAK2 induces BCAM phosphorylation and activates its adhesion to laminin by stimulating a Rap1/AKT signaling pathway in the absence of EPOR (PubMed:23160466). {ECO:0000269|PubMed:15975931, ECO:0000269|PubMed:17158232, ECO:0000269|PubMed:23160466, ECO:0000269|PubMed:31413112, ECO:0000269|PubMed:9616226}. |
P51991 | HNRNPA3 | S355 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P51991 | HNRNPA3 | S356 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P51991 | HNRNPA3 | S358 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P51991 | HNRNPA3 | Y360 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P52272 | HNRNPM | S397 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52272 | HNRNPM | S633 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52272 | HNRNPM | S637 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52597 | HNRNPF | S237 | ochoa | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
P55072 | VCP | S770 | ochoa | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55072 | VCP | S784 | ochoa|psp | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55072 | VCP | S787 | ochoa | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55198 | MLLT6 | S190 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P55198 | MLLT6 | S191 | ochoa | Protein AF-17 (ALL1-fused gene from chromosome 17 protein) | None |
P56693 | SOX10 | S30 | ochoa|psp | Transcription factor SOX-10 | Transcription factor that plays a central role in developing and mature glia (By similarity). Specifically activates expression of myelin genes, during oligodendrocyte (OL) maturation, such as DUSP15 and MYRF, thereby playing a central role in oligodendrocyte maturation and CNS myelination (By similarity). Once induced, MYRF cooperates with SOX10 to implement the myelination program (By similarity). Transcriptional activator of MITF, acting synergistically with PAX3 (PubMed:21965087). Transcriptional activator of MBP, via binding to the gene promoter (By similarity). {ECO:0000250|UniProtKB:O55170, ECO:0000250|UniProtKB:Q04888, ECO:0000269|PubMed:21965087}. |
P58012 | FOXL2 | S33 | ochoa|psp | Forkhead box protein L2 | Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis through transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2. {ECO:0000250, ECO:0000269|PubMed:16153597, ECO:0000269|PubMed:19010791, ECO:0000269|PubMed:19429596, ECO:0000269|PubMed:19744555}. |
P60201 | PLP1 | S114 | ochoa | Myelin proteolipid protein (PLP) (Lipophilin) | This is the major myelin protein from the central nervous system. It plays an important role in the formation or maintenance of the multilamellar structure of myelin. |
P67809 | YBX1 | S32 | ochoa | Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) | DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}. |
P67809 | YBX1 | S36 | ochoa | Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) | DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}. |
P78563 | ADARB1 | S39 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P78563 | ADARB1 | S42 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P98179 | RBM3 | Y129 | ochoa | RNA-binding protein 3 (RNA-binding motif protein 3) (RNPL) | Cold-inducible mRNA binding protein that enhances global protein synthesis at both physiological and mild hypothermic temperatures. Reduces the relative abundance of microRNAs, when overexpressed. Enhances phosphorylation of translation initiation factors and active polysome formation (By similarity). {ECO:0000250}. |
Q00536 | CDK16 | S36 | ochoa|psp | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q03164 | KMT2A | S136 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q04695 | KRT17 | S32 | psp | Keratin, type I cytoskeletal 17 (39.1) (Cytokeratin-17) (CK-17) (Keratin-17) (K17) | Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair (By similarity). Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state (By similarity). Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway (By similarity). Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors (By similarity). May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation. {ECO:0000250|UniProtKB:Q9QWL7, ECO:0000269|PubMed:10844551, ECO:0000269|PubMed:15795121, ECO:0000269|PubMed:16713453}. |
Q04695 | KRT17 | S39 | psp | Keratin, type I cytoskeletal 17 (39.1) (Cytokeratin-17) (CK-17) (Keratin-17) (K17) | Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair (By similarity). Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state (By similarity). Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway (By similarity). Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors (By similarity). May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation. {ECO:0000250|UniProtKB:Q9QWL7, ECO:0000269|PubMed:10844551, ECO:0000269|PubMed:15795121, ECO:0000269|PubMed:16713453}. |
Q06413 | MEF2C | T196 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q06587 | RING1 | S170 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06587 | RING1 | S211 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06587 | RING1 | S212 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06587 | RING1 | T215 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06587 | RING1 | T220 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06945 | SOX4 | S161 | ochoa | Transcription factor SOX-4 | Transcriptional activator that binds with high affinity to the T-cell enhancer motif 5'-AACAAAG-3' motif (PubMed:30661772). Required for IL17A-producing Vgamma2-positive gamma-delta T-cell maturation and development, via binding to regulator loci of RORC to modulate expression (By similarity). Involved in skeletal myoblast differentiation by promoting gene expression of CALD1 (PubMed:26291311). {ECO:0000250|UniProtKB:Q06831, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:30661772}. |
Q06945 | SOX4 | S174 | ochoa | Transcription factor SOX-4 | Transcriptional activator that binds with high affinity to the T-cell enhancer motif 5'-AACAAAG-3' motif (PubMed:30661772). Required for IL17A-producing Vgamma2-positive gamma-delta T-cell maturation and development, via binding to regulator loci of RORC to modulate expression (By similarity). Involved in skeletal myoblast differentiation by promoting gene expression of CALD1 (PubMed:26291311). {ECO:0000250|UniProtKB:Q06831, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:30661772}. |
Q10571 | MN1 | S765 | ochoa | Transcriptional activator MN1 (Probable tumor suppressor protein MN1) | Transcriptional activator which specifically regulates expression of TBX22 in the posterior region of the developing palate. Required during later stages of palate development for growth and medial fusion of the palatal shelves. Promotes maturation and normal function of calvarial osteoblasts, including expression of the osteoclastogenic cytokine TNFSF11/RANKL. Necessary for normal development of the membranous bones of the skull (By similarity). May play a role in tumor suppression (Probable). {ECO:0000250|UniProtKB:D3YWE6, ECO:0000305|PubMed:7731706}. |
Q12906 | ILF3 | S647 | psp | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S792 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S799 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S812 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S823 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q13033 | STRN3 | S31 | ochoa | Striatin-3 (Cell cycle autoantigen SG2NA) (S/G2 antigen) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:30622739, PubMed:33633399). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399, ECO:0000305|PubMed:26876214}. |
Q13148 | TARDBP | S273 | ochoa|psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q13148 | TARDBP | S292 | ochoa|psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q13151 | HNRNPA0 | Y180 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13151 | HNRNPA0 | S188 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13151 | HNRNPA0 | S270 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13151 | HNRNPA0 | S279 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13151 | HNRNPA0 | S280 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13247 | SRSF6 | S81 | ochoa | Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) | Plays a role in constitutive splicing and modulates the selection of alternative splice sites. Plays a role in the alternative splicing of MAPT/Tau exon 10. Binds to alternative exons of TNC pre-mRNA and promotes the expression of alternatively spliced TNC. Plays a role in wound healing and in the regulation of keratinocyte differentiation and proliferation via its role in alternative splicing. {ECO:0000269|PubMed:12549914, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:22767602, ECO:0000269|PubMed:24440982}. |
Q13595 | TRA2A | T213 | ochoa | Transformer-2 protein homolog alpha (TRA-2 alpha) (TRA2-alpha) (Transformer-2 protein homolog A) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. {ECO:0000269|PubMed:9546399}. |
Q13595 | TRA2A | S215 | ochoa | Transformer-2 protein homolog alpha (TRA-2 alpha) (TRA2-alpha) (Transformer-2 protein homolog A) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. {ECO:0000269|PubMed:9546399}. |
Q14151 | SAFB2 | S818 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14151 | SAFB2 | S886 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14643 | ITPR1 | S1767 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR1 (IP3 receptor isoform 1) (IP3R 1) (InsP3R1) (Inositol 1,4,5 trisphosphate receptor) (Inositol 1,4,5-trisphosphate receptor type 1) (Type 1 inositol 1,4,5-trisphosphate receptor) (Type 1 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon inositol 1,4,5-trisphosphate binding, mediates calcium release from the endoplasmic reticulum (ER) (PubMed:10620513, PubMed:27108797). Undergoes conformational changes upon ligand binding, suggesting structural flexibility that allows the channel to switch from a closed state, capable of interacting with its ligands such as 1,4,5-trisphosphate and calcium, to an open state, capable of transferring calcium ions across the ER membrane (By similarity). Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CAMK2 complex (By similarity). Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Part of a complex composed of HSPA9, ITPR1 and VDAC1 that regulates mitochondrial calcium-dependent apoptosis by facilitating calcium transport from the ER lumen to the mitochondria intermembrane space thus providing calcium for the downstream calcium channel MCU that directly releases it into mitochondria matrix (By similarity). Regulates fertilization and egg activation by tuning the frequency and amplitude of calcium oscillations (By similarity). {ECO:0000250|UniProtKB:P11881, ECO:0000250|UniProtKB:P29994, ECO:0000269|PubMed:10620513, ECO:0000269|PubMed:27108797}. |
Q14671 | PUM1 | S98 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14681 | KCTD2 | S19 | ochoa | BTB/POZ domain-containing protein KCTD2 (Potassium channel tetramerization domain-containing protein 2) | None |
Q15022 | SUZ12 | S17 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15022 | SUZ12 | S37 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15027 | ACAP1 | T389 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 (Centaurin-beta-1) (Cnt-b1) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6) required for clathrin-dependent export of proteins from recycling endosomes to trans-Golgi network and cell surface. Required for regulated export of ITGB1 from recycling endosomes to the cell surface and ITGB1-dependent cell migration. {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17398097, ECO:0000269|PubMed:17664335, ECO:0000269|PubMed:22645133}. |
Q15050 | RRS1 | S344 | ochoa | Ribosome biogenesis regulatory protein homolog | Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus. {ECO:0000269|PubMed:24120868}. |
Q15424 | SAFB | S794 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15554 | TERF2 | S40 | ochoa | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15672 | TWIST1 | S42 | psp | Twist-related protein 1 (Class A basic helix-loop-helix protein 38) (bHLHa38) (H-twist) | Acts as a transcriptional regulator. Inhibits myogenesis by sequestrating E proteins, inhibiting trans-activation by MEF2, and inhibiting DNA-binding by MYOD1 through physical interaction. This interaction probably involves the basic domains of both proteins. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Regulates cranial suture patterning and fusion. Activates transcription as a heterodimer with E proteins. Regulates gene expression differentially, depending on dimer composition. Homodimers induce expression of FGFR2 and POSTN while heterodimers repress FGFR2 and POSTN expression and induce THBS1 expression. Heterodimerization is also required for osteoblast differentiation. Represses the activity of the circadian transcriptional activator: NPAS2-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:P26687, ECO:0000269|PubMed:12553906, ECO:0000269|PubMed:25981568}. |
Q15744 | CEBPE | S21 | ochoa | CCAAT/enhancer-binding protein epsilon (C/EBP epsilon) | Transcriptional activator (PubMed:26019275). C/EBP are DNA-binding proteins that recognize two different motifs: the CCAAT homology common to many promoters and the enhanced core homology common to many enhancers. Required for the promyelocyte-myelocyte transition in myeloid differentiation (PubMed:10359588). {ECO:0000269|PubMed:10359588, ECO:0000269|PubMed:26019275}. |
Q15768 | EFNB3 | S268 | ochoa | Ephrin-B3 (EPH-related receptor transmembrane ligand ELK-L3) (EPH-related receptor tyrosine kinase ligand 8) (LERK-8) | Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. May play a pivotal role in forebrain function. Binds to, and induce the collapse of, commissural axons/growth cones in vitro. May play a role in constraining the orientation of longitudinally projecting axons (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Acts as a receptor for nipah virus and hendra virus. {ECO:0000269|PubMed:16477309, ECO:0000269|PubMed:17376907}. |
Q15768 | EFNB3 | S274 | ochoa | Ephrin-B3 (EPH-related receptor transmembrane ligand ELK-L3) (EPH-related receptor tyrosine kinase ligand 8) (LERK-8) | Cell surface transmembrane ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. May play a pivotal role in forebrain function. Binds to, and induce the collapse of, commissural axons/growth cones in vitro. May play a role in constraining the orientation of longitudinally projecting axons (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Acts as a receptor for nipah virus and hendra virus. {ECO:0000269|PubMed:16477309, ECO:0000269|PubMed:17376907}. |
Q15796 | SMAD2 | S21 | ochoa | Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) | Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}. |
Q2M2I8 | AAK1 | S18 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | S20 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | S21 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | S26 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | T27 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q2M2I8 | AAK1 | S28 | ochoa | AP2-associated protein kinase 1 (EC 2.7.11.1) (Adaptor-associated kinase 1) | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2) which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis (PubMed:11877457, PubMed:11877461, PubMed:12952931, PubMed:14617351, PubMed:17494869, PubMed:25653444). Isoform 1 and isoform 2 display similar levels of kinase activity towards AP2M1 (PubMed:17494869). Preferentially, may phosphorylate substrates on threonine residues (PubMed:11877457, PubMed:18657069). Regulates phosphorylation of other AP-2 subunits as well as AP-2 localization and AP-2-mediated internalization of ligand complexes (PubMed:12952931). Phosphorylates NUMB and regulates its cellular localization, promoting NUMB localization to endosomes (PubMed:18657069). Binds to and stabilizes the activated form of NOTCH1, increases its localization in endosomes and regulates its transcriptional activity (PubMed:21464124). {ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:11877461, ECO:0000269|PubMed:12952931, ECO:0000269|PubMed:14617351, ECO:0000269|PubMed:17494869, ECO:0000269|PubMed:18657069, ECO:0000269|PubMed:21464124, ECO:0000269|PubMed:25653444}.; FUNCTION: (Microbial infection) By regulating clathrin-mediated endocytosis, AAK1 plays a role in the entry of hepatitis C virus as well as for the lifecycle of other viruses such as Ebola and Dengue. {ECO:0000269|PubMed:25653444, ECO:0000305|PubMed:31136173}. |
Q32P51 | HNRNPA1L2 | S285 | ochoa | Heterogeneous nuclear ribonucleoprotein A1-like 2 (hnRNP A1-like 2) (hnRNP core protein A1-like 2) | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. {ECO:0000250}. |
Q32P51 | HNRNPA1L2 | S286 | ochoa | Heterogeneous nuclear ribonucleoprotein A1-like 2 (hnRNP A1-like 2) (hnRNP core protein A1-like 2) | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. {ECO:0000250}. |
Q32P51 | HNRNPA1L2 | Y289 | ochoa | Heterogeneous nuclear ribonucleoprotein A1-like 2 (hnRNP A1-like 2) (hnRNP core protein A1-like 2) | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. {ECO:0000250}. |
Q53EP0 | FNDC3B | S233 | ochoa | Fibronectin type III domain-containing protein 3B (Factor for adipocyte differentiation 104) (HCV NS5A-binding protein 37) | May be a positive regulator of adipogenesis. {ECO:0000269|PubMed:15564382}. |
Q53LP3 | SOWAHC | S226 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q53LP3 | SOWAHC | S229 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q53LP3 | SOWAHC | S230 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q53LP3 | SOWAHC | S231 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q5T8D3 | ACBD5 | S418 | ochoa | Acyl-CoA-binding domain-containing protein 5 | Acyl-CoA binding protein which acts as the peroxisome receptor for pexophagy but is dispensable for aggrephagy and nonselective autophagy. Binds medium- and long-chain acyl-CoA esters. {ECO:0000269|PubMed:24535825}. |
Q5U4P2 | ASPHD1 | S129 | ochoa | Aspartate beta-hydroxylase domain-containing protein 1 (EC 1.14.11.-) | None |
Q5U651 | RASIP1 | S96 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q5VZ18 | SHE | S69 | ochoa | SH2 domain-containing adapter protein E | None |
Q6P1R3 | MSANTD2 | S58 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6PJ61 | FBXO46 | S280 | ochoa | F-box only protein 46 (F-box only protein 34-like) | Substrate-recognition component of the SCF(FBXO46) protein ligase complex, which mediates the ubiquitination and degradation of target proteins (PubMed:30171069). In absence of stress, the SCF(FBXO46) complex catalyzes ubiquitination and degradation of MTOR-phosphorylated FBXO31 (PubMed:30171069). {ECO:0000269|PubMed:30171069}. |
Q6PJG9 | LRFN4 | S608 | ochoa | Leucine-rich repeat and fibronectin type-III domain-containing protein 4 | Promotes neurite outgrowth in hippocampal neurons. May play a role in redistributing DLG4 to the cell periphery (By similarity). {ECO:0000250}. |
Q6PJG9 | LRFN4 | S610 | ochoa | Leucine-rich repeat and fibronectin type-III domain-containing protein 4 | Promotes neurite outgrowth in hippocampal neurons. May play a role in redistributing DLG4 to the cell periphery (By similarity). {ECO:0000250}. |
Q6PKG0 | LARP1 | S90 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6ZN18 | AEBP2 | S167 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZN18 | AEBP2 | S176 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZN18 | AEBP2 | S178 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZN18 | AEBP2 | S179 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q7L0J3 | SV2A | S127 | ochoa|psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L2J0 | MEPCE | S152 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7LBC6 | KDM3B | S311 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7LFL8 | CXXC5 | S84 | ochoa | CXXC-type zinc finger protein 5 (CF5) (Putative MAPK-activating protein PM08) (Putative NF-kappa-B-activating protein 102) (Retinoid-inducible nuclear factor) (RINF) | May indirectly participate in activation of the NF-kappa-B and MAPK pathways. Acts as a mediator of BMP4-mediated modulation of canonical Wnt signaling activity in neural stem cells (By similarity). Required for DNA damage-induced ATM phosphorylation, p53 activation and cell cycle arrest. Involved in myelopoiesis. Transcription factor. Binds to the oxygen responsive element of COX4I2 and represses its transcription under hypoxia conditions (4% oxygen), as well as normoxia conditions (20% oxygen) (PubMed:23303788). May repress COX4I2 transactivation induced by CHCHD2 and RBPJ (PubMed:23303788). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q5XIQ3, ECO:0000269|PubMed:19182210, ECO:0000269|PubMed:19557330, ECO:0000269|PubMed:23303788, ECO:0000269|PubMed:29276034}. |
Q7Z2K6 | ERMP1 | S44 | ochoa | Endoplasmic reticulum metallopeptidase 1 (EC 3.4.-.-) (Felix-ina) | Within the ovary, required for the organization of somatic cells and oocytes into discrete follicular structures. {ECO:0000250|UniProtKB:Q6UPR8}. |
Q7Z2K6 | ERMP1 | S53 | ochoa | Endoplasmic reticulum metallopeptidase 1 (EC 3.4.-.-) (Felix-ina) | Within the ovary, required for the organization of somatic cells and oocytes into discrete follicular structures. {ECO:0000250|UniProtKB:Q6UPR8}. |
Q7Z460 | CLASP1 | S688 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q7Z460 | CLASP1 | S695 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q86V81 | ALYREF | S34 | ochoa|psp | THO complex subunit 4 (Tho4) (Ally of AML-1 and LEF-1) (Aly/REF export factor) (Transcriptional coactivator Aly/REF) (bZIP-enhancing factor BEF) | Functions as an mRNA export adapter; component of the transcription/export (TREX) complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Involved in the nuclear export of intronless mRNA; proposed to be recruited to intronless mRNA by ATP-bound DDX39B (PubMed:17984224). Plays a key role in mRNP recognition and mRNA packaging by bridging the mRNP-bound EJC and the TREX core complex (PubMed:37020021). TREX recruitment occurs via an interaction between ALYREF/THOC4 and the cap-binding protein NCBP1 (PubMed:15833825, PubMed:15998806, PubMed:17190602, PubMed:37020021). Required for TREX complex assembly and for linking DDX39B to the cap-binding complex (CBC) (PubMed:15998806, PubMed:17984224, PubMed:37020021). Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway) (PubMed:11675789, PubMed:11707413, PubMed:11979277, PubMed:15833825, PubMed:15998806, PubMed:17190602, PubMed:18364396, PubMed:22144908, PubMed:22893130, PubMed:23222130, PubMed:25662211). In conjunction with THOC5 functions in NXF1-NXT1 mediated nuclear export of HSP70 mRNA; both proteins enhance the RNA binding activity of NXF1 and are required for NXF1 localization to the nuclear rim (PubMed:19165146). Involved in mRNA export of C5-methylcytosine (m5C)-containing mRNAs: specifically recognizes and binds m5C mRNAs and mediates their nucleo-cytoplasmic shuttling (PubMed:28418038). Acts as a chaperone and promotes the dimerization of transcription factors containing basic leucine zipper (bZIP) domains and thereby promotes transcriptional activation (PubMed:10488337). Involved in transcription elongation and genome stability (PubMed:12438613). {ECO:0000269|PubMed:10488337, ECO:0000269|PubMed:11675789, ECO:0000269|PubMed:11707413, ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:12438613, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:17984224, ECO:0000269|PubMed:18364396, ECO:0000269|PubMed:19165146, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:25662211, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:37020021}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production; ALYREF/THOC4 mediates the recruitment of the TREX complex to the intronless viral mRNA. {ECO:0000269|PubMed:12438613, ECO:0000269|PubMed:18974867}. |
Q8IU81 | IRF2BP1 | S487 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IUD2 | ERC1 | S37 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IWX8 | CHERP | S855 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IWZ3 | ANKHD1 | S58 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ3 | ANKHD1 | S59 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ3 | ANKHD1 | S64 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IWZ3 | ANKHD1 | S66 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IYL2 | TRMT44 | S78 | ochoa | Probable tRNA (uracil-O(2)-)-methyltransferase (EC 2.1.1.211) (Methyltransferase-like protein 19) | Probable adenosyl-L-methionine (AdoMet)-dependent tRNA (uracil-O(2)-)-methyltransferase. {ECO:0000250}. |
Q8ND25 | ZNRF1 | S95 | ochoa | E3 ubiquitin-protein ligase ZNRF1 (EC 2.3.2.27) (Nerve injury-induced gene 283 protein) (RING-type E3 ubiquitin transferase ZNRF1) (Zinc/RING finger protein 1) | E3 ubiquitin-protein ligase that plays a role in different processes including cell differentiation, receptor recycling or regulation of inflammation (PubMed:28593998, PubMed:33996800, PubMed:37158982). Mediates the ubiquitination of AKT1 and GLUL, thereby playing a role in neuron cells differentiation. Plays a role in the establishment and maintenance of neuronal transmission and plasticity. Regulates Schwann cells differentiation by mediating ubiquitination of GLUL. Promotes neurodegeneration by mediating 'Lys-48'-linked polyubiquitination and subsequent degradation of AKT1 in axons: degradation of AKT1 prevents AKT1-mediated phosphorylation of GSK3B, leading to GSK3B activation and phosphorylation of DPYSL2/CRMP2 followed by destabilization of microtubule assembly in axons. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Controls ligand-induced EGFR signaling via mediating receptor ubiquitination and recruitment of the ESCRT machinery (PubMed:33996800). Acts as a negative feedback mechanism controlling TLR3 trafficking by mediating TLR3 'Lys-63'-linked polyubiquitination to reduce type I IFN production (PubMed:37158982). Modulates inflammation by promoting caveolin-1/CAV1 ubiquitination and degradation to regulate TLR4-activated immune response (PubMed:28593998). {ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:28593998, ECO:0000269|PubMed:29626159, ECO:0000269|PubMed:33996800, ECO:0000269|PubMed:37158982, ECO:0000305|PubMed:14561866}. |
Q8NEL9 | DDHD1 | S130 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8TAE6 | PPP1R14C | S25 | ochoa | Protein phosphatase 1 regulatory subunit 14C (Kinase-enhanced PP1 inhibitor) (PKC-potentiated PP1 inhibitory protein) (Serologically defined breast cancer antigen NY-BR-81) | Inhibitor of the PP1 regulatory subunit PPP1CA. |
Q8TD19 | NEK9 | S22 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TD19 | NEK9 | S749 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TD19 | NEK9 | S750 | ochoa|psp | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TF74 | WIPF2 | S70 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF74 | WIPF2 | S71 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q92804 | TAF15 | S180 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92804 | TAF15 | S432 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92804 | TAF15 | S433 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92804 | TAF15 | S438 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92804 | TAF15 | S442 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92804 | TAF15 | S451 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92908 | GATA6 | Y282 | psp | Transcription factor GATA-6 (GATA-binding factor 6) | Transcriptional activator (PubMed:19666519, PubMed:22750565, PubMed:22824924, PubMed:27756709). Regulates SEMA3C and PLXNA2 (PubMed:19666519). Involved in gene regulation specifically in the gastric epithelium (PubMed:9315713). May regulate genes that protect epithelial cells from bacterial infection (PubMed:16968778). Involved in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (By similarity). Binds to BMP response element (BMPRE) DNA sequences within cardiac activating regions (By similarity). In human skin, controls several physiological processes contributing to homeostasis of the upper pilosebaceous unit. Triggers ductal and sebaceous differentiation as well as limits cell proliferation and lipid production to prevent hyperseborrhoea. Mediates the effects of retinoic acid on sebocyte proliferation, differentiation and lipid production. Also contributes to immune regulation of sebocytes and antimicrobial responses by modulating the expression of anti-inflammatory genes such as IL10 and pro-inflammatory genes such as IL6, TLR2, TLR4, and IFNG. Activates TGFB1 signaling which controls the interfollicular epidermis fate (PubMed:33082341). {ECO:0000250|UniProtKB:Q61169, ECO:0000269|PubMed:16968778, ECO:0000269|PubMed:19666519, ECO:0000269|PubMed:22750565, ECO:0000269|PubMed:22824924, ECO:0000269|PubMed:27756709, ECO:0000269|PubMed:33082341, ECO:0000269|PubMed:9315713}. |
Q96DT7 | ZBTB10 | S210 | ochoa | Zinc finger and BTB domain-containing protein 10 (Zinc finger protein RIN ZF) | May be involved in transcriptional regulation. |
Q96E09 | PABIR1 | S19 | ochoa | PPP2R1A-PPP2R2A-interacting phosphatase regulator 1 (PABIR family member 1) | Acts as an inhibitor of serine/threonine-protein phosphatase 2A (PP2A) activity (PubMed:27588481, PubMed:33108758, PubMed:38123684). Inhibits PP2A activity by blocking the substrate binding site on PPP2R2A and the active site of PPP2CA (PubMed:38123684). Potentiates ubiquitin-mediated proteasomal degradation of serine/threonine-protein phosphatase 2A catalytic subunit alpha (PPP2CA) (PubMed:27588481). Inhibits PP2A-mediated dephosphorylation of WEE1, promoting ubiquitin-mediated proteolysis of WEE1, thereby releasing G2/M checkpoint (PubMed:33108758). {ECO:0000269|PubMed:27588481, ECO:0000269|PubMed:33108758, ECO:0000269|PubMed:38123684}. |
Q96E39 | RBMXL1 | S116 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96F45 | ZNF503 | S285 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96IF1 | AJUBA | S39 | ochoa|psp | LIM domain-containing protein ajuba | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, mitosis, cell-cell adhesion, cell differentiation, proliferation and migration. Contributes to the linking and/or strengthening of epithelia cell-cell junctions in part by linking adhesive receptors to the actin cytoskeleton. May be involved in signal transduction from cell adhesion sites to the nucleus. Plays an important role in regulation of the kinase activity of AURKA for mitotic commitment. Also a component of the IL-1 signaling pathway modulating IL-1-induced NFKB1 activation by influencing the assembly and activity of the PRKCZ-SQSTM1-TRAF6 multiprotein signaling complex. Functions as an HDAC-dependent corepressor for a subset of GFI1 target genes. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. {ECO:0000269|PubMed:12417594, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:15870274, ECO:0000269|PubMed:16413547, ECO:0000269|PubMed:17909014, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:22286099}. |
Q96L92 | SNX27 | S26 | ochoa | Sorting nexin-27 | Involved in the retrograde transport from endosome to plasma membrane, a trafficking pathway that promotes the recycling of internalized transmembrane proteins. Following internalization, endocytosed transmembrane proteins are delivered to early endosomes and recycled to the plasma membrane instead of being degraded in lysosomes. SNX27 specifically binds and directs sorting of a subset of transmembrane proteins containing a PDZ-binding motif at the C-terminus: following interaction with target transmembrane proteins, associates with the retromer complex, preventing entry into the lysosomal pathway, and promotes retromer-tubule based plasma membrane recycling. SNX27 also binds with the WASH complex. Interacts with membranes containing phosphatidylinositol-3-phosphate (PtdIns(3P)). May participate in establishment of natural killer cell polarity. Recruits CYTIP to early endosomes. {ECO:0000269|PubMed:17351151, ECO:0000269|PubMed:20733053, ECO:0000269|PubMed:21300787, ECO:0000269|PubMed:21303929, ECO:0000269|PubMed:21602791, ECO:0000269|PubMed:21926430, ECO:0000269|PubMed:22411990, ECO:0000269|PubMed:23563491}. |
