Motif 282 (n=443)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A024R4G9 | C19orf48 | S20 | psp | Chromosome 19 open reading frame 48 (Multidrug resistance-related protein, isoform CRA_a) | None |
A0A0U1RQV5 | None | S26 | ochoa | Eukaryotic translation initiation factor 6 | None |
A0FGR8 | ESYT2 | S685 | ochoa | Extended synaptotagmin-2 (E-Syt2) (Chr2Syt) | Tethers the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane. Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport. Plays a role in FGF signaling via its role in the rapid internalization of FGFR1 that has been activated by FGF1 binding; this occurs most likely via the AP-2 complex. Promotes the localization of SACM1L at endoplasmic reticulum-plasma membrane contact sites (EPCS) (PubMed:27044890). {ECO:0000269|PubMed:17360437, ECO:0000269|PubMed:20833364, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24847877, ECO:0000269|PubMed:27044890}. |
A1X283 | SH3PXD2B | S675 | ochoa | SH3 and PX domain-containing protein 2B (Adapter protein HOFI) (Factor for adipocyte differentiation 49) (Tyrosine kinase substrate with four SH3 domains) | Adapter protein involved in invadopodia and podosome formation and extracellular matrix degradation. Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. Plays a role in mitotic clonal expansion during the immediate early stage of adipocyte differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497}. |
A6ND36 | FAM83G | S124 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A7KAX9 | ARHGAP32 | S2031 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
D6RIA3 | C4orf54 | S687 | ochoa | Uncharacterized protein C4orf54 (Familial obliterative portal venopathy) | None |
E9PCH4 | None | S1462 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
F8WAN1 | SPECC1L-ADORA2A | S55 | ochoa | SPECC1L-ADORA2A readthrough (NMD candidate) | None |
O00192 | ARVCF | S887 | ochoa | Splicing regulator ARVCF (Armadillo repeat protein deleted in velo-cardio-facial syndrome) | Contributes to the regulation of alternative splicing of pre-mRNAs. {ECO:0000269|PubMed:24644279}. |
O00401 | WASL | S456 | ochoa | Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) | Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}. |
O00429 | DNM1L | S44 | psp | Dynamin-1-like protein (EC 3.6.5.5) (Dnm1p/Vps1p-like protein) (DVLP) (Dynamin family member proline-rich carboxyl-terminal domain less) (Dymple) (Dynamin-like protein) (Dynamin-like protein 4) (Dynamin-like protein IV) (HdynIV) (Dynamin-related protein 1) | Functions in mitochondrial and peroxisomal division (PubMed:11514614, PubMed:12499366, PubMed:17301055, PubMed:17460227, PubMed:17553808, PubMed:18695047, PubMed:18838687, PubMed:19342591, PubMed:19411255, PubMed:19638400, PubMed:23283981, PubMed:23530241, PubMed:23921378, PubMed:26992161, PubMed:27145208, PubMed:27145933, PubMed:27301544, PubMed:27328748, PubMed:29478834, PubMed:32439975, PubMed:32484300, PubMed:9570752, PubMed:9786947). Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism (PubMed:23530241, PubMed:23584531, PubMed:33850055). The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes (PubMed:23283981, PubMed:23921378, PubMed:29899447). While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L filaments to curl into closed rings that are probably sufficient to sever a double membrane (PubMed:29899447). Acts downstream of PINK1 to promote mitochondrial fission in a PRKN-dependent manner (PubMed:32484300). Plays an important role in mitochondrial fission during mitosis (PubMed:19411255, PubMed:26992161, PubMed:27301544, PubMed:27328748). Through its function in mitochondrial division, ensures the survival of at least some types of postmitotic neurons, including Purkinje cells, by suppressing oxidative damage (By similarity). Required for normal brain development, including that of cerebellum (PubMed:17460227, PubMed:26992161, PubMed:27145208, PubMed:27301544, PubMed:27328748). Facilitates developmentally regulated apoptosis during neural tube formation (By similarity). Required for a normal rate of cytochrome c release and caspase activation during apoptosis; this requirement may depend upon the cell type and the physiological apoptotic cues (By similarity). Required for formation of endocytic vesicles (PubMed:20688057, PubMed:23792689, PubMed:9570752). Proposed to regulate synaptic vesicle membrane dynamics through association with BCL2L1 isoform Bcl-X(L) which stimulates its GTPase activity in synaptic vesicles; the function may require its recruitment by MFF to clathrin-containing vesicles (PubMed:17015472, PubMed:23792689). Required for programmed necrosis execution (PubMed:22265414). Rhythmic control of its activity following phosphorylation at Ser-637 is essential for the circadian control of mitochondrial ATP production (PubMed:29478834). {ECO:0000250|UniProtKB:Q8K1M6, ECO:0000269|PubMed:11514614, ECO:0000269|PubMed:12499366, ECO:0000269|PubMed:17015472, ECO:0000269|PubMed:17301055, ECO:0000269|PubMed:17460227, ECO:0000269|PubMed:17553808, ECO:0000269|PubMed:18695047, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19342591, ECO:0000269|PubMed:19411255, ECO:0000269|PubMed:19638400, ECO:0000269|PubMed:20688057, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:23283981, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:23584531, ECO:0000269|PubMed:23792689, ECO:0000269|PubMed:23921378, ECO:0000269|PubMed:26992161, ECO:0000269|PubMed:27145208, ECO:0000269|PubMed:27145933, ECO:0000269|PubMed:27301544, ECO:0000269|PubMed:27328748, ECO:0000269|PubMed:29478834, ECO:0000269|PubMed:29899447, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:32484300, ECO:0000269|PubMed:33850055, ECO:0000269|PubMed:9570752, ECO:0000269|PubMed:9786947}.; FUNCTION: [Isoform 1]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}.; FUNCTION: [Isoform 4]: Inhibits peroxisomal division when overexpressed. {ECO:0000269|PubMed:12618434}. |
O00560 | SDCBP | S88 | ochoa | Syntenin-1 (Melanoma differentiation-associated protein 9) (MDA-9) (Pro-TGF-alpha cytoplasmic domain-interacting protein 18) (TACIP18) (Scaffold protein Pbp1) (Syndecan-binding protein 1) | Multifunctional adapter protein involved in diverse array of functions including trafficking of transmembrane proteins, neuro and immunomodulation, exosome biogenesis, and tumorigenesis (PubMed:26291527). Positively regulates TGFB1-mediated SMAD2/3 activation and TGFB1-induced epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types. May increase TGFB1 signaling by enhancing cell-surface expression of TGFR1 by preventing the interaction between TGFR1 and CAV1 and subsequent CAV1-dependent internalization and degradation of TGFR1 (PubMed:25893292). In concert with SDC1/4 and PDCD6IP, regulates exosome biogenesis (PubMed:22660413). Regulates migration, growth, proliferation, and cell cycle progression in a variety of cancer types (PubMed:26539120). In adherens junctions may function to couple syndecans to cytoskeletal proteins or signaling components. Seems to couple transcription factor SOX4 to the IL-5 receptor (IL5RA) (PubMed:11498591). May also play a role in vesicular trafficking (PubMed:11179419). Seems to be required for the targeting of TGFA to the cell surface in the early secretory pathway (PubMed:10230395). {ECO:0000269|PubMed:10230395, ECO:0000269|PubMed:11179419, ECO:0000269|PubMed:11498591, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:25893292, ECO:0000269|PubMed:26539120, ECO:0000303|PubMed:26291527}. |
O00763 | ACACB | S246 | ochoa | Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) | Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism (PubMed:16854592, PubMed:19236960, PubMed:19900410, PubMed:20457939, PubMed:20952656, PubMed:26976583). Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:19236960, PubMed:20457939, PubMed:20952656, PubMed:26976583). Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage (By similarity). {ECO:0000250|UniProtKB:E9Q4Z2, ECO:0000269|PubMed:16854592, ECO:0000269|PubMed:19236960, ECO:0000269|PubMed:19900410, ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:26976583}. |
O14640 | DVL1 | S126 | ochoa | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
O14686 | KMT2D | S1798 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14686 | KMT2D | S3467 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O14867 | BACH1 | S364 | ochoa | Transcription regulator protein BACH1 (BTB and CNC homolog 1) (HA2303) | Transcriptional regulator that acts as a repressor or activator, depending on the context. Binds to NF-E2 DNA binding sites. Plays important roles in coordinating transcription activation and repression by MAFK (By similarity). Together with MAF, represses the transcription of genes under the control of the NFE2L2 oxidative stress pathway (PubMed:24035498). {ECO:0000250|UniProtKB:P97302, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:39504958}. |
O14936 | CASK | S151 | psp | Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) | Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}. |
O15014 | ZNF609 | S358 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15056 | SYNJ2 | S1137 | ochoa | Synaptojanin-2 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 2) | Inositol 5-phosphatase which may be involved in distinct membrane trafficking and signal transduction pathways. May mediate the inhibitory effect of Rac1 on endocytosis. |
O15068 | MCF2L | S1041 | ochoa | Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) | Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}. |
O15350 | TP73 | S289 | psp | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15438 | ABCC3 | S908 | ochoa | ATP-binding cassette sub-family C member 3 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multispecific organic anion transporter 2) (Multi-specific organic anion transporter D) (MOAT-D) (Multidrug resistance-associated protein 3) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes (PubMed:10359813, PubMed:11581266, PubMed:15083066). Transports glucuronide conjugates such as bilirubin diglucuronide, estradiol-17-beta-o-glucuronide and GSH conjugates such as leukotriene C4 (LTC4) (PubMed:11581266, PubMed:15083066). Transports also various bile salts (taurocholate, glycocholate, taurochenodeoxycholate-3-sulfate, taurolithocholate- 3-sulfate) (By similarity). Does not contribute substantially to bile salt physiology but provides an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes (By similarity). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can confer resistance to various anticancer drugs, methotrexate, tenoposide and etoposide, by decreasing accumulation of these drugs in cells (PubMed:10359813, PubMed:11581266). {ECO:0000250|UniProtKB:O88563, ECO:0000269|PubMed:10359813, ECO:0000269|PubMed:11581266, ECO:0000269|PubMed:15083066, ECO:0000305|PubMed:35307651}. |
O15439 | ABCC4 | S687 | ochoa | ATP-binding cassette sub-family C member 4 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (MRP/cMOAT-related ABC transporter) (Multi-specific organic anion transporter B) (MOAT-B) (Multidrug resistance-associated protein 4) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. Transports a range of endogenous molecules that have a key role in cellular communication and signaling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins (PubMed:11856762, PubMed:12523936, PubMed:12835412, PubMed:12883481, PubMed:15364914, PubMed:15454390, PubMed:16282361, PubMed:17959747, PubMed:18300232, PubMed:26721430). Mediates the ATP-dependent efflux of glutathione conjugates such as leukotriene C4 (LTC4) and leukotriene B4 (LTB4) too. The presence of GSH is necessary for the ATP-dependent transport of LTB4, whereas GSH is not required for the transport of LTC4 (PubMed:17959747). Mediates the cotransport of bile acids with reduced glutathione (GSH) (PubMed:12523936, PubMed:12883481, PubMed:16282361). Transports a wide range of drugs and their metabolites, including anticancer, antiviral and antibiotics molecules (PubMed:11856762, PubMed:12105214, PubMed:15454390, PubMed:17344354, PubMed:18300232). Confers resistance to anticancer agents such as methotrexate (PubMed:11106685). {ECO:0000269|PubMed:11106685, ECO:0000269|PubMed:11856762, ECO:0000269|PubMed:12105214, ECO:0000269|PubMed:12523936, ECO:0000269|PubMed:12835412, ECO:0000269|PubMed:12883481, ECO:0000269|PubMed:15364914, ECO:0000269|PubMed:15454390, ECO:0000269|PubMed:16282361, ECO:0000269|PubMed:17344354, ECO:0000269|PubMed:17959747, ECO:0000269|PubMed:18300232, ECO:0000269|PubMed:26721430}. |
O43182 | ARHGAP6 | S37 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43182 | ARHGAP6 | S740 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43294 | TGFB1I1 | S216 | ochoa | Transforming growth factor beta-1-induced transcript 1 protein (Androgen receptor coactivator 55 kDa protein) (Androgen receptor-associated protein of 55 kDa) (Hydrogen peroxide-inducible clone 5 protein) (Hic-5) | Functions as a molecular adapter coordinating multiple protein-protein interactions at the focal adhesion complex and in the nucleus. Links various intracellular signaling modules to plasma membrane receptors and regulates the Wnt and TGFB signaling pathways. May also regulate SLC6A3 and SLC6A4 targeting to the plasma membrane hence regulating their activity. In the nucleus, functions as a nuclear receptor coactivator regulating glucocorticoid, androgen, mineralocorticoid and progesterone receptor transcriptional activity. May play a role in the processes of cell growth, proliferation, migration, differentiation and senescence. May have a zinc-dependent DNA-binding activity. {ECO:0000269|PubMed:10075738, ECO:0000269|PubMed:11463817, ECO:0000269|PubMed:11856738, ECO:0000269|PubMed:12177201, ECO:0000269|PubMed:12445807, ECO:0000269|PubMed:12700349, ECO:0000269|PubMed:15211577, ECO:0000269|PubMed:15561701, ECO:0000269|PubMed:16141357, ECO:0000269|PubMed:16624805, ECO:0000269|PubMed:16803896, ECO:0000269|PubMed:16849583, ECO:0000269|PubMed:17166536, ECO:0000269|PubMed:17233630, ECO:0000269|PubMed:9032249}. |
O43379 | WDR62 | S1144 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43524 | FOXO3 | S231 | psp | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43610 | SPRY3 | S108 | ochoa | Protein sprouty homolog 3 (Spry-3) (Sprouty RTK signaling antagonist 3) (Sprouty3) | Inhibits neurite branching, arbor length and neurite complexity (By similarity). Inhibits EGF-mediated p42/44 ERK signaling (By similarity). Negatively regulates the MAPK cascade, resulting in a reduction of extracellular matrix protein accumulation (PubMed:30878395). May function as an antagonist of fibroblast growth factor (FGF) pathways and may negatively modulate respiratory organogenesis (PubMed:9458049). {ECO:0000250|UniProtKB:Q3UUD2, ECO:0000269|PubMed:30878395, ECO:0000269|PubMed:9458049}. |
O43683 | BUB1 | S437 | ochoa | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43900 | PRICKLE3 | S475 | ochoa | Prickle planar cell polarity protein 3 (LIM domain only protein 6) (LMO-6) (Prickle-like protein 3) (Pk3) (Triple LIM domain protein 6) | Involved in the planar cell polarity (PCP) pathway that is essential for the polarization of epithelial cells during morphogenetic processes, including gastrulation and neurulation (By similarity). PCP is maintained by two molecular modules, the global and the core modules, PRICKLE3 being part of the core module (By similarity). Distinct complexes of the core module segregate to opposite sides of the cell, where they interact with the opposite complex in the neighboring cell at or near the adherents junctions (By similarity). Involved in the organization of the basal body (By similarity). Involved in cilia growth and positioning (By similarity). Required for proper assembly, stability, and function of mitochondrial membrane ATP synthase (mitochondrial complex V) (PubMed:32516135). {ECO:0000250|UniProtKB:A8WH69, ECO:0000269|PubMed:32516135}. |
O60496 | DOK2 | S63 | ochoa | Docking protein 2 (Downstream of tyrosine kinase 2) (p56(dok-2)) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK2 may modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3. May be involved in modulating Bcr-Abl signaling. Attenuates EGF-stimulated MAP kinase activation (By similarity). {ECO:0000250}. |
O60716 | CTNND1 | S169 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60716 | CTNND1 | S214 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60884 | DNAJA2 | S144 | ochoa | DnaJ homolog subfamily A member 2 (Cell cycle progression restoration gene 3 protein) (Dnj3) (Dj3) (HIRA-interacting protein 4) (Renal carcinoma antigen NY-REN-14) | Co-chaperone of Hsc70. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}. |
O75150 | RNF40 | S585 | ochoa | E3 ubiquitin-protein ligase BRE1B (BRE1-B) (EC 2.3.2.27) (95 kDa retinoblastoma-associated protein) (RBP95) (RING finger protein 40) (RING-type E3 ubiquitin transferase BRE1B) | Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role in histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}. |
O75179 | ANKRD17 | S2457 | ochoa | Ankyrin repeat domain-containing protein 17 (Gene trap ankyrin repeat protein) (Serologically defined breast cancer antigen NY-BR-16) | Could play pivotal roles in cell cycle and DNA regulation (PubMed:19150984). Involved in innate immune defense against viruse by positively regulating the viral dsRNA receptors DDX58 and IFIH1 signaling pathways (PubMed:22328336). Involves in NOD2- and NOD1-mediated responses to bacteria suggesting a role in innate antibacterial immune pathways too (PubMed:23711367). Target of enterovirus 71 which is the major etiological agent of HFMD (hand, foot and mouth disease) (PubMed:17276651). Could play a central role for the formation and/or maintenance of the blood vessels of the circulation system (By similarity). {ECO:0000250|UniProtKB:Q99NH0, ECO:0000269|PubMed:17276651, ECO:0000269|PubMed:19150984, ECO:0000269|PubMed:22328336, ECO:0000269|PubMed:23711367}. |