Q96PG8 | BBC3 | S160 | ochoa | Bcl-2-binding component 3, isoforms 3/4 (JFY-1) (p53 up-regulated modulator of apoptosis) | [Isoform 3]: Does not affect cell growth. {ECO:0000269|PubMed:11463392}. |
Q96PV0 | SYNGAP1 | T369 | ochoa | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Q96PV0 | SYNGAP1 | S371 | ochoa | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Q96PV0 | SYNGAP1 | S374 | ochoa | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Q96PV0 | SYNGAP1 | S1114 | ochoa | Ras/Rap GTPase-activating protein SynGAP (Neuronal RasGAP) (Synaptic Ras GTPase-activating protein 1) (Synaptic Ras-GAP 1) | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). {ECO:0000250}. |
Q96RY5 | CRAMP1 | S110 | ochoa | Protein cramped-like (Cramped chromatin regulator homolog 1) (Hematological and neurological expressed 1-like protein) | None |
Q96S21 | RAB40C | S242 | ochoa | Ras-related protein Rab-40C (EC 3.6.5.2) (Rar-like protein) (Ras-like protein family member 8C) (SOCS box-containing protein RAR3) | RAB40C small GTPase acts as substrate-recognition component of the ECS(RAB40C) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15601820, PubMed:35512830). The Rab40 subfamily belongs to the Rab family that are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:29156729). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). Also negatively regulate lipid droplets accumulation in a GTP-dependent manner (PubMed:29156729). {ECO:0000269|PubMed:15601820, ECO:0000269|PubMed:29156729, ECO:0000269|PubMed:35512830}. |
Q99729 | HNRNPAB | Y240 | ochoa | Heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) (APOBEC1-binding protein 1) (ABBP-1) | Binds single-stranded RNA. Has a high affinity for G-rich and U-rich regions of hnRNA. Also binds to APOB mRNA transcripts around the RNA editing site. |
Q99729 | HNRNPAB | S242 | ochoa | Heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) (APOBEC1-binding protein 1) (ABBP-1) | Binds single-stranded RNA. Has a high affinity for G-rich and U-rich regions of hnRNA. Also binds to APOB mRNA transcripts around the RNA editing site. |
Q99967 | CITED2 | T166 | psp | Cbp/p300-interacting transactivator 2 (MSG-related protein 1) (MRG-1) (P35srj) | Transcriptional coactivator of the p300/CBP-mediated transcription complex. Acts as a bridge, linking TFAP2 transcription factors and the p300/CBP transcriptional coactivator complex in order to stimulate TFAP2-mediated transcriptional activation. Positively regulates TGF-beta signaling through its association with the SMAD/p300/CBP-mediated transcriptional coactivator complex. Stimulates the peroxisome proliferator-activated receptors PPARA transcriptional activity. Enhances estrogen-dependent transactivation mediated by estrogen receptors. Also acts as a transcriptional corepressor; interferes with the binding of the transcription factors HIF1A or STAT2 and the p300/CBP transcriptional coactivator complex. Participates in sex determination and early gonad development by stimulating transcription activation of SRY. Plays a role in controlling left-right patterning during embryogenesis; potentiates transcriptional activation of NODAL-mediated gene transcription in the left lateral plate mesoderm (LPM). Plays an essential role in differentiation of the adrenal cortex from the adrenogonadal primordium (AGP); stimulates WT1-mediated transcription activation thereby up-regulating the nuclear hormone receptor NR5A1 promoter activity. Associates with chromatin to the PITX2 P1 promoter region. {ECO:0000269|PubMed:11581164, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:15051727}. |
Q99967 | CITED2 | T175 | psp | Cbp/p300-interacting transactivator 2 (MSG-related protein 1) (MRG-1) (P35srj) | Transcriptional coactivator of the p300/CBP-mediated transcription complex. Acts as a bridge, linking TFAP2 transcription factors and the p300/CBP transcriptional coactivator complex in order to stimulate TFAP2-mediated transcriptional activation. Positively regulates TGF-beta signaling through its association with the SMAD/p300/CBP-mediated transcriptional coactivator complex. Stimulates the peroxisome proliferator-activated receptors PPARA transcriptional activity. Enhances estrogen-dependent transactivation mediated by estrogen receptors. Also acts as a transcriptional corepressor; interferes with the binding of the transcription factors HIF1A or STAT2 and the p300/CBP transcriptional coactivator complex. Participates in sex determination and early gonad development by stimulating transcription activation of SRY. Plays a role in controlling left-right patterning during embryogenesis; potentiates transcriptional activation of NODAL-mediated gene transcription in the left lateral plate mesoderm (LPM). Plays an essential role in differentiation of the adrenal cortex from the adrenogonadal primordium (AGP); stimulates WT1-mediated transcription activation thereby up-regulating the nuclear hormone receptor NR5A1 promoter activity. Associates with chromatin to the PITX2 P1 promoter region. {ECO:0000269|PubMed:11581164, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:15051727}. |
Q9BRK4 | LZTS2 | S277 | ochoa|psp | Leucine zipper putative tumor suppressor 2 (hLZTS2) (Protein LAPSER1) | Negative regulator of katanin-mediated microtubule severing and release from the centrosome. Required for central spindle formation and the completion of cytokinesis. May negatively regulate axonal outgrowth by preventing the formation of microtubule bundles that are necessary for transport within the elongating axon. Negative regulator of the Wnt signaling pathway. Represses beta-catenin-mediated transcriptional activation by promoting the nuclear exclusion of beta-catenin. {ECO:0000255|HAMAP-Rule:MF_03026, ECO:0000269|PubMed:17000760, ECO:0000269|PubMed:17351128, ECO:0000269|PubMed:17950943, ECO:0000269|PubMed:18490357}. |
Q9C0K0 | BCL11B | S772 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H165 | BCL11A | S718 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H2U1 | DHX36 | S17 | ochoa | ATP-dependent DNA/RNA helicase DHX36 (EC 3.6.4.12) (EC 3.6.4.13) (DEAD/H box polypeptide 36) (DEAH-box protein 36) (G4-resolvase-1) (G4R1) (MLE-like protein 1) (RNA helicase associated with AU-rich element protein) | Multifunctional ATP-dependent helicase that unwinds G-quadruplex (G4) structures (PubMed:16150737, PubMed:18854321, PubMed:20472641, PubMed:21586581). Plays a role in many biological processes such as genomic integrity, gene expression regulations and as a sensor to initiate antiviral responses (PubMed:14731398, PubMed:18279852, PubMed:21993297, PubMed:22238380, PubMed:25579584). G4 structures correspond to helical structures containing guanine tetrads (By similarity). Binds with high affinity to and unwinds G4 structures that are formed in nucleic acids (G4-DNA and G4-RNA) (PubMed:16150737, PubMed:18842585, PubMed:20472641, PubMed:21586581, PubMed:24369427, PubMed:26195789). Plays a role in genomic integrity (PubMed:22238380). Converts the G4-RNA structure present in telomerase RNA template component (TREC) into a double-stranded RNA to promote P1 helix formation that acts as a template boundary ensuring accurate reverse transcription (PubMed:20472641, PubMed:21149580, PubMed:21846770, PubMed:22238380, PubMed:24151078, PubMed:25579584). Plays a role in transcriptional regulation (PubMed:21586581, PubMed:21993297). Resolves G4-DNA structures in promoters of genes, such as YY1, KIT/c-kit and ALPL and positively regulates their expression (PubMed:21993297). Plays a role in post-transcriptional regulation (PubMed:27940037). Unwinds a G4-RNA structure located in the 3'-UTR polyadenylation site of the pre-mRNA TP53 and stimulates TP53 pre-mRNA 3'-end processing in response to ultraviolet (UV)-induced DNA damage (PubMed:27940037). Binds to the precursor-microRNA-134 (pre-miR-134) terminal loop and regulates its transport into the synapto-dendritic compartment (By similarity). Involved in the pre-miR-134-dependent inhibition of target gene expression and the control of dendritic spine size (By similarity). Plays a role in the regulation of cytoplasmic mRNA translation and mRNA stability (PubMed:24369427, PubMed:26489465). Binds to both G4-RNA structures and alternative non-quadruplex-forming sequence within the 3'-UTR of the PITX1 mRNA regulating negatively PITX1 protein expression (PubMed:24369427). Binds to both G4-RNA structure in the 5'-UTR and AU-rich elements (AREs) localized in the 3'-UTR of NKX2-5 mRNA to either stimulate protein translation or induce mRNA decay in an ELAVL1-dependent manner, respectively (PubMed:26489465). Also binds to ARE sequences present in several mRNAs mediating exosome-mediated 3'-5' mRNA degradation (PubMed:14731398, PubMed:18279852). Involved in cytoplasmic urokinase-type plasminogen activator (uPA) mRNA decay (PubMed:14731398). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). Required for early embryonic development and hematopoiesis. Involved in the regulation of cardioblast differentiation and proliferation during heart development. Involved in spermatogonia differentiation. May play a role in ossification (By similarity). {ECO:0000250|UniProtKB:D4A2Z8, ECO:0000250|UniProtKB:Q05B79, ECO:0000250|UniProtKB:Q8VHK9, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:16150737, ECO:0000269|PubMed:18279852, ECO:0000269|PubMed:18842585, ECO:0000269|PubMed:18854321, ECO:0000269|PubMed:20472641, ECO:0000269|PubMed:21149580, ECO:0000269|PubMed:21586581, ECO:0000269|PubMed:21846770, ECO:0000269|PubMed:21993297, ECO:0000269|PubMed:22238380, ECO:0000269|PubMed:24151078, ECO:0000269|PubMed:24369427, ECO:0000269|PubMed:25579584, ECO:0000269|PubMed:26195789, ECO:0000269|PubMed:26489465, ECO:0000269|PubMed:27940037}. |
Q9H2U1 | DHX36 | S18 | ochoa | ATP-dependent DNA/RNA helicase DHX36 (EC 3.6.4.12) (EC 3.6.4.13) (DEAD/H box polypeptide 36) (DEAH-box protein 36) (G4-resolvase-1) (G4R1) (MLE-like protein 1) (RNA helicase associated with AU-rich element protein) | Multifunctional ATP-dependent helicase that unwinds G-quadruplex (G4) structures (PubMed:16150737, PubMed:18854321, PubMed:20472641, PubMed:21586581). Plays a role in many biological processes such as genomic integrity, gene expression regulations and as a sensor to initiate antiviral responses (PubMed:14731398, PubMed:18279852, PubMed:21993297, PubMed:22238380, PubMed:25579584). G4 structures correspond to helical structures containing guanine tetrads (By similarity). Binds with high affinity to and unwinds G4 structures that are formed in nucleic acids (G4-DNA and G4-RNA) (PubMed:16150737, PubMed:18842585, PubMed:20472641, PubMed:21586581, PubMed:24369427, PubMed:26195789). Plays a role in genomic integrity (PubMed:22238380). Converts the G4-RNA structure present in telomerase RNA template component (TREC) into a double-stranded RNA to promote P1 helix formation that acts as a template boundary ensuring accurate reverse transcription (PubMed:20472641, PubMed:21149580, PubMed:21846770, PubMed:22238380, PubMed:24151078, PubMed:25579584). Plays a role in transcriptional regulation (PubMed:21586581, PubMed:21993297). Resolves G4-DNA structures in promoters of genes, such as YY1, KIT/c-kit and ALPL and positively regulates their expression (PubMed:21993297). Plays a role in post-transcriptional regulation (PubMed:27940037). Unwinds a G4-RNA structure located in the 3'-UTR polyadenylation site of the pre-mRNA TP53 and stimulates TP53 pre-mRNA 3'-end processing in response to ultraviolet (UV)-induced DNA damage (PubMed:27940037). Binds to the precursor-microRNA-134 (pre-miR-134) terminal loop and regulates its transport into the synapto-dendritic compartment (By similarity). Involved in the pre-miR-134-dependent inhibition of target gene expression and the control of dendritic spine size (By similarity). Plays a role in the regulation of cytoplasmic mRNA translation and mRNA stability (PubMed:24369427, PubMed:26489465). Binds to both G4-RNA structures and alternative non-quadruplex-forming sequence within the 3'-UTR of the PITX1 mRNA regulating negatively PITX1 protein expression (PubMed:24369427). Binds to both G4-RNA structure in the 5'-UTR and AU-rich elements (AREs) localized in the 3'-UTR of NKX2-5 mRNA to either stimulate protein translation or induce mRNA decay in an ELAVL1-dependent manner, respectively (PubMed:26489465). Also binds to ARE sequences present in several mRNAs mediating exosome-mediated 3'-5' mRNA degradation (PubMed:14731398, PubMed:18279852). Involved in cytoplasmic urokinase-type plasminogen activator (uPA) mRNA decay (PubMed:14731398). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). Required for early embryonic development and hematopoiesis. Involved in the regulation of cardioblast differentiation and proliferation during heart development. Involved in spermatogonia differentiation. May play a role in ossification (By similarity). {ECO:0000250|UniProtKB:D4A2Z8, ECO:0000250|UniProtKB:Q05B79, ECO:0000250|UniProtKB:Q8VHK9, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:16150737, ECO:0000269|PubMed:18279852, ECO:0000269|PubMed:18842585, ECO:0000269|PubMed:18854321, ECO:0000269|PubMed:20472641, ECO:0000269|PubMed:21149580, ECO:0000269|PubMed:21586581, ECO:0000269|PubMed:21846770, ECO:0000269|PubMed:21993297, ECO:0000269|PubMed:22238380, ECO:0000269|PubMed:24151078, ECO:0000269|PubMed:24369427, ECO:0000269|PubMed:25579584, ECO:0000269|PubMed:26195789, ECO:0000269|PubMed:26489465, ECO:0000269|PubMed:27940037}. |
Q9H4Q3 | PRDM13 | T556 | ochoa | PR domain zinc finger protein 13 (EC 2.1.1.-) (PR domain-containing protein 13) | May be involved in transcriptional regulation. Is required for the differentiation of KISS1-expressing neurons in the arcuate (Arc) nucleus of the hypothalamus. Is a critical regulator of GABAergic cell fate in the cerebellum, required for normal postnatal cerebellar development (By similarity). {ECO:0000250|UniProtKB:E9PZZ1}. |
Q9H6S0 | YTHDC2 | S23 | ochoa | 3'-5' RNA helicase YTHDC2 (EC 3.6.4.13) (YTH domain-containing protein 2) (hYTHDC2) | 3'-5' RNA helicase that plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells (PubMed:26318451, PubMed:29033321, PubMed:29970596). Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, a modification present at internal sites of mRNAs and some non-coding RNAs that plays a role in the efficiency of RNA processing and stability (PubMed:26318451, PubMed:29033321). Essential for ensuring a successful progression of the meiotic program in the germline by regulating the level of m6A-containing RNAs (By similarity). Acts by binding and promoting degradation of m6A-containing mRNAs: the 3'-5' RNA helicase activity is required for this process and RNA degradation may be mediated by XRN1 exoribonuclease (PubMed:29033321). Required for both spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B2RR83, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:29033321, ECO:0000269|PubMed:29970596}. |
Q9NNW5 | WDR6 | S545 | ochoa | tRNA (34-2'-O)-methyltransferase regulator WDR6 (WD repeat-containing protein 6) | Together with methyltransferase FTSJ1, methylates the 2'-O-ribose of nucleotides at position 34 of the tRNA anticodon loop of substrate tRNAs (PubMed:32558197, PubMed:33771871). Required for the correct positioning of the substrate tRNA for methylation (PubMed:32558197). Required to suppress amino acid starvation-induced autophagy (PubMed:22354037). Enhances the STK11/LKB1-induced cell growth suppression activity (PubMed:17216128). {ECO:0000269|PubMed:17216128, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:32558197, ECO:0000269|PubMed:33771871}. |
Q9NNW5 | WDR6 | S547 | ochoa | tRNA (34-2'-O)-methyltransferase regulator WDR6 (WD repeat-containing protein 6) | Together with methyltransferase FTSJ1, methylates the 2'-O-ribose of nucleotides at position 34 of the tRNA anticodon loop of substrate tRNAs (PubMed:32558197, PubMed:33771871). Required for the correct positioning of the substrate tRNA for methylation (PubMed:32558197). Required to suppress amino acid starvation-induced autophagy (PubMed:22354037). Enhances the STK11/LKB1-induced cell growth suppression activity (PubMed:17216128). {ECO:0000269|PubMed:17216128, ECO:0000269|PubMed:22354037, ECO:0000269|PubMed:32558197, ECO:0000269|PubMed:33771871}. |
Q9NP98 | MYOZ1 | Y127 | ochoa | Myozenin-1 (Calsarcin-2) (Filamin-, actinin- and telethonin-binding protein) (Protein FATZ) | Myozenins may serve as intracellular binding proteins involved in linking Z-disk proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NP98 | MYOZ1 | S139 | ochoa | Myozenin-1 (Calsarcin-2) (Filamin-, actinin- and telethonin-binding protein) (Protein FATZ) | Myozenins may serve as intracellular binding proteins involved in linking Z-disk proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NRH2 | SNRK | S609 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9NS37 | CREBZF | S189 | ochoa | CREB/ATF bZIP transcription factor (Host cell factor-binding transcription factor Zhangfei) (HCF-binding transcription factor Zhangfei) | Strongly activates transcription when bound to HCFC1. Suppresses the expression of HSV proteins in cells infected with the virus in a HCFC1-dependent manner. Also suppresses the HCFC1-dependent transcriptional activation by CREB3 and reduces the amount of CREB3 in the cell. Able to down-regulate expression of some cellular genes in CREBZF-expressing cells. {ECO:0000269|PubMed:10871379, ECO:0000269|PubMed:15705566}. |
Q9NYF8 | BCLAF1 | Y80 | psp | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NYF8 | BCLAF1 | Y81 | psp | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9P258 | RCC2 | S46 | ochoa | Protein RCC2 (RCC1-like protein TD-60) (Telophase disk protein of 60 kDa) | Multifunctional protein that may affect its functions by regulating the activity of small GTPases, such as RAC1 and RALA (PubMed:12919680, PubMed:25074804, PubMed:26158537, PubMed:28869598). Required for normal progress through the cell cycle, both during interphase and during mitosis (PubMed:12919680, PubMed:23388455, PubMed:26158537). Required for the presence of normal levels of MAD2L1, AURKB and BIRC5 on inner centromeres during mitosis, and for normal attachment of kinetochores to mitotic spindles (PubMed:12919680, PubMed:26158537). Required for normal organization of the microtubule cytoskeleton in interphase cells (PubMed:23388455). Functions as guanine nucleotide exchange factor (GEF) for RALA (PubMed:26158537). Interferes with the activation of RAC1 by guanine nucleotide exchange factors (PubMed:25074804). Prevents accumulation of active, GTP-bound RAC1, and suppresses RAC1-mediated reorganization of the actin cytoskeleton and formation of membrane protrusions (PubMed:25074804, PubMed:28869598). Required for normal cellular responses to contacts with the extracellular matrix of adjacent cells, and for directional cell migration in response to a fibronectin gradient (in vitro) (PubMed:25074804, PubMed:28869598). {ECO:0000269|PubMed:12919680, ECO:0000269|PubMed:23388455, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:26158537, ECO:0000269|PubMed:28869598}. |
Q9P258 | RCC2 | S50 | ochoa | Protein RCC2 (RCC1-like protein TD-60) (Telophase disk protein of 60 kDa) | Multifunctional protein that may affect its functions by regulating the activity of small GTPases, such as RAC1 and RALA (PubMed:12919680, PubMed:25074804, PubMed:26158537, PubMed:28869598). Required for normal progress through the cell cycle, both during interphase and during mitosis (PubMed:12919680, PubMed:23388455, PubMed:26158537). Required for the presence of normal levels of MAD2L1, AURKB and BIRC5 on inner centromeres during mitosis, and for normal attachment of kinetochores to mitotic spindles (PubMed:12919680, PubMed:26158537). Required for normal organization of the microtubule cytoskeleton in interphase cells (PubMed:23388455). Functions as guanine nucleotide exchange factor (GEF) for RALA (PubMed:26158537). Interferes with the activation of RAC1 by guanine nucleotide exchange factors (PubMed:25074804). Prevents accumulation of active, GTP-bound RAC1, and suppresses RAC1-mediated reorganization of the actin cytoskeleton and formation of membrane protrusions (PubMed:25074804, PubMed:28869598). Required for normal cellular responses to contacts with the extracellular matrix of adjacent cells, and for directional cell migration in response to a fibronectin gradient (in vitro) (PubMed:25074804, PubMed:28869598). {ECO:0000269|PubMed:12919680, ECO:0000269|PubMed:23388455, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:26158537, ECO:0000269|PubMed:28869598}. |
Q9P260 | RELCH | S141 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9P270 | SLAIN2 | S72 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9UHB9 | SRP68 | S16 | ochoa | Signal recognition particle subunit SRP68 (SRP68) (Signal recognition particle 68 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA), SRP72 binds to this complex subsequently (PubMed:16672232, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38687, ECO:0000269|PubMed:16672232, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
Q9UHB9 | SRP68 | S22 | ochoa | Signal recognition particle subunit SRP68 (SRP68) (Signal recognition particle 68 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA), SRP72 binds to this complex subsequently (PubMed:16672232, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38687, ECO:0000269|PubMed:16672232, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
Q9UI08 | EVL | S259 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UI08 | EVL | S260 | ochoa | Ena/VASP-like protein (Ena/vasodilator-stimulated phosphoprotein-like) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. EVL enhances actin nucleation and polymerization. |
Q9UKX7 | NUP50 | S74 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UKY7 | CDV3 | S41 | ochoa | Protein CDV3 homolog | None |
Q9UKY7 | CDV3 | S42 | ochoa | Protein CDV3 homolog | None |
Q9UMN6 | KMT2B | T278 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UPT8 | ZC3H4 | Y247 | psp | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q9UPU5 | USP24 | Y50 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UPU5 | USP24 | S63 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9Y2X9 | ZNF281 | S160 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y4H2 | IRS2 | S1186 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4X0 | AMMECR1 | S21 | ochoa | Nuclear protein AMMECR1 (AMME syndrome candidate gene 1 protein) | None |
Q9Y5A9 | YTHDF2 | S359 | ochoa | YTH domain-containing family protein 2 (DF2) (CLL-associated antigen KW-14) (High-glucose-regulated protein 8) (Renal carcinoma antigen NY-REN-2) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:24284625, PubMed:26046440, PubMed:26318451, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:25412658, PubMed:25412661, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT and ribonuclease P/MRP complexes, depending on the context (PubMed:24284625, PubMed:26046440, PubMed:27558897, PubMed:30930054, PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). M6A-containing mRNAs containing a binding site for RIDA/HRSP12 (5'-GGUUC-3') are preferentially degraded by endoribonucleolytic cleavage: cooperative binding of RIDA/HRSP12 and YTHDF2 to transcripts leads to recruitment of the ribonuclease P/MRP complex (PubMed:30930054). Other m6A-containing mRNAs undergo deadenylation via direct interaction between YTHDF2 and CNOT1, leading to recruitment of the CCR4-NOT and subsequent deadenylation of m6A-containing mRNAs (PubMed:27558897). Required maternally to regulate oocyte maturation: probably acts by binding to m6A-containing mRNAs, thereby regulating maternal transcript dosage during oocyte maturation, which is essential for the competence of oocytes to sustain early zygotic development (By similarity). Also required during spermatogenesis: regulates spermagonial adhesion by promoting degradation of m6A-containing transcripts coding for matrix metallopeptidases (By similarity). Also involved in hematopoietic stem cells specification by binding to m6A-containing mRNAs, leading to promote their degradation (PubMed:30065315). Also acts as a regulator of neural development by promoting m6A-dependent degradation of neural development-related mRNA targets (By similarity). Inhibits neural specification of induced pluripotent stem cells by binding to methylated neural-specific mRNAs and promoting their degradation, thereby restraining neural differentiation (PubMed:32169943). Regulates circadian regulation of hepatic lipid metabolism: acts by promoting m6A-dependent degradation of PPARA transcripts (PubMed:30428350). Regulates the innate immune response to infection by inhibiting the type I interferon response: acts by binding to m6A-containing IFNB transcripts and promoting their degradation (PubMed:30559377). May also act as a promoter of cap-independent mRNA translation following heat shock stress: upon stress, relocalizes to the nucleus and specifically binds mRNAs with some m6A methylation mark at their 5'-UTR, protecting demethylation of mRNAs by FTO, thereby promoting cap-independent mRNA translation (PubMed:26458103). Regulates mitotic entry by promoting the phase-specific m6A-dependent degradation of WEE1 transcripts (PubMed:32267835). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:31642031, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind RNAs modified by C5-methylcytosine (m5C) and act as a regulator of rRNA processing (PubMed:31815440). {ECO:0000250|UniProtKB:Q91YT7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25412658, ECO:0000269|PubMed:25412661, ECO:0000269|PubMed:26046440, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:30065315, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:30930054, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:31642031, ECO:0000269|PubMed:31815440, ECO:0000269|PubMed:32169943, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: (Microbial infection) Promotes viral gene expression and replication of polyomavirus SV40: acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29447282). {ECO:0000269|PubMed:29447282}.; FUNCTION: (Microbial infection) Promotes viral gene expression and virion production of kaposis sarcoma-associated herpesvirus (KSHV) at some stage of the KSHV life cycle (in iSLK.219 and iSLK.BAC16 cells) (PubMed:29659627). Acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29659627). {ECO:0000269|PubMed:29659627}. |
Q9Y6G9 | DYNC1LI1 | T456 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6G9 | DYNC1LI1 | S458 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6G9 | DYNC1LI1 | S465 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6G9 | DYNC1LI1 | S468 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q04695 | KRT17 | S28 | Sugiyama | Keratin, type I cytoskeletal 17 (39.1) (Cytokeratin-17) (CK-17) (Keratin-17) (K17) | Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair (By similarity). Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state (By similarity). Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway (By similarity). Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors (By similarity). May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation. {ECO:0000250|UniProtKB:Q9QWL7, ECO:0000269|PubMed:10844551, ECO:0000269|PubMed:15795121, ECO:0000269|PubMed:16713453}. |
P22626 | HNRNPA2B1 | Y234 | Sugiyama | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P09651 | HNRNPA1 | Y253 | Sugiyama | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P35637 | FUS | S163 | PSP | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35637 | FUS | S164 | PSP | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
Q9Y5R6 | DMRT1 | S43 | Sugiyama | Doublesex- and mab-3-related transcription factor 1 (DM domain expressed in testis protein 1) | Transcription factor that plays a key role in male sex determination and differentiation by controlling testis development and male germ cell proliferation. Plays a central role in spermatogonia by inhibiting meiosis in undifferentiated spermatogonia and promoting mitosis, leading to spermatogonial development and allowing abundant and continuous production of sperm. Acts both as a transcription repressor and activator: prevents meiosis by restricting retinoic acid (RA)-dependent transcription and repressing STRA8 expression and promotes spermatogonial development by activating spermatogonial differentiation genes, such as SOHLH1. Also plays a key role in postnatal sex maintenance by maintaining testis determination and preventing feminization: represses transcription of female promoting genes such as FOXL2 and activates male-specific genes. May act as a tumor suppressor. May also play a minor role in oogenesis (By similarity). {ECO:0000250}. |
Q6XUX3 | DSTYK | S65 | Sugiyama | Dual serine/threonine and tyrosine protein kinase (EC 2.7.12.1) (Dusty protein kinase) (Dusty PK) (RIP-homologous kinase) (Receptor-interacting serine/threonine-protein kinase 5) (Sugen kinase 496) (SgK496) | Acts as a positive regulator of ERK phosphorylation downstream of fibroblast growth factor-receptor activation (PubMed:23862974, PubMed:28157540). Involved in the regulation of both caspase-dependent apoptosis and caspase-independent cell death (PubMed:15178406). In the skin, it plays a predominant role in suppressing caspase-dependent apoptosis in response to UV stress in a range of dermal cell types (PubMed:28157540). {ECO:0000269|PubMed:15178406, ECO:0000269|PubMed:23862974, ECO:0000269|PubMed:28157540}. |
Q9H1R3 | MYLK2 | S73 | Sugiyama | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
A0FGR8 | ESYT2 | S693 | ochoa | Extended synaptotagmin-2 (E-Syt2) (Chr2Syt) | Tethers the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane. Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport. Plays a role in FGF signaling via its role in the rapid internalization of FGFR1 that has been activated by FGF1 binding; this occurs most likely via the AP-2 complex. Promotes the localization of SACM1L at endoplasmic reticulum-plasma membrane contact sites (EPCS) (PubMed:27044890). {ECO:0000269|PubMed:17360437, ECO:0000269|PubMed:20833364, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24847877, ECO:0000269|PubMed:27044890}. |
A1L390 | PLEKHG3 | S827 | ochoa | Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) | Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}. |
A6NIX2 | WTIP | S88 | ochoa | Wilms tumor protein 1-interacting protein (WT1-interacting protein) | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates Hippo signaling pathway and antagonizes phosphorylation of YAP1. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. In podocytes, may play a role in the regulation of actin dynamics and/or foot process cytoarchitecture (By similarity). In the course of podocyte injury, shuttles into the nucleus and acts as a transcription regulator that represses WT1-dependent transcription regulation, thereby translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype. Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:A9LS46, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
A6NNA2 | SRRM3 | S447 | ochoa | Serine/arginine repetitive matrix protein 3 | May play a role in regulating breast cancer cell invasiveness (PubMed:26053433). May be involved in RYBP-mediated breast cancer progression (PubMed:27748911). {ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:27748911}. |
A7E2V4 | ZSWIM8 | S48 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