O75369 | FLNB | S2307 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O76061 | STC2 | S250 | ochoa | Stanniocalcin-2 (STC-2) (Stanniocalcin-related protein) (STC-related protein) (STCRP) | Has an anti-hypocalcemic action on calcium and phosphate homeostasis. |
O94819 | KBTBD11 | S508 | ochoa | Kelch repeat and BTB domain-containing protein 11 (Chronic myelogenous leukemia-associated protein) (Kelch domain-containing protein 7B) | None |
O94910 | ADGRL1 | S1172 | ochoa | Adhesion G protein-coupled receptor L1 (Calcium-independent alpha-latrotoxin receptor 1) (CIRL-1) (Latrophilin-1) (Lectomedin-2) | Calcium-independent receptor of high affinity for alpha-latrotoxin, an excitatory neurotoxin present in black widow spider venom which triggers massive exocytosis from neurons and neuroendocrine cells (PubMed:35907405). Receptor for TENM2 that mediates heterophilic synaptic cell-cell contact and postsynaptic specialization. Receptor probably implicated in the regulation of exocytosis (By similarity). {ECO:0000250|UniProtKB:O88917, ECO:0000269|PubMed:35907405}. |
O94916 | NFAT5 | S1197 | psp | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95232 | LUC7L3 | S110 | ochoa | Luc7-like protein 3 (Cisplatin resistance-associated-overexpressed protein) (Luc7A) (Okadaic acid-inducible phosphoprotein OA48-18) (cAMP regulatory element-associated protein 1) (CRE-associated protein 1) (CREAP-1) | Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing. {ECO:0000269|PubMed:16462885}. |
O95235 | KIF20A | S757 | ochoa | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95347 | SMC2 | S60 | ochoa | Structural maintenance of chromosomes protein 2 (SMC protein 2) (SMC-2) (Chromosome-associated protein E) (hCAP-E) (XCAP-E homolog) | Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}. |
O95359 | TACC2 | S2614 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95398 | RAPGEF3 | S267 | ochoa | Rap guanine nucleotide exchange factor 3 (Exchange factor directly activated by cAMP 1) (Exchange protein directly activated by cAMP 1) (EPAC 1) (Rap1 guanine-nucleotide-exchange factor directly activated by cAMP) (cAMP-regulated guanine nucleotide exchange factor I) (cAMP-GEFI) | Guanine nucleotide exchange factor (GEF) for RAP1A and RAP2A small GTPases that is activated by binding cAMP. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which it activates the PI3K gamma complex and which is involved in angiogenesis. Plays a role in the modulation of the cAMP-induced dynamic control of endothelial barrier function through a pathway that is independent on Rho-mediated signaling. Required for the actin rearrangement at cell-cell junctions, such as stress fibers and junctional actin. {ECO:0000269|PubMed:10777494, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:9853756}. |
O95427 | PIGN | S94 | ochoa | GPI ethanolamine phosphate transferase 1 (EC 2.-.-.-) (GPI-ethanolamine transferase I) (GPI-ETI) (MCD4 homolog) (Phosphatidylinositol-glycan biosynthesis class N protein) (PIG-N) | Ethanolamine phosphate transferase that catalyzes an ethanolamine phosphate (EtNP) transfer from phosphatidylethanolamine (PE) to the 2-OH position of the first alpha-1,4-linked mannose of the alpha-D-Man-(1->6)-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol (also termed H3) intermediate to generate an alpha-D-Man-(1->6)-2-PEtn-alpha-D-Man-(1->4)-alpha-D-GlcN-(1->6)-(1-radyl,2-acyl-sn-glycero-3-phospho)-2-acyl-inositol and participates in the eighth step of the glycosylphosphatidylinositol-anchor biosynthesis (By similarity). May act as suppressor of replication stress and chromosome missegregation (PubMed:23446422). {ECO:0000250|UniProtKB:Q9R1S3, ECO:0000269|PubMed:23446422}. |
O95613 | PCNT | S644 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95777 | LSM8 | S48 | ochoa | U6 snRNA-associated Sm-like protein LSm8 | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex) (PubMed:28781166). The heptameric LSM2-8 complex binds specifically to the 3'-terminal U-tract of U6 snRNA (PubMed:10523320). {ECO:0000269|PubMed:10523320, ECO:0000269|PubMed:28781166}. |
O96019 | ACTL6A | S51 | ochoa | Actin-like protein 6A (53 kDa BRG1-associated factor A) (Actin-related protein Baf53a) (ArpNbeta) (BRG1-associated factor 53A) (BAF53A) (INO80 complex subunit K) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000250|UniProtKB:Q9Z2N8, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:15196461, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
P00390 | GSR | S178 | ochoa | Glutathione reductase, mitochondrial (GR) (GRase) (EC 1.8.1.7) | Catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Constitutes the major mechanism to maintain a high GSH:GSSG ratio in the cytosol. {ECO:0000269|PubMed:17185460}. |
P00441 | SOD1 | S99 | ochoa | Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Superoxide dismutase 1) (hSod1) | Destroys radicals which are normally produced within the cells and which are toxic to biological systems. {ECO:0000269|PubMed:24140062}. |
P00533 | EGFR | S229 | psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00558 | PGK1 | S364 | ochoa | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P01562 | IFNA1; | S50 | ochoa | Interferon alpha-1/13 (IFN-alpha-1/13) (Interferon alpha-D) (LeIF D) | Produced by macrophages, IFN-alpha have antiviral activities. Interferon stimulates the production of two enzymes: a protein kinase and an oligoadenylate synthetase. {ECO:0000269|PubMed:1634550}. |
P02808 | STATH | S21 | psp | Statherin | Salivary protein that stabilizes saliva supersaturated with calcium salts by inhibiting the precipitation of calcium phosphate salts. It also modulates hydroxyapatite crystal formation on the tooth surface. |
P03372 | ESR1 | S576 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P04075 | ALDOA | S132 | ochoa | Fructose-bisphosphate aldolase A (EC 4.1.2.13) (Lung cancer antigen NY-LU-1) (Muscle-type aldolase) | Catalyzes the reversible conversion of beta-D-fructose 1,6-bisphosphate (FBP) into two triose phosphate and plays a key role in glycolysis and gluconeogenesis (PubMed:14766013). In addition, may also function as scaffolding protein (By similarity). {ECO:0000250, ECO:0000269|PubMed:14766013}. |
P04233 | CD74 | S42 | psp | HLA class II histocompatibility antigen gamma chain (HLA-DR antigens-associated invariant chain) (Ia antigen-associated invariant chain) (Ii) (CD antigen CD74) [Cleaved into: Class-II-associated invariant chain peptide (CLIP)] | Plays a critical role in MHC class II antigen processing by stabilizing peptide-free class II alpha/beta heterodimers in a complex soon after their synthesis and directing transport of the complex from the endoplasmic reticulum to the endosomal/lysosomal system where the antigen processing and binding of antigenic peptides to MHC class II takes place. Serves as cell surface receptor for the cytokine MIF.; FUNCTION: [Class-II-associated invariant chain peptide]: Binds to the peptide-binding site of MHC class II alpha/beta heterodimers forming an alpha-beta-CLIP complex, thereby preventing the loading of antigenic peptides to the MHC class II complex until its release by HLA-DM in the endosome. {ECO:0000269|PubMed:1448172}.; FUNCTION: [Isoform p41]: Stabilizes the conformation of mature CTSL by binding to its active site and serving as a chaperone to help maintain a pool of mature enzyme in endocytic compartments and extracellular space of antigen-presenting cells (APCs). Has antiviral activity by stymieing the endosomal entry of Ebola virus and coronaviruses, including SARS-CoV-2 (PubMed:32855215). Disrupts cathepsin-mediated Ebola virus glycoprotein processing, which prevents viral fusion and entry. This antiviral activity is specific to p41 isoform (PubMed:32855215). {ECO:0000250|UniProtKB:P04441, ECO:0000269|PubMed:32855215}. |
P04350 | TUBB4A | S234 | ochoa | Tubulin beta-4A chain (Tubulin 5 beta) (Tubulin beta-4 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P04406 | GAPDH | S288 | ochoa | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) | Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}. |
P04637 | TP53 | S269 | psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05783 | KRT18 | S31 | ochoa|psp | Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) | Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}. |
P06239 | LCK | S71 | ochoa | Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) | Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}. |
P07237 | P4HB | S88 | ochoa | Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) | This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}. |
P07437 | TUBB | S234 | ochoa | Tubulin beta chain (Tubulin beta-5 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P07737 | PFN1 | S58 | ochoa | Profilin-1 (Epididymis tissue protein Li 184a) (Profilin I) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. Inhibits androgen receptor (AR) and HTT aggregation and binding of G-actin is essential for its inhibition of AR. {ECO:0000269|PubMed:18573880}. |
P08514 | ITGA2B | S435 | ochoa | Integrin alpha-IIb (GPalpha IIb) (GPIIb) (Platelet membrane glycoprotein IIb) (CD antigen CD41) [Cleaved into: Integrin alpha-IIb heavy chain; Integrin alpha-IIb light chain, form 1; Integrin alpha-IIb light chain, form 2] | Integrin alpha-IIb/beta-3 is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. It recognizes the sequence R-G-D in a wide array of ligands. It recognizes the sequence H-H-L-G-G-G-A-K-Q-A-G-D-V in fibrinogen gamma chain (By similarity). Following activation integrin alpha-IIb/beta-3 brings about platelet/platelet interaction through binding of soluble fibrinogen (PubMed:9111081). This step leads to rapid platelet aggregation which physically plugs ruptured endothelial cell surface (By similarity). {ECO:0000250|UniProtKB:O54890, ECO:0000269|PubMed:9111081}. |
P08567 | PLEK | S117 | ochoa|psp | Pleckstrin (Platelet 47 kDa protein) (p47) | Major protein kinase C substrate of platelets. |
P08574 | CYC1 | S103 | ochoa | Cytochrome c1, heme protein, mitochondrial (EC 7.1.1.8) (Complex III subunit 4) (Complex III subunit IV) (Cytochrome b-c1 complex subunit 4) (Ubiquinol-cytochrome-c reductase complex cytochrome c1 subunit) (Cytochrome c-1) | Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c. Cytochrome c1 is a catalytic core subunit containing a c-type heme. It transfers electrons from the [2Fe-2S] iron-sulfur cluster of the Rieske protein to cytochrome c. {ECO:0000250|UniProtKB:P07143}. |
P09769 | FGR | S54 | ochoa | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P09972 | ALDOC | S132 | ochoa | Fructose-bisphosphate aldolase C (EC 4.1.2.13) (Brain-type aldolase) | None |
P0DP72 | VSIG10L2 | S88 | ochoa | V-set and immunoglobulin domain-containing protein 10-like 2 | None |
P10244 | MYBL2 | S178 | ochoa | Myb-related protein B (B-Myb) (Myb-like protein 2) | Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}. |
P12109 | COL6A1 | S766 | ochoa | Collagen alpha-1(VI) chain | Collagen VI acts as a cell-binding protein. |
P12814 | ACTN1 | S754 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P14317 | HCLS1 | S112 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14618 | PKM | S222 | ochoa|psp | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P15259 | PGAM2 | S189 | ochoa | Phosphoglycerate mutase 2 (EC 5.4.2.11) (EC 5.4.2.4) (BPG-dependent PGAM 2) (Muscle-specific phosphoglycerate mutase) (Phosphoglycerate mutase isozyme M) (PGAM-M) | Interconversion of 3- and 2-phosphoglycerate with 2,3-bisphosphoglycerate as the primer of the reaction. Can also catalyze the reaction of EC 5.4.2.4 (synthase), but with a reduced activity. |
P15924 | DSP | S2202 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16989 | YBX3 | S318 | ochoa | Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) | Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}. |
P17302 | GJA1 | S314 | ochoa | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P18206 | VCL | S272 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S816 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P21333 | FLNA | S189 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21333 | FLNA | S2284 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P21359 | NF1 | S665 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P23142 | FBLN1 | S147 | ochoa | Fibulin-1 (FIBL-1) | Incorporated into fibronectin-containing matrix fibers. May play a role in cell adhesion and migration along protein fibers within the extracellular matrix (ECM). Could be important for certain developmental processes and contribute to the supramolecular organization of ECM architecture, in particular to those of basement membranes. Has been implicated in a role in cellular transformation and tumor invasion, it appears to be a tumor suppressor. May play a role in haemostasis and thrombosis owing to its ability to bind fibrinogen and incorporate into clots. Could play a significant role in modulating the neurotrophic activities of APP, particularly soluble APP. {ECO:0000269|PubMed:11792823, ECO:0000269|PubMed:9393974, ECO:0000269|PubMed:9466671}. |
P23588 | EIF4B | S39 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P24821 | TNC | S84 | ochoa | Tenascin (TN) (Cytotactin) (GMEM) (GP 150-225) (Glioma-associated-extracellular matrix antigen) (Hexabrachion) (JI) (Myotendinous antigen) (Neuronectin) (Tenascin-C) (TN-C) | Extracellular matrix protein implicated in guidance of migrating neurons as well as axons during development, synaptic plasticity as well as neuronal regeneration. Promotes neurite outgrowth from cortical neurons grown on a monolayer of astrocytes. Ligand for integrins alpha-8/beta-1, alpha-9/beta-1, alpha-V/beta-3 and alpha-V/beta-6. In tumors, stimulates angiogenesis by elongation, migration and sprouting of endothelial cells (PubMed:19884327). {ECO:0000269|PubMed:19884327}. |
P25054 | APC | S2390 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P27815 | PDE4A | S89 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) | Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}. |
P27816 | MAP4 | S179 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28749 | RBL1 | S776 | ochoa | Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) | Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}. |
P29323 | EPHB2 | S776 | ochoa | Ephrin type-B receptor 2 (EC 2.7.10.1) (Developmentally-regulated Eph-related tyrosine kinase) (ELK-related tyrosine kinase) (EPH tyrosine kinase 3) (EPH-like kinase 5) (EK5) (hEK5) (Renal carcinoma antigen NY-REN-47) (Tyrosine-protein kinase TYRO5) (Tyrosine-protein kinase receptor EPH-3) [Cleaved into: EphB2/CTF1; EphB2/CTF2] | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Functions in axon guidance during development. Involved in the guidance of commissural axons, that form a major interhemispheric connection between the 2 temporal lobes of the cerebral cortex. Also involved in guidance of contralateral inner ear efferent growth cones at the midline and of retinal ganglion cell axons to the optic disk. In addition to axon guidance, also regulates dendritic spines development and maturation and stimulates the formation of excitatory synapses. Upon activation by EFNB1, abolishes the ARHGEF15-mediated negative regulation on excitatory synapse formation. Controls other aspects of development including angiogenesis, palate development and in inner ear development through regulation of endolymph production. Forward and reverse signaling through the EFNB2/EPHB2 complex regulate movement and adhesion of cells that tubularize the urethra and septate the cloaca. May function as a tumor suppressor. May be involved in the regulation of platelet activation and blood coagulation (PubMed:30213874). {ECO:0000269|PubMed:15300251, ECO:0000269|PubMed:30213874}. |
P29692 | EEF1D | S65 | ochoa | Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) | [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE). |
P29692 | EEF1D | S86 | ochoa | Elongation factor 1-delta (EF-1-delta) (Antigen NY-CO-4) | [Isoform 1]: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1-alpha for another round of transfer of aminoacyl-tRNAs to the ribosome.; FUNCTION: [Isoform 2]: Regulates induction of heat-shock-responsive genes through association with heat shock transcription factors and direct DNA-binding at heat shock promoter elements (HSE). |
P30414 | NKTR | S320 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31629 | HIVEP2 | S444 | ochoa | Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation. |
P31689 | DNAJA1 | S188 | ochoa | DnaJ homolog subfamily A member 1 (DnaJ protein homolog 2) (HSDJ) (Heat shock 40 kDa protein 4) (Heat shock protein J2) (HSJ-2) (Human DnaJ protein 2) (hDj-2) | Co-chaperone for HSPA8/Hsc70 (PubMed:10816573). Stimulates ATP hydrolysis, but not the folding of unfolded proteins mediated by HSPA1A (in vitro) (PubMed:24318877). Plays a role in protein transport into mitochondria via its role as co-chaperone. Functions as a co-chaperone for HSPA1B and negatively regulates the translocation of BAX from the cytosol to mitochondria in response to cellular stress, thereby protecting cells against apoptosis (PubMed:14752510). Promotes apoptosis in response to cellular stress mediated by exposure to anisomycin or UV (PubMed:24512202). {ECO:0000269|PubMed:10816573, ECO:0000269|PubMed:14752510, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24512202, ECO:0000269|PubMed:9192730}. |