A7E2V4 | ZSWIM8 | S593 | ochoa | Zinc finger SWIM domain-containing protein 8 | Substrate recognition component of a SCF-like E3 ubiquitin-protein ligase complex that promotes target-directed microRNA degradation (TDMD), a process that mediates degradation of microRNAs (miRNAs) (PubMed:33184234, PubMed:33184237). The SCF-like E3 ubiquitin-protein ligase complex acts by catalyzing ubiquitination and subsequent degradation of AGO proteins (AGO1, AGO2, AGO3 and/or AGO4), thereby exposing miRNAs for degradation (PubMed:33184234, PubMed:33184237). Specifically recognizes and binds AGO proteins when they are engaged with a TDMD target (PubMed:33184234). May also act as a regulator of axon guidance: specifically recognizes misfolded ROBO3 and promotes its ubiquitination and subsequent degradation (PubMed:24012004). Plays an essential role for proper embryonic development of heart and lung (By similarity). Controls protein quality of DAB1, a key signal molecule for brain development, thus protecting its signaling strength. Mechanistically, recognizes intrinsically disordered regions of DAB1 and eliminates misfolded DAB1 that cannot be properly phosphorylated (By similarity). {ECO:0000250|UniProtKB:Q3UHH1, ECO:0000269|PubMed:24012004, ECO:0000269|PubMed:33184234, ECO:0000269|PubMed:33184237}.; FUNCTION: (Microbial infection) Participates in Zika virus inhibition of IFN signaling by acting as a scaffold protein to connect ZSWIM8/CUL3 ligase complex and STAT2, leading to STAT2 degradation. {ECO:0000269|PubMed:39145933}. |
K7EQG2 | None | S45 | ochoa | Uncharacterized protein | None |
K7EQG2 | None | S49 | ochoa | Uncharacterized protein | None |
O00267 | SUPT5H | S773 | ochoa|psp | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O00268 | TAF4 | S1027 | ochoa | Transcription initiation factor TFIID subunit 4 (RNA polymerase II TBP-associated factor subunit C) (TBP-associated factor 4) (Transcription initiation factor TFIID 130 kDa subunit) (TAF(II)130) (TAFII-130) (TAFII130) (Transcription initiation factor TFIID 135 kDa subunit) (TAF(II)135) (TAFII-135) (TAFII135) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10594036, PubMed:33795473, PubMed:8942982). TAF4 may maintain an association between the TFIID and TFIIA complexes, while bound to the promoter, together with TBP, during PIC assembly (PubMed:33795473). Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone (PubMed:9192867). {ECO:0000269|PubMed:10594036, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:8942982, ECO:0000269|PubMed:9192867}. |
O00358 | FOXE1 | S329 | ochoa | Forkhead box protein E1 (Forkhead box protein E2) (Forkhead-related protein FKHL15) (HFKH4) (HNF-3/fork head-like protein 5) (HFKL5) (Thyroid transcription factor 2) (TTF-2) | Transcription factor that binds consensus sites on a variety of gene promoters and activate their transcription. Involved in proper palate formation, most probably through the expression of MSX1 and TGFB3 genes which are direct targets of this transcription factor. Also implicated in thyroid gland morphogenesis. May indirectly play a role in cell growth and migration through the regulation of WNT5A expression. {ECO:0000269|PubMed:12165566, ECO:0000269|PubMed:16882747, ECO:0000269|PubMed:20094846, ECO:0000269|PubMed:20484477, ECO:0000269|PubMed:21177256, ECO:0000269|PubMed:24219130, ECO:0000269|PubMed:25381600, ECO:0000269|PubMed:9697705}. |
O00458 | IFRD1 | S21 | ochoa | Interferon-related developmental regulator 1 (Nerve growth factor-inducible protein PC4) | Could play a role in regulating gene activity in the proliferative and/or differentiative pathways induced by NGF. May be an autocrine factor that attenuates or amplifies the initial ligand-induced signal (By similarity). {ECO:0000250}. |
O00571 | DDX3X | Y104 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O00571 | DDX3X | S109 | psp | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O14641 | DVL2 | S618 | psp | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14641 | DVL2 | S638 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14641 | DVL2 | S641 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14908 | GIPC1 | S225 | ochoa | PDZ domain-containing protein GIPC1 (GAIP C-terminus-interacting protein) (RGS-GAIP-interacting protein) (RGS19-interacting protein 1) (Synectin) (Tax interaction protein 2) (TIP-2) | May be involved in G protein-linked signaling. |
O14908 | GIPC1 | S232 | ochoa | PDZ domain-containing protein GIPC1 (GAIP C-terminus-interacting protein) (RGS-GAIP-interacting protein) (RGS19-interacting protein 1) (Synectin) (Tax interaction protein 2) (TIP-2) | May be involved in G protein-linked signaling. |
O15020 | SPTBN2 | S2171 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15061 | SYNM | S384 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15209 | ZBTB22 | S592 | ochoa | Zinc finger and BTB domain-containing protein 22 (Protein BING1) (Zinc finger and BTB domain-containing protein 22A) (Zinc finger protein 297) | May be involved in transcriptional regulation. |
O15211 | RGL2 | S750 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O15234 | CASC3 | S45 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O43823 | AKAP8 | S112 | ochoa | A-kinase anchor protein 8 (AKAP-8) (A-kinase anchor protein 95 kDa) (AKAP 95) | Anchoring protein that mediates the subcellular compartmentation of cAMP-dependent protein kinase (PKA type II) (PubMed:9473338). Acts as an anchor for a PKA-signaling complex onto mitotic chromosomes, which is required for maintenance of chromosomes in a condensed form throughout mitosis. Recruits condensin complex subunit NCAPD2 to chromosomes required for chromatin condensation; the function appears to be independent from PKA-anchoring (PubMed:10601332, PubMed:10791967, PubMed:11964380). May help to deliver cyclin D/E to CDK4 to facilitate cell cycle progression (PubMed:14641107). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function may act redundantly with AKAP8L (PubMed:16980585). Involved in nuclear retention of RPS6KA1 upon ERK activation thus inducing cell proliferation (PubMed:22130794). May be involved in regulation of DNA replication by acting as scaffold for MCM2 (PubMed:12740381). Enhances HMT activity of the KMT2 family MLL4/WBP7 complex and is involved in transcriptional regulation. In a teratocarcinoma cell line is involved in retinoic acid-mediated induction of developmental genes implicating H3 'Lys-4' methylation (PubMed:23995757). May be involved in recruitment of active CASP3 to the nucleus in apoptotic cells (PubMed:16227597). May act as a carrier protein of GJA1 for its transport to the nucleus (PubMed:26880274). May play a repressive role in the regulation of rDNA transcription. Preferentially binds GC-rich DNA in vitro. In cells, associates with ribosomal RNA (rRNA) chromatin, preferentially with rRNA promoter and transcribed regions (PubMed:26683827). Involved in modulation of Toll-like receptor signaling. Required for the cAMP-dependent suppression of TNF-alpha in early stages of LPS-induced macrophage activation; the function probably implicates targeting of PKA to NFKB1 (By similarity). {ECO:0000250|UniProtKB:Q63014, ECO:0000250|UniProtKB:Q9DBR0, ECO:0000269|PubMed:10601332, ECO:0000269|PubMed:10791967, ECO:0000269|PubMed:11964380, ECO:0000269|PubMed:16980585, ECO:0000269|PubMed:22130794, ECO:0000269|PubMed:26683827, ECO:0000269|PubMed:26880274, ECO:0000305|PubMed:14641107, ECO:0000305|PubMed:9473338}. |
O43896 | KIF1C | S817 | ochoa | Kinesin-like protein KIF1C | Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}. |
O60741 | HCN1 | S56 | psp | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1 (Brain cyclic nucleotide-gated channel 1) (BCNG-1) | Hyperpolarization-activated ion channel that are permeable to sodium and potassium ions (PubMed:15351778, PubMed:28086084). Displays lower selectivity for K(+) over Na(+) ions (PubMed:28086084). Contributes to the native pacemaker currents in heart (If) and in the generation of the I(h) current which controls neuron excitability (PubMed:29936235, PubMed:30351409). Participates in cerebellar mechanisms of motor learning (By similarity). May mediate responses to sour stimuli (By similarity). {ECO:0000250|UniProtKB:O88704, ECO:0000269|PubMed:15351778, ECO:0000269|PubMed:28086084, ECO:0000269|PubMed:29936235, ECO:0000269|PubMed:30351409}. |
O75069 | TMCC2 | S491 | ochoa | Transmembrane and coiled-coil domains protein 2 (Cerebral protein 11) | May be involved in the regulation of the proteolytic processing of the amyloid precursor protein (APP) possibly also implicating APOE. {ECO:0000269|PubMed:21593558}. |
O94762 | RECQL5 | Y484 | ochoa | ATP-dependent DNA helicase Q5 (EC 5.6.2.4) (DNA 3'-5' helicase RecQ5) (DNA helicase, RecQ-like type 5) (RecQ5) (RecQ protein-like 5) | DNA helicase that plays an important role in DNA replication, transcription and repair (PubMed:20643585, PubMed:22973052, PubMed:28100692). Probably unwinds DNA in a 3'-5' direction (Probable) (PubMed:28100692). Binds to the RNA polymerase II subunit POLR2A during transcription elongation and suppresses transcription-associated genomic instability (PubMed:20231364). Also associates with POLR1A and enforces the stability of ribosomal DNA arrays (PubMed:27502483). Plays an important role in mitotic chromosome separation after cross-over events and cell cycle progress (PubMed:22013166). Mechanistically, removes RAD51 filaments protecting stalled replication forks at common fragile sites and stimulates MUS81-EME1 endonuclease leading to mitotic DNA synthesis (PubMed:28575661). Required for efficient DNA repair, including repair of inter-strand cross-links (PubMed:23715498). Stimulates DNA decatenation mediated by TOP2A. Prevents sister chromatid exchange and homologous recombination. A core helicase fragment (residues 11-609) binds preferentially to splayed duplex, looped and ssDNA (PubMed:28100692). {ECO:0000269|PubMed:20231364, ECO:0000269|PubMed:20348101, ECO:0000269|PubMed:20643585, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22973052, ECO:0000269|PubMed:23715498, ECO:0000269|PubMed:23748380, ECO:0000269|PubMed:27502483, ECO:0000269|PubMed:28100692, ECO:0000269|PubMed:28575661, ECO:0000305|PubMed:28100692}. |
O94913 | PCF11 | S794 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O94992 | HEXIM1 | S252 | psp | Protein HEXIM1 (Cardiac lineage protein 1) (Estrogen down-regulated gene 1 protein) (Hexamethylene bis-acetamide-inducible protein 1) (Menage a quatre protein 1) | Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor (PubMed:14580347, PubMed:15201869, PubMed:15713661). Core component of the 7SK RNP complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:12832472, PubMed:14580347, PubMed:15201869, PubMed:15713661). May also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity (PubMed:15940264, PubMed:15941832, PubMed:17088550). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:12581153, ECO:0000269|PubMed:12832472, ECO:0000269|PubMed:14580347, ECO:0000269|PubMed:15201869, ECO:0000269|PubMed:15713661, ECO:0000269|PubMed:15940264, ECO:0000269|PubMed:15941832, ECO:0000269|PubMed:17088550, ECO:0000269|PubMed:28712728}. |
O95049 | TJP3 | S159 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95429 | BAG4 | Y72 | ochoa | BAG family molecular chaperone regulator 4 (BAG-4) (Bcl-2-associated athanogene 4) (Silencer of death domains) | Inhibits the chaperone activity of HSP70/HSC70 by promoting substrate release (By similarity). Prevents constitutive TNFRSF1A signaling. Negative regulator of PRKN translocation to damaged mitochondria. {ECO:0000250, ECO:0000269|PubMed:24270810}. |
O95613 | PCNT | S2352 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95622 | ADCY5 | S124 | ochoa | Adenylate cyclase type 5 (EC 4.6.1.1) (ATP pyrophosphate-lyase 5) (Adenylate cyclase type V) (Adenylyl cyclase 5) (AC5) | Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642, PubMed:24700542, PubMed:26206488). Mediates signaling downstream of ADRB1 (PubMed:24700542). Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion (PubMed:24740569). {ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:24700542, ECO:0000269|PubMed:24740569, ECO:0000269|PubMed:26206488}. |
P02452 | COL1A1 | S171 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S513 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S522 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S543 | ochoa|psp | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S546 | ochoa|psp | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S936 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | T948 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S1023 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S1029 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02452 | COL1A1 | S1125 | ochoa | Collagen alpha-1(I) chain (Alpha-1 type I collagen) | Type I collagen is a member of group I collagen (fibrillar forming collagen). |
P02686 | MBP | S174 | ochoa | Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) | The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}. |
P02686 | MBP | S249 | ochoa | Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) | The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}. |
P04198 | MYCN | S156 | ochoa | N-myc proto-oncogene protein (Class E basic helix-loop-helix protein 37) (bHLHe37) | Positively regulates the transcription of MYCNOS in neuroblastoma cells. {ECO:0000269|PubMed:24391509}. |
P08572 | COL4A2 | S1475 | ochoa | Collagen alpha-2(IV) chain [Cleaved into: Canstatin] | Type IV collagen is the major structural component of glomerular basement membranes (GBM), forming a 'chicken-wire' meshwork together with laminins, proteoglycans and entactin/nidogen.; FUNCTION: Canstatin, a cleavage product corresponding to the collagen alpha 2(IV) NC1 domain, possesses both anti-angiogenic and anti-tumor cell activity. It inhibits proliferation and migration of endothelial cells, reduces mitochondrial membrane potential, and induces apoptosis. Specifically induces Fas-dependent apoptosis and activates procaspase-8 and -9 activity. Ligand for alphavbeta3 and alphavbeta5 integrins. |
P08727 | KRT19 | Y61 | ochoa | Keratin, type I cytoskeletal 19 (Cytokeratin-19) (CK-19) (Keratin-19) (K19) | Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}. |
P09651 | HNRNPA1 | Y347 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P11274 | BCR | S429 | ochoa | Breakpoint cluster region protein (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-26) | Protein with a unique structure having two opposing regulatory activities toward small GTP-binding proteins. The C-terminus is a GTPase-activating protein (GAP) domain which stimulates GTP hydrolysis by RAC1, RAC2 and CDC42. Accelerates the intrinsic rate of GTP hydrolysis of RAC1 or CDC42, leading to down-regulation of the active GTP-bound form (PubMed:17116687, PubMed:1903516, PubMed:7479768). The central Dbl homology (DH) domain functions as guanine nucleotide exchange factor (GEF) that modulates the GTPases CDC42, RHOA and RAC1. Promotes the conversion of CDC42, RHOA and RAC1 from the GDP-bound to the GTP-bound form (PubMed:23940119, PubMed:7479768). The amino terminus contains an intrinsic kinase activity (PubMed:1657398). Functions as an important negative regulator of neuronal RAC1 activity (By similarity). Regulates macrophage functions such as CSF1-directed motility and phagocytosis through the modulation of RAC1 activity (PubMed:17116687). Plays a major role as a RHOA GEF in keratinocytes being involved in focal adhesion formation and keratinocyte differentiation (PubMed:23940119). {ECO:0000250|UniProtKB:Q6PAJ1, ECO:0000269|PubMed:1657398, ECO:0000269|PubMed:17116687, ECO:0000269|PubMed:1903516, ECO:0000269|PubMed:23940119, ECO:0000269|PubMed:7479768}. |
P12109 | COL6A1 | S348 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P12109 | COL6A1 | S387 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P13010 | XRCC5 | S175 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P16150 | SPN | S328 | ochoa | Leukosialin (GPL115) (Galactoglycoprotein) (GALGP) (Leukocyte sialoglycoprotein) (Sialophorin) (CD antigen CD43) [Cleaved into: CD43 cytoplasmic tail (CD43-ct) (CD43ct)] | Predominant cell surface sialoprotein of leukocytes which regulates multiple T-cell functions, including T-cell activation, proliferation, differentiation, trafficking and migration. Positively regulates T-cell trafficking to lymph-nodes via its association with ERM proteins (EZR, RDX and MSN) (By similarity). Negatively regulates Th2 cell differentiation and predisposes the differentiation of T-cells towards a Th1 lineage commitment. Promotes the expression of IFN-gamma by T-cells during T-cell receptor (TCR) activation of naive cells and induces the expression of IFN-gamma by CD4(+) T-cells and to a lesser extent by CD8(+) T-cells (PubMed:18036228). Plays a role in preparing T-cells for cytokine sensing and differentiation into effector cells by inducing the expression of cytokine receptors IFNGR and IL4R, promoting IFNGR and IL4R signaling and by mediating the clustering of IFNGR with TCR (PubMed:24328034). Acts as a major E-selectin ligand responsible for Th17 cell rolling on activated vasculature and recruitment during inflammation. Mediates Th17 cells, but not Th1 cells, adhesion to E-selectin. Acts as a T-cell counter-receptor for SIGLEC1 (By similarity). {ECO:0000250|UniProtKB:P15702, ECO:0000269|PubMed:18036228, ECO:0000269|PubMed:24328034}.; FUNCTION: [CD43 cytoplasmic tail]: Protects cells from apoptotic signals, promoting cell survival. {ECO:0000250|UniProtKB:P15702}. |
P17844 | DDX5 | S24 | ochoa | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P19021 | PAM | S918 | ochoa | Peptidyl-glycine alpha-amidating monooxygenase (PAM) [Includes: Peptidylglycine alpha-hydroxylating monooxygenase (PHM) (EC 1.14.17.3); Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (EC 4.3.2.5) (Peptidylamidoglycolate lyase) (PAL)] | Bifunctional enzyme that catalyzes amidation of the C-terminus of proteins (PubMed:12699694, PubMed:2357221). Alpha-amidation is present at the C-terminus of many endocrine hormones and neuropeptides and is required for their activity (PubMed:1575450). C-terminal amidation also takes place in response to protein fragmentation triggered by oxidative stress, promoting degradation of amidated protein fragments by the proteasome (PubMed:2207077). Alpha-amidation involves two sequential reactions, both of which are catalyzed by separate catalytic domains of the enzyme (PubMed:12699694). The first step, catalyzed by peptidyl alpha-hydroxylating monooxygenase (PHM) domain, is the copper-, ascorbate-, and O2- dependent stereospecific hydroxylation (with S stereochemistry) at the alpha-carbon (C-alpha) of the C-terminal glycine of the peptidylglycine substrate (PubMed:12699694). The second step, catalyzed by the peptidylglycine amidoglycolate lyase (PAL) domain, is the zinc-dependent cleavage of the N-C-alpha bond, producing the alpha-amidated peptide and glyoxylate (PubMed:12699694). Similarly, catalyzes the two-step conversion of an N-fatty acylglycine to a primary fatty acid amide and glyoxylate (By similarity). {ECO:0000250|UniProtKB:P14925, ECO:0000269|PubMed:12699694, ECO:0000269|PubMed:2357221, ECO:0000303|PubMed:1575450, ECO:0000303|PubMed:2207077}. |
P19622 | EN2 | S148 | ochoa | Homeobox protein engrailed-2 (Homeobox protein en-2) (Hu-En-2) | None |
P21291 | CSRP1 | Y71 | ochoa | Cysteine and glycine-rich protein 1 (Cysteine-rich protein 1) (CRP) (CRP1) (Epididymis luminal protein 141) (HEL-141) | Could play a role in neuronal development. |
P21333 | FLNA | S1084 | ochoa|psp | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P22460 | KCNA5 | S559 | psp | Potassium voltage-gated channel subfamily A member 5 (HPCN1) (Voltage-gated potassium channel HK2) (Voltage-gated potassium channel subunit Kv1.5) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (PubMed:12130714). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation (PubMed:12130714). Homotetrameric channels display rapid activation and slow inactivation (PubMed:12130714, PubMed:8505626). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). May play a role in regulating the secretion of insulin in normal pancreatic islets. {ECO:0000250|UniProtKB:Q61762, ECO:0000269|PubMed:12130714, ECO:0000269|PubMed:17267549, ECO:0000269|PubMed:20018952, ECO:0000269|PubMed:36917789, ECO:0000269|PubMed:8505626}.; FUNCTION: [Isoform 2]: Exhibits a faster depolarization rate, reduced voltage-dependent recovery from inactivation and an excessive cumulative inactivation. {ECO:0000269|PubMed:11524461}. |
P22626 | HNRNPA2B1 | S225 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P22681 | CBL | S20 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P23246 | SFPQ | S626 | ochoa | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
P23588 | EIF4B | S283 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25440 | BRD2 | S597 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P25490 | YY1 | S180 | psp | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P25490 | YY1 | S184 | ochoa|psp | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P27815 | PDE4A | S89 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P29353 | SHC1 | S80 | ochoa | SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) | Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}. |
P31277 | HOXD11 | S223 | ochoa | Homeobox protein Hox-D11 (Homeobox protein Hox-4F) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P31277 | HOXD11 | S241 | ochoa | Homeobox protein Hox-D11 (Homeobox protein Hox-4F) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P31689 | DNAJA1 | S83 | ochoa | DnaJ homolog subfamily A member 1 (DnaJ protein homolog 2) (HSDJ) (Heat shock 40 kDa protein 4) (Heat shock protein J2) (HSJ-2) (Human DnaJ protein 2) (hDj-2) | Co-chaperone for HSPA8/Hsc70 (PubMed:10816573). Stimulates ATP hydrolysis, but not the folding of unfolded proteins mediated by HSPA1A (in vitro) (PubMed:24318877). Plays a role in protein transport into mitochondria via its role as co-chaperone. Functions as a co-chaperone for HSPA1B and negatively regulates the translocation of BAX from the cytosol to mitochondria in response to cellular stress, thereby protecting cells against apoptosis (PubMed:14752510). Promotes apoptosis in response to cellular stress mediated by exposure to anisomycin or UV (PubMed:24512202). {ECO:0000269|PubMed:10816573, ECO:0000269|PubMed:14752510, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24512202, ECO:0000269|PubMed:9192730}. |
P31942 | HNRNPH3 | Y296 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P31942 | HNRNPH3 | Y331 | ochoa | Heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) (Heterogeneous nuclear ribonucleoprotein 2H9) (hnRNP 2H9) | Involved in the splicing process and participates in early heat shock-induced splicing arrest. Due to their great structural variations the different isoforms may possess different functions in the splicing reaction. |
P33240 | CSTF2 | S513 | ochoa | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P35568 | IRS1 | S486 | psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35637 | FUS | T68 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P35637 | FUS | Y468 | ochoa | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P38159 | RBMX | T119 | ochoa | RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] | RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component of the supraspliceosome complex that regulates pre-mRNA alternative splice site selection. Can either activate or suppress exon inclusion; acts additively with TRA2B to promote exon 7 inclusion of the survival motor neuron SMN2. Represses the splicing of MAPT/Tau exon 10. Binds preferentially to single-stranded 5'-CC[A/C]-rich RNA sequence motifs localized in a single-stranded conformation; probably binds RNA as a homodimer. Binds non-specifically to pre-mRNAs. Also plays a role in the cytoplasmic TNFR1 trafficking pathways; promotes both the IL-1-beta-mediated inducible proteolytic cleavage of TNFR1 ectodomains and the release of TNFR1 exosome-like vesicles to the extracellular compartment. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:16707624, ECO:0000269|PubMed:18445477, ECO:0000269|PubMed:18541147, ECO:0000269|PubMed:19282290, ECO:0000269|PubMed:21327109}. |
P39019 | RPS19 | S74 | ochoa | Small ribosomal subunit protein eS19 (40S ribosomal protein S19) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for pre-rRNA processing and maturation of 40S ribosomal subunits (PubMed:16990592). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:16990592, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P45985 | MAP2K4 | S18 | ochoa | Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}. |
P46379 | BAG6 | S104 | ochoa | Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) | ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}. |
P46379 | BAG6 | S113 | ochoa | Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) | ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}. |
P46783 | RPS10 | S146 | ochoa | Small ribosomal subunit protein eS10 (40S ribosomal protein S10) | Component of the 40S ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}. |
P48382 | RFX5 | S505 | ochoa | DNA-binding protein RFX5 (Regulatory factor X 5) | Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters. |
P49023 | PXN | S303 | ochoa | Paxillin | Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}. |
P49840 | GSK3A | S39 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P49840 | GSK3A | S77 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P50221 | MEOX1 | S120 | ochoa | Homeobox protein MOX-1 (Mesenchyme homeobox 1) | Mesodermal transcription factor that plays a key role in somitogenesis and is specifically required for sclerotome development. Required for maintenance of the sclerotome polarity and formation of the cranio-cervical joints (PubMed:23290072, PubMed:24073994). Binds specifically to the promoter of target genes and regulates their expression. Activates expression of NKX3-2 in the sclerotome. Activates expression of CDKN1A and CDKN2A in endothelial cells, acting as a regulator of vascular cell proliferation. While it activates CDKN1A in a DNA-dependent manner, it activates CDKN2A in a DNA-independent manner. Required for hematopoietic stem cell (HSCs) induction via its role in somitogenesis: specification of HSCs occurs via the deployment of a specific endothelial precursor population, which arises within a sub-compartment of the somite named endotome. {ECO:0000250|UniProtKB:F1Q4R9, ECO:0000250|UniProtKB:P32442, ECO:0000269|PubMed:23290072, ECO:0000269|PubMed:24073994}. |
P51116 | FXR2 | S397 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51116 | FXR2 | S401 | ochoa | RNA-binding protein FXR2 (FXR2P) (FMR1 autosomal homolog 2) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for adult hippocampal neurogenesis (By similarity). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (By similarity). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs: mRNAs storage into membraneless compartments regulates their translation and/or stability (By similarity). Acts as a regulator of adult hippocampal neurogenesis by regulating translation and/or stability of NOG mRNA, thereby preventing NOG protein expression in the dentate gyrus (By similarity). {ECO:0000250|UniProtKB:Q61584, ECO:0000250|UniProtKB:Q9WVR4}. |
P51991 | HNRNPA3 | S350 | ochoa | Heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) | Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:11886857}. |
P52824 | DGKQ | S31 | ochoa | Diacylglycerol kinase theta (DAG kinase theta) (DGKtheta) (EC 2.7.1.107) (EC 2.7.1.93) (Diglyceride kinase theta) (DGK-theta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:11309392, PubMed:22627129, PubMed:9099683). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (PubMed:11309392, PubMed:17664281, PubMed:26748701). Within the adrenocorticotropic hormone signaling pathway, produces phosphatidic acid which in turn activates NR5A1 and subsequent steroidogenic gene transcription (PubMed:17664281). Also functions downstream of the nerve growth factor signaling pathway being specifically activated in the nucleus by the growth factor (By similarity). Through its diacylglycerol activity also regulates synaptic vesicle endocytosis (PubMed:26748701). {ECO:0000250|UniProtKB:D3ZEY4, ECO:0000269|PubMed:11309392, ECO:0000269|PubMed:17664281, ECO:0000269|PubMed:22627129, ECO:0000269|PubMed:26748701, ECO:0000269|PubMed:9099683}. |
P53990 | IST1 | S214 | ochoa | IST1 homolog (hIST1) (Charged multivesicular body protein 8) (CHMP8) (Putative MAPK-activating protein PM28) | ESCRT-III-like protein involved in cytokinesis, nuclear envelope reassembly and endosomal tubulation (PubMed:19129479, PubMed:26040712, PubMed:28242692). Is required for efficient abscission during cytokinesis (PubMed:19129479). Involved in recruiting VPS4A and/or VPS4B to the midbody of dividing cells (PubMed:19129479, PubMed:19129480). During late anaphase, involved in nuclear envelope reassembly and mitotic spindle disassembly together with the ESCRT-III complex: IST1 acts by mediating the recruitment of SPAST to the nuclear membrane, leading to microtubule severing (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). Regulates early endosomal tubulation together with the ESCRT-III complex by mediating the recruitment of SPAST (PubMed:23897888). {ECO:0000269|PubMed:19129479, ECO:0000269|PubMed:19129480, ECO:0000269|PubMed:23897888, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
P56693 | SOX10 | S27 | ochoa | Transcription factor SOX-10 | Transcription factor that plays a central role in developing and mature glia (By similarity). Specifically activates expression of myelin genes, during oligodendrocyte (OL) maturation, such as DUSP15 and MYRF, thereby playing a central role in oligodendrocyte maturation and CNS myelination (By similarity). Once induced, MYRF cooperates with SOX10 to implement the myelination program (By similarity). Transcriptional activator of MITF, acting synergistically with PAX3 (PubMed:21965087). Transcriptional activator of MBP, via binding to the gene promoter (By similarity). {ECO:0000250|UniProtKB:O55170, ECO:0000250|UniProtKB:Q04888, ECO:0000269|PubMed:21965087}. |
P61978 | HNRNPK | S379 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P62995 | TRA2B | Y235 | ochoa | Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. {ECO:0000269|PubMed:12165565, ECO:0000269|PubMed:12761049, ECO:0000269|PubMed:15009664, ECO:0000269|PubMed:9546399}. |
P67809 | YBX1 | T29 | ochoa | Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) | DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}. |
P78337 | PITX1 | S70 | ochoa | Pituitary homeobox 1 (Hindlimb-expressed homeobox protein backfoot) (Homeobox protein PITX1) (Paired-like homeodomain transcription factor 1) | Sequence-specific transcription factor that binds gene promoters and activates their transcription. May play a role in the development of anterior structures, and in particular, the brain and facies and in specifying the identity or structure of hindlimb. {ECO:0000250|UniProtKB:P56673}. |
P78344 | EIF4G2 | S22 | ochoa | Eukaryotic translation initiation factor 4 gamma 2 (eIF-4-gamma 2) (eIF-4G 2) (eIF4G 2) (Death-associated protein 5) (DAP-5) (p97) | Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases. {ECO:0000269|PubMed:11511540, ECO:0000269|PubMed:11943866, ECO:0000269|PubMed:9032289, ECO:0000269|PubMed:9049310}. |
P78344 | EIF4G2 | S381 | ochoa | Eukaryotic translation initiation factor 4 gamma 2 (eIF-4-gamma 2) (eIF-4G 2) (eIF4G 2) (Death-associated protein 5) (DAP-5) (p97) | Appears to play a role in the switch from cap-dependent to IRES-mediated translation during mitosis, apoptosis and viral infection. Cleaved by some caspases and viral proteases. {ECO:0000269|PubMed:11511540, ECO:0000269|PubMed:11943866, ECO:0000269|PubMed:9032289, ECO:0000269|PubMed:9049310}. |
P98179 | RBM3 | Y125 | ochoa | RNA-binding protein 3 (RNA-binding motif protein 3) (RNPL) | Cold-inducible mRNA binding protein that enhances global protein synthesis at both physiological and mild hypothermic temperatures. Reduces the relative abundance of microRNAs, when overexpressed. Enhances phosphorylation of translation initiation factors and active polysome formation (By similarity). {ECO:0000250}. |