P31948 | STIP1 | S42 | ochoa | Stress-induced-phosphoprotein 1 (STI1) (Hsc70/Hsp90-organizing protein) (Hop) (Renal carcinoma antigen NY-REN-11) (Transformation-sensitive protein IEF SSP 3521) | Acts as a co-chaperone for HSP90AA1 (PubMed:27353360). Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity). {ECO:0000250|UniProtKB:O35814, ECO:0000303|PubMed:27353360}. |
P32314 | FOXN2 | S369 | psp | Forkhead box protein N2 (Human T-cell leukemia virus enhancer factor) | Binds to the purine-rich region in HTLV-I LTR. |
P35221 | CTNNA1 | S264 | ochoa | Catenin alpha-1 (Alpha E-catenin) (Cadherin-associated protein) (Renal carcinoma antigen NY-REN-13) | Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. Can associate with both E- and N-cadherins. Originally believed to be a stable component of E-cadherin/catenin adhesion complexes and to mediate the linkage of cadherins to the actin cytoskeleton at adherens junctions. In contrast, cortical actin was found to be much more dynamic than E-cadherin/catenin complexes and CTNNA1 was shown not to bind to F-actin when assembled in the complex suggesting a different linkage between actin and adherens junctions components. The homodimeric form may regulate actin filament assembly and inhibit actin branching by competing with the Arp2/3 complex for binding to actin filaments. Involved in the regulation of WWTR1/TAZ, YAP1 and TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). May play a crucial role in cell differentiation. {ECO:0000250|UniProtKB:P26231, ECO:0000269|PubMed:25653389}. |
P35222 | CTNNB1 | S715 | ochoa|psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35232 | PHB1 | S101 | ochoa | Prohibitin 1 | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors in the nucleus (PubMed:11302691, PubMed:20959514, PubMed:28017329, PubMed:31522117). Plays a role in adipose tissue and glucose homeostasis in a sex-specific manner (By similarity). Contributes to pulmonary vascular remodeling by accelerating proliferation of pulmonary arterial smooth muscle cells (By similarity). {ECO:0000250|UniProtKB:P67778, ECO:0000250|UniProtKB:P67779, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB2, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Regulates mitochondrial respiration activity playing a role in cellular aging (PubMed:11302691). The prohibitin complex plays a role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:P67778, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305}.; FUNCTION: In the nucleus, acts as a transcription coregulator, enhances promoter binding by TP53, a transcription factor it activates, but reduces the promoter binding by E2F1, a transcription factor it represses (PubMed:14500729). Interacts with STAT3 to affect IL17 secretion in T-helper Th17 cells (PubMed:31899195). {ECO:0000269|PubMed:14500729, ECO:0000269|PubMed:31899195}.; FUNCTION: In the plasma membrane, cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates (By similarity). Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:P67778}. |
P35609 | ACTN2 | S761 | ochoa | Alpha-actinin-2 (Alpha-actinin skeletal muscle isoform 2) (F-actin cross-linking protein) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. |
P35637 | FUS | S30 | psp | RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) | DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}. |
P36959 | GMPR | S271 | psp | GMP reductase 1 (GMPR 1) (EC 1.7.1.7) (Guanosine 5'-monophosphate oxidoreductase 1) (Guanosine monophosphate reductase 1) | Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. {ECO:0000255|HAMAP-Rule:MF_03195}. |
P37173 | TGFBR2 | S486 | ochoa | TGF-beta receptor type-2 (TGFR-2) (EC 2.7.11.30) (TGF-beta type II receptor) (Transforming growth factor-beta receptor type II) (TGF-beta receptor type II) (TbetaR-II) | Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and thus regulates a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. {ECO:0000269|PubMed:7774578}.; FUNCTION: [Isoform 1]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 2]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 3]: Binds TGFB1, TGFB2 and TGFB3 in the picomolar affinity range without the participation of additional receptors. Blocks activation of SMAD2 and SMAD3 by TGFB1. {ECO:0000269|PubMed:34568316}. |
P37802 | TAGLN2 | S94 | ochoa | Transgelin-2 (Epididymis tissue protein Li 7e) (SM22-alpha homolog) | None |
P38646 | HSPA9 | S148 | ochoa | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
P39019 | RPS19 | S59 | psp | Small ribosomal subunit protein eS19 (40S ribosomal protein S19) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for pre-rRNA processing and maturation of 40S ribosomal subunits (PubMed:16990592). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:16990592, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P40227 | CCT6A | S205 | ochoa | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P41236 | PPP1R2 | S24 | ochoa | Protein phosphatase inhibitor 2 (IPP-2) | Inhibitor of protein-phosphatase 1. |
P41440 | SLC19A1 | S223 | ochoa | Reduced folate transporter (FOLT) (Cyclic dinucleotide:anion antiporter SLC19A1) (Folate:anion antiporter SLC19A1) (Intestinal folate carrier 1) (IFC-1) (Placental folate transporter) (Reduced folate carrier protein) (RFC) (hRFC) (Reduced folate transporter 1) (RFT-1) (Solute carrier family 19 member 1) (hSLC19A1) | Antiporter that mediates the import of reduced folates or a subset of cyclic dinucleotides, driven by the export of organic anions (PubMed:10787414, PubMed:15337749, PubMed:16115875, PubMed:22554803, PubMed:31126740, PubMed:31511694, PubMed:32276275, PubMed:36071163, PubMed:36265513, PubMed:36575193, PubMed:7826387, PubMed:9041240). Acts as an importer of immunoreactive cyclic dinucleotides, such as cyclic GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol, and its linkage isomer 3'-3'-cGAMP, thus playing a role in triggering larger immune responses (PubMed:31126740, PubMed:31511694, PubMed:36745868). Mechanistically, acts as a secondary active transporter, which exports intracellular organic anions down their concentration gradients to facilitate the uptake of its substrates (PubMed:22554803, PubMed:31126740, PubMed:31511694). Has high affinity for N5-methyltetrahydrofolate, the predominant circulating form of folate (PubMed:10787414, PubMed:14609557, PubMed:22554803, PubMed:36071163, PubMed:36265513, PubMed:36575193). Also mediates the import of antifolate drug methotrexate (PubMed:22554803, PubMed:36071163, PubMed:7615551, PubMed:7641195, PubMed:9767079). 5-amino-4-imidazolecarboxamide riboside (AICAR), when phosphorylated to AICAR monophosphate, can serve as an organic anion for antiporter activity (PubMed:22554803). {ECO:0000269|PubMed:10787414, ECO:0000269|PubMed:14609557, ECO:0000269|PubMed:15337749, ECO:0000269|PubMed:16115875, ECO:0000269|PubMed:22554803, ECO:0000269|PubMed:31126740, ECO:0000269|PubMed:31511694, ECO:0000269|PubMed:32276275, ECO:0000269|PubMed:36071163, ECO:0000269|PubMed:36265513, ECO:0000269|PubMed:36575193, ECO:0000269|PubMed:36745868, ECO:0000269|PubMed:7615551, ECO:0000269|PubMed:7641195, ECO:0000269|PubMed:7826387, ECO:0000269|PubMed:9041240, ECO:0000269|PubMed:9767079}. |
P43403 | ZAP70 | S599 | ochoa | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P46013 | MKI67 | S308 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S866 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1546 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1628 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1994 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46379 | BAG6 | S100 | ochoa | Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) | ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}. |
P46777 | RPL5 | S172 | ochoa | Large ribosomal subunit protein uL18 (60S ribosomal protein L5) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}. |
P46821 | MAP1B | S1175 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48651 | PTDSS1 | S425 | ochoa | Phosphatidylserine synthase 1 (PSS-1) (PtdSer synthase 1) (EC 2.7.8.29) (Serine-exchange enzyme I) | Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine (PubMed:19014349, PubMed:24241535). Catalyzes mainly the conversion of phosphatidylcholine (PubMed:19014349, PubMed:24241535). Also converts, in vitro and to a lesser extent, phosphatidylethanolamine (PubMed:19014349, PubMed:24241535). {ECO:0000269|PubMed:19014349, ECO:0000269|PubMed:24241535}. |