P98179 | RBM3 | Y127 | ochoa | RNA-binding protein 3 (RNA-binding motif protein 3) (RNPL) | Cold-inducible mRNA binding protein that enhances global protein synthesis at both physiological and mild hypothermic temperatures. Reduces the relative abundance of microRNAs, when overexpressed. Enhances phosphorylation of translation initiation factors and active polysome formation (By similarity). {ECO:0000250}. |
Q00536 | CDK16 | S42 | ochoa | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q00839 | HNRNPU | S66 | ochoa | Heterogeneous nuclear ribonucleoprotein U (hnRNP U) (GRIP120) (Nuclear p120 ribonucleoprotein) (Scaffold-attachment factor A) (SAF-A) (p120) (pp120) | DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression (PubMed:10490622, PubMed:18082603, PubMed:19029303, PubMed:22325991, PubMed:25986610, PubMed:28622508). Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability (PubMed:1324173, PubMed:28622508, PubMed:8174554). Required for the localization of the long non-coding Xist RNA on the inactive chromosome X (Xi) and the subsequent initiation and maintenance of X-linked transcriptional gene silencing during X-inactivation (By similarity). Plays a role as a RNA polymerase II (Pol II) holoenzyme transcription regulator (PubMed:10490622, PubMed:15711563, PubMed:19617346, PubMed:23811339, PubMed:8174554, PubMed:9353307). Promotes transcription initiation by direct association with the core-TFIIH basal transcription factor complex for the assembly of a functional pre-initiation complex with Pol II in a actin-dependent manner (PubMed:10490622, PubMed:15711563). Blocks Pol II transcription elongation activity by inhibiting the C-terminal domain (CTD) phosphorylation of Pol II and dissociates from Pol II pre-initiation complex prior to productive transcription elongation (PubMed:10490622). Positively regulates CBX5-induced transcriptional gene silencing and retention of CBX5 in the nucleus (PubMed:19617346). Negatively regulates glucocorticoid-mediated transcriptional activation (PubMed:9353307). Key regulator of transcription initiation and elongation in embryonic stem cells upon leukemia inhibitory factor (LIF) signaling (By similarity). Involved in the long non-coding RNA H19-mediated Pol II transcriptional repression (PubMed:23811339). Participates in the circadian regulation of the core clock component BMAL1 transcription (By similarity). Plays a role in the regulation of telomere length (PubMed:18082603). Plays a role as a global pre-mRNA alternative splicing modulator by regulating U2 small nuclear ribonucleoprotein (snRNP) biogenesis (PubMed:22325991). Plays a role in mRNA stability (PubMed:17174306, PubMed:17289661, PubMed:19029303). Component of the CRD-mediated complex that promotes MYC mRNA stabilization (PubMed:19029303). Enhances the expression of specific genes, such as tumor necrosis factor TNFA, by regulating mRNA stability, possibly through binding to the 3'-untranslated region (UTR) (PubMed:17174306). Plays a role in mitotic cell cycle regulation (PubMed:21242313, PubMed:25986610). Involved in the formation of stable mitotic spindle microtubules (MTs) attachment to kinetochore, spindle organization and chromosome congression (PubMed:21242313). Phosphorylation at Ser-59 by PLK1 is required for chromosome alignement and segregation and progression through mitosis (PubMed:25986610). Also contributes to the targeting of AURKA to mitotic spindle MTs (PubMed:21242313). Binds to double- and single-stranded DNA and RNA, poly(A), poly(C) and poly(G) oligoribonucleotides (PubMed:1628625, PubMed:8068679, PubMed:8174554, PubMed:9204873, PubMed:9405365). Binds to chromatin-associated RNAs (caRNAs) (PubMed:28622508). Associates with chromatin to scaffold/matrix attachment region (S/MAR) elements in a chromatin-associated RNAs (caRNAs)-dependent manner (PubMed:10671544, PubMed:11003645, PubMed:11909954, PubMed:1324173, PubMed:28622508, PubMed:7509195, PubMed:9204873, PubMed:9405365). Binds to the Xist RNA (PubMed:26244333). Binds the long non-coding H19 RNA (PubMed:23811339). Binds to SMN1/2 pre-mRNAs at G/U-rich regions (PubMed:22325991). Binds to small nuclear RNAs (snRNAs) (PubMed:22325991). Binds to the 3'-UTR of TNFA mRNA (PubMed:17174306). Binds (via RNA-binding RGG-box region) to the long non-coding Xist RNA; this binding is direct and bridges the Xist RNA and the inactive chromosome X (Xi) (By similarity). Also negatively regulates embryonic stem cell differentiation upon LIF signaling (By similarity). Required for embryonic development (By similarity). Binds to brown fat long non-coding RNA 1 (Blnc1); facilitates the recruitment of Blnc1 by ZBTB7B required to drive brown and beige fat development and thermogenesis (By similarity). {ECO:0000250|UniProtKB:Q8VEK3, ECO:0000269|PubMed:10490622, ECO:0000269|PubMed:10671544, ECO:0000269|PubMed:11003645, ECO:0000269|PubMed:11909954, ECO:0000269|PubMed:1324173, ECO:0000269|PubMed:15711563, ECO:0000269|PubMed:1628625, ECO:0000269|PubMed:17174306, ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19617346, ECO:0000269|PubMed:21242313, ECO:0000269|PubMed:22325991, ECO:0000269|PubMed:23811339, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26244333, ECO:0000269|PubMed:28622508, ECO:0000269|PubMed:7509195, ECO:0000269|PubMed:8068679, ECO:0000269|PubMed:8174554, ECO:0000269|PubMed:9204873, ECO:0000269|PubMed:9353307, ECO:0000269|PubMed:9405365}.; FUNCTION: (Microbial infection) Negatively regulates immunodeficiency virus type 1 (HIV-1) replication by preventing the accumulation of viral mRNA transcripts in the cytoplasm. {ECO:0000269|PubMed:16916646}. |
Q01955 | COL4A3 | S382 | ochoa | Collagen alpha-3(IV) chain (Goodpasture antigen) [Cleaved into: Tumstatin] | Type IV collagen is the major structural component of glomerular basement membranes (GBM), forming a 'chicken-wire' meshwork together with laminins, proteoglycans and entactin/nidogen.; FUNCTION: Tumstatin, a cleavage fragment corresponding to the collagen alpha 3(IV) NC1 domain, possesses both anti-angiogenic and anti-tumor cell activity; these two anti-tumor properties may be regulated via RGD-independent ITGB3-mediated mechanisms. |
Q02388 | COL7A1 | S2600 | ochoa | Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) | Stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. |
Q03468 | ERCC6 | S438 | ochoa | DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) | Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}. |
Q04637 | EIF4G1 | S1092 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q04637 | EIF4G1 | S1098 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q05707 | COL14A1 | S1543 | ochoa | Collagen alpha-1(XIV) chain (Undulin) | Plays an adhesive role by integrating collagen bundles. It is probably associated with the surface of interstitial collagen fibrils via COL1. The COL2 domain may then serve as a rigid arm which sticks out from the fibril and protrudes the large N-terminal globular domain into the extracellular space, where it might interact with other matrix molecules or cell surface receptors (By similarity). {ECO:0000250, ECO:0000269|PubMed:2187872}. |
Q05707 | COL14A1 | S1728 | ochoa | Collagen alpha-1(XIV) chain (Undulin) | Plays an adhesive role by integrating collagen bundles. It is probably associated with the surface of interstitial collagen fibrils via COL1. The COL2 domain may then serve as a rigid arm which sticks out from the fibril and protrudes the large N-terminal globular domain into the extracellular space, where it might interact with other matrix molecules or cell surface receptors (By similarity). {ECO:0000250, ECO:0000269|PubMed:2187872}. |
Q05707 | COL14A1 | S1734 | ochoa | Collagen alpha-1(XIV) chain (Undulin) | Plays an adhesive role by integrating collagen bundles. It is probably associated with the surface of interstitial collagen fibrils via COL1. The COL2 domain may then serve as a rigid arm which sticks out from the fibril and protrudes the large N-terminal globular domain into the extracellular space, where it might interact with other matrix molecules or cell surface receptors (By similarity). {ECO:0000250, ECO:0000269|PubMed:2187872}. |
Q05925 | EN1 | S234 | ochoa | Homeobox protein engrailed-1 (Homeobox protein en-1) (Hu-En-1) | Required for proper formation of the apical ectodermal ridge and correct dorsal-ventral patterning in the limb. {ECO:0000250|UniProtKB:P09065}. |
Q08170 | SRSF4 | S78 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q09666 | AHNAK | S5593 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12906 | ILF3 | S810 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12962 | TAF10 | T48 | ochoa | Transcription initiation factor TFIID subunit 10 (STAF28) (Transcription initiation factor TFIID 30 kDa subunit) (TAF(II)30) (TAFII-30) (TAFII30) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF10 is also component of the PCAF histone acetylase complex, the TATA-binding protein-free TAF complex (TFTC) and the STAGA transcription coactivator-HAT complex (PubMed:10373431, PubMed:11564863, PubMed:12601814, PubMed:18206972, PubMed:9885574). May regulate cyclin E expression (By similarity). {ECO:0000250|UniProtKB:Q8K0H5, ECO:0000269|PubMed:10373431, ECO:0000269|PubMed:11564863, ECO:0000269|PubMed:12601814, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:9885574}. |
Q13148 | TARDBP | S375 | psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q13148 | TARDBP | S387 | psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q13148 | TARDBP | S393 | psp | TAR DNA-binding protein 43 (TDP-43) | RNA-binding protein that is involved in various steps of RNA biogenesis and processing (PubMed:23519609). Preferentially binds, via its two RNA recognition motifs RRM1 and RRM2, to GU-repeats on RNA molecules predominantly localized within long introns and in the 3'UTR of mRNAs (PubMed:23519609, PubMed:24240615, PubMed:24464995). In turn, regulates the splicing of many non-coding and protein-coding RNAs including proteins involved in neuronal survival, as well as mRNAs that encode proteins relevant for neurodegenerative diseases (PubMed:21358640, PubMed:29438978). Plays a role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts (PubMed:28794432). Also regulates mRNA stability by recruiting CNOT7/CAF1 deadenylase on mRNA 3'UTR leading to poly(A) tail deadenylation and thus shortening (PubMed:30520513). In response to oxidative insult, associates with stalled ribosomes localized to stress granules (SGs) and contributes to cell survival (PubMed:19765185, PubMed:23398327). Also participates in the normal skeletal muscle formation and regeneration, forming cytoplasmic myo-granules and binding mRNAs that encode sarcomeric proteins (PubMed:30464263). Plays a role in the maintenance of the circadian clock periodicity via stabilization of the CRY1 and CRY2 proteins in a FBXL3-dependent manner (PubMed:27123980). Negatively regulates the expression of CDK6 (PubMed:19760257). Regulates the expression of HDAC6, ATG7 and VCP in a PPIA/CYPA-dependent manner (PubMed:25678563). {ECO:0000269|PubMed:11285240, ECO:0000269|PubMed:17481916, ECO:0000269|PubMed:19760257, ECO:0000269|PubMed:19765185, ECO:0000269|PubMed:21358640, ECO:0000269|PubMed:23398327, ECO:0000269|PubMed:23519609, ECO:0000269|PubMed:24240615, ECO:0000269|PubMed:24464995, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:27123980, ECO:0000269|PubMed:28794432, ECO:0000269|PubMed:29438978, ECO:0000269|PubMed:30464263, ECO:0000269|PubMed:30520513}. |
Q14055 | COL9A2 | S329 | ochoa | Collagen alpha-2(IX) chain | Structural component of hyaline cartilage and vitreous of the eye. |
Q14160 | SCRIB | S748 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14814 | MEF2D | S477 | ochoa | Myocyte-specific enhancer factor 2D | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. Plays a critical role in the regulation of neuronal apoptosis (By similarity). {ECO:0000250, ECO:0000269|PubMed:10849446, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:15834131}. |
Q15005 | SPCS2 | S18 | ochoa | Signal peptidase complex subunit 2 (Microsomal signal peptidase 25 kDa subunit) (SPase 25 kDa subunit) | Component of the signal peptidase complex (SPC) which catalyzes the cleavage of N-terminal signal sequences from nascent proteins as they are translocated into the lumen of the endoplasmic reticulum (PubMed:34388369). Enhances the enzymatic activity of SPC and facilitates the interactions between different components of the translocation site (By similarity). {ECO:0000250|UniProtKB:Q04969, ECO:0000269|PubMed:34388369}. |
Q15022 | SUZ12 | S20 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15027 | ACAP1 | S379 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 (Centaurin-beta-1) (Cnt-b1) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6) required for clathrin-dependent export of proteins from recycling endosomes to trans-Golgi network and cell surface. Required for regulated export of ITGB1 from recycling endosomes to the cell surface and ITGB1-dependent cell migration. {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17398097, ECO:0000269|PubMed:17664335, ECO:0000269|PubMed:22645133}. |
Q15027 | ACAP1 | S386 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 (Centaurin-beta-1) (Cnt-b1) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6) required for clathrin-dependent export of proteins from recycling endosomes to trans-Golgi network and cell surface. Required for regulated export of ITGB1 from recycling endosomes to the cell surface and ITGB1-dependent cell migration. {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17398097, ECO:0000269|PubMed:17664335, ECO:0000269|PubMed:22645133}. |
Q15056 | EIF4H | S21 | ochoa | Eukaryotic translation initiation factor 4H (eIF-4H) (Williams-Beuren syndrome chromosomal region 1 protein) | Stimulates the RNA helicase activity of EIF4A in the translation initiation complex. Binds weakly mRNA. {ECO:0000269|PubMed:10585411, ECO:0000269|PubMed:11418588}. |
Q15056 | EIF4H | S24 | ochoa | Eukaryotic translation initiation factor 4H (eIF-4H) (Williams-Beuren syndrome chromosomal region 1 protein) | Stimulates the RNA helicase activity of EIF4A in the translation initiation complex. Binds weakly mRNA. {ECO:0000269|PubMed:10585411, ECO:0000269|PubMed:11418588}. |
Q15124 | PGM5 | S122 | ochoa | Phosphoglucomutase-like protein 5 (Aciculin) (Phosphoglucomutase-related protein) (PGM-RP) | Component of adherens-type cell-cell and cell-matrix junctions (PubMed:8175905). Has no phosphoglucomutase activity in vitro (PubMed:8175905). {ECO:0000269|PubMed:8175905}. |
Q17RW2 | COL24A1 | T721 | ochoa | Collagen alpha-1(XXIV) chain | May participate in regulating type I collagen fibrillogenesis at specific anatomical locations during fetal development. {ECO:0000269|PubMed:12874293}. |
Q2M3G4 | SHROOM1 | S314 | ochoa | Protein Shroom1 (Apical protein 2) | May be involved in the assembly of microtubule arrays during cell elongation. {ECO:0000250}. |
Q53EP0 | FNDC3B | S238 | ochoa | Fibronectin type III domain-containing protein 3B (Factor for adipocyte differentiation 104) (HCV NS5A-binding protein 37) | May be a positive regulator of adipogenesis. {ECO:0000269|PubMed:15564382}. |
Q53LP3 | SOWAHC | S225 | ochoa | Ankyrin repeat domain-containing protein SOWAHC (Ankyrin repeat domain-containing protein 57) (Protein sosondowah homolog C) | None |
Q5BKZ1 | ZNF326 | S56 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5FWE3 | PRRT3 | S774 | ochoa | Proline-rich transmembrane protein 3 | None |
Q5GH72 | XKR7 | S26 | ochoa | XK-related protein 7 | None |
Q5JVS0 | HABP4 | T375 | psp | Intracellular hyaluronan-binding protein 4 (IHABP-4) (IHABP4) (Hyaluronan-binding protein 4) (Ki-1/57 intracellular antigen) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (By similarity). Acts via its association with EEF2/eEF2 factor at the A-site of the ribosome, promoting ribosome stabilization in an inactive state compatible with storage (By similarity). Plays a key role in ribosome hibernation in the mature oocyte by promoting ribosome stabilization (By similarity). Ribosomes, which are produced in large quantities during oogenesis, are stored and translationally repressed in the oocyte and early embryo (By similarity). Also binds RNA, regulating transcription and pre-mRNA splicing (PubMed:14699138, PubMed:16455055, PubMed:19523114, PubMed:21771594). Binds (via C-terminus) to poly(U) RNA (PubMed:19523114). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). Negatively regulates DNA-binding activity of the transcription factor MEF2C in myocardial cells in response to mechanical stress (By similarity). {ECO:0000250|UniProtKB:A1L1K8, ECO:0000250|UniProtKB:Q5XJA5, ECO:0000269|PubMed:14699138, ECO:0000269|PubMed:16455055, ECO:0000269|PubMed:19523114, ECO:0000269|PubMed:21771594, ECO:0000269|PubMed:28695742}. |
Q5U651 | RASIP1 | S299 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q63HR2 | TNS2 | S811 | ochoa | Tensin-2 (EC 3.1.3.48) (C1 domain-containing phosphatase and tensin homolog) (C1-TEN) (Tensin-like C1 domain-containing phosphatase) | Tyrosine-protein phosphatase which regulates cell motility, proliferation and muscle-response to insulin (PubMed:15817639, PubMed:23401856). Phosphatase activity is mediated by binding to phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) via the SH2 domain (PubMed:30092354). In muscles and under catabolic conditions, dephosphorylates IRS1 leading to its degradation and muscle atrophy (PubMed:23401856, PubMed:30092354). Negatively regulates PI3K-AKT pathway activation (PubMed:15817639, PubMed:23401856, PubMed:30092354). Dephosphorylates nephrin NPHS1 in podocytes which regulates activity of the mTORC1 complex (PubMed:28955049). Under normal glucose conditions, NPHS1 outcompetes IRS1 for binding to phosphatidylinositol 3-kinase (PI3K) which balances mTORC1 activity but high glucose conditions lead to up-regulation of TNS2, increased NPHS1 dephosphorylation and activation of mTORC1, contributing to podocyte hypertrophy and proteinuria (PubMed:28955049). Required for correct podocyte morphology, podocyte-glomerular basement membrane interaction and integrity of the glomerular filtration barrier (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in promoting DLC1-dependent remodeling of the extracellular matrix (PubMed:20069572). {ECO:0000250|UniProtKB:Q8CGB6, ECO:0000269|PubMed:15817639, ECO:0000269|PubMed:20069572, ECO:0000269|PubMed:23401856, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28955049, ECO:0000269|PubMed:30092354}. |
Q6P1R3 | MSANTD2 | S54 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6P1R3 | MSANTD2 | S63 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6PL24 | TMED8 | S21 | ochoa | Protein TMED8 | None |
Q6SPF0 | SAMD1 | S261 | ochoa | Sterile alpha motif domain-containing protein 1 (SAM domain-containing protein 1) (Atherin) | Unmethylated CpG islands (CGIs)-binding protein which localizes to H3K4me3-decorated CGIs, where it acts as a transcriptional repressor (PubMed:33980486). Tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs (PubMed:33980486). Plays a role in atherogenesis by binding with LDL on cell surface and promoting LDL oxidation which leads to the formation of foam cell (PubMed:16159594, PubMed:34006929). {ECO:0000269|PubMed:16159594, ECO:0000269|PubMed:33980486, ECO:0000269|PubMed:34006929}. |
Q6ZNJ1 | NBEAL2 | S1363 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S1364 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S1367 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNJ1 | NBEAL2 | S1376 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q70UQ0 | IKBIP | S24 | ochoa | Inhibitor of nuclear factor kappa-B kinase-interacting protein (I kappa-B kinase-interacting protein) (IKBKB-interacting protein) (IKK-interacting protein) | Target of p53/TP53 with pro-apoptotic function. {ECO:0000269|PubMed:15389287}. |
Q7LBC6 | KDM3B | S314 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7LBC6 | KDM3B | S320 | ochoa | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q7Z6I6 | ARHGAP30 | S630 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z7A3 | CTU1 | S200 | ochoa | Cytoplasmic tRNA 2-thiolation protein 1 (EC 2.7.7.-) (ATP-binding domain-containing protein 3) (Cancer-associated gene protein) (Cytoplasmic tRNA adenylyltransferase 1) | Plays a central role in 2-thiolation of mcm(5)S(2)U at tRNA wobble positions of tRNA(Lys), tRNA(Glu) and tRNA(Gln). Directly binds tRNAs and probably acts by catalyzing adenylation of tRNAs, an intermediate required for 2-thiolation. It is unclear whether it acts as a sulfurtransferase that transfers sulfur from thiocarboxylated URM1 onto the uridine of tRNAs at wobble position. {ECO:0000255|HAMAP-Rule:MF_03053, ECO:0000269|PubMed:19017811}. |
Q86SK9 | SCD5 | S27 | ochoa | Stearoyl-CoA desaturase 5 (EC 1.14.19.1) (Acyl-CoA-desaturase 4) (HSCD5) (Stearoyl-CoA 9-desaturase) (Stearoyl-CoA desaturase 2) | Stearoyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed:15610069, PubMed:15907797, PubMed:22745828). Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids (PubMed:15610069, PubMed:15907797). Involved in neuronal cell proliferation and differentiation through down-regulation of EGFR/AKT/MAPK and Wnt signaling pathways (PubMed:22745828). {ECO:0000269|PubMed:15610069, ECO:0000269|PubMed:15907797, ECO:0000269|PubMed:22745828}. |
Q8IUD2 | ERC1 | T38 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IVF2 | AHNAK2 | S332 | ochoa | Protein AHNAK2 | None |
Q8IWX8 | CHERP | S857 | ochoa | Calcium homeostasis endoplasmic reticulum protein (ERPROT 213-21) (SR-related CTD-associated factor 6) | Involved in calcium homeostasis, growth and proliferation. {ECO:0000269|PubMed:10794731, ECO:0000269|PubMed:12656674}. |
Q8IZD0 | SAMD14 | S64 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8N111 | CEND1 | S108 | ochoa | Cell cycle exit and neuronal differentiation protein 1 (BM88 antigen) | Involved in neuronal differentiation. {ECO:0000250|UniProtKB:Q9JKC6}. |
Q8NEL9 | DDHD1 | T136 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEL9 | DDHD1 | S139 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEL9 | DDHD1 | S752 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NFW1 | COL22A1 | S962 | ochoa | Collagen alpha-1(XXII) chain | Acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. |
Q8NFW1 | COL22A1 | S1061 | ochoa | Collagen alpha-1(XXII) chain | Acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. |
Q8NFZ4 | NLGN2 | S718 | ochoa | Neuroligin-2 | Transmembrane scaffolding protein involved in cell-cell interactions via its interactions with neurexin family members. Mediates cell-cell interactions both in neurons and in other types of cells, such as Langerhans beta cells. Plays a role in synapse function and synaptic signal transmission, especially via gamma-aminobutyric acid receptors (GABA(A) receptors). Functions by recruiting and clustering synaptic proteins. Promotes clustering of postsynaptic GABRG2 and GPHN. Promotes clustering of postsynaptic LHFPL4 (By similarity). Modulates signaling by inhibitory synapses, and thereby plays a role in controlling the ratio of signaling by excitatory and inhibitory synapses and information processing. Required for normal signal amplitude from inhibitory synapses, but is not essential for normal signal frequency. May promote the initial formation of synapses, but is not essential for this. In vitro, triggers the de novo formation of presynaptic structures. Mediates cell-cell interactions between Langerhans beta cells and modulates insulin secretion (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q69ZK9}. |
Q8NFZ4 | NLGN2 | S720 | ochoa | Neuroligin-2 | Transmembrane scaffolding protein involved in cell-cell interactions via its interactions with neurexin family members. Mediates cell-cell interactions both in neurons and in other types of cells, such as Langerhans beta cells. Plays a role in synapse function and synaptic signal transmission, especially via gamma-aminobutyric acid receptors (GABA(A) receptors). Functions by recruiting and clustering synaptic proteins. Promotes clustering of postsynaptic GABRG2 and GPHN. Promotes clustering of postsynaptic LHFPL4 (By similarity). Modulates signaling by inhibitory synapses, and thereby plays a role in controlling the ratio of signaling by excitatory and inhibitory synapses and information processing. Required for normal signal amplitude from inhibitory synapses, but is not essential for normal signal frequency. May promote the initial formation of synapses, but is not essential for this. In vitro, triggers the de novo formation of presynaptic structures. Mediates cell-cell interactions between Langerhans beta cells and modulates insulin secretion (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q69ZK9}. |
Q8NHG8 | ZNRF2 | S25 | ochoa | E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) | E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}. |
Q8NHG8 | ZNRF2 | S26 | ochoa | E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) | E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}. |
Q8NHG8 | ZNRF2 | S27 | ochoa | E3 ubiquitin-protein ligase ZNRF2 (EC 2.3.2.27) (Protein Ells2) (RING finger protein 202) (RING-type E3 ubiquitin transferase ZNRF2) (Zinc/RING finger protein 2) | E3 ubiquitin-protein ligase that plays a role in the establishment and maintenance of neuronal transmission and plasticity. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Acts also as a positive regulator of mTORC1 activation by amino acids, which functions upstream of the V-ATPase and of Rag-GTPases (PubMed:27244671). In turn, phosphorylation by mTOR leads to its inhibition via targeting to the cytosol allowing a self-regulating feedback mechanism (PubMed:27244671). {ECO:0000269|PubMed:14561866, ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:27244671}. |
Q8TAP9 | MPLKIP | S72 | ochoa | M-phase-specific PLK1-interacting protein (TTD non-photosensitive 1 protein) | May play a role in maintenance of cell cycle integrity by regulating mitosis or cytokinesis. {ECO:0000269|PubMed:17310276}. |
Q8TAP9 | MPLKIP | S80 | ochoa | M-phase-specific PLK1-interacting protein (TTD non-photosensitive 1 protein) | May play a role in maintenance of cell cycle integrity by regulating mitosis or cytokinesis. {ECO:0000269|PubMed:17310276}. |
Q8TD19 | NEK9 | T744 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TD43 | TRPM4 | S839 | psp | Transient receptor potential cation channel subfamily M member 4 (hTRPM4) (Calcium-activated non-selective cation channel 1) (Long transient receptor potential channel 4) (LTrpC-4) (LTrpC4) (Melastatin-4) | Calcium-activated selective cation channel that mediates membrane depolarization (PubMed:12015988, PubMed:12842017, PubMed:29211723, PubMed:30528822). While it is activated by increase in intracellular Ca(2+), it is impermeable to it (PubMed:12015988). Mediates transport of monovalent cations (Na(+) > K(+) > Cs(+) > Li(+)), leading to depolarize the membrane (PubMed:12015988). It thereby plays a central role in cadiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. Participates in T-cell activation by modulating Ca(2+) oscillations after T lymphocyte activation, which is required for NFAT-dependent IL2 production. Involved in myogenic constriction of cerebral arteries. Controls insulin secretion in pancreatic beta-cells. May also be involved in pacemaking or could cause irregular electrical activity under conditions of Ca(2+) overload. Affects T-helper 1 (Th1) and T-helper 2 (Th2) cell motility and cytokine production through differential regulation of calcium signaling and NFATC1 localization. Enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. Plays a role in keratinocyte differentiation (PubMed:30528822). {ECO:0000269|PubMed:11535825, ECO:0000269|PubMed:12015988, ECO:0000269|PubMed:12799367, ECO:0000269|PubMed:12842017, ECO:0000269|PubMed:14758478, ECO:0000269|PubMed:15121803, ECO:0000269|PubMed:15331675, ECO:0000269|PubMed:15472118, ECO:0000269|PubMed:15550671, ECO:0000269|PubMed:15590641, ECO:0000269|PubMed:15845551, ECO:0000269|PubMed:16186107, ECO:0000269|PubMed:16407466, ECO:0000269|PubMed:16424899, ECO:0000269|PubMed:16806463, ECO:0000269|PubMed:20625999, ECO:0000269|PubMed:20656926, ECO:0000269|PubMed:29211723, ECO:0000269|PubMed:30528822}.; FUNCTION: [Isoform 2]: Lacks channel activity. {ECO:0000269|PubMed:12842017}. |
Q8TF74 | WIPF2 | Y74 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8TF74 | WIPF2 | S76 | ochoa | WAS/WASL-interacting protein family member 2 (WASP-interacting protein-related protein) (WIP- and CR16-homologous protein) (WIP-related protein) | Plays an active role in the formation of cell surface protrusions downstream of activated PDGFB receptors. Plays an important role in actin-microspike formation through cooperation with WASL. May cooperate with WASP and WASL to induce mobilization and reorganization of the actin filament system. {ECO:0000269|PubMed:11829459, ECO:0000269|PubMed:12213210}. |
Q8WVV9 | HNRNPLL | T46 | ochoa | Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) (Stromal RNA-regulating factor) | RNA-binding protein that functions as a regulator of alternative splicing for multiple target mRNAs, including PTPRC/CD45 and STAT5A. Required for alternative splicing of PTPRC. {ECO:0000269|PubMed:18669861}. |
Q8WWA1 | TMEM40 | S99 | ochoa | Transmembrane protein 40 | None |
Q8WXS5 | CACNG8 | S252 | ochoa | Voltage-dependent calcium channel gamma-8 subunit (Neuronal voltage-gated calcium channel gamma-8 subunit) (Transmembrane AMPAR regulatory protein gamma-8) (TARP gamma-8) | Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (By similarity). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. {ECO:0000250|UniProtKB:Q8VHW2, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611}. |
Q92804 | TAF15 | Y427 | ochoa | TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) | RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}. |
Q92945 | KHSRP | S54 | ochoa | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
Q92945 | KHSRP | S319 | ochoa | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
Q93052 | LPP | Y307 | ochoa | Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) | May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}. |
Q93074 | MED12 | S1258 | ochoa | Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}. |
Q969W9 | PMEPA1 | S221 | ochoa | Protein TMEPAI (Prostate transmembrane protein androgen induced 1) (Solid tumor-associated 1 protein) (Transmembrane prostate androgen-induced protein) | Functions as a negative regulator of TGF-beta signaling and thereby probably plays a role in cell proliferation, differentiation, apoptosis, motility, extracellular matrix production and immunosuppression. In the canonical TGF-beta pathway, ZFYVE9/SARA recruits the intracellular signal transducer and transcriptional modulators SMAD2 and SMAD3 to the TGF-beta receptor. Phosphorylated by the receptor, SMAD2 and SMAD3 then form a heteromeric complex with SMAD4 that translocates to the nucleus to regulate transcription. Through interaction with SMAD2 and SMAD3, LDLRAD4 may compete with ZFYVE9 and SMAD4 and prevent propagation of the intracellular signal (PubMed:20129061, PubMed:24627487). Also involved in down-regulation of the androgen receptor (AR), enhancing ubiquitination and proteasome-mediated degradation of AR, probably by recruiting NEDD4 (PubMed:18703514). {ECO:0000269|PubMed:18703514, ECO:0000269|PubMed:20129061, ECO:0000269|PubMed:24627487}. |
Q96AQ6 | PBXIP1 | S355 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96E39 | RBMXL1 | T119 | ochoa | RNA binding motif protein, X-linked-like-1 (Heterogeneous nuclear ribonucleoprotein G-like 1) | RNA-binding protein which may be involved in pre-mRNA splicing. {ECO:0000250}. |
Q96EV2 | RBM33 | S991 | ochoa | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q96JZ2 | HSH2D | S251 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96K80 | ZC3H10 | T173 | ochoa | Zinc finger CCCH domain-containing protein 10 | Specific regulator of miRNA biogenesis. Binds, via the C3H1-type zinc finger domains, to the binding motif 5'-GCAGCGC-3' on microRNA pri-MIR143 and negatively regulates the processing to mature microRNA. {ECO:0000269|PubMed:28431233}. |
Q96K80 | ZC3H10 | S177 | ochoa | Zinc finger CCCH domain-containing protein 10 | Specific regulator of miRNA biogenesis. Binds, via the C3H1-type zinc finger domains, to the binding motif 5'-GCAGCGC-3' on microRNA pri-MIR143 and negatively regulates the processing to mature microRNA. {ECO:0000269|PubMed:28431233}. |
Q96MG7 | NSMCE3 | S51 | ochoa | Non-structural maintenance of chromosomes element 3 homolog (Non-SMC element 3 homolog) (Hepatocellular carcinoma-associated protein 4) (MAGE-G1 antigen) (Melanoma-associated antigen G1) (Necdin-like protein 2) | Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (PubMed:20864041, PubMed:27427983). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex (PubMed:20864041). May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). {ECO:0000250|UniProtKB:Q9CPR8, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:27427983}. |
Q96PC5 | MIA2 | S1167 | ochoa | Melanoma inhibitory activity protein 2 (MIA protein 2) (CTAGE family member 5 ER export factor) (Cutaneous T-cell lymphoma-associated antigen 5) (Meningioma-expressed antigen 6/11) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum (PubMed:21525241, PubMed:25202031, PubMed:27138255, PubMed:27170179). Plays a role in the secretion of lipoproteins, pre-chylomicrons and pre-VLDLs, by participating in their export from the endoplasmic reticulum (PubMed:27138255). Thereby, may play a role in cholesterol and triglyceride homeostasis (By similarity). Required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers and recruiting PREB/SEC12 at the endoplasmic reticulum exit sites (PubMed:21525241, PubMed:25202031, PubMed:27170179). {ECO:0000250|UniProtKB:Q91ZV0, ECO:0000269|PubMed:21525241, ECO:0000269|PubMed:25202031, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:27170179}. |
Q96PE2 | ARHGEF17 | S410 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96PE2 | ARHGEF17 | S499 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96T37 | RBM15 | S151 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96T37 | RBM15 | S159 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q99081 | TCF12 | S49 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99715 | COL12A1 | S2861 | ochoa | Collagen alpha-1(XII) chain | Type XII collagen interacts with type I collagen-containing fibrils, the COL1 domain could be associated with the surface of the fibrils, and the COL2 and NC3 domains may be localized in the perifibrillar matrix. {ECO:0000250}. |
Q99715 | COL12A1 | S2864 | ochoa | Collagen alpha-1(XII) chain | Type XII collagen interacts with type I collagen-containing fibrils, the COL1 domain could be associated with the surface of the fibrils, and the COL2 and NC3 domains may be localized in the perifibrillar matrix. {ECO:0000250}. |
Q9BQ61 | TRIR | S111 | ochoa | Telomerase RNA component interacting RNase (EC 3.1.13.-) (Exoribonuclease TRIR) | Exoribonuclease that is part of the telomerase RNA 3' end processing complex and which has the ability to cleave all four unpaired RNA nucleotides from the 5' end or 3' end with higher efficiency for purine bases (PubMed:28322335). {ECO:0000269|PubMed:28322335}. |
Q9BQQ3 | GORASP1 | S189 | psp | Golgi reassembly-stacking protein 1 (Golgi peripheral membrane protein p65) (Golgi phosphoprotein 5) (GOLPH5) (Golgi reassembly-stacking protein of 65 kDa) (GRASP65) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP2/GRASP55, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP1 plays an important role in assembly and membrane stacking of the cisternae, and in the reassembly of Golgi stacks after breakdown during mitosis (By similarity). Caspase-mediated cleavage of GORASP1 is required for fragmentation of the Golgi during apoptosis (By similarity). Also mediates, via its interaction with GOLGA2/GM130, the docking of transport vesicles with the Golgi membranes (PubMed:16489344). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936). {ECO:0000250|UniProtKB:O35254, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:33301566}. |
Q9BRK4 | LZTS2 | S252 | ochoa | Leucine zipper putative tumor suppressor 2 (hLZTS2) (Protein LAPSER1) | Negative regulator of katanin-mediated microtubule severing and release from the centrosome. Required for central spindle formation and the completion of cytokinesis. May negatively regulate axonal outgrowth by preventing the formation of microtubule bundles that are necessary for transport within the elongating axon. Negative regulator of the Wnt signaling pathway. Represses beta-catenin-mediated transcriptional activation by promoting the nuclear exclusion of beta-catenin. {ECO:0000255|HAMAP-Rule:MF_03026, ECO:0000269|PubMed:17000760, ECO:0000269|PubMed:17351128, ECO:0000269|PubMed:17950943, ECO:0000269|PubMed:18490357}. |
Q9BXB5 | OSBPL10 | S54 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BXS0 | COL25A1 | S468 | ochoa | Collagen alpha-1(XXV) chain (Alzheimer disease amyloid-associated protein) (AMY) (CLAC-P) [Cleaved into: Collagen-like Alzheimer amyloid plaque component (CLAC)] | Inhibits fibrillization of amyloid-beta peptide during the elongation phase. Has also been shown to assemble amyloid fibrils into protease-resistant aggregates. Binds heparin. {ECO:0000269|PubMed:15522881, ECO:0000269|PubMed:15615705, ECO:0000269|PubMed:15853808, ECO:0000269|PubMed:16300410}. |
Q9BZI7 | UPF3B | S25 | ochoa | Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}. |
Q9C0B9 | ZCCHC2 | S236 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9C0C9 | UBE2O | S98 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0K0 | BCL11B | S768 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K0 | BCL11B | T770 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9C0K0 | BCL11B | S775 | ochoa | B-cell lymphoma/leukemia 11B (BCL-11B) (B-cell CLL/lymphoma 11B) (COUP-TF-interacting protein 2) (Radiation-induced tumor suppressor gene 1 protein) (hRit1) | Key regulator of both differentiation and survival of T-lymphocytes during thymocyte development in mammals. Essential in controlling the responsiveness of hematopoietic stem cells to chemotactic signals by modulating the expression of the receptors CCR7 and CCR9, which direct the movement of progenitor cells from the bone marrow to the thymus (PubMed:27959755). Is a regulator of IL2 promoter and enhances IL2 expression in activated CD4(+) T-lymphocytes (PubMed:16809611). Tumor-suppressor that represses transcription through direct, TFCOUP2-independent binding to a GC-rich response element (By similarity). May also function in the P53-signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q99PV8, ECO:0000269|PubMed:16809611, ECO:0000269|PubMed:27959755}. |
Q9H0W8 | SMG9 | S25 | ochoa | Nonsense-mediated mRNA decay factor SMG9 | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:19417104). Is recruited by release factors to stalled ribosomes together with SMG1 and SMG8 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required for the efficient association between SMG1 and SMG8 (PubMed:19417104). Plays a role in brain, heart, and eye development (By similarity). {ECO:0000250|UniProtKB:Q9DB90, ECO:0000269|PubMed:19417104}. |
Q9H165 | BCL11A | S714 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H165 | BCL11A | T716 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H165 | BCL11A | S721 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1J1 | UPF3A | S401 | ochoa | Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}. |
Q9H598 | SLC32A1 | S98 | ochoa | Vesicular inhibitory amino acid transporter (GABA and glycine transporter) (Solute carrier family 32 member 1) (Vesicular GABA transporter) (hVIAAT) | Antiporter that exchanges vesicular protons for cytosolic 4-aminobutanoate or to a lesser extend glycine, thus allowing their secretion from nerve terminals. The transport is equally dependent on the chemical and electrical components of the proton gradient (By similarity). May also transport beta-alanine (By similarity). Acidification of GABAergic synaptic vesicles is a prerequisite for 4-aminobutanoate uptake (By similarity). {ECO:0000250|UniProtKB:O35458, ECO:0000250|UniProtKB:O35633}. |
Q9H6A9 | PCNX3 | S1947 | ochoa | Pecanex-like protein 3 (Pecanex homolog protein 3) | None |
Q9H6I2 | SOX17 | S302 | ochoa | Transcription factor SOX-17 | Acts as a transcription regulator that binds target promoter DNA and bends the DNA. Binds to the sequences 5'-AACAAT-'3 or 5'-AACAAAG-3'. Modulates transcriptional regulation via WNT3A. Inhibits Wnt signaling. Promotes degradation of activated CTNNB1. Plays a key role in the regulation of embryonic development. Required for normal development of the definitive gut endoderm. Required for normal looping of the embryonic heart tube. Plays an important role in embryonic and postnatal vascular development, including development of arteries. Plays an important role in postnatal angiogenesis, where it is functionally redundant with SOX18. Required for the generation and maintenance of fetal hematopoietic stem cells, and for fetal hematopoiesis. Probable transcriptional activator in the premeiotic germ cells. {ECO:0000250|UniProtKB:Q61473}. |
Q9H8Y8 | GORASP2 | S189 | psp | Golgi reassembly-stacking protein 2 (GRS2) (Golgi phosphoprotein 6) (GOLPH6) (Golgi reassembly-stacking protein of 55 kDa) (GRASP55) (p59) | Key structural protein of the Golgi apparatus (PubMed:33301566). The membrane cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon (PubMed:33301566). Acting in concert with GORASP1/GRASP65, is required for the formation and maintenance of the Golgi ribbon, and may be dispensable for the formation of stacks (PubMed:33301566). However, other studies suggest that GORASP2 plays a role in the assembly and membrane stacking of the Golgi cisternae, and in the process by which Golgi stacks reform after breakdown during mitosis and meiosis (PubMed:10487747, PubMed:21515684, PubMed:22523075). May regulate the intracellular transport and presentation of a defined set of transmembrane proteins, such as transmembrane TGFA (PubMed:11101516). Required for normal acrosome formation during spermiogenesis and normal male fertility, probably by promoting colocalization of JAM2 and JAM3 at contact sites between germ cells and Sertoli cells (By similarity). Mediates ER stress-induced unconventional (ER/Golgi-independent) trafficking of core-glycosylated CFTR to cell membrane (PubMed:21884936, PubMed:27062250, PubMed:28067262). {ECO:0000250|UniProtKB:Q99JX3, ECO:0000269|PubMed:10487747, ECO:0000269|PubMed:11101516, ECO:0000269|PubMed:21515684, ECO:0000269|PubMed:21884936, ECO:0000269|PubMed:22523075, ECO:0000269|PubMed:27062250, ECO:0000269|PubMed:28067262}. |
Q9H987 | SYNPO2L | S369 | ochoa | Synaptopodin 2-like protein | Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}. |
Q9HBL0 | TNS1 | S1413 | psp | Tensin-1 (EC 3.1.3.-) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in fibrillar adhesion formation (PubMed:21768292, PubMed:28005397). Essential for myofibroblast differentiation and myofibroblast-mediated extracellular matrix deposition (PubMed:28005397). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Plays a role in cell polarization and migration (PubMed:19826001). May be involved in cartilage development and in linking signal transduction pathways to the cytoskeleton (PubMed:21768292). {ECO:0000269|PubMed:19826001, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:28005397, ECO:0000305}. |
Q9HC52 | CBX8 | S311 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HC52 | CBX8 | S315 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9NP98 | MYOZ1 | S123 | ochoa | Myozenin-1 (Calsarcin-2) (Filamin-, actinin- and telethonin-binding protein) (Protein FATZ) | Myozenins may serve as intracellular binding proteins involved in linking Z-disk proteins such as alpha-actinin, gamma-filamin, TCAP/telethonin, LDB3/ZASP and localizing calcineurin signaling to the sarcomere. Plays an important role in the modulation of calcineurin signaling. May play a role in myofibrillogenesis. |
Q9NRL3 | STRN4 | S53 | ochoa | Striatin-4 (Zinedin) | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753, PubMed:32640226). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling (PubMed:32640226). Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). Key regulator of the expanded Hippo signaling pathway by interacting and allowing the inhibition of MAP4K kinases by the STRIPAK complex (PubMed:32640226). {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:32640226, ECO:0000305|PubMed:26876214}. |
Q9NRR5 | UBQLN4 | S135 | ochoa | Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) | Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}. |
Q9NWH9 | SLTM | S929 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9P0U4 | CXXC1 | S124 | ochoa | CXXC-type zinc finger protein 1 (CpG-binding protein) (PHD finger and CXXC domain-containing protein 1) | Transcriptional activator that exhibits a unique DNA binding specificity for CpG unmethylated motifs with a preference for CpGG. {ECO:0000269|PubMed:21407193}. |
Q9P258 | RCC2 | S51 | ochoa | Protein RCC2 (RCC1-like protein TD-60) (Telophase disk protein of 60 kDa) | Multifunctional protein that may affect its functions by regulating the activity of small GTPases, such as RAC1 and RALA (PubMed:12919680, PubMed:25074804, PubMed:26158537, PubMed:28869598). Required for normal progress through the cell cycle, both during interphase and during mitosis (PubMed:12919680, PubMed:23388455, PubMed:26158537). Required for the presence of normal levels of MAD2L1, AURKB and BIRC5 on inner centromeres during mitosis, and for normal attachment of kinetochores to mitotic spindles (PubMed:12919680, PubMed:26158537). Required for normal organization of the microtubule cytoskeleton in interphase cells (PubMed:23388455). Functions as guanine nucleotide exchange factor (GEF) for RALA (PubMed:26158537). Interferes with the activation of RAC1 by guanine nucleotide exchange factors (PubMed:25074804). Prevents accumulation of active, GTP-bound RAC1, and suppresses RAC1-mediated reorganization of the actin cytoskeleton and formation of membrane protrusions (PubMed:25074804, PubMed:28869598). Required for normal cellular responses to contacts with the extracellular matrix of adjacent cells, and for directional cell migration in response to a fibronectin gradient (in vitro) (PubMed:25074804, PubMed:28869598). {ECO:0000269|PubMed:12919680, ECO:0000269|PubMed:23388455, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:26158537, ECO:0000269|PubMed:28869598}. |
Q9UBL3 | ASH2L | S291 | ochoa | Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2-like protein) | Transcriptional regulator (PubMed:12670868). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated (PubMed:19556245). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). May play a role in hematopoiesis (PubMed:12670868). In association with RBBP5 and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q9UGU0 | TCF20 | S53 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UGU0 | TCF20 | S55 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHI5 | SLC7A8 | S24 | ochoa | Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (hLAT2) (Solute carrier family 7 member 8) | Associates with SLC3A2 to form a functional heterodimeric complex that translocates small and large neutral amino acids with broad specificity and a stoichiometry of 1:1. Functions as amino acid antiporter mediating the influx of extracellular essential amino acids mainly in exchange with the efflux of highly concentrated intracellular amino acids (PubMed:10391915, PubMed:11311135, PubMed:11847106, PubMed:12716892, PubMed:15081149, PubMed:15918515, PubMed:29355479, PubMed:33298890, PubMed:34848541). Has relatively symmetrical selectivities but strongly asymmetrical substrate affinities at both the intracellular and extracellular sides of the transporter (PubMed:11847106). This asymmetry allows SLC7A8 to regulate intracellular amino acid pools (mM concentrations) by exchange with external amino acids (uM concentration range), equilibrating the relative concentrations of different amino acids across the plasma membrane instead of mediating their net uptake (PubMed:10391915, PubMed:11847106). May play an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney (PubMed:12716892). Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane (PubMed:15769744). Imports the thyroid hormone diiodothyronine (T2) and to a smaller extent triiodothyronine (T3) but not rT 3 or thyroxine (T4) (By similarity). Mediates the uptake of L-DOPA (By similarity). May participate in auditory function (By similarity). {ECO:0000250|UniProtKB:Q9QXW9, ECO:0000250|UniProtKB:Q9WVR6, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11847106, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15081149, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15918515, ECO:0000269|PubMed:29355479, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:34848541}. |
Q9UHI5 | SLC7A8 | S29 | ochoa | Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (hLAT2) (Solute carrier family 7 member 8) | Associates with SLC3A2 to form a functional heterodimeric complex that translocates small and large neutral amino acids with broad specificity and a stoichiometry of 1:1. Functions as amino acid antiporter mediating the influx of extracellular essential amino acids mainly in exchange with the efflux of highly concentrated intracellular amino acids (PubMed:10391915, PubMed:11311135, PubMed:11847106, PubMed:12716892, PubMed:15081149, PubMed:15918515, PubMed:29355479, PubMed:33298890, PubMed:34848541). Has relatively symmetrical selectivities but strongly asymmetrical substrate affinities at both the intracellular and extracellular sides of the transporter (PubMed:11847106). This asymmetry allows SLC7A8 to regulate intracellular amino acid pools (mM concentrations) by exchange with external amino acids (uM concentration range), equilibrating the relative concentrations of different amino acids across the plasma membrane instead of mediating their net uptake (PubMed:10391915, PubMed:11847106). May play an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney (PubMed:12716892). Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane (PubMed:15769744). Imports the thyroid hormone diiodothyronine (T2) and to a smaller extent triiodothyronine (T3) but not rT 3 or thyroxine (T4) (By similarity). Mediates the uptake of L-DOPA (By similarity). May participate in auditory function (By similarity). {ECO:0000250|UniProtKB:Q9QXW9, ECO:0000250|UniProtKB:Q9WVR6, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11847106, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15081149, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15918515, ECO:0000269|PubMed:29355479, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:34848541}. |
Q9UKJ3 | GPATCH8 | S765 | ochoa | G patch domain-containing protein 8 | None |
Q9UKJ3 | GPATCH8 | S766 | ochoa | G patch domain-containing protein 8 | None |
Q9UKX7 | NUP50 | S78 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UKY7 | CDV3 | S37 | ochoa | Protein CDV3 homolog | None |
Q9UKY7 | CDV3 | T56 | ochoa | Protein CDV3 homolog | None |
Q9Y272 | RASD1 | S232 | ochoa | Dexamethasone-induced Ras-related protein 1 (Activator of G-protein signaling 1) | Small GTPase. Negatively regulates the transcription regulation activity of the APBB1/FE65-APP complex via its interaction with APBB1/FE65 (By similarity). {ECO:0000250}. |
Q9Y3Q8 | TSC22D4 | S104 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y570 | PPME1 | S22 | ochoa | Protein phosphatase methylesterase 1 (PME-1) (EC 3.1.1.89) | Demethylates proteins that have been reversibly carboxymethylated. Demethylates PPP2CB (in vitro) and PPP2CA. Binding to PPP2CA displaces the manganese ion and inactivates the enzyme. {ECO:0000269|PubMed:10318862}. |
Q9Y5B6 | PAXBP1 | S65 | ochoa | PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) | Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}. |
Q9Y6C2 | EMILIN1 | S839 | ochoa | EMILIN-1 (Elastin microfibril interface-located protein 1) (Elastin microfibril interfacer 1) | Involved in elastic and collagen fibers formation. It is required for EFEMP2 deposition into the extracellular matrix, and collagen network assembly and cross-linking via protein-lysine 6-oxidase/LOX activity (PubMed:36351433). May be responsible for anchoring smooth muscle cells to elastic fibers, and may be involved in the processes that regulate vessel assembly. Has cell adhesive capacity. {ECO:0000269|PubMed:36351433}. |
P31943 | HNRNPH1 | S269 | Sugiyama | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P09651 | HNRNPA1 | Y244 | Sugiyama | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P52209 | PGD | S126 | Sugiyama | 6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44) | Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. {ECO:0000250}. |
Q14103 | HNRNPD | S271 | Sugiyama | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
P23246 | SFPQ | Y624 | Sugiyama | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
Q9H8H2 | DDX31 | S78 | Sugiyama | ATP-dependent DNA helicase DDX31 (EC 5.6.2.-) (DEAD box protein 31) (Helicain) (Probable ATP-dependent RNA helicase DDX31) (EC 3.6.4.13) | May have DNA helicase activity and RNA helicase activity. Probably have ssDNA and RNA dependent ATPase activity (By similarity). Plays a role in ribosome biogenesis and TP53/p53 regulation through its interaction with NPM1 (PubMed:23019224). {ECO:0000250|UniProtKB:Q8IBN8, ECO:0000269|PubMed:23019224}. |
O60307 | MAST3 | S885 | Sugiyama | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
Q13422 | IKZF1 | S101 | SIGNOR | DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) | Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}. |
Q96AY3 | FKBP10 | S207 | Sugiyama | Peptidyl-prolyl cis-trans isomerase FKBP10 (PPIase FKBP10) (EC 5.2.1.8) (65 kDa FK506-binding protein) (65 kDa FKBP) (FKBP-65) (FK506-binding protein 10) (FKBP-10) (Immunophilin FKBP65) (Rotamase) | PPIases accelerate the folding of proteins during protein synthesis. |
Q14151 | SAFB2 | Y825 | Sugiyama | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q15424 | SAFB | Y801 | Sugiyama | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
F5H4A9 | C3orf80 | S153 | ochoa | Uncharacterized membrane protein C3orf80 | None |
O00571 | DDX3X | S619 | ochoa | ATP-dependent RNA helicase DDX3X (EC 3.6.4.13) (CAP-Rf) (DEAD box protein 3, X-chromosomal) (DEAD box, X isoform) (DBX) (Helicase-like protein 2) (HLP2) | Multifunctional ATP-dependent RNA helicase (PubMed:17357160, PubMed:21589879, PubMed:31575075). The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity (PubMed:29222110). In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs (PubMed:17357160, PubMed:21589879). Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA (PubMed:30256975). Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities (Probable). Involved in transcription regulation (PubMed:16818630, PubMed:18264132). Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity (PubMed:16818630, PubMed:18264132). CDKN1A up-regulation may be cell-type specific (PubMed:18264132). Binds CDH1/E-cadherin promoter and represses its transcription (PubMed:18264132). Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis (PubMed:28128295). May positively regulate TP53 transcription (PubMed:28842590). Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC) (PubMed:17095540, PubMed:18596238). Involved in the regulation of translation initiation (PubMed:17667941, PubMed:18628297, PubMed:22872150). Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR) (PubMed:20837705, PubMed:22872150). This function depends on helicase activity (PubMed:20837705, PubMed:22872150). Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning (PubMed:20837705). Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety (PubMed:22872150). Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process (PubMed:22323517). Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle (PubMed:20837705). May activate TP53 translation (PubMed:28842590). Required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E (PubMed:17667941, PubMed:22323517). Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E (PubMed:17667941). Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:20127681, PubMed:21170385, PubMed:31575075). Potentiate MAVS/RIGI-mediated induction of IFNB in early stages of infection (PubMed:20127681, PubMed:21170385, PubMed:33674311). Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1 (PubMed:18583960, PubMed:18636090, PubMed:19913487, PubMed:21170385, PubMed:27980081). Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation (PubMed:23478265). Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7 (PubMed:30341167). Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling (PubMed:30341167). Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm (PubMed:27736973). May also bind IFNB promoter; the function is independent of IRF3 (PubMed:18583960). Involved in both stress and inflammatory responses (By similarity). Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells (PubMed:21883093). Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity (By similarity). Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells (By similarity). In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation (PubMed:18846110). Cleavage by caspases may inactivate DDX3X and relieve the inhibition (PubMed:18846110). Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant (PubMed:23413191, PubMed:29222110). ATPase and casein kinase-activating functions are mutually exclusive (PubMed:29222110). May be involved in mitotic chromosome segregation (PubMed:21730191). {ECO:0000250|UniProtKB:Q62167, ECO:0000269|PubMed:16818630, ECO:0000269|PubMed:17095540, ECO:0000269|PubMed:17357160, ECO:0000269|PubMed:17667941, ECO:0000269|PubMed:18264132, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:18596238, ECO:0000269|PubMed:18628297, ECO:0000269|PubMed:18636090, ECO:0000269|PubMed:18846110, ECO:0000269|PubMed:19913487, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20837705, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:21730191, ECO:0000269|PubMed:21883093, ECO:0000269|PubMed:22323517, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:23413191, ECO:0000269|PubMed:23478265, ECO:0000269|PubMed:27736973, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:28128295, ECO:0000269|PubMed:28842590, ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29222110, ECO:0000269|PubMed:30256975, ECO:0000269|PubMed:30341167, ECO:0000269|PubMed:31575075, ECO:0000269|PubMed:33674311, ECO:0000305}.; FUNCTION: (Microbial infection) Facilitates hepatitis C virus (HCV) replication (PubMed:29899501). During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex (PubMed:21170385). {ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates HIV-1 replication (PubMed:15507209, PubMed:18583960, PubMed:21589879, PubMed:22872150, PubMed:29899501). Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs (PubMed:15507209, PubMed:18583960, PubMed:29899501). This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity (PubMed:18583960). {ECO:0000269|PubMed:15507209, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21589879, ECO:0000269|PubMed:22872150, ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Zika virus (ZIKV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Dengue virus (DENV) replication. {ECO:0000269|PubMed:29899501}.; FUNCTION: (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication. {ECO:0000269|PubMed:27105836}. |
O14654 | IRS4 | Y487 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
P02671 | FGA | S299 | ochoa | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P05783 | KRT18 | S47 | ochoa | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P08047 | SP1 | S36 | ochoa | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P09651 | HNRNPA1 | S191 | ochoa | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P09651 | HNRNPA1 | S192 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) (Helix-destabilizing protein) (Single-strand RNA-binding protein) (hnRNP core protein A1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein A1, N-terminally processed] | Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and modulation of splice site selection (PubMed:17371836). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1 (PubMed:31498791). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:31498791}.; FUNCTION: (Microbial infection) May play a role in HCV RNA replication. {ECO:0000269|PubMed:17229681}.; FUNCTION: (Microbial infection) Cleavage by Enterovirus 71 protease 3C results in increased translation of apoptosis protease activating factor APAF1, leading to apoptosis. {ECO:0000269|PubMed:17229681}. |
P22626 | HNRNPA2B1 | S201 | ochoa | Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) | Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs (PubMed:19099192). Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm (PubMed:10567417). Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear 'reader' of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts (PubMed:26321680). Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs (PubMed:24356509). Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs (PubMed:26321680). Plays a role in the splicing of pyruvate kinase PKM by binding repressively to sequences flanking PKM exon 9, inhibiting exon 9 inclusion and resulting in exon 10 inclusion and production of the PKM M2 isoform (PubMed:20010808). Also plays a role in the activation of the innate immune response (PubMed:31320558). Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6 (PubMed:31320558). In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production (PubMed:31320558). {ECO:0000250|UniProtKB:A7VJC2, ECO:0000269|PubMed:10567417, ECO:0000269|PubMed:20010808, ECO:0000269|PubMed:24356509, ECO:0000269|PubMed:26321680, ECO:0000303|PubMed:19099192}.; FUNCTION: (Microbial infection) Involved in the transport of HIV-1 genomic RNA out of the nucleus, to the microtubule organizing center (MTOC), and then from the MTOC to the cytoplasm: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) sequence motifs present on HIV-1 genomic RNA, and promotes its transport. {ECO:0000269|PubMed:15294897, ECO:0000269|PubMed:17004321}. |
P35716 | SOX11 | S137 | ochoa | Transcription factor SOX-11 | Transcription factor that acts as a transcriptional activator (PubMed:24886874, PubMed:26543203). Binds cooperatively with POU3F2/BRN2 or POU3F1/OCT6 to gene promoters, which enhances transcriptional activation (By similarity). Acts as a transcriptional activator of TEAD2 by binding to its gene promoter and first intron (By similarity). Plays a redundant role with SOX4 and SOX12 in cell survival of developing tissues such as the neural tube, branchial arches and somites, thereby contributing to organogenesis (By similarity). {ECO:0000250|UniProtKB:Q7M6Y2, ECO:0000269|PubMed:24886874, ECO:0000269|PubMed:26543203}. |