P49321 | NASP | S397 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49773 | HINT1 | S107 | psp | Adenosine 5'-monophosphoramidase HINT1 (EC 3.9.1.-) (Desumoylating isopeptidase HINT1) (EC 3.4.22.-) (Histidine triad nucleotide-binding protein 1) (Protein kinase C inhibitor 1) (Protein kinase C-interacting protein 1) (PKCI-1) | Exhibits adenosine 5'-monophosphoramidase activity, hydrolyzing purine nucleotide phosphoramidates with a single phosphate group such as adenosine 5'monophosphoramidate (AMP-NH2) to yield AMP and NH2 (PubMed:15703176, PubMed:16835243, PubMed:17217311, PubMed:17337452, PubMed:22329685, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Hydrolyzes adenosine 5'monophosphomorpholidate (AMP-morpholidate) and guanosine 5'monophosphomorpholidate (GMP-morpholidate) (PubMed:15703176, PubMed:16835243). Hydrolyzes lysyl-AMP (AMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) generated by lysine tRNA ligase, as well as Met-AMP, His-AMP and Asp-AMP, lysyl-GMP (GMP-N-epsilon-(N-alpha-acetyl lysine methyl ester)) and AMP-N-alanine methyl ester (PubMed:15703176, PubMed:17337452, PubMed:22329685). Hydrolyzes 3-indolepropionic acyl-adenylate, tryptamine adenosine phosphoramidate monoester and other fluorogenic purine nucleoside tryptamine phosphoramidates in vitro (PubMed:17217311, PubMed:17337452, PubMed:23614568, PubMed:28691797, PubMed:29787766, PubMed:31990367). Can also convert adenosine 5'-O-phosphorothioate and guanosine 5'-O-phosphorothioate to the corresponding nucleoside 5'-O-phosphates with concomitant release of hydrogen sulfide (PubMed:30772266). In addition, functions as scaffolding protein that modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex and by the complex formed with MITF and CTNNB1 (PubMed:16014379, PubMed:22647378). Modulates p53/TP53 levels and p53/TP53-mediated apoptosis (PubMed:16835243). Modulates proteasomal degradation of target proteins by the SCF (SKP2-CUL1-F-box protein) E3 ubiquitin-protein ligase complex (PubMed:19112177). Also exhibits SUMO-specific isopeptidase activity, deconjugating SUMO1 from RGS17 (PubMed:31088288). Deconjugates SUMO1 from RANGAP1 (By similarity). {ECO:0000250|UniProtKB:P80912, ECO:0000269|PubMed:15703176, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16835243, ECO:0000269|PubMed:17217311, ECO:0000269|PubMed:17337452, ECO:0000269|PubMed:19112177, ECO:0000269|PubMed:22329685, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:23614568, ECO:0000269|PubMed:28691797, ECO:0000269|PubMed:29787766, ECO:0000269|PubMed:30772266, ECO:0000269|PubMed:31088288, ECO:0000269|PubMed:31990367}. |
P49792 | RANBP2 | S1764 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49796 | RGS3 | S423 | ochoa | Regulator of G-protein signaling 3 (RGP3) (RGS3) | Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}. |
P50148 | GNAQ | S198 | ochoa | Guanine nucleotide-binding protein G(q) subunit alpha (EC 3.6.5.-) (Guanine nucleotide-binding protein alpha-q) | Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades (PubMed:37991948). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state (PubMed:37991948). Signaling by an activated GPCR promotes GDP release and GTP binding (PubMed:37991948). The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal (PubMed:37991948). Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins (PubMed:37991948). Signaling is mediated via phospholipase C-beta-dependent inositol lipid hydrolysis for signal propagation: activates phospholipase C-beta: following GPCR activation, GNAQ activates PLC-beta (PLCB1, PLCB2, PLCB3 or PLCB4), leading to production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:37991948). Required for platelet activation (By similarity). Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity (By similarity). Regulates chemotaxis of BM-derived neutrophils and dendritic cells (in vitro) (By similarity). Transduces FFAR4 signaling in response to long-chain fatty acids (LCFAs) (PubMed:27852822). Together with GNA11, required for heart development (By similarity). {ECO:0000250|UniProtKB:P21279, ECO:0000269|PubMed:27852822, ECO:0000269|PubMed:37991948}. |
P52272 | HNRNPM | S528 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52272 | HNRNPM | S575 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P52597 | HNRNPF | S32 | ochoa | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
P52630 | STAT2 | S381 | psp | Signal transducer and activator of transcription 2 (p113) | Signal transducer and activator of transcription that mediates signaling by type I interferons (IFN-alpha and IFN-beta). Following type I IFN binding to cell surface receptors, Jak kinases (TYK2 and JAK1) are activated, leading to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize, associate with IRF9/ISGF3G to form a complex termed ISGF3 transcription factor, that enters the nucleus. ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of interferon stimulated genes, which drive the cell in an antiviral state (PubMed:23391734, PubMed:9020188). In addition, also has a negative feedback regulatory role in the type I interferon signaling by recruiting USP18 to the type I IFN receptor subunit IFNAR2 thereby mitigating the response to type I IFNs (PubMed:28165510). Acts as a regulator of mitochondrial fission by modulating the phosphorylation of DNM1L at 'Ser-616' and 'Ser-637' which activate and inactivate the GTPase activity of DNM1L respectively (PubMed:23391734, PubMed:26122121, PubMed:9020188). {ECO:0000269|PubMed:23391734, ECO:0000269|PubMed:26122121, ECO:0000269|PubMed:28165510, ECO:0000269|PubMed:31836668, ECO:0000269|PubMed:32092142, ECO:0000269|PubMed:9020188}. |
P54132 | BLM | S580 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54762 | EPHB1 | S774 | ochoa | Ephrin type-B receptor 1 (EC 2.7.10.1) (ELK) (EPH tyrosine kinase 2) (EPH-like kinase 6) (EK6) (hEK6) (Neuronally-expressed EPH-related tyrosine kinase) (NET) (Tyrosine-protein kinase receptor EPH-2) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Cognate/functional ephrin ligands for this receptor include EFNB1, EFNB2 and EFNB3. During nervous system development, regulates retinal axon guidance redirecting ipsilaterally ventrotemporal retinal ganglion cells axons at the optic chiasm midline. This probably requires repulsive interaction with EFNB2. In the adult nervous system together with EFNB3, regulates chemotaxis, proliferation and polarity of the hippocampus neural progenitors. In addition to its role in axon guidance also plays an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and synapse formation. May also regulate angiogenesis. More generally, may play a role in targeted cell migration and adhesion. Upon activation by EFNB1 and probably other ephrin-B ligands activates the MAPK/ERK and the JNK signaling cascades to regulate cell migration and adhesion respectively. Involved in the maintenance of the pool of satellite cells (muscle stem cells) by promoting their self-renewal and reducing their activation and differentiation (By similarity). {ECO:0000250|UniProtKB:Q8CBF3, ECO:0000269|PubMed:12223469, ECO:0000269|PubMed:12925710, ECO:0000269|PubMed:18034775, ECO:0000269|PubMed:9430661, ECO:0000269|PubMed:9499402}. |
P54920 | NAPA | S24 | ochoa | Alpha-soluble NSF attachment protein (SNAP-alpha) (N-ethylmaleimide-sensitive factor attachment protein alpha) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus (Probable). Together with GNA12 promotes CDH5 localization to plasma membrane (PubMed:15980433). {ECO:0000269|PubMed:15980433, ECO:0000305}. |
P55197 | MLLT10 | S302 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P55317 | FOXA1 | S355 | ochoa | Hepatocyte nuclear factor 3-alpha (HNF-3-alpha) (HNF-3A) (Forkhead box protein A1) (Transcription factor 3A) (TCF-3A) | Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). Proposed to play a role in translating the epigenetic signatures into cell type-specific enhancer-driven transcriptional programs. Its differential recruitment to chromatin is dependent on distribution of histone H3 methylated at 'Lys-5' (H3K4me2) in estrogen-regulated genes. Involved in the development of multiple endoderm-derived organ systems such as liver, pancreas, lung and prostate; FOXA1 and FOXA2 seem to have at least in part redundant roles (By similarity). Modulates the transcriptional activity of nuclear hormone receptors. Is involved in ESR1-mediated transcription; required for ESR1 binding to the NKX2-1 promoter in breast cancer cells; binds to the RPRM promoter and is required for the estrogen-induced repression of RPRM. Involved in regulation of apoptosis by inhibiting the expression of BCL2. Involved in cell cycle regulation by activating expression of CDKN1B, alone or in conjunction with BRCA1. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis. {ECO:0000250, ECO:0000269|PubMed:16087863, ECO:0000269|PubMed:16331276, ECO:0000269|PubMed:18358809, ECO:0000269|PubMed:19127412, ECO:0000269|PubMed:19917725}. |