P49840 | GSK3A | S41 | ochoa | Glycogen synthase kinase-3 alpha (GSK-3 alpha) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3A) (EC 2.7.11.1) | Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1 (PubMed:11749387, PubMed:17478001, PubMed:19366350). Requires primed phosphorylation of the majority of its substrates (PubMed:11749387, PubMed:17478001, PubMed:19366350). Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:11749387, PubMed:17478001, PubMed:19366350). Regulates glycogen metabolism in liver, but not in muscle (By similarity). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:10868943, PubMed:17478001). In Wnt signaling, regulates the level and transcriptional activity of nuclear CTNNB1/beta-catenin (PubMed:17229088). Facilitates amyloid precursor protein (APP) processing and the generation of APP-derived amyloid plaques found in Alzheimer disease (PubMed:12761548). May be involved in the regulation of replication in pancreatic beta-cells (By similarity). Is necessary for the establishment of neuronal polarity and axon outgrowth (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions which activates KAT5/TIP60 acetyltransferase activity and promotes acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (By similarity). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed:25897075). {ECO:0000250|UniProtKB:P18265, ECO:0000250|UniProtKB:P49841, ECO:0000250|UniProtKB:Q2NL51, ECO:0000269|PubMed:10868943, ECO:0000269|PubMed:12761548, ECO:0000269|PubMed:17229088, ECO:0000269|PubMed:25897075, ECO:0000269|PubMed:30704899, ECO:0000303|PubMed:11749387, ECO:0000303|PubMed:17478001, ECO:0000303|PubMed:19366350}. |
P50895 | BCAM | S600 | ochoa | Basal cell adhesion molecule (Auberger B antigen) (B-CAM cell surface glycoprotein) (F8/G253 antigen) (Lutheran antigen) (Lutheran blood group glycoprotein) (CD antigen CD239) | Transmembrane glycoprotein that functions as both a receptor and an adhesion molecule playing a crucial role in cell adhesion, motility, migration and invasion (PubMed:9616226, PubMed:31413112). Extracellular domain enables binding to extracellular matrix proteins, such as laminin, integrin and other ligands while its intracellular domain interacts with cytoskeletal proteins like hemoglobin, facilitating cell signal transduction (PubMed:17158232). Serves as a receptor for laminin alpha-5/LAMA5 to promote cell adhesion (PubMed:15975931). Mechanistically, JAK2 induces BCAM phosphorylation and activates its adhesion to laminin by stimulating a Rap1/AKT signaling pathway in the absence of EPOR (PubMed:23160466). {ECO:0000269|PubMed:15975931, ECO:0000269|PubMed:17158232, ECO:0000269|PubMed:23160466, ECO:0000269|PubMed:31413112, ECO:0000269|PubMed:9616226}. |
P55072 | VCP | S775 | ochoa | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P78563 | ADARB1 | S31 | ochoa | Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}. |
P98179 | RBM3 | Y117 | ochoa | RNA-binding protein 3 (RNA-binding motif protein 3) (RNPL) | Cold-inducible mRNA binding protein that enhances global protein synthesis at both physiological and mild hypothermic temperatures. Reduces the relative abundance of microRNAs, when overexpressed. Enhances phosphorylation of translation initiation factors and active polysome formation (By similarity). {ECO:0000250}. |
P98179 | RBM3 | Y118 | ochoa | RNA-binding protein 3 (RNA-binding motif protein 3) (RNPL) | Cold-inducible mRNA binding protein that enhances global protein synthesis at both physiological and mild hypothermic temperatures. Reduces the relative abundance of microRNAs, when overexpressed. Enhances phosphorylation of translation initiation factors and active polysome formation (By similarity). {ECO:0000250}. |
Q04695 | KRT17 | S24 | psp | Keratin, type I cytoskeletal 17 (39.1) (Cytokeratin-17) (CK-17) (Keratin-17) (K17) | Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair (By similarity). Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state (By similarity). Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway (By similarity). Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors (By similarity). May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation. {ECO:0000250|UniProtKB:Q9QWL7, ECO:0000269|PubMed:10844551, ECO:0000269|PubMed:15795121, ECO:0000269|PubMed:16713453}. |
Q06587 | RING1 | S229 | ochoa | E3 ubiquitin-protein ligase RING1 (EC 2.3.2.27) (Polycomb complex protein RING1) (RING finger protein 1) (RING-type E3 ubiquitin transferase RING1) (Really interesting new gene 1 protein) | Constitutes one of the E3 ubiquitin-protein ligases that mediate monoubiquitination of 'Lys-119' of histone H2A, thereby playing a central role in histone code and gene regulation. H2A 'Lys-119' ubiquitination gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. Compared to RNF2/RING2, it does not have the main E3 ubiquitin ligase activity on histone H2A, and it may rather act as a modulator of RNF2/RING2 activity. {ECO:0000269|PubMed:16359901}. |
Q06945 | SOX4 | S175 | ochoa | Transcription factor SOX-4 | Transcriptional activator that binds with high affinity to the T-cell enhancer motif 5'-AACAAAG-3' motif (PubMed:30661772). Required for IL17A-producing Vgamma2-positive gamma-delta T-cell maturation and development, via binding to regulator loci of RORC to modulate expression (By similarity). Involved in skeletal myoblast differentiation by promoting gene expression of CALD1 (PubMed:26291311). {ECO:0000250|UniProtKB:Q06831, ECO:0000269|PubMed:26291311, ECO:0000269|PubMed:30661772}. |
Q09666 | AHNAK | S5577 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q13595 | TRA2A | Y208 | ochoa | Transformer-2 protein homolog alpha (TRA-2 alpha) (TRA2-alpha) (Transformer-2 protein homolog A) | Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. {ECO:0000269|PubMed:9546399}. |
Q15672 | TWIST1 | S68 | ochoa|psp | Twist-related protein 1 (Class A basic helix-loop-helix protein 38) (bHLHa38) (H-twist) | Acts as a transcriptional regulator. Inhibits myogenesis by sequestrating E proteins, inhibiting trans-activation by MEF2, and inhibiting DNA-binding by MYOD1 through physical interaction. This interaction probably involves the basic domains of both proteins. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Regulates cranial suture patterning and fusion. Activates transcription as a heterodimer with E proteins. Regulates gene expression differentially, depending on dimer composition. Homodimers induce expression of FGFR2 and POSTN while heterodimers repress FGFR2 and POSTN expression and induce THBS1 expression. Heterodimerization is also required for osteoblast differentiation. Represses the activity of the circadian transcriptional activator: NPAS2-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:P26687, ECO:0000269|PubMed:12553906, ECO:0000269|PubMed:25981568}. |
Q5BKZ1 | ZNF326 | S51 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5U651 | RASIP1 | S90 | ochoa | Ras-interacting protein 1 (Rain) | Required for the proper formation of vascular structures that develop via both vasculogenesis and angiogenesis. Acts as a critical and vascular-specific regulator of GTPase signaling, cell architecture, and adhesion, which is essential for endothelial cell morphogenesis and blood vessel tubulogenesis. Regulates the activity of Rho GTPases in part by recruiting ARHGAP29 and suppressing RhoA signaling and dampening ROCK and MYH9 activities in endothelial cells (By similarity). May act as effector for Golgi-bound HRAS and other Ras-like proteins. May promote HRAS-mediated transformation. Negative regulator of amino acid starvation-induced autophagy. {ECO:0000250, ECO:0000269|PubMed:15031288, ECO:0000269|PubMed:22354037}. |
Q5VT52 | RPRD2 | S1146 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q6P1R3 | MSANTD2 | S74 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 2 | None |
Q6ZN18 | AEBP2 | S175 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q6ZN18 | AEBP2 | S177 | ochoa | Zinc finger protein AEBP2 (Adipocyte enhancer-binding protein 2) (AE-binding protein 2) | Acts as an accessory subunit for the core Polycomb repressive complex 2 (PRC2), which mediates histone H3K27 (H3K27me3) trimethylation on chromatin leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:29499137, PubMed:31959557). Plays a role in nucleosome localization of the PRC2 complex (PubMed:29499137). {ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q7Z460 | CLASP1 | S687 | ochoa | CLIP-associating protein 1 (Cytoplasmic linker-associated protein 1) (Multiple asters homolog 1) (Protein Orbit homolog 1) (hOrbit1) | Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle. {ECO:0000269|PubMed:11290329, ECO:0000269|PubMed:12837247, ECO:0000269|PubMed:15631994, ECO:0000269|PubMed:16866869, ECO:0000269|PubMed:16914514, ECO:0000269|PubMed:17543864}. |
Q8NC24 | RELL2 | S187 | ochoa | RELT-like protein 2 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8ND25 | ZNRF1 | Y97 | ochoa | E3 ubiquitin-protein ligase ZNRF1 (EC 2.3.2.27) (Nerve injury-induced gene 283 protein) (RING-type E3 ubiquitin transferase ZNRF1) (Zinc/RING finger protein 1) | E3 ubiquitin-protein ligase that plays a role in different processes including cell differentiation, receptor recycling or regulation of inflammation (PubMed:28593998, PubMed:33996800, PubMed:37158982). Mediates the ubiquitination of AKT1 and GLUL, thereby playing a role in neuron cells differentiation. Plays a role in the establishment and maintenance of neuronal transmission and plasticity. Regulates Schwann cells differentiation by mediating ubiquitination of GLUL. Promotes neurodegeneration by mediating 'Lys-48'-linked polyubiquitination and subsequent degradation of AKT1 in axons: degradation of AKT1 prevents AKT1-mediated phosphorylation of GSK3B, leading to GSK3B activation and phosphorylation of DPYSL2/CRMP2 followed by destabilization of microtubule assembly in axons. Ubiquitinates the Na(+)/K(+) ATPase alpha-1 subunit/ATP1A1 and thereby influences its endocytosis and/or degradation (PubMed:22797923). Controls ligand-induced EGFR signaling via mediating receptor ubiquitination and recruitment of the ESCRT machinery (PubMed:33996800). Acts as a negative feedback mechanism controlling TLR3 trafficking by mediating TLR3 'Lys-63'-linked polyubiquitination to reduce type I IFN production (PubMed:37158982). Modulates inflammation by promoting caveolin-1/CAV1 ubiquitination and degradation to regulate TLR4-activated immune response (PubMed:28593998). {ECO:0000269|PubMed:22797923, ECO:0000269|PubMed:28593998, ECO:0000269|PubMed:29626159, ECO:0000269|PubMed:33996800, ECO:0000269|PubMed:37158982, ECO:0000305|PubMed:14561866}. |
Q8TD19 | NEK9 | S741 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q96EX2 | RNFT2 | S125 | ochoa | E3 ubiquitin-protein ligase RNFT2 (RING finger and transmembrane domain-containing protein 2) (Transmembrane protein 118) | E3 ubiquitin-protein ligase that negatively regulates IL3-dependent cellular responses through IL3RA ubiquitination and degradation by the proteasome, having an anti-inflammatory effect. {ECO:0000269|PubMed:31990690}. |
Q96GS4 | BORCS6 | S173 | ochoa | BLOC-1-related complex subunit 6 (Lysosome-dispersing protein) (Lyspersin) | As part of the BORC complex may play a role in lysosomes movement and localization at the cell periphery. Associated with the cytosolic face of lysosomes, the BORC complex may recruit ARL8B and couple lysosomes to microtubule plus-end-directed kinesin motor. {ECO:0000269|PubMed:25898167}. |
Q9HC44 | GPBP1L1 | S98 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9NRH2 | SNRK | S599 | ochoa | SNF-related serine/threonine-protein kinase (EC 2.7.11.1) (SNF1-related kinase) | May play a role in hematopoietic cell proliferation or differentiation. Potential mediator of neuronal apoptosis. {ECO:0000250|UniProtKB:Q63553, ECO:0000269|PubMed:12234663, ECO:0000269|PubMed:15733851}. |
Q9P2Q2 | FRMD4A | S800 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9UPU5 | USP24 | Y53 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
P78368 | CSNK1G2 | S27 | Sugiyama | Casein kinase I isoform gamma-2 (CKI-gamma 2) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling (By similarity). Phosphorylates COL4A3BP/CERT, MTA1 and SMAD3. SMAD3 phosphorylation promotes its ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Hyperphosphorylation of the serine-repeat motif of COL4A3BP/CERT leads to its inactivation by dissociation from the Golgi complex, thus down-regulating ER-to-Golgi transport of ceramide and sphingomyelin synthesis. Triggers PER1 proteasomal degradation probably through phosphorylation (PubMed:15077195, PubMed:15917222, PubMed:18794808, PubMed:19005213). Involved in brain development and vesicular trafficking and neurotransmitter releasing from small synaptic vesicles. Regulates fast synaptic transmission mediated by glutamate (By similarity). Involved in regulation of reactive oxygen species (ROS) levels (PubMed:37099597). {ECO:0000250|UniProtKB:P48729, ECO:0000250|UniProtKB:Q8BVP5, ECO:0000269|PubMed:15077195, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:18794808, ECO:0000269|PubMed:19005213, ECO:0000269|PubMed:37099597}. |
P27815 | PDE4A | S85 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P51511 | MMP15 | S589 | ochoa | Matrix metalloproteinase-15 (MMP-15) (EC 3.4.24.-) (Membrane-type matrix metalloproteinase 2) (MT-MMP 2) (MTMMP2) (Membrane-type-2 matrix metalloproteinase) (MT2-MMP) (MT2MMP) (SMCP-2) | Endopeptidase that degrades various components of the extracellular matrix. May activate progelatinase A. {ECO:0000269|PubMed:9461298}. |
P52272 | HNRNPM | S377 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
Q09666 | AHNAK | S5464 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q16763 | UBE2S | T175 | ochoa | Ubiquitin-conjugating enzyme E2 S (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme S) (E2-EPF) (Ubiquitin carrier protein S) (Ubiquitin-conjugating enzyme E2-24 kDa) (Ubiquitin-conjugating enzyme E2-EPF5) (Ubiquitin-protein ligase S) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:19820702, PubMed:19822757, PubMed:22496338, PubMed:27259151). Catalyzes 'Lys-11'-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated ubiquitin ligase that controls progression through mitosis (PubMed:19820702, PubMed:19822757, PubMed:27259151, PubMed:27910872). Acts by specifically elongating 'Lys-11'-linked polyubiquitin chains initiated by the E2 enzyme UBE2C/UBCH10 on APC/C substrates, enhancing the degradation of APC/C substrates by the proteasome and promoting mitotic exit (PubMed:19820702, PubMed:19822757, PubMed:27259151). Also acts by elongating ubiquitin chains initiated by the E2 enzyme UBE2D1/UBCH5 in vitro; it is however unclear whether UBE2D1/UBCH5 acts as an E2 enzyme for the APC/C in vivo. Also involved in ubiquitination and subsequent degradation of VHL, resulting in an accumulation of HIF1A (PubMed:16819549). In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, except 'Lys-48'-linked polyubiquitination (PubMed:20061386, PubMed:20622874). {ECO:0000269|PubMed:16819549, ECO:0000269|PubMed:19820702, ECO:0000269|PubMed:19822757, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22496338, ECO:0000269|PubMed:27259151, ECO:0000269|PubMed:27910872}. |
Q86YV5 | PRAG1 | S889 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IUD2 | ERC1 | S41 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q96C90 | PPP1R14B | Y29 | ochoa | Protein phosphatase 1 regulatory subunit 14B (Phospholipase C-beta-3 neighbouring gene protein) | Inhibitor of PPP1CA. Has over 50-fold higher inhibitory activity when phosphorylated (By similarity). {ECO:0000250}. |
Q96K21 | ZFYVE19 | S22 | psp | Abscission/NoCut checkpoint regulator (ANCHR) (MLL partner containing FYVE domain) (Zinc finger FYVE domain-containing protein 19) | Key regulator of abscission step in cytokinesis: part of the cytokinesis checkpoint, a process required to delay abscission to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. Together with CHMP4C, required to retain abscission-competent VPS4 (VPS4A and/or VPS4B) at the midbody ring until abscission checkpoint signaling is terminated at late cytokinesis. Deactivation of AURKB results in dephosphorylation of CHMP4C followed by its dissociation from ZFYVE19/ANCHR and VPS4 and subsequent abscission. {ECO:0000269|PubMed:24814515}. |
Q99081 | TCF12 | S47 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q9BXP5 | SRRT | Y836 | psp | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-3371568 | Attenuation phase | 2.255876e-09 | 8.647 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 1.373476e-08 | 7.862 |
R-HSA-8948216 | Collagen chain trimerization | 1.301614e-08 | 7.886 |
R-HSA-3371511 | HSF1 activation | 1.032140e-08 | 7.986 |
R-HSA-3371571 | HSF1-dependent transactivation | 2.684619e-08 | 7.571 |
R-HSA-72172 | mRNA Splicing | 3.289464e-08 | 7.483 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 8.142637e-08 | 7.089 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 7.575204e-07 | 6.121 |
R-HSA-3371556 | Cellular response to heat stress | 1.167295e-06 | 5.933 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 2.724937e-06 | 5.565 |
R-HSA-8953854 | Metabolism of RNA | 3.312443e-06 | 5.480 |
R-HSA-1442490 | Collagen degradation | 7.629753e-06 | 5.117 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 3.885339e-05 | 4.411 |
R-HSA-1474290 | Collagen formation | 4.796419e-05 | 4.319 |
R-HSA-2262752 | Cellular responses to stress | 7.257538e-05 | 4.139 |
R-HSA-8953897 | Cellular responses to stimuli | 1.372600e-04 | 3.862 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 2.452900e-04 | 3.610 |
R-HSA-9823730 | Formation of definitive endoderm | 3.581780e-04 | 3.446 |
R-HSA-2214320 | Anchoring fibril formation | 4.872741e-04 | 3.312 |
R-HSA-72187 | mRNA 3'-end processing | 6.413870e-04 | 3.193 |
R-HSA-9842663 | Signaling by LTK | 6.192561e-04 | 3.208 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 1.426801e-03 | 2.846 |
R-HSA-1266738 | Developmental Biology | 1.371546e-03 | 2.863 |
R-HSA-1566977 | Fibronectin matrix formation | 1.675999e-03 | 2.776 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 2.369887e-03 | 2.625 |
R-HSA-9700206 | Signaling by ALK in cancer | 2.369887e-03 | 2.625 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 2.624559e-03 | 2.581 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 2.624227e-03 | 2.581 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 3.102306e-03 | 2.508 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 3.102306e-03 | 2.508 |
R-HSA-1474228 | Degradation of the extracellular matrix | 3.103939e-03 | 2.508 |
R-HSA-74749 | Signal attenuation | 3.806052e-03 | 2.420 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 4.212430e-03 | 2.375 |
R-HSA-419037 | NCAM1 interactions | 4.212430e-03 | 2.375 |
R-HSA-6803529 | FGFR2 alternative splicing | 4.659188e-03 | 2.332 |
R-HSA-216083 | Integrin cell surface interactions | 4.763923e-03 | 2.322 |
R-HSA-190236 | Signaling by FGFR | 4.844174e-03 | 2.315 |
R-HSA-201556 | Signaling by ALK | 5.065519e-03 | 2.295 |
R-HSA-5654738 | Signaling by FGFR2 | 5.379576e-03 | 2.269 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 5.534961e-03 | 2.257 |
R-HSA-3214841 | PKMTs methylate histone lysines | 6.034304e-03 | 2.219 |
R-HSA-167161 | HIV Transcription Initiation | 6.564510e-03 | 2.183 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 6.564510e-03 | 2.183 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 6.564510e-03 | 2.183 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 6.737690e-03 | 2.171 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 6.864203e-03 | 2.163 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 7.126530e-03 | 2.147 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 7.936702e-03 | 2.100 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 7.721300e-03 | 2.112 |
R-HSA-2428924 | IGF1R signaling cascade | 7.820350e-03 | 2.107 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 8.206058e-03 | 2.086 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 8.332770e-03 | 2.079 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 9.012759e-03 | 2.045 |
R-HSA-5660489 | MTF1 activates gene expression | 9.106230e-03 | 2.041 |
R-HSA-167172 | Transcription of the HIV genome | 1.001435e-02 | 1.999 |
R-HSA-9006936 | Signaling by TGFB family members | 1.069096e-02 | 1.971 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 1.071521e-02 | 1.970 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 1.121804e-02 | 1.950 |
R-HSA-74713 | IRS activation | 1.220453e-02 | 1.913 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 1.317603e-02 | 1.880 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 1.333175e-02 | 1.875 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 1.407734e-02 | 1.851 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 1.397987e-02 | 1.854 |
R-HSA-9733709 | Cardiogenesis | 1.435633e-02 | 1.843 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 1.524240e-02 | 1.817 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 1.560152e-02 | 1.807 |
R-HSA-72649 | Translation initiation complex formation | 1.667551e-02 | 1.778 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 1.691265e-02 | 1.772 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 1.829066e-02 | 1.738 |
R-HSA-9675108 | Nervous system development | 1.769858e-02 | 1.752 |
R-HSA-166520 | Signaling by NTRKs | 1.842650e-02 | 1.735 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 1.882692e-02 | 1.725 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 1.882692e-02 | 1.725 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 1.973646e-02 | 1.705 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 2.111245e-02 | 1.675 |
R-HSA-2243919 | Crosslinking of collagen fibrils | 1.982472e-02 | 1.703 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 2.115340e-02 | 1.675 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 2.378327e-02 | 1.624 |
R-HSA-112412 | SOS-mediated signalling | 2.378327e-02 | 1.624 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 2.202867e-02 | 1.657 |
R-HSA-1181150 | Signaling by NODAL | 2.202867e-02 | 1.657 |
R-HSA-9022707 | MECP2 regulates transcription factors | 2.378327e-02 | 1.624 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 2.654474e-02 | 1.576 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 2.682117e-02 | 1.572 |
R-HSA-430116 | GP1b-IX-V activation signalling | 3.321484e-02 | 1.479 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 3.321484e-02 | 1.479 |
R-HSA-198203 | PI3K/AKT activation | 3.839066e-02 | 1.416 |
R-HSA-9734767 | Developmental Cell Lineages | 3.870961e-02 | 1.412 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 3.556124e-02 | 1.449 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 3.793349e-02 | 1.421 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 3.793349e-02 | 1.421 |
R-HSA-9839394 | TGFBR3 expression | 3.793349e-02 | 1.421 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 3.839066e-02 | 1.416 |
R-HSA-3000157 | Laminin interactions | 3.793349e-02 | 1.421 |
R-HSA-9839373 | Signaling by TGFBR3 | 4.029408e-02 | 1.395 |
R-HSA-3000178 | ECM proteoglycans | 4.082561e-02 | 1.389 |
R-HSA-525793 | Myogenesis | 4.102509e-02 | 1.387 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 3.902128e-02 | 1.409 |
R-HSA-376176 | Signaling by ROBO receptors | 4.020630e-02 | 1.396 |
R-HSA-2586552 | Signaling by Leptin | 3.839066e-02 | 1.416 |
R-HSA-381070 | IRE1alpha activates chaperones | 3.419675e-02 | 1.466 |
R-HSA-1474244 | Extracellular matrix organization | 4.151153e-02 | 1.382 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 4.267974e-02 | 1.370 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 4.267974e-02 | 1.370 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 4.385082e-02 | 1.358 |
R-HSA-9635465 | Suppression of apoptosis | 4.385082e-02 | 1.358 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 4.957932e-02 | 1.305 |
R-HSA-9614085 | FOXO-mediated transcription | 4.812493e-02 | 1.318 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 4.610255e-02 | 1.336 |
R-HSA-9634597 | GPER1 signaling | 4.497040e-02 | 1.347 |
R-HSA-6809371 | Formation of the cornified envelope | 4.738877e-02 | 1.324 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 4.957932e-02 | 1.305 |
R-HSA-2559583 | Cellular Senescence | 4.894469e-02 | 1.310 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 5.088085e-02 | 1.293 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 5.344331e-02 | 1.272 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 5.371586e-02 | 1.270 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 5.373582e-02 | 1.270 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 5.373582e-02 | 1.270 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 5.556073e-02 | 1.255 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 6.178022e-02 | 1.209 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 5.460756e-02 | 1.263 |
R-HSA-162587 | HIV Life Cycle | 5.820747e-02 | 1.235 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 5.460756e-02 | 1.263 |
R-HSA-4839726 | Chromatin organization | 5.712756e-02 | 1.243 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 5.522544e-02 | 1.258 |
R-HSA-9012852 | Signaling by NOTCH3 | 6.361419e-02 | 1.196 |
R-HSA-3304347 | Loss of Function of SMAD4 in Cancer | 6.835260e-02 | 1.165 |
R-HSA-9845622 | Defective VWF binding to collagen type I | 6.835260e-02 | 1.165 |
R-HSA-3315487 | SMAD2/3 MH2 Domain Mutants in Cancer | 6.835260e-02 | 1.165 |
R-HSA-3311021 | SMAD4 MH2 Domain Mutants in Cancer | 6.835260e-02 | 1.165 |
R-HSA-9845619 | Enhanced cleavage of VWF variant by ADAMTS13 | 9.008499e-02 | 1.045 |
R-HSA-9845621 | Defective VWF cleavage by ADAMTS13 variant | 9.008499e-02 | 1.045 |
R-HSA-8853336 | Signaling by plasma membrane FGFR1 fusions | 1.113117e-01 | 0.953 |
R-HSA-8866906 | TFAP2 (AP-2) family regulates transcription of other transcription factors | 1.113117e-01 | 0.953 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 1.113117e-01 | 0.953 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 1.113117e-01 | 0.953 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 1.113117e-01 | 0.953 |
R-HSA-1296061 | HCN channels | 1.320446e-01 | 0.879 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 1.320446e-01 | 0.879 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 1.320446e-01 | 0.879 |
R-HSA-68911 | G2 Phase | 1.522950e-01 | 0.817 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 1.522950e-01 | 0.817 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 1.522950e-01 | 0.817 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 1.522950e-01 | 0.817 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 1.522950e-01 | 0.817 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 1.720741e-01 | 0.764 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 1.720741e-01 | 0.764 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 1.720741e-01 | 0.764 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 1.913929e-01 | 0.718 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 1.913929e-01 | 0.718 |
R-HSA-9027284 | Erythropoietin activates RAS | 7.487679e-02 | 1.126 |
R-HSA-9827857 | Specification of primordial germ cells | 9.596688e-02 | 1.018 |
R-HSA-201688 | WNT mediated activation of DVL | 2.466931e-01 | 0.608 |
R-HSA-9700645 | ALK mutants bind TKIs | 2.466931e-01 | 0.608 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 1.262793e-01 | 0.899 |
R-HSA-164843 | 2-LTR circle formation | 2.642751e-01 | 0.578 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 2.642751e-01 | 0.578 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 1.341761e-01 | 0.872 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 1.584754e-01 | 0.800 |
R-HSA-429947 | Deadenylation of mRNA | 1.584754e-01 | 0.800 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 2.982207e-01 | 0.525 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 3.146030e-01 | 0.502 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 1.835044e-01 | 0.736 |
R-HSA-170660 | Adenylate cyclase activating pathway | 3.306039e-01 | 0.481 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 3.306039e-01 | 0.481 |
R-HSA-9006335 | Signaling by Erythropoietin | 2.004898e-01 | 0.698 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 7.651397e-02 | 1.116 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 3.614967e-01 | 0.442 |
R-HSA-180336 | SHC1 events in EGFR signaling | 3.614967e-01 | 0.442 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 2.349271e-01 | 0.629 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 6.719066e-02 | 1.173 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 2.435970e-01 | 0.613 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 3.764056e-01 | 0.424 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 3.764056e-01 | 0.424 |
R-HSA-176412 | Phosphorylation of the APC/C | 3.764056e-01 | 0.424 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 3.764056e-01 | 0.424 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 2.609698e-01 | 0.583 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 3.909673e-01 | 0.408 |
R-HSA-212300 | PRC2 methylates histones and DNA | 2.696623e-01 | 0.569 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 4.051898e-01 | 0.392 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 4.051898e-01 | 0.392 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 2.957071e-01 | 0.529 |
R-HSA-3928664 | Ephrin signaling | 4.190810e-01 | 0.378 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 3.043632e-01 | 0.517 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 1.529063e-01 | 0.816 |
R-HSA-912631 | Regulation of signaling by CBL | 4.326487e-01 | 0.364 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 4.326487e-01 | 0.364 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 4.326487e-01 | 0.364 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 2.174110e-01 | 0.663 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 3.642080e-01 | 0.439 |
R-HSA-141424 | Amplification of signal from the kinetochores | 3.823383e-01 | 0.418 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 3.823383e-01 | 0.418 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 4.200507e-01 | 0.377 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 4.508820e-01 | 0.346 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 4.190810e-01 | 0.378 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 1.341761e-01 | 0.872 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 2.375331e-01 | 0.624 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 2.375331e-01 | 0.624 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 2.375331e-01 | 0.624 |
R-HSA-9646399 | Aggrephagy | 1.011607e-01 | 0.995 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 8.876098e-02 | 1.052 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 3.764056e-01 | 0.424 |
R-HSA-156902 | Peptide chain elongation | 4.012774e-01 | 0.397 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 3.146030e-01 | 0.502 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 3.306039e-01 | 0.481 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 3.614967e-01 | 0.442 |
R-HSA-354192 | Integrin signaling | 2.349271e-01 | 0.629 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.909673e-01 | 0.408 |
R-HSA-72737 | Cap-dependent Translation Initiation | 9.007630e-02 | 1.045 |
R-HSA-74751 | Insulin receptor signalling cascade | 2.423506e-01 | 0.616 |
R-HSA-72613 | Eukaryotic Translation Initiation | 9.007630e-02 | 1.045 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 3.216128e-01 | 0.493 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 3.557622e-01 | 0.449 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 2.679340e-01 | 0.572 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 1.314117e-01 | 0.881 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 7.419105e-02 | 1.130 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 2.090507e-01 | 0.680 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 6.719066e-02 | 1.173 |
R-HSA-9664420 | Killing mechanisms | 3.764056e-01 | 0.424 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 3.764056e-01 | 0.424 |
R-HSA-5576893 | Phase 2 - plateau phase | 3.909673e-01 | 0.408 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 4.051898e-01 | 0.392 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 1.566138e-01 | 0.805 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 1.420113e-01 | 0.848 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 1.420113e-01 | 0.848 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 3.614967e-01 | 0.442 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 1.522950e-01 | 0.817 |
R-HSA-5250992 | Toxicity of botulinum toxin type E (botE) | 1.720741e-01 | 0.764 |
R-HSA-5250955 | Toxicity of botulinum toxin type D (botD) | 1.913929e-01 | 0.718 |
R-HSA-5250981 | Toxicity of botulinum toxin type F (botF) | 1.913929e-01 | 0.718 |
R-HSA-5250968 | Toxicity of botulinum toxin type A (botA) | 2.466931e-01 | 0.608 |
R-HSA-9930044 | Nuclear RNA decay | 6.602402e-02 | 1.180 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 2.814478e-01 | 0.551 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 3.462323e-01 | 0.461 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 2.349271e-01 | 0.629 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 3.202801e-01 | 0.494 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.164975e-01 | 0.934 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 2.237635e-01 | 0.650 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 1.913929e-01 | 0.718 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 1.184997e-01 | 0.926 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 1.835044e-01 | 0.736 |
R-HSA-9754189 | Germ layer formation at gastrulation | 4.326487e-01 | 0.364 |
R-HSA-74752 | Signaling by Insulin receptor | 4.324575e-01 | 0.364 |
R-HSA-177929 | Signaling by EGFR | 1.934912e-01 | 0.713 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 3.502936e-01 | 0.456 |
R-HSA-9839397 | TGFBR3 regulates FGF2 signaling | 6.835260e-02 | 1.165 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 9.008499e-02 | 1.045 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 9.008499e-02 | 1.045 |
R-HSA-75102 | C6 deamination of adenosine | 9.008499e-02 | 1.045 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 1.522950e-01 | 0.817 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 8.172687e-02 | 1.088 |
R-HSA-190370 | FGFR1b ligand binding and activation | 2.286921e-01 | 0.641 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 3.146030e-01 | 0.502 |
R-HSA-9796292 | Formation of axial mesoderm | 3.306039e-01 | 0.481 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 3.306039e-01 | 0.481 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 3.462323e-01 | 0.461 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 2.522797e-01 | 0.598 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 3.909673e-01 | 0.408 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 8.760933e-02 | 1.057 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 4.190810e-01 | 0.378 |
R-HSA-164378 | PKA activation in glucagon signalling | 4.190810e-01 | 0.378 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 4.057506e-01 | 0.392 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 4.190810e-01 | 0.378 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 3.216128e-01 | 0.493 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 4.538051e-01 | 0.343 |
R-HSA-112399 | IRS-mediated signalling | 4.538051e-01 | 0.343 |
R-HSA-156842 | Eukaryotic Translation Elongation | 4.324575e-01 | 0.364 |
R-HSA-6805567 | Keratinization | 2.872412e-01 | 0.542 |
R-HSA-5694530 | Cargo concentration in the ER | 2.176480e-01 | 0.662 |
R-HSA-6807004 | Negative regulation of MET activity | 4.459003e-01 | 0.351 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 1.720741e-01 | 0.764 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 2.102621e-01 | 0.677 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 2.286921e-01 | 0.641 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 6.602402e-02 | 1.180 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 1.584754e-01 | 0.800 |
R-HSA-8851805 | MET activates RAS signaling | 3.146030e-01 | 0.502 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 2.262755e-01 | 0.645 |
R-HSA-1502540 | Signaling by Activin | 3.614967e-01 | 0.442 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 3.642080e-01 | 0.439 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 3.301989e-01 | 0.481 |
R-HSA-8853659 | RET signaling | 2.696623e-01 | 0.569 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 2.674954e-01 | 0.573 |
R-HSA-8983432 | Interleukin-15 signaling | 3.146030e-01 | 0.502 |
R-HSA-68875 | Mitotic Prophase | 3.891937e-01 | 0.410 |
R-HSA-1234174 | Cellular response to hypoxia | 2.486026e-01 | 0.604 |
R-HSA-75072 | mRNA Editing | 2.466931e-01 | 0.608 |
R-HSA-1433617 | Regulation of signaling by NODAL | 2.466931e-01 | 0.608 |
R-HSA-168330 | Viral RNP Complexes in the Host Cell Nucleus | 2.982207e-01 | 0.525 |
R-HSA-190373 | FGFR1c ligand binding and activation | 3.306039e-01 | 0.481 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 3.462323e-01 | 0.461 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 9.978274e-02 | 1.001 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 2.435970e-01 | 0.613 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 3.909673e-01 | 0.408 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 3.642080e-01 | 0.439 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 3.696379e-01 | 0.432 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 1.262793e-01 | 0.899 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 1.262793e-01 | 0.899 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 2.957071e-01 | 0.529 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 2.079008e-01 | 0.682 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 3.919347e-01 | 0.407 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 1.209983e-01 | 0.917 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 2.079008e-01 | 0.682 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 2.204518e-01 | 0.657 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 2.204518e-01 | 0.657 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 1.750940e-01 | 0.757 |
R-HSA-190242 | FGFR1 ligand binding and activation | 4.190810e-01 | 0.378 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 3.129997e-01 | 0.504 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 4.220045e-01 | 0.375 |
R-HSA-162906 | HIV Infection | 2.315808e-01 | 0.635 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 9.596688e-02 | 1.018 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 9.596688e-02 | 1.018 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 8.172687e-02 | 1.088 |
R-HSA-1295596 | Spry regulation of FGF signaling | 3.614967e-01 | 0.442 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 4.190810e-01 | 0.378 |
R-HSA-114452 | Activation of BH3-only proteins | 2.090507e-01 | 0.680 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 3.557622e-01 | 0.449 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 2.102621e-01 | 0.677 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 2.102621e-01 | 0.677 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 2.102621e-01 | 0.677 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 2.286921e-01 | 0.641 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 2.466931e-01 | 0.608 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 2.466931e-01 | 0.608 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 1.421805e-01 | 0.847 |
R-HSA-166208 | mTORC1-mediated signalling | 1.421805e-01 | 0.847 |
R-HSA-418457 | cGMP effects | 3.462323e-01 | 0.461 |
R-HSA-9706369 | Negative regulation of FLT3 | 3.764056e-01 | 0.424 |
R-HSA-163615 | PKA activation | 4.190810e-01 | 0.378 |
R-HSA-110320 | Translesion Synthesis by POLH | 4.326487e-01 | 0.364 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 3.301989e-01 | 0.481 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 6.602402e-02 | 1.180 |
R-HSA-74160 | Gene expression (Transcription) | 3.980583e-01 | 0.400 |
R-HSA-422475 | Axon guidance | 8.122219e-02 | 1.090 |
R-HSA-9663891 | Selective autophagy | 4.012774e-01 | 0.397 |
R-HSA-5654736 | Signaling by FGFR1 | 6.656262e-02 | 1.177 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 3.146030e-01 | 0.502 |
R-HSA-5654743 | Signaling by FGFR4 | 1.209983e-01 | 0.917 |
R-HSA-9671793 | Diseases of hemostasis | 4.326487e-01 | 0.364 |
R-HSA-73857 | RNA Polymerase II Transcription | 4.237553e-01 | 0.373 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 8.723109e-02 | 1.059 |
R-HSA-162592 | Integration of provirus | 2.982207e-01 | 0.525 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 2.004898e-01 | 0.698 |
R-HSA-5654741 | Signaling by FGFR3 | 1.314117e-01 | 0.881 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 3.549218e-01 | 0.450 |
R-HSA-9758941 | Gastrulation | 3.595527e-01 | 0.444 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 1.720741e-01 | 0.764 |
R-HSA-446353 | Cell-extracellular matrix interactions | 7.487679e-02 | 1.126 |
R-HSA-210991 | Basigin interactions | 1.262793e-01 | 0.899 |
R-HSA-5682910 | LGI-ADAM interactions | 2.814478e-01 | 0.551 |
R-HSA-8874081 | MET activates PTK2 signaling | 1.750940e-01 | 0.757 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 3.614967e-01 | 0.442 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 4.051898e-01 | 0.392 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 4.139056e-01 | 0.383 |
R-HSA-6806834 | Signaling by MET | 1.564881e-01 | 0.806 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 7.166356e-02 | 1.145 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 2.176319e-01 | 0.662 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 2.299287e-01 | 0.638 |
R-HSA-114608 | Platelet degranulation | 4.312262e-01 | 0.365 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 3.726113e-01 | 0.429 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 2.004898e-01 | 0.698 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 2.090507e-01 | 0.680 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 2.609698e-01 | 0.583 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 1.717753e-01 | 0.765 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 1.717753e-01 | 0.765 |
R-HSA-418990 | Adherens junctions interactions | 1.141891e-01 | 0.942 |
R-HSA-5689877 | Josephin domain DUBs | 2.642751e-01 | 0.578 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 3.306039e-01 | 0.481 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 2.609698e-01 | 0.583 |
R-HSA-9675151 | Disorders of Developmental Biology | 3.909673e-01 | 0.408 |
R-HSA-9845576 | Glycosphingolipid transport | 2.696623e-01 | 0.569 |
R-HSA-109704 | PI3K Cascade | 3.975416e-01 | 0.401 |
R-HSA-9018519 | Estrogen-dependent gene expression | 2.952136e-01 | 0.530 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 4.300455e-01 | 0.366 |
R-HSA-421270 | Cell-cell junction organization | 1.945292e-01 | 0.711 |
R-HSA-9607240 | FLT3 Signaling | 3.129997e-01 | 0.504 |
R-HSA-162582 | Signal Transduction | 1.321051e-01 | 0.879 |
R-HSA-446728 | Cell junction organization | 9.882788e-02 | 1.005 |
R-HSA-5673001 | RAF/MAP kinase cascade | 1.984628e-01 | 0.702 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 3.621857e-01 | 0.441 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 2.169468e-01 | 0.664 |
R-HSA-8849468 | PTK6 Regulates Proteins Involved in RNA Processing | 1.522950e-01 | 0.817 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 2.102621e-01 | 0.677 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 9.177876e-02 | 1.037 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 2.982207e-01 | 0.525 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 1.750940e-01 | 0.757 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 3.614967e-01 | 0.442 |
R-HSA-400511 | Synthesis, secretion, and inactivation of Glucose-dependent Insulinotropic Polyp... | 3.909673e-01 | 0.408 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 3.786074e-01 | 0.422 |
R-HSA-1500931 | Cell-Cell communication | 1.749865e-01 | 0.757 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 4.459003e-01 | 0.351 |
R-HSA-9031628 | NGF-stimulated transcription | 1.475896e-01 | 0.831 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 2.176319e-01 | 0.662 |
R-HSA-8848021 | Signaling by PTK6 | 2.361252e-01 | 0.627 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 2.361252e-01 | 0.627 |
R-HSA-8939211 | ESR-mediated signaling | 1.578677e-01 | 0.802 |
R-HSA-5683057 | MAPK family signaling cascades | 2.528331e-01 | 0.597 |
R-HSA-1227986 | Signaling by ERBB2 | 2.176319e-01 | 0.662 |
R-HSA-1433559 | Regulation of KIT signaling | 3.462323e-01 | 0.461 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 3.462323e-01 | 0.461 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 1.227561e-01 | 0.911 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.350154e-01 | 0.870 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.504856e-01 | 0.823 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 3.149969e-01 | 0.502 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.472768e-01 | 0.459 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 1.502833e-01 | 0.823 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 3.146030e-01 | 0.502 |
R-HSA-9683610 | Maturation of nucleoprotein | 3.306039e-01 | 0.481 |
R-HSA-8876725 | Protein methylation | 3.614967e-01 | 0.442 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 3.909673e-01 | 0.408 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 4.459474e-01 | 0.351 |
R-HSA-1489509 | DAG and IP3 signaling | 3.557622e-01 | 0.449 |
R-HSA-9020558 | Interleukin-2 signaling | 2.814478e-01 | 0.551 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 1.835044e-01 | 0.736 |
R-HSA-2559585 | Oncogene Induced Senescence | 2.609698e-01 | 0.583 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 2.731063e-01 | 0.564 |
R-HSA-9678110 | Attachment and Entry | 3.764056e-01 | 0.424 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 2.957071e-01 | 0.529 |
R-HSA-3000480 | Scavenging by Class A Receptors | 3.216128e-01 | 0.493 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 2.576451e-01 | 0.589 |
R-HSA-9833482 | PKR-mediated signaling | 3.441117e-01 | 0.463 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 2.576451e-01 | 0.589 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 2.576451e-01 | 0.589 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 3.202801e-01 | 0.494 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 3.255699e-01 | 0.487 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 1.033328e-01 | 0.986 |
R-HSA-9931953 | Biofilm formation | 2.870355e-01 | 0.542 |
R-HSA-180292 | GAB1 signalosome | 4.190810e-01 | 0.378 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 3.121010e-01 | 0.506 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 3.255699e-01 | 0.487 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 2.991986e-01 | 0.524 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 1.919721e-01 | 0.717 |
R-HSA-8875878 | MET promotes cell motility | 2.870355e-01 | 0.542 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 3.414690e-01 | 0.467 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 3.573905e-01 | 0.447 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 1.835044e-01 | 0.736 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 4.351329e-01 | 0.361 |
R-HSA-210993 | Tie2 Signaling | 4.190810e-01 | 0.378 |
R-HSA-9694631 | Maturation of nucleoprotein | 4.326487e-01 | 0.364 |
R-HSA-449147 | Signaling by Interleukins | 2.689929e-01 | 0.570 |
R-HSA-165159 | MTOR signalling | 3.301989e-01 | 0.481 |
R-HSA-8983711 | OAS antiviral response | 3.146030e-01 | 0.502 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 3.387547e-01 | 0.470 |
R-HSA-5660526 | Response to metal ions | 8.876098e-02 | 1.052 |
R-HSA-8941326 | RUNX2 regulates bone development | 2.696623e-01 | 0.569 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 3.044551e-01 | 0.516 |
R-HSA-1483166 | Synthesis of PA | 4.538051e-01 | 0.343 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 9.616622e-02 | 1.017 |
R-HSA-1834941 | STING mediated induction of host immune responses | 4.326487e-01 | 0.364 |
R-HSA-1059683 | Interleukin-6 signaling | 3.306039e-01 | 0.481 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 4.051898e-01 | 0.392 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 3.306039e-01 | 0.481 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 4.051898e-01 | 0.392 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 7.918813e-02 | 1.101 |
R-HSA-1266695 | Interleukin-7 signaling | 1.667484e-01 | 0.778 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 3.462323e-01 | 0.461 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 7.651397e-02 | 1.116 |
R-HSA-9678108 | SARS-CoV-1 Infection | 1.779381e-01 | 0.750 |
R-HSA-982772 | Growth hormone receptor signaling | 1.502833e-01 | 0.823 |
R-HSA-9020591 | Interleukin-12 signaling | 1.392090e-01 | 0.856 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 4.326487e-01 | 0.364 |
R-HSA-2028269 | Signaling by Hippo | 4.051898e-01 | 0.392 |
R-HSA-186797 | Signaling by PDGF | 8.569959e-02 | 1.067 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 3.803623e-01 | 0.420 |
R-HSA-447115 | Interleukin-12 family signaling | 1.932164e-01 | 0.714 |
R-HSA-5633007 | Regulation of TP53 Activity | 4.104776e-01 | 0.387 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 4.569697e-01 | 0.340 |
R-HSA-72764 | Eukaryotic Translation Termination | 4.569697e-01 | 0.340 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 4.588432e-01 | 0.338 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 4.588432e-01 | 0.338 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 4.588432e-01 | 0.338 |
R-HSA-167044 | Signalling to RAS | 4.588432e-01 | 0.338 |
R-HSA-198753 | ERK/MAPK targets | 4.588432e-01 | 0.338 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 4.588432e-01 | 0.338 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 4.588432e-01 | 0.338 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 4.588432e-01 | 0.338 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 4.615987e-01 | 0.336 |
R-HSA-6807878 | COPI-mediated anterograde transport | 4.630289e-01 | 0.334 |
R-HSA-418555 | G alpha (s) signalling events | 4.653330e-01 | 0.332 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 4.673569e-01 | 0.330 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 4.693270e-01 | 0.329 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 4.698425e-01 | 0.328 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 4.714845e-01 | 0.327 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 4.714845e-01 | 0.327 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 4.714845e-01 | 0.327 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 4.714845e-01 | 0.327 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 4.714845e-01 | 0.327 |
R-HSA-9694614 | Attachment and Entry | 4.714845e-01 | 0.327 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 4.769888e-01 | 0.321 |
R-HSA-68886 | M Phase | 4.803158e-01 | 0.318 |
R-HSA-9006925 | Intracellular signaling by second messengers | 4.835775e-01 | 0.316 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 4.838313e-01 | 0.315 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 4.838313e-01 | 0.315 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 4.838313e-01 | 0.315 |
R-HSA-450294 | MAP kinase activation | 4.845830e-01 | 0.315 |
R-HSA-112043 | PLC beta mediated events | 4.845830e-01 | 0.315 |
R-HSA-6784531 | tRNA processing in the nucleus | 4.921085e-01 | 0.308 |
R-HSA-9707616 | Heme signaling | 4.921085e-01 | 0.308 |
R-HSA-2408557 | Selenocysteine synthesis | 4.928650e-01 | 0.307 |
R-HSA-9020702 | Interleukin-1 signaling | 4.928650e-01 | 0.307 |
R-HSA-912526 | Interleukin receptor SHC signaling | 4.958904e-01 | 0.305 |
R-HSA-9830674 | Formation of the ureteric bud | 4.958904e-01 | 0.305 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 4.958904e-01 | 0.305 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 4.958904e-01 | 0.305 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 4.958904e-01 | 0.305 |
R-HSA-3000170 | Syndecan interactions | 4.958904e-01 | 0.305 |
R-HSA-9948299 | Ribosome-associated quality control | 4.976529e-01 | 0.303 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 4.995644e-01 | 0.301 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 4.995644e-01 | 0.301 |
R-HSA-168255 | Influenza Infection | 5.010532e-01 | 0.300 |
R-HSA-192823 | Viral mRNA Translation | 5.045695e-01 | 0.297 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 5.076684e-01 | 0.294 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 5.076684e-01 | 0.294 |
R-HSA-8863678 | Neurodegenerative Diseases | 5.076684e-01 | 0.294 |
R-HSA-6783589 | Interleukin-6 family signaling | 5.076684e-01 | 0.294 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 5.103695e-01 | 0.292 |
R-HSA-111885 | Opioid Signalling | 5.103695e-01 | 0.292 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 5.103695e-01 | 0.292 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 5.185699e-01 | 0.285 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 5.191720e-01 | 0.285 |
R-HSA-9620244 | Long-term potentiation | 5.191720e-01 | 0.285 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 5.191720e-01 | 0.285 |
R-HSA-1482801 | Acyl chain remodelling of PS | 5.191720e-01 | 0.285 |
R-HSA-3214842 | HDMs demethylate histones | 5.191720e-01 | 0.285 |
R-HSA-8854518 | AURKA Activation by TPX2 | 5.215064e-01 | 0.283 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 5.215064e-01 | 0.283 |
R-HSA-112040 | G-protein mediated events | 5.286762e-01 | 0.277 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 5.304076e-01 | 0.275 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 5.304076e-01 | 0.275 |
R-HSA-3295583 | TRP channels | 5.304076e-01 | 0.275 |
R-HSA-453274 | Mitotic G2-G2/M phases | 5.400935e-01 | 0.268 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 5.413812e-01 | 0.266 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 5.413812e-01 | 0.266 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 5.413812e-01 | 0.266 |
R-HSA-171306 | Packaging Of Telomere Ends | 5.413812e-01 | 0.266 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 5.413812e-01 | 0.266 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 5.413812e-01 | 0.266 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 5.413812e-01 | 0.266 |
R-HSA-9828806 | Maturation of hRSV A proteins | 5.413812e-01 | 0.266 |
R-HSA-204005 | COPII-mediated vesicle transport | 5.497449e-01 | 0.260 |
R-HSA-448424 | Interleukin-17 signaling | 5.497449e-01 | 0.260 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 5.497449e-01 | 0.260 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 5.509941e-01 | 0.259 |
R-HSA-167287 | HIV elongation arrest and recovery | 5.520991e-01 | 0.258 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 5.520991e-01 | 0.258 |
R-HSA-171319 | Telomere Extension By Telomerase | 5.520991e-01 | 0.258 |
R-HSA-113418 | Formation of the Early Elongation Complex | 5.520991e-01 | 0.258 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 5.520991e-01 | 0.258 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 5.520991e-01 | 0.258 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 5.520991e-01 | 0.258 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 5.520991e-01 | 0.258 |
R-HSA-168898 | Toll-like Receptor Cascades | 5.527923e-01 | 0.257 |
R-HSA-9856651 | MITF-M-dependent gene expression | 5.605568e-01 | 0.251 |
R-HSA-68877 | Mitotic Prometaphase | 5.611630e-01 | 0.251 |
R-HSA-9615710 | Late endosomal microautophagy | 5.625671e-01 | 0.250 |
R-HSA-72086 | mRNA Capping | 5.625671e-01 | 0.250 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 5.625671e-01 | 0.250 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 5.625671e-01 | 0.250 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 5.625671e-01 | 0.250 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 5.625671e-01 | 0.250 |
R-HSA-418360 | Platelet calcium homeostasis | 5.625671e-01 | 0.250 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 5.625671e-01 | 0.250 |
R-HSA-180024 | DARPP-32 events | 5.625671e-01 | 0.250 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 5.625671e-01 | 0.250 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 5.625671e-01 | 0.250 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 5.634194e-01 | 0.249 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 5.652188e-01 | 0.248 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 5.701442e-01 | 0.244 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 5.727911e-01 | 0.242 |
R-HSA-2424491 | DAP12 signaling | 5.727911e-01 | 0.242 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 5.727911e-01 | 0.242 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 5.727911e-01 | 0.242 |
R-HSA-9609507 | Protein localization | 5.744610e-01 | 0.241 |
R-HSA-1226099 | Signaling by FGFR in disease | 5.767939e-01 | 0.239 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 5.827768e-01 | 0.234 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 5.827768e-01 | 0.234 |
R-HSA-182971 | EGFR downregulation | 5.827768e-01 | 0.234 |
R-HSA-399719 | Trafficking of AMPA receptors | 5.827768e-01 | 0.234 |
R-HSA-2129379 | Molecules associated with elastic fibres | 5.827768e-01 | 0.234 |
R-HSA-380287 | Centrosome maturation | 5.833681e-01 | 0.234 |
R-HSA-8852135 | Protein ubiquitination | 5.833681e-01 | 0.234 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 5.833681e-01 | 0.234 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 5.835920e-01 | 0.234 |
R-HSA-389948 | Co-inhibition by PD-1 | 5.898259e-01 | 0.229 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 5.925296e-01 | 0.227 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 5.925296e-01 | 0.227 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 5.978255e-01 | 0.223 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 6.020551e-01 | 0.220 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 6.020551e-01 | 0.220 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 6.020551e-01 | 0.220 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 6.020551e-01 | 0.220 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 6.020551e-01 | 0.220 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 6.020551e-01 | 0.220 |
R-HSA-4086400 | PCP/CE pathway | 6.026379e-01 | 0.220 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 6.081314e-01 | 0.216 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 6.113584e-01 | 0.214 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 6.113584e-01 | 0.214 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 6.113584e-01 | 0.214 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 6.113584e-01 | 0.214 |
R-HSA-1257604 | PIP3 activates AKT signaling | 6.146433e-01 | 0.211 |
R-HSA-913531 | Interferon Signaling | 6.146989e-01 | 0.211 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 6.181600e-01 | 0.209 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 6.181600e-01 | 0.209 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 6.204449e-01 | 0.207 |
R-HSA-180746 | Nuclear import of Rev protein | 6.204449e-01 | 0.207 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 6.204449e-01 | 0.207 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.204449e-01 | 0.207 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 6.212281e-01 | 0.207 |
R-HSA-2467813 | Separation of Sister Chromatids | 6.232455e-01 | 0.205 |
R-HSA-195721 | Signaling by WNT | 6.244702e-01 | 0.204 |
R-HSA-187687 | Signalling to ERKs | 6.293194e-01 | 0.201 |
R-HSA-381042 | PERK regulates gene expression | 6.293194e-01 | 0.201 |
R-HSA-69278 | Cell Cycle, Mitotic | 6.302987e-01 | 0.200 |
R-HSA-114604 | GPVI-mediated activation cascade | 6.379869e-01 | 0.195 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 6.379869e-01 | 0.195 |
R-HSA-111933 | Calmodulin induced events | 6.379869e-01 | 0.195 |
R-HSA-111997 | CaM pathway | 6.379869e-01 | 0.195 |
R-HSA-9682385 | FLT3 signaling in disease | 6.379869e-01 | 0.195 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 6.391412e-01 | 0.194 |
R-HSA-6794362 | Protein-protein interactions at synapses | 6.449627e-01 | 0.190 |
R-HSA-1296072 | Voltage gated Potassium channels | 6.464523e-01 | 0.189 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 6.464523e-01 | 0.189 |
R-HSA-4641258 | Degradation of DVL | 6.464523e-01 | 0.189 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 6.464523e-01 | 0.189 |
R-HSA-110331 | Cleavage of the damaged purine | 6.464523e-01 | 0.189 |
R-HSA-549127 | SLC-mediated transport of organic cations | 6.464523e-01 | 0.189 |
R-HSA-5689896 | Ovarian tumor domain proteases | 6.464523e-01 | 0.189 |
R-HSA-72306 | tRNA processing | 6.523909e-01 | 0.185 |
R-HSA-73927 | Depurination | 6.547203e-01 | 0.184 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 6.547203e-01 | 0.184 |
R-HSA-1566948 | Elastic fibre formation | 6.547203e-01 | 0.184 |
R-HSA-68882 | Mitotic Anaphase | 6.549263e-01 | 0.184 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 6.585437e-01 | 0.181 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 6.627954e-01 | 0.179 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 6.627954e-01 | 0.179 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 6.627954e-01 | 0.179 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 6.627954e-01 | 0.179 |
R-HSA-71336 | Pentose phosphate pathway | 6.627954e-01 | 0.179 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 6.627954e-01 | 0.179 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 6.675081e-01 | 0.176 |
R-HSA-9645723 | Diseases of programmed cell death | 6.675081e-01 | 0.176 |
R-HSA-1474165 | Reproduction | 6.701667e-01 | 0.174 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 6.706821e-01 | 0.173 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 6.706821e-01 | 0.173 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 6.706821e-01 | 0.173 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 6.706821e-01 | 0.173 |
R-HSA-167169 | HIV Transcription Elongation | 6.706821e-01 | 0.173 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 6.706821e-01 | 0.173 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 6.706821e-01 | 0.173 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 6.706821e-01 | 0.173 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 6.706821e-01 | 0.173 |
R-HSA-451927 | Interleukin-2 family signaling | 6.706821e-01 | 0.173 |
R-HSA-5260271 | Diseases of Immune System | 6.706821e-01 | 0.173 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 6.706821e-01 | 0.173 |
R-HSA-202433 | Generation of second messenger molecules | 6.706821e-01 | 0.173 |
R-HSA-5576891 | Cardiac conduction | 6.746281e-01 | 0.171 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 6.783411e-01 | 0.169 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 6.783849e-01 | 0.169 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 6.783849e-01 | 0.169 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 6.783849e-01 | 0.169 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 6.783849e-01 | 0.169 |
R-HSA-9909396 | Circadian clock | 6.790449e-01 | 0.168 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 6.836490e-01 | 0.165 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 6.859079e-01 | 0.164 |
R-HSA-5674135 | MAP2K and MAPK activation | 6.859079e-01 | 0.164 |
R-HSA-9656223 | Signaling by RAF1 mutants | 6.859079e-01 | 0.164 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 6.859079e-01 | 0.164 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 6.859079e-01 | 0.164 |
R-HSA-9683701 | Translation of Structural Proteins | 6.859079e-01 | 0.164 |
R-HSA-6798695 | Neutrophil degranulation | 6.926153e-01 | 0.160 |
R-HSA-991365 | Activation of GABAB receptors | 6.932555e-01 | 0.159 |
R-HSA-977444 | GABA B receptor activation | 6.932555e-01 | 0.159 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 6.932555e-01 | 0.159 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 6.932555e-01 | 0.159 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 6.932555e-01 | 0.159 |
R-HSA-73928 | Depyrimidination | 6.932555e-01 | 0.159 |
R-HSA-111996 | Ca-dependent events | 6.932555e-01 | 0.159 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 7.004315e-01 | 0.155 |
R-HSA-9710421 | Defective pyroptosis | 7.004315e-01 | 0.155 |