P55786 | NPEPPS | S745 | ochoa | Puromycin-sensitive aminopeptidase (PSA) (EC 3.4.11.14) (Cytosol alanyl aminopeptidase) (AAP-S) | Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. {ECO:0000269|PubMed:10978616, ECO:0000269|PubMed:11062501, ECO:0000269|PubMed:17154549, ECO:0000269|PubMed:17318184, ECO:0000269|PubMed:19917696}. |
P56537 | EIF6 | S174 | ochoa|psp | Eukaryotic translation initiation factor 6 (eIF-6) (B(2)GCN homolog) (B4 integrin interactor) (CAB) (p27(BBP)) | Binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit to form the 80S initiation complex in the cytoplasm (PubMed:10085284, PubMed:14654845, PubMed:21536732, PubMed:32669547). Behaves as a stimulatory translation initiation factor downstream insulin/growth factors. Is also involved in ribosome biogenesis. Associates with pre-60S subunits in the nucleus and is involved in its nuclear export. Cytoplasmic release of TIF6 from 60S subunits and nuclear relocalization is promoted by a RACK1 (RACK1)-dependent protein kinase C activity (PubMed:10085284, PubMed:14654845, PubMed:21536732). In tissues responsive to insulin, controls fatty acid synthesis and glycolysis by exerting translational control of adipogenic transcription factors such as CEBPB, CEBPD and ATF4 that have G/C rich or uORF in their 5'UTR. Required for ROS-dependent megakaryocyte maturation and platelets formation, controls the expression of mitochondrial respiratory chain genes involved in reactive oxygen species (ROS) synthesis (By similarity). Involved in miRNA-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:17507929). Modulates cell cycle progression and global translation of pre-B cells, its activation seems to be rate-limiting in tumorigenesis and tumor growth (By similarity). {ECO:0000255|HAMAP-Rule:MF_03132, ECO:0000269|PubMed:10085284, ECO:0000269|PubMed:14654845, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:21536732, ECO:0000269|PubMed:32669547}. |
P56856 | CLDN18 | S214 | ochoa | Claudin-18 | Involved in alveolar fluid homeostasis via regulation of alveolar epithelial tight junction composition and therefore ion transport and solute permeability, potentially via downstream regulation of the actin cytoskeleton organization and beta-2-adrenergic signaling (By similarity). Required for lung alveolarization and maintenance of the paracellular alveolar epithelial barrier (By similarity). Acts to maintain epithelial progenitor cell proliferation and organ size, via regulation of YAP1 localization away from the nucleus and thereby restriction of YAP1 target gene transcription (By similarity). Acts as a negative regulator of RANKL-induced osteoclast differentiation, potentially via relocation of TJP2/ZO-2 away from the nucleus, subsequently involved in bone resorption in response to calcium deficiency (By similarity). Mediates the osteoprotective effects of estrogen, potentially via acting downstream of estrogen signaling independently of RANKL signaling pathways (By similarity). {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A1]: Involved in the maintenance of homeostasis of the alveolar microenvironment via regulation of pH and subsequent T-cell activation in the alveolar space, is therefore indirectly involved in limiting C.neoformans infection. {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A2]: Required for the formation of the gastric paracellular barrier via its role in tight junction formation, thereby involved in the response to gastric acidification. {ECO:0000250|UniProtKB:P56857}. |
P57764 | GSDMD | S201 | ochoa | Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] | [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}. |
P61026 | RAB10 | S181 | ochoa | Ras-related protein Rab-10 (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:21248164). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:21248164). That Rab is mainly involved in the biosynthetic transport of proteins from the Golgi to the plasma membrane (PubMed:21248164). Regulates, for instance, SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane (By similarity). In parallel, it regulates the transport of TLR4, a toll-like receptor to the plasma membrane and therefore may be important for innate immune response (By similarity). Also plays a specific role in asymmetric protein transport to the plasma membrane (PubMed:16641372). In neurons, it is involved in axonogenesis through regulation of vesicular membrane trafficking toward the axonal plasma membrane (By similarity). In epithelial cells, it regulates transport from the Golgi to the basolateral membrane (PubMed:16641372). May play a role in the basolateral recycling pathway and in phagosome maturation (By similarity). May play a role in endoplasmic reticulum dynamics and morphology controlling tubulation along microtubules and tubules fusion (PubMed:23263280). Together with LRRK2, RAB8A, and RILPL1, it regulates ciliogenesis (PubMed:30398148). When phosphorylated by LRRK2 on Thr-73, binds RILPL1 and inhibits ciliogenesis (PubMed:30398148). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation where it promotes the extracellular release of lysosomal content through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P24409, ECO:0000250|UniProtKB:P61027, ECO:0000269|PubMed:16641372, ECO:0000269|PubMed:21248164, ECO:0000269|PubMed:23263280, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}.; FUNCTION: (Microbial infection) Upon Legionella pneumophila infection promotes endoplasmic reticulum recruitment and bacterial replication. Plays a role in remodeling the Legionella-containing vacuole (LCV) into an endoplasmic reticulum-like vacuole. {ECO:0000269|PubMed:31540829}. |
P61244 | MAX | S118 | ochoa | Protein max (Class D basic helix-loop-helix protein 4) (bHLHd4) (Myc-associated factor X) | Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MYC or MAD which recognizes the core sequence 5'-CAC[GA]TG-3'. The MYC:MAX complex is a transcriptional activator, whereas the MAD:MAX complex is a repressor. May repress transcription via the recruitment of a chromatin remodeling complex containing H3 'Lys-9' histone methyltransferase activity. Represses MYC transcriptional activity from E-box elements. {ECO:0000269|PubMed:26070438}. |
P61313 | RPL15 | S97 | ochoa | Large ribosomal subunit protein eL15 (60S ribosomal protein L15) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P62873 | GNB1 | S31 | ochoa | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (Transducin beta chain 1) | Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems (PubMed:29925951, PubMed:33762731, PubMed:34239069, PubMed:35610220, PubMed:35714614, PubMed:35835867, PubMed:36087581, PubMed:36989299, PubMed:37327704, PubMed:37935376, PubMed:37935377, PubMed:37963465, PubMed:37991948, PubMed:38168118, PubMed:38552625). The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (PubMed:29925951, PubMed:33762731, PubMed:34239069, PubMed:35610220, PubMed:35714614, PubMed:35835867, PubMed:36087581, PubMed:36989299, PubMed:37327704, PubMed:37935376, PubMed:37935377, PubMed:37963465, PubMed:38168118, PubMed:38552625). {ECO:0000269|PubMed:29925951, ECO:0000269|PubMed:33762731, ECO:0000269|PubMed:34239069, ECO:0000269|PubMed:35610220, ECO:0000269|PubMed:35714614, ECO:0000269|PubMed:35835867, ECO:0000269|PubMed:36087581, ECO:0000269|PubMed:36989299, ECO:0000269|PubMed:37327704, ECO:0000269|PubMed:37935376, ECO:0000269|PubMed:37935377, ECO:0000269|PubMed:37963465, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:38168118, ECO:0000269|PubMed:38552625}. |