R-HSA-1433557 | Signaling by SCF-KIT | 7.004315e-01 | 0.155 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 7.004637e-01 | 0.155 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 7.041674e-01 | 0.152 |
R-HSA-3928662 | EPHB-mediated forward signaling | 7.074402e-01 | 0.150 |
R-HSA-2172127 | DAP12 interactions | 7.074402e-01 | 0.150 |
R-HSA-3214858 | RMTs methylate histone arginines | 7.074402e-01 | 0.150 |
R-HSA-5683826 | Surfactant metabolism | 7.074402e-01 | 0.150 |
R-HSA-69231 | Cyclin D associated events in G1 | 7.074402e-01 | 0.150 |
R-HSA-69236 | G1 Phase | 7.074402e-01 | 0.150 |
R-HSA-6807070 | PTEN Regulation | 7.127853e-01 | 0.147 |
R-HSA-69275 | G2/M Transition | 7.131949e-01 | 0.147 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 7.140052e-01 | 0.146 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 7.142853e-01 | 0.146 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 7.142853e-01 | 0.146 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 7.142853e-01 | 0.146 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 7.142853e-01 | 0.146 |
R-HSA-1296071 | Potassium Channels | 7.188206e-01 | 0.143 |
R-HSA-1632852 | Macroautophagy | 7.207808e-01 | 0.142 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 7.209706e-01 | 0.142 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 7.209706e-01 | 0.142 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 7.209706e-01 | 0.142 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 7.209706e-01 | 0.142 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 7.209706e-01 | 0.142 |
R-HSA-6802949 | Signaling by RAS mutants | 7.209706e-01 | 0.142 |
R-HSA-75153 | Apoptotic execution phase | 7.209706e-01 | 0.142 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 7.235677e-01 | 0.141 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 7.274999e-01 | 0.138 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 7.274999e-01 | 0.138 |
R-HSA-422356 | Regulation of insulin secretion | 7.282471e-01 | 0.138 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 7.324488e-01 | 0.135 |
R-HSA-3214847 | HATs acetylate histones | 7.328592e-01 | 0.135 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 7.338768e-01 | 0.134 |
R-HSA-157118 | Signaling by NOTCH | 7.348924e-01 | 0.134 |
R-HSA-72766 | Translation | 7.360781e-01 | 0.133 |
R-HSA-73893 | DNA Damage Bypass | 7.401049e-01 | 0.131 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 7.401049e-01 | 0.131 |
R-HSA-5658442 | Regulation of RAS by GAPs | 7.461876e-01 | 0.127 |
R-HSA-9609690 | HCMV Early Events | 7.470502e-01 | 0.127 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 7.521283e-01 | 0.124 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 7.579303e-01 | 0.120 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 7.579303e-01 | 0.120 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 7.579303e-01 | 0.120 |
R-HSA-6794361 | Neurexins and neuroligins | 7.579303e-01 | 0.120 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 7.579303e-01 | 0.120 |
R-HSA-9824446 | Viral Infection Pathways | 7.586302e-01 | 0.120 |
R-HSA-5696398 | Nucleotide Excision Repair | 7.633134e-01 | 0.117 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 7.635969e-01 | 0.117 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 7.635969e-01 | 0.117 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 7.635969e-01 | 0.117 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 7.635969e-01 | 0.117 |
R-HSA-445355 | Smooth Muscle Contraction | 7.635969e-01 | 0.117 |
R-HSA-1221632 | Meiotic synapsis | 7.635969e-01 | 0.117 |
R-HSA-9609646 | HCMV Infection | 7.639519e-01 | 0.117 |
R-HSA-446652 | Interleukin-1 family signaling | 7.651560e-01 | 0.116 |
R-HSA-9694516 | SARS-CoV-2 Infection | 7.684223e-01 | 0.114 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 7.691311e-01 | 0.114 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 7.691311e-01 | 0.114 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 7.745361e-01 | 0.111 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 7.745361e-01 | 0.111 |
R-HSA-418597 | G alpha (z) signalling events | 7.745361e-01 | 0.111 |
R-HSA-5688426 | Deubiquitination | 7.775534e-01 | 0.109 |
R-HSA-9612973 | Autophagy | 7.786167e-01 | 0.109 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 7.798149e-01 | 0.108 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 7.798149e-01 | 0.108 |
R-HSA-5578775 | Ion homeostasis | 7.798149e-01 | 0.108 |
R-HSA-193648 | NRAGE signals death through JNK | 7.798149e-01 | 0.108 |
R-HSA-75893 | TNF signaling | 7.798149e-01 | 0.108 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 7.802004e-01 | 0.108 |
R-HSA-9610379 | HCMV Late Events | 7.818813e-01 | 0.107 |
R-HSA-9711097 | Cellular response to starvation | 7.851061e-01 | 0.105 |
R-HSA-212436 | Generic Transcription Pathway | 7.852264e-01 | 0.105 |
R-HSA-6782135 | Dual incision in TC-NER | 7.900056e-01 | 0.102 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 7.900056e-01 | 0.102 |
R-HSA-2871796 | FCERI mediated MAPK activation | 7.907149e-01 | 0.102 |
R-HSA-180786 | Extension of Telomeres | 7.949231e-01 | 0.100 |
R-HSA-194441 | Metabolism of non-coding RNA | 7.949231e-01 | 0.100 |
R-HSA-191859 | snRNP Assembly | 7.949231e-01 | 0.100 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 7.949231e-01 | 0.100 |
R-HSA-397014 | Muscle contraction | 7.974789e-01 | 0.098 |
R-HSA-109581 | Apoptosis | 7.976138e-01 | 0.098 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 7.997258e-01 | 0.097 |
R-HSA-977443 | GABA receptor activation | 7.997258e-01 | 0.097 |
R-HSA-8873719 | RAB geranylgeranylation | 7.997258e-01 | 0.097 |
R-HSA-983189 | Kinesins | 7.997258e-01 | 0.097 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 8.001758e-01 | 0.097 |
R-HSA-2408522 | Selenoamino acid metabolism | 8.036367e-01 | 0.095 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 8.044162e-01 | 0.095 |
R-HSA-445717 | Aquaporin-mediated transport | 8.044162e-01 | 0.095 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 8.044162e-01 | 0.095 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 8.085406e-01 | 0.092 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 8.085406e-01 | 0.092 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 8.089971e-01 | 0.092 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 8.089971e-01 | 0.092 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 8.134710e-01 | 0.090 |
R-HSA-1592230 | Mitochondrial biogenesis | 8.152847e-01 | 0.089 |
R-HSA-1640170 | Cell Cycle | 8.182656e-01 | 0.087 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 8.221077e-01 | 0.085 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 8.235437e-01 | 0.084 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 8.281396e-01 | 0.082 |
R-HSA-9830369 | Kidney development | 8.303454e-01 | 0.081 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 8.303454e-01 | 0.081 |
R-HSA-5689880 | Ub-specific processing proteases | 8.315349e-01 | 0.080 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 8.342609e-01 | 0.079 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 8.342609e-01 | 0.079 |
R-HSA-2132295 | MHC class II antigen presentation | 8.342609e-01 | 0.079 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 8.372430e-01 | 0.077 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 8.419941e-01 | 0.075 |
R-HSA-194138 | Signaling by VEGF | 8.430746e-01 | 0.074 |
R-HSA-453276 | Regulation of mitotic cell cycle | 8.456970e-01 | 0.073 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 8.456970e-01 | 0.073 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 8.456970e-01 | 0.073 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 8.456970e-01 | 0.073 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 8.459169e-01 | 0.073 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 8.493132e-01 | 0.071 |
R-HSA-69052 | Switching of origins to a post-replicative state | 8.528450e-01 | 0.069 |
R-HSA-4086398 | Ca2+ pathway | 8.528450e-01 | 0.069 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 8.528450e-01 | 0.069 |
R-HSA-9824439 | Bacterial Infection Pathways | 8.530722e-01 | 0.069 |
R-HSA-1236394 | Signaling by ERBB4 | 8.562942e-01 | 0.067 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 8.566001e-01 | 0.067 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 8.568246e-01 | 0.067 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 8.596627e-01 | 0.066 |
R-HSA-9843745 | Adipogenesis | 8.620104e-01 | 0.064 |
R-HSA-5689603 | UCH proteinases | 8.629525e-01 | 0.064 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 8.629525e-01 | 0.064 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 8.645384e-01 | 0.063 |
R-HSA-9694635 | Translation of Structural Proteins | 8.661653e-01 | 0.062 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 8.669823e-01 | 0.062 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 8.693031e-01 | 0.061 |
R-HSA-5619084 | ABC transporter disorders | 8.693031e-01 | 0.061 |
R-HSA-73864 | RNA Polymerase I Transcription | 8.693031e-01 | 0.061 |
R-HSA-416482 | G alpha (12/13) signalling events | 8.693031e-01 | 0.061 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 8.723674e-01 | 0.059 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 8.723674e-01 | 0.059 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 8.753601e-01 | 0.058 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 8.753601e-01 | 0.058 |
R-HSA-5663205 | Infectious disease | 8.763003e-01 | 0.057 |
R-HSA-163685 | Integration of energy metabolism | 8.765535e-01 | 0.057 |
R-HSA-977225 | Amyloid fiber formation | 8.782828e-01 | 0.056 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 8.788357e-01 | 0.056 |
R-HSA-5358351 | Signaling by Hedgehog | 8.810789e-01 | 0.055 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 8.811372e-01 | 0.055 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 8.866471e-01 | 0.052 |
R-HSA-390918 | Peroxisomal lipid metabolism | 8.866471e-01 | 0.052 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 8.882585e-01 | 0.051 |
R-HSA-6802957 | Oncogenic MAPK signaling | 8.893058e-01 | 0.051 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 8.893058e-01 | 0.051 |
R-HSA-1500620 | Meiosis | 8.893058e-01 | 0.051 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 8.917308e-01 | 0.050 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 8.919023e-01 | 0.050 |
R-HSA-112316 | Neuronal System | 8.920151e-01 | 0.050 |
R-HSA-69620 | Cell Cycle Checkpoints | 8.942850e-01 | 0.049 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 8.957008e-01 | 0.048 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 8.957008e-01 | 0.048 |
R-HSA-438064 | Post NMDA receptor activation events | 8.969145e-01 | 0.047 |
R-HSA-5357801 | Programmed Cell Death | 9.007299e-01 | 0.045 |
R-HSA-1236974 | ER-Phagosome pathway | 9.016948e-01 | 0.045 |
R-HSA-112310 | Neurotransmitter release cycle | 9.040014e-01 | 0.044 |
R-HSA-73884 | Base Excision Repair | 9.040014e-01 | 0.044 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 9.062540e-01 | 0.043 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.069494e-01 | 0.042 |
R-HSA-9711123 | Cellular response to chemical stress | 9.089662e-01 | 0.041 |
R-HSA-2682334 | EPH-Ephrin signaling | 9.106023e-01 | 0.041 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 9.106023e-01 | 0.041 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 9.116257e-01 | 0.040 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 9.127004e-01 | 0.040 |
R-HSA-68867 | Assembly of the pre-replicative complex | 9.127004e-01 | 0.040 |
R-HSA-73887 | Death Receptor Signaling | 9.137871e-01 | 0.039 |
R-HSA-1989781 | PPARA activates gene expression | 9.154214e-01 | 0.038 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 9.186034e-01 | 0.037 |
R-HSA-199991 | Membrane Trafficking | 9.195166e-01 | 0.036 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.206131e-01 | 0.036 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 9.206131e-01 | 0.036 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 9.206131e-01 | 0.036 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 9.206131e-01 | 0.036 |
R-HSA-157579 | Telomere Maintenance | 9.224768e-01 | 0.035 |
R-HSA-8957275 | Post-translational protein phosphorylation | 9.242969e-01 | 0.034 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.253369e-01 | 0.034 |
R-HSA-9658195 | Leishmania infection | 9.253369e-01 | 0.034 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 9.260744e-01 | 0.033 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.260744e-01 | 0.033 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 9.264796e-01 | 0.033 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.278103e-01 | 0.033 |
R-HSA-70171 | Glycolysis | 9.278103e-01 | 0.033 |
R-HSA-5610787 | Hedgehog 'off' state | 9.278103e-01 | 0.033 |
R-HSA-9679506 | SARS-CoV Infections | 9.280376e-01 | 0.032 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 9.311609e-01 | 0.031 |
R-HSA-9842860 | Regulation of endogenous retroelements | 9.311609e-01 | 0.031 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 9.343565e-01 | 0.029 |
R-HSA-9833110 | RSV-host interactions | 9.358984e-01 | 0.029 |
R-HSA-72312 | rRNA processing | 9.370393e-01 | 0.028 |
R-HSA-418346 | Platelet homeostasis | 9.388745e-01 | 0.027 |
R-HSA-69239 | Synthesis of DNA | 9.403105e-01 | 0.027 |
R-HSA-211000 | Gene Silencing by RNA | 9.403105e-01 | 0.027 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.414507e-01 | 0.026 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.414507e-01 | 0.026 |
R-HSA-1236975 | Antigen processing-Cross presentation | 9.417129e-01 | 0.026 |
R-HSA-2672351 | Stimuli-sensing channels | 9.417129e-01 | 0.026 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 9.425850e-01 | 0.026 |
R-HSA-69002 | DNA Replication Pre-Initiation | 9.430824e-01 | 0.025 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 9.436986e-01 | 0.025 |
R-HSA-202403 | TCR signaling | 9.444198e-01 | 0.025 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.444198e-01 | 0.025 |
R-HSA-73894 | DNA Repair | 9.459356e-01 | 0.024 |
R-HSA-1483249 | Inositol phosphate metabolism | 9.470013e-01 | 0.024 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 9.482468e-01 | 0.023 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 9.494632e-01 | 0.023 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.505037e-01 | 0.022 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 9.506510e-01 | 0.022 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.529438e-01 | 0.021 |
R-HSA-373760 | L1CAM interactions | 9.540500e-01 | 0.020 |
R-HSA-70326 | Glucose metabolism | 9.551303e-01 | 0.020 |
R-HSA-2980736 | Peptide hormone metabolism | 9.551303e-01 | 0.020 |
R-HSA-5653656 | Vesicle-mediated transport | 9.566434e-01 | 0.019 |
R-HSA-5617833 | Cilium Assembly | 9.581244e-01 | 0.019 |
R-HSA-73886 | Chromosome Maintenance | 9.592040e-01 | 0.018 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 9.597762e-01 | 0.018 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 9.611003e-01 | 0.017 |
R-HSA-112315 | Transmission across Chemical Synapses | 9.616972e-01 | 0.017 |
R-HSA-162909 | Host Interactions of HIV factors | 9.620152e-01 | 0.017 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 9.623074e-01 | 0.017 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 9.656992e-01 | 0.015 |
R-HSA-428157 | Sphingolipid metabolism | 9.663799e-01 | 0.015 |
R-HSA-9640148 | Infection with Enterobacteria | 9.677026e-01 | 0.014 |
R-HSA-109582 | Hemostasis | 9.685177e-01 | 0.014 |
R-HSA-9717189 | Sensory perception of taste | 9.693416e-01 | 0.014 |
R-HSA-1643685 | Disease | 9.713152e-01 | 0.013 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.758405e-01 | 0.011 |
R-HSA-9664417 | Leishmania phagocytosis | 9.758405e-01 | 0.011 |
R-HSA-9664407 | Parasite infection | 9.758405e-01 | 0.011 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 9.764095e-01 | 0.010 |
R-HSA-1483257 | Phospholipid metabolism | 9.795442e-01 | 0.009 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 9.795532e-01 | 0.009 |
R-HSA-69242 | S Phase | 9.805053e-01 | 0.009 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 9.826966e-01 | 0.008 |
R-HSA-69306 | DNA Replication | 9.826966e-01 | 0.008 |
R-HSA-168256 | Immune System | 9.839923e-01 | 0.007 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.846421e-01 | 0.007 |
R-HSA-877300 | Interferon gamma signaling | 9.850042e-01 | 0.007 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.871073e-01 | 0.006 |
R-HSA-5619102 | SLC transporter disorders | 9.876106e-01 | 0.005 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 9.890048e-01 | 0.005 |
R-HSA-1280218 | Adaptive Immune System | 9.905762e-01 | 0.004 |
R-HSA-416476 | G alpha (q) signalling events | 9.909473e-01 | 0.004 |
R-HSA-418594 | G alpha (i) signalling events | 9.910501e-01 | 0.004 |
R-HSA-983712 | Ion channel transport | 9.928481e-01 | 0.003 |
R-HSA-168249 | Innate Immune System | 9.958321e-01 | 0.002 |
R-HSA-388396 | GPCR downstream signalling | 9.962098e-01 | 0.002 |
R-HSA-8951664 | Neddylation | 9.967533e-01 | 0.001 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.971568e-01 | 0.001 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.973197e-01 | 0.001 |
R-HSA-8957322 | Metabolism of steroids | 9.974616e-01 | 0.001 |
R-HSA-372790 | Signaling by GPCR | 9.989493e-01 | 0.000 |
R-HSA-597592 | Post-translational protein modification | 9.994824e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.995924e-01 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.998595e-01 | 0.000 |
R-HSA-382551 | Transport of small molecules | 9.999585e-01 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.999710e-01 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 9.999831e-01 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.791 | 0.151 | 1 | 0.767 |
NDR2 |
0.790 | 0.224 | -3 | 0.783 |
HIPK4 |
0.789 | 0.194 | 1 | 0.754 |
CDK18 |
0.789 | 0.214 | 1 | 0.714 |
HIPK2 |
0.788 | 0.194 | 1 | 0.700 |
PIM3 |
0.787 | 0.186 | -3 | 0.788 |
COT |
0.785 | 0.140 | 2 | 0.644 |
SRPK1 |
0.785 | 0.133 | -3 | 0.731 |
MTOR |
0.785 | 0.235 | 1 | 0.698 |
CLK2 |
0.784 | 0.173 | -3 | 0.718 |
DYRK2 |
0.783 | 0.173 | 1 | 0.743 |
AURC |
0.781 | 0.158 | -2 | 0.687 |
HIPK1 |
0.780 | 0.191 | 1 | 0.765 |
CDKL5 |
0.780 | 0.137 | -3 | 0.754 |
MOS |
0.779 | 0.135 | 1 | 0.743 |
CDK5 |
0.779 | 0.197 | 1 | 0.765 |
MAK |
0.779 | 0.234 | -2 | 0.746 |
CDK12 |
0.778 | 0.182 | 1 | 0.696 |
CDK13 |
0.778 | 0.169 | 1 | 0.724 |
ICK |
0.778 | 0.163 | -3 | 0.784 |
MST4 |
0.777 | 0.205 | 2 | 0.729 |
PRKD1 |
0.777 | 0.166 | -3 | 0.782 |
CDK19 |
0.776 | 0.159 | 1 | 0.701 |
SKMLCK |
0.776 | 0.137 | -2 | 0.870 |
KIS |
0.775 | 0.131 | 1 | 0.740 |
CDK7 |
0.775 | 0.150 | 1 | 0.742 |
NLK |
0.775 | 0.126 | 1 | 0.789 |
CDC7 |
0.775 | 0.082 | 1 | 0.682 |
PIM1 |
0.775 | 0.144 | -3 | 0.737 |
CDK1 |
0.774 | 0.140 | 1 | 0.706 |
CDKL1 |
0.774 | 0.111 | -3 | 0.757 |
NDR1 |
0.774 | 0.128 | -3 | 0.768 |
CDK8 |
0.773 | 0.144 | 1 | 0.718 |
PRP4 |
0.773 | 0.275 | -3 | 0.908 |
P38G |
0.772 | 0.161 | 1 | 0.650 |
ERK5 |
0.772 | 0.108 | 1 | 0.814 |
CDK17 |
0.772 | 0.161 | 1 | 0.660 |
CDK3 |
0.772 | 0.149 | 1 | 0.682 |
P38A |
0.771 | 0.178 | 1 | 0.776 |
RSK2 |
0.771 | 0.096 | -3 | 0.730 |
NEK6 |
0.771 | 0.119 | -2 | 0.822 |
CDK14 |
0.770 | 0.176 | 1 | 0.741 |
JNK2 |
0.770 | 0.153 | 1 | 0.689 |
MPSK1 |
0.770 | 0.347 | 1 | 0.835 |
PRPK |
0.770 | 0.069 | -1 | 0.668 |
DYRK4 |
0.769 | 0.141 | 1 | 0.704 |
CDK9 |
0.768 | 0.147 | 1 | 0.728 |
P90RSK |
0.768 | 0.084 | -3 | 0.746 |
PKACB |
0.768 | 0.128 | -2 | 0.696 |
PKCA |
0.768 | 0.147 | 2 | 0.544 |
RSK3 |
0.768 | 0.100 | -3 | 0.729 |
CLK4 |
0.767 | 0.111 | -3 | 0.722 |
PRKD2 |
0.767 | 0.105 | -3 | 0.728 |
CDK10 |
0.767 | 0.151 | 1 | 0.737 |
ERK1 |
0.767 | 0.139 | 1 | 0.718 |
DYRK3 |
0.766 | 0.151 | 1 | 0.752 |
GCN2 |
0.765 | 0.034 | 2 | 0.633 |
P38B |
0.765 | 0.148 | 1 | 0.717 |
PKACG |
0.765 | 0.089 | -2 | 0.749 |
SRPK2 |
0.765 | 0.083 | -3 | 0.661 |
DYRK1A |
0.764 | 0.133 | 1 | 0.749 |
PKCD |
0.764 | 0.101 | 2 | 0.578 |
SRPK3 |
0.764 | 0.077 | -3 | 0.700 |
JNK3 |
0.764 | 0.126 | 1 | 0.713 |
ATR |
0.764 | 0.012 | 1 | 0.685 |
HIPK3 |
0.763 | 0.141 | 1 | 0.748 |
CAMK1B |
0.763 | 0.009 | -3 | 0.776 |
WNK1 |
0.763 | 0.059 | -2 | 0.880 |
CHAK2 |
0.763 | 0.024 | -1 | 0.618 |
PDHK4 |
0.762 | -0.002 | 1 | 0.699 |
PKCZ |
0.762 | 0.109 | 2 | 0.590 |
DYRK1B |
0.762 | 0.133 | 1 | 0.732 |
LATS2 |
0.762 | 0.072 | -5 | 0.706 |
CDK16 |
0.762 | 0.148 | 1 | 0.682 |
PKCB |
0.761 | 0.092 | 2 | 0.546 |
CLK1 |
0.761 | 0.098 | -3 | 0.691 |
DAPK2 |
0.761 | 0.060 | -3 | 0.791 |
PRKX |
0.761 | 0.110 | -3 | 0.654 |
MNK2 |
0.761 | 0.103 | -2 | 0.797 |
RSK4 |
0.761 | 0.086 | -3 | 0.713 |
CAMLCK |
0.760 | 0.047 | -2 | 0.826 |
AKT2 |
0.760 | 0.105 | -3 | 0.660 |
PKCG |
0.760 | 0.086 | 2 | 0.546 |
P70S6KB |
0.760 | 0.059 | -3 | 0.733 |
MASTL |
0.760 | 0.068 | -2 | 0.778 |
MARK4 |
0.760 | 0.086 | 4 | 0.679 |
PAK1 |
0.760 | 0.068 | -2 | 0.777 |
ULK2 |
0.760 | 0.024 | 2 | 0.590 |
NIK |
0.759 | 0.031 | -3 | 0.789 |
PKN3 |
0.759 | 0.027 | -3 | 0.772 |
BMPR2 |
0.759 | -0.016 | -2 | 0.815 |
MOK |
0.759 | 0.187 | 1 | 0.793 |
NUAK2 |
0.759 | 0.043 | -3 | 0.771 |
GRK1 |
0.759 | 0.036 | -2 | 0.740 |
RAF1 |
0.759 | -0.036 | 1 | 0.665 |
PDHK1 |
0.759 | 0.043 | 1 | 0.668 |
IKKB |
0.758 | -0.025 | -2 | 0.676 |
P38D |
0.758 | 0.142 | 1 | 0.679 |
BCKDK |
0.758 | 0.038 | -1 | 0.650 |
NIM1 |
0.758 | 0.136 | 3 | 0.646 |
SGK3 |
0.758 | 0.111 | -3 | 0.720 |
CAMK2D |
0.758 | 0.049 | -3 | 0.770 |
PKN2 |
0.758 | 0.035 | -3 | 0.761 |
AURB |
0.758 | 0.093 | -2 | 0.682 |
MLK2 |
0.757 | 0.074 | 2 | 0.630 |
GRK7 |
0.757 | 0.061 | 1 | 0.649 |
PKR |
0.757 | 0.169 | 1 | 0.704 |
NEK9 |
0.756 | 0.064 | 2 | 0.658 |
DSTYK |
0.755 | -0.035 | 2 | 0.664 |
TBK1 |
0.755 | -0.043 | 1 | 0.572 |
PIM2 |
0.755 | 0.110 | -3 | 0.699 |
GRK5 |
0.755 | -0.057 | -3 | 0.763 |
TGFBR2 |
0.755 | 0.011 | -2 | 0.728 |
NEK7 |
0.755 | -0.013 | -3 | 0.752 |
RIPK3 |
0.755 | -0.018 | 3 | 0.636 |
IKKA |
0.755 | 0.052 | -2 | 0.669 |
IRE1 |
0.755 | 0.039 | 1 | 0.682 |
LATS1 |
0.755 | 0.069 | -3 | 0.789 |
MNK1 |
0.755 | 0.064 | -2 | 0.792 |
AMPKA1 |
0.754 | 0.032 | -3 | 0.782 |
AURA |
0.754 | 0.082 | -2 | 0.661 |
DCAMKL1 |
0.754 | 0.100 | -3 | 0.736 |
PBK |
0.754 | 0.331 | 1 | 0.897 |
MAPKAPK2 |
0.753 | 0.051 | -3 | 0.692 |
CAMK2G |
0.753 | -0.086 | 2 | 0.604 |
MSK2 |
0.753 | 0.040 | -3 | 0.719 |
MST3 |
0.752 | 0.141 | 2 | 0.676 |
MSK1 |
0.752 | 0.055 | -3 | 0.713 |
GSK3A |
0.752 | 0.089 | 4 | 0.423 |
QSK |
0.752 | 0.081 | 4 | 0.654 |
VRK2 |
0.751 | 0.185 | 1 | 0.746 |
BMPR1B |
0.751 | 0.035 | 1 | 0.653 |
MLK1 |
0.751 | -0.062 | 2 | 0.619 |
TLK2 |
0.751 | 0.083 | 1 | 0.617 |
TSSK1 |
0.751 | 0.058 | -3 | 0.803 |
HUNK |
0.750 | -0.061 | 2 | 0.624 |
MLK3 |
0.750 | -0.009 | 2 | 0.558 |
PAK3 |
0.750 | 0.022 | -2 | 0.762 |
IKKE |
0.750 | -0.078 | 1 | 0.555 |
RIPK1 |
0.749 | -0.014 | 1 | 0.671 |
MAPKAPK3 |
0.749 | 0.006 | -3 | 0.727 |
AMPKA2 |
0.749 | 0.022 | -3 | 0.754 |
PKG2 |
0.748 | 0.058 | -2 | 0.690 |
CDK2 |
0.748 | 0.065 | 1 | 0.746 |
TAO3 |
0.748 | 0.139 | 1 | 0.646 |
GAK |
0.748 | 0.288 | 1 | 0.891 |
TGFBR1 |
0.748 | 0.028 | -2 | 0.729 |
CAMK2B |
0.747 | 0.001 | 2 | 0.589 |
CDK6 |
0.747 | 0.124 | 1 | 0.735 |
NEK2 |
0.747 | 0.032 | 2 | 0.640 |
CAMK2A |
0.746 | -0.014 | 2 | 0.605 |
ERK2 |
0.746 | 0.068 | 1 | 0.728 |
PKACA |
0.746 | 0.084 | -2 | 0.651 |
FAM20C |
0.746 | 0.003 | 2 | 0.413 |
NEK5 |
0.746 | 0.126 | 1 | 0.706 |
DNAPK |
0.745 | 0.027 | 1 | 0.552 |
PRKD3 |
0.745 | 0.030 | -3 | 0.696 |
PHKG1 |
0.745 | 0.004 | -3 | 0.766 |
JNK1 |
0.745 | 0.098 | 1 | 0.685 |
PKCH |
0.744 | 0.012 | 2 | 0.527 |
ANKRD3 |
0.744 | -0.078 | 1 | 0.705 |
ERK7 |
0.744 | 0.051 | 2 | 0.430 |
CDK4 |
0.744 | 0.116 | 1 | 0.689 |
WNK4 |
0.744 | 0.080 | -2 | 0.888 |
AKT1 |
0.744 | 0.084 | -3 | 0.675 |
PAK2 |
0.743 | 0.007 | -2 | 0.761 |
SMG1 |
0.743 | -0.022 | 1 | 0.646 |
LKB1 |
0.743 | 0.151 | -3 | 0.794 |
PAK6 |
0.743 | 0.035 | -2 | 0.695 |
ALK4 |
0.743 | -0.038 | -2 | 0.759 |
DLK |
0.743 | -0.145 | 1 | 0.656 |
PLK4 |
0.742 | 0.042 | 2 | 0.470 |
SGK1 |
0.742 | 0.101 | -3 | 0.601 |
YSK4 |
0.742 | -0.025 | 1 | 0.609 |
PKCT |
0.741 | 0.058 | 2 | 0.536 |
MEKK1 |
0.741 | 0.071 | 1 | 0.652 |
AKT3 |
0.741 | 0.095 | -3 | 0.621 |
MELK |
0.741 | -0.001 | -3 | 0.739 |
PASK |
0.741 | 0.007 | -3 | 0.802 |
TTBK2 |
0.741 | -0.095 | 2 | 0.556 |
SIK |
0.740 | 0.045 | -3 | 0.702 |
QIK |
0.740 | 0.002 | -3 | 0.755 |
CK1E |
0.740 | 0.020 | -3 | 0.537 |
WNK3 |
0.740 | -0.128 | 1 | 0.658 |
ULK1 |
0.740 | -0.114 | -3 | 0.715 |
GRK6 |
0.740 | -0.120 | 1 | 0.664 |
PKCE |
0.739 | 0.053 | 2 | 0.540 |
GRK4 |
0.739 | -0.107 | -2 | 0.777 |
ATM |
0.739 | -0.060 | 1 | 0.616 |
MEK1 |
0.739 | -0.070 | 2 | 0.643 |
MARK3 |
0.739 | 0.025 | 4 | 0.605 |
MEKK2 |
0.738 | 0.047 | 2 | 0.611 |
PERK |
0.738 | 0.011 | -2 | 0.752 |
MYLK4 |
0.738 | -0.008 | -2 | 0.765 |
PKCI |
0.738 | 0.042 | 2 | 0.569 |
GCK |
0.738 | 0.115 | 1 | 0.642 |
DRAK1 |
0.738 | -0.045 | 1 | 0.632 |
GSK3B |
0.737 | 0.022 | 4 | 0.418 |
MLK4 |
0.737 | -0.063 | 2 | 0.538 |
MEK5 |
0.737 | -0.034 | 2 | 0.634 |
ROCK2 |
0.736 | 0.115 | -3 | 0.736 |
CHAK1 |
0.736 | -0.084 | 2 | 0.610 |
TSSK2 |
0.736 | -0.073 | -5 | 0.753 |
CAMK4 |
0.736 | -0.078 | -3 | 0.738 |
ALK2 |
0.735 | -0.025 | -2 | 0.735 |
IRE2 |
0.735 | -0.045 | 2 | 0.529 |
PINK1 |
0.735 | -0.018 | 1 | 0.799 |
BRSK1 |
0.735 | -0.028 | -3 | 0.737 |
TNIK |
0.735 | 0.123 | 3 | 0.754 |
NUAK1 |
0.735 | -0.015 | -3 | 0.717 |
PDK1 |
0.734 | 0.059 | 1 | 0.656 |
BRSK2 |
0.734 | -0.031 | -3 | 0.744 |
ACVR2B |
0.733 | -0.050 | -2 | 0.713 |
KHS2 |
0.733 | 0.128 | 1 | 0.623 |
HPK1 |
0.733 | 0.088 | 1 | 0.619 |
KHS1 |
0.733 | 0.131 | 1 | 0.610 |
DAPK3 |
0.733 | 0.041 | -3 | 0.745 |
ACVR2A |
0.732 | -0.051 | -2 | 0.704 |
IRAK4 |
0.732 | -0.012 | 1 | 0.668 |
MEKK6 |
0.732 | 0.103 | 1 | 0.651 |
ZAK |
0.732 | -0.041 | 1 | 0.599 |
PAK5 |
0.732 | 0.034 | -2 | 0.658 |
P70S6K |
0.732 | 0.030 | -3 | 0.662 |
CK1D |
0.732 | 0.014 | -3 | 0.490 |
PLK1 |
0.731 | -0.123 | -2 | 0.721 |
CAMK1G |
0.731 | -0.029 | -3 | 0.701 |
MARK2 |
0.731 | 0.001 | 4 | 0.573 |
DCAMKL2 |
0.731 | -0.014 | -3 | 0.735 |
CHK1 |
0.731 | -0.023 | -3 | 0.741 |
CK1G1 |
0.730 | 0.020 | -3 | 0.520 |
NEK11 |
0.730 | -0.012 | 1 | 0.631 |
MAP3K15 |
0.730 | 0.091 | 1 | 0.604 |
MEKK3 |
0.730 | -0.088 | 1 | 0.647 |
MRCKB |
0.729 | 0.068 | -3 | 0.683 |
TAO2 |
0.729 | 0.026 | 2 | 0.636 |
MINK |
0.729 | 0.100 | 1 | 0.622 |
SMMLCK |
0.729 | -0.015 | -3 | 0.746 |
HGK |
0.729 | 0.079 | 3 | 0.744 |
DAPK1 |
0.729 | 0.031 | -3 | 0.737 |
HRI |
0.728 | -0.078 | -2 | 0.776 |
PAK4 |
0.728 | 0.026 | -2 | 0.668 |
BMPR1A |
0.728 | -0.008 | 1 | 0.620 |
BIKE |
0.728 | 0.273 | 1 | 0.925 |
CK1A2 |
0.728 | 0.002 | -3 | 0.491 |
GRK2 |
0.727 | -0.074 | -2 | 0.678 |
AAK1 |
0.727 | 0.317 | 1 | 0.903 |
BUB1 |
0.727 | 0.065 | -5 | 0.721 |
NEK1 |
0.726 | 0.101 | 1 | 0.665 |
NEK4 |
0.725 | 0.031 | 1 | 0.638 |
YSK1 |
0.725 | 0.111 | 2 | 0.651 |
MAPKAPK5 |
0.725 | -0.064 | -3 | 0.690 |
LRRK2 |
0.725 | 0.019 | 2 | 0.655 |
LOK |
0.724 | 0.022 | -2 | 0.728 |
VRK1 |
0.724 | 0.079 | 2 | 0.609 |
CAMKK2 |
0.724 | -0.019 | -2 | 0.677 |
NEK3 |
0.723 | 0.145 | 1 | 0.617 |
BRAF |
0.723 | -0.104 | -4 | 0.738 |
EEF2K |
0.723 | -0.001 | 3 | 0.712 |
MARK1 |
0.723 | -0.036 | 4 | 0.624 |
PLK3 |
0.723 | -0.135 | 2 | 0.578 |
DMPK1 |
0.723 | 0.082 | -3 | 0.695 |
MYO3B |
0.722 | 0.143 | 2 | 0.649 |
MRCKA |
0.722 | 0.037 | -3 | 0.693 |
NEK8 |
0.722 | -0.095 | 2 | 0.620 |
SNRK |
0.721 | -0.135 | 2 | 0.502 |
MST2 |
0.721 | -0.006 | 1 | 0.641 |
CRIK |
0.721 | 0.088 | -3 | 0.673 |
CAMK1D |
0.721 | -0.016 | -3 | 0.647 |
TLK1 |
0.720 | -0.130 | -2 | 0.766 |
SBK |
0.720 | 0.052 | -3 | 0.556 |
GRK3 |
0.720 | -0.049 | -2 | 0.647 |
CAMKK1 |
0.719 | -0.077 | -2 | 0.668 |
PHKG2 |
0.719 | -0.046 | -3 | 0.714 |
CK2A2 |
0.719 | -0.027 | 1 | 0.593 |
PDHK3_TYR |
0.718 | 0.206 | 4 | 0.773 |
PKN1 |
0.718 | -0.002 | -3 | 0.677 |
PKMYT1_TYR |
0.718 | 0.333 | 3 | 0.739 |
HASPIN |
0.718 | 0.015 | -1 | 0.572 |
ROCK1 |
0.718 | 0.065 | -3 | 0.700 |
OSR1 |
0.718 | 0.056 | 2 | 0.646 |
MAP2K4_TYR |
0.717 | 0.274 | -1 | 0.695 |
STK33 |
0.716 | -0.072 | 2 | 0.485 |
LIMK2_TYR |
0.714 | 0.196 | -3 | 0.799 |
CHK2 |
0.714 | -0.001 | -3 | 0.609 |
SLK |
0.714 | -0.060 | -2 | 0.685 |
SSTK |
0.713 | -0.089 | 4 | 0.652 |
TAK1 |
0.713 | -0.084 | 1 | 0.642 |
CK2A1 |
0.712 | -0.033 | 1 | 0.569 |
MAP2K6_TYR |
0.710 | 0.109 | -1 | 0.683 |
YANK3 |
0.710 | -0.024 | 2 | 0.336 |
PDHK4_TYR |
0.710 | 0.092 | 2 | 0.676 |
MEK2 |
0.709 | -0.055 | 2 | 0.627 |
TESK1_TYR |
0.709 | 0.071 | 3 | 0.759 |
CAMK1A |
0.707 | -0.016 | -3 | 0.617 |
MST1 |
0.707 | -0.081 | 1 | 0.619 |
TAO1 |
0.707 | 0.028 | 1 | 0.567 |
PKG1 |
0.706 | 0.016 | -2 | 0.610 |
IRAK1 |
0.706 | -0.182 | -1 | 0.554 |
TTBK1 |
0.705 | -0.165 | 2 | 0.485 |
MAP2K7_TYR |
0.705 | 0.064 | 2 | 0.653 |
BMPR2_TYR |
0.702 | 0.011 | -1 | 0.683 |
MYO3A |
0.702 | 0.025 | 1 | 0.616 |
TTK |
0.702 | -0.032 | -2 | 0.757 |
PLK2 |
0.702 | -0.094 | -3 | 0.679 |
PDHK1_TYR |
0.702 | 0.006 | -1 | 0.660 |
CK1A |
0.702 | 0.004 | -3 | 0.410 |
LIMK1_TYR |
0.700 | 0.045 | 2 | 0.640 |
ASK1 |
0.699 | -0.036 | 1 | 0.591 |
FGR |
0.698 | 0.088 | 1 | 0.779 |
PINK1_TYR |
0.695 | -0.104 | 1 | 0.715 |
BLK |
0.694 | 0.100 | -1 | 0.581 |
ABL2 |
0.694 | 0.027 | -1 | 0.564 |
TNK2 |
0.694 | 0.035 | 3 | 0.617 |
LCK |
0.694 | 0.094 | -1 | 0.579 |
ABL1 |
0.693 | 0.038 | -1 | 0.559 |
TXK |
0.692 | 0.018 | 1 | 0.696 |
EPHB4 |
0.692 | -0.043 | -1 | 0.588 |
TNNI3K_TYR |
0.692 | 0.071 | 1 | 0.654 |
MST1R |
0.691 | -0.046 | 3 | 0.689 |
YES1 |
0.691 | 0.022 | -1 | 0.598 |
RET |
0.691 | -0.080 | 1 | 0.647 |
RIPK2 |
0.690 | -0.211 | 1 | 0.567 |
HCK |
0.688 | 0.021 | -1 | 0.579 |
EPHA6 |
0.687 | -0.092 | -1 | 0.609 |
TNK1 |
0.687 | 0.017 | 3 | 0.665 |
NEK10_TYR |
0.687 | 0.014 | 1 | 0.551 |
TYK2 |
0.687 | -0.055 | 1 | 0.641 |
ROS1 |
0.687 | -0.050 | 3 | 0.644 |
TYRO3 |
0.686 | -0.085 | 3 | 0.668 |
JAK2 |
0.685 | -0.066 | 1 | 0.633 |
FYN |
0.685 | 0.040 | -1 | 0.571 |
ITK |
0.683 | -0.040 | -1 | 0.560 |
WEE1_TYR |
0.683 | -0.027 | -1 | 0.561 |
CSF1R |
0.682 | -0.098 | 3 | 0.659 |
JAK3 |
0.681 | -0.114 | 1 | 0.631 |
DDR1 |
0.681 | -0.160 | 4 | 0.688 |
JAK1 |
0.681 | -0.003 | 1 | 0.580 |
STLK3 |
0.681 | -0.110 | 1 | 0.567 |
ALPHAK3 |
0.679 | -0.145 | -1 | 0.571 |
MERTK |
0.678 | -0.060 | 3 | 0.645 |
KDR |
0.678 | -0.096 | 3 | 0.621 |
EPHB3 |
0.678 | -0.077 | -1 | 0.565 |
FER |
0.678 | -0.132 | 1 | 0.720 |
EPHA4 |
0.676 | -0.111 | 2 | 0.583 |
SRMS |
0.676 | -0.116 | 1 | 0.680 |
MET |
0.676 | -0.096 | 3 | 0.650 |
BMX |
0.675 | -0.067 | -1 | 0.506 |
SRC |
0.675 | 0.012 | -1 | 0.565 |
YANK2 |
0.674 | -0.054 | 2 | 0.333 |
PTK6 |
0.674 | -0.089 | -1 | 0.506 |
FGFR2 |
0.673 | -0.166 | 3 | 0.649 |
EPHB2 |
0.673 | -0.109 | -1 | 0.557 |
INSRR |
0.673 | -0.165 | 3 | 0.605 |
AXL |
0.673 | -0.101 | 3 | 0.633 |
KIT |
0.672 | -0.149 | 3 | 0.651 |
PDGFRB |
0.671 | -0.167 | 3 | 0.664 |
EPHB1 |
0.670 | -0.173 | 1 | 0.662 |
LYN |
0.670 | -0.046 | 3 | 0.601 |
CK1G3 |
0.669 | -0.043 | -3 | 0.368 |
EPHA1 |
0.668 | -0.100 | 3 | 0.627 |
FGFR1 |
0.668 | -0.152 | 3 | 0.621 |
PTK2B |
0.668 | -0.087 | -1 | 0.534 |
FLT1 |
0.668 | -0.144 | -1 | 0.586 |
PTK2 |
0.667 | -0.043 | -1 | 0.579 |
DDR2 |
0.667 | -0.083 | 3 | 0.579 |
EPHA7 |
0.667 | -0.117 | 2 | 0.575 |
EPHA3 |
0.666 | -0.141 | 2 | 0.558 |
BTK |
0.666 | -0.169 | -1 | 0.530 |
LTK |
0.665 | -0.140 | 3 | 0.609 |
NTRK1 |
0.665 | -0.161 | -1 | 0.588 |
NTRK3 |
0.665 | -0.104 | -1 | 0.552 |
TEC |
0.665 | -0.147 | -1 | 0.506 |
TEK |
0.664 | -0.179 | 3 | 0.589 |
FLT3 |
0.664 | -0.199 | 3 | 0.662 |
PDGFRA |
0.663 | -0.196 | 3 | 0.668 |
MATK |
0.662 | -0.106 | -1 | 0.508 |
ERBB2 |
0.662 | -0.157 | 1 | 0.605 |
INSR |
0.661 | -0.145 | 3 | 0.601 |
FGFR3 |
0.661 | -0.185 | 3 | 0.619 |
FRK |
0.661 | -0.135 | -1 | 0.571 |
ALK |
0.661 | -0.181 | 3 | 0.575 |
EPHA8 |
0.660 | -0.113 | -1 | 0.555 |
EPHA5 |
0.659 | -0.136 | 2 | 0.553 |
SYK |
0.658 | -0.075 | -1 | 0.549 |
NTRK2 |
0.658 | -0.194 | 3 | 0.621 |
FLT4 |
0.657 | -0.198 | 3 | 0.631 |
EGFR |
0.656 | -0.107 | 1 | 0.528 |
CSK |
0.655 | -0.140 | 2 | 0.581 |
CK1G2 |
0.654 | -0.050 | -3 | 0.449 |
FGFR4 |
0.653 | -0.123 | -1 | 0.532 |
ZAP70 |
0.653 | -0.030 | -1 | 0.522 |
MUSK |
0.649 | -0.120 | 1 | 0.553 |
EPHA2 |
0.649 | -0.128 | -1 | 0.530 |
IGF1R |
0.645 | -0.163 | 3 | 0.539 |
ERBB4 |
0.645 | -0.105 | 1 | 0.544 |
FES |
0.637 | -0.135 | -1 | 0.488 |