P62937 | PPIA | S99 | ochoa | Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed] | Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (PubMed:2001362, PubMed:20676357, PubMed:21245143, PubMed:21593166, PubMed:25678563). Exerts a strong chemotactic effect on leukocytes partly through activation of one of its membrane receptors BSG/CD147, initiating a signaling cascade that culminates in MAPK/ERK activation (PubMed:11943775, PubMed:21245143). Activates endothelial cells (ECs) in a pro-inflammatory manner by stimulating activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases and by inducing expression of adhesion molecules including SELE and VCAM1 (PubMed:15130913). Induces apoptosis in ECs by promoting the FOXO1-dependent expression of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). In response to oxidative stress, initiates proapoptotic and antiapoptotic signaling in ECs via activation of NF-kappa-B and AKT1 and up-regulation of antiapoptotic protein BCL2 (PubMed:23180369). Negatively regulates MAP3K5/ASK1 kinase activity, autophosphorylation and oxidative stress-induced apoptosis mediated by MAP3K5/ASK1 (PubMed:26095851). Necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and regulates TARDBP binding to RNA UG repeats and TARDBP-dependent expression of HDAC6, ATG7 and VCP which are involved in clearance of protein aggregates (PubMed:25678563). Plays an important role in platelet activation and aggregation (By similarity). Regulates calcium mobilization and integrin ITGA2B:ITGB3 bidirectional signaling via increased ROS production as well as by facilitating the interaction between integrin and the cell cytoskeleton (By similarity). Binds heparan sulfate glycosaminoglycans (PubMed:11943775). Inhibits replication of influenza A virus (IAV) (PubMed:19207730). Inhibits ITCH/AIP4-mediated ubiquitination of matrix protein 1 (M1) of IAV by impairing the interaction of ITCH/AIP4 with M1, followed by the suppression of the nuclear export of M1, and finally reduction of the replication of IAV (PubMed:22347431, PubMed:30328013). {ECO:0000250|UniProtKB:P17742, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:15130913, ECO:0000269|PubMed:19207730, ECO:0000269|PubMed:2001362, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:21245143, ECO:0000269|PubMed:21593166, ECO:0000269|PubMed:22347431, ECO:0000269|PubMed:23180369, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:30328013, ECO:0000269|PubMed:31063815}.; FUNCTION: (Microbial infection) May act as a mediator between human SARS coronavirus nucleoprotein and BSG/CD147 in the process of invasion of host cells by the virus (PubMed:15688292). {ECO:0000269|PubMed:15688292}.; FUNCTION: (Microbial infection) Stimulates RNA-binding ability of HCV NS5A in a peptidyl-prolyl cis-trans isomerase activity-dependent manner. {ECO:0000269|PubMed:21593166}. |
P68363 | TUBA1B | S340 | ochoa | Tubulin alpha-1B chain (EC 3.6.5.-) (Alpha-tubulin ubiquitous) (Tubulin K-alpha-1) (Tubulin alpha-ubiquitous chain) [Cleaved into: Detyrosinated tubulin alpha-1B chain] | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:38305685, PubMed:34996871, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:38305685, PubMed:34996871, PubMed:38609661). Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). {ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
P68371 | TUBB4B | S234 | ochoa | Tubulin beta-4B chain (Tubulin beta-2 chain) (Tubulin beta-2C chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P78316 | NOP14 | S157 | ochoa | Nucleolar protein 14 (Nucleolar complex protein 14) | Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}. |
P78332 | RBM6 | S380 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78369 | CLDN10 | S199 | ochoa | Claudin-10 (Oligodendrocyte-specific protein-like) (OSP-like) | Forms paracellular channels: polymerizes in tight junction strands with cation- and anion-selective channels through the strands, conveying epithelial permeability in a process known as paracellular tight junction permeability. {ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:28686597, ECO:0000269|PubMed:35650657, ECO:0000269|PubMed:36008380}.; FUNCTION: [Isoform 1]: Forms cation-selective paracellular channels. In sweat glands and in the thick ascending limb (TAL) of Henle's loop in kidney, it controls paracellular sodium permeability which is essential for proper sweat production and renal function (PubMed:19383724, PubMed:28686597, PubMed:28771254, PubMed:35650657, PubMed:36008380). {ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:28686597, ECO:0000269|PubMed:28771254, ECO:0000269|PubMed:35650657, ECO:0000269|PubMed:36008380}.; FUNCTION: [Isoform 2]: Forms anion-selective paracellular channels. In renal proximal tubules, it conveys selective chloride over hydrogencarbonate anion permeability which is required for renal chloride reabsorption and salt homeostasis. {ECO:0000250|UniProtKB:Q9Z0S6, ECO:0000269|PubMed:19383724, ECO:0000269|PubMed:36008380}. |
P98160 | HSPG2 | S2986 | ochoa | Basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) (Perlecan) (PLC) [Cleaved into: Endorepellin; LG3 peptide] | Integral component of basement membranes. Component of the glomerular basement membrane (GBM), responsible for the fixed negative electrostatic membrane charge, and which provides a barrier which is both size- and charge-selective. It serves as an attachment substrate for cells. Plays essential roles in vascularization. Critical for normal heart development and for regulating the vascular response to injury. Also required for avascular cartilage development.; FUNCTION: [Endorepellin]: Anti-angiogenic and anti-tumor peptide that inhibits endothelial cell migration, collagen-induced endothelial tube morphogenesis and blood vessel growth in the chorioallantoic membrane. Blocks endothelial cell adhesion to fibronectin and type I collagen. Anti-tumor agent in neovascularization. Interaction with its ligand, integrin alpha2/beta1, is required for the anti-angiogenic properties. Evokes a reduction in phosphorylation of receptor tyrosine kinases via alpha2/beta1 integrin-mediated activation of the tyrosine phosphatase, PTPN6.; FUNCTION: [LG3 peptide]: Has anti-angiogenic properties that require binding of calcium ions for full activity. |
Q00653 | NFKB2 | S115 | psp | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q01167 | FOXK2 | S239 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01995 | TAGLN | S166 | ochoa | Transgelin (22 kDa actin-binding protein) (Protein WS3-10) (Smooth muscle protein 22-alpha) (SM22-alpha) | Actin cross-linking/gelling protein (By similarity). Involved in calcium interactions and contractile properties of the cell that may contribute to replicative senescence. {ECO:0000250}. |
Q02818 | NUCB1 | S320 | ochoa | Nucleobindin-1 (CALNUC) | Major calcium-binding protein of the Golgi which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates alpha subunits of guanine nucleotide-binding proteins (G proteins) (By similarity). {ECO:0000250|UniProtKB:Q0P569, ECO:0000250|UniProtKB:Q63083}. |
Q02952 | AKAP12 | S1712 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03188 | CENPC | S687 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04637 | EIF4G1 | S204 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q04637 | EIF4G1 | S1145 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q08043 | ACTN3 | S768 | ochoa | Alpha-actinin-3 (Alpha-actinin skeletal muscle isoform 3) (F-actin cross-linking protein) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. |
Q08AM6 | VAC14 | S491 | ochoa | Protein VAC14 homolog (Tax1-binding protein 2) | Scaffold protein component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Pentamerizes into a star-shaped structure and nucleates the assembly of the complex. The pentamer binds a single copy each of PIKFYVE and FIG4 and coordinates both PIKfyve kinase activity and FIG4 phosphatase activity, being required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:33098764). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes. {ECO:0000269|PubMed:15542851, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:33098764}. |
Q09666 | AHNAK | S1802 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5289 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5318 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5332 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S5589 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q13085 | ACACA | S104 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13136 | PPFIA1 | S839 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13283 | G3BP1 | S39 | ochoa | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
Q13480 | GAB1 | S637 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q13492 | PICALM | S565 | ochoa | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) | Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}. |
Q13526 | PIN1 | S38 | ochoa | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
Q13526 | PIN1 | S138 | psp | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
Q13873 | BMPR2 | S818 | ochoa | Bone morphogenetic protein receptor type-2 (BMP type-2 receptor) (BMPR-2) (EC 2.7.11.30) (Bone morphogenetic protein receptor type II) (BMP type II receptor) (BMPR-II) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Can also mediate signaling through the activation of the p38MAPK cascade (PubMed:12045205). Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. Promotes signaling also by binding to activin A/INHBA (PubMed:24018044). {ECO:0000250|UniProtKB:O35607, ECO:0000269|PubMed:12045205, ECO:0000269|PubMed:24018044}. |
Q13885 | TUBB2A | S234 | ochoa | Tubulin beta-2A chain (Tubulin beta class IIa) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q14004 | CDK13 | S1022 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14126 | DSG2 | S1068 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14156 | EFR3A | S415 | ochoa | Protein EFR3 homolog A (Protein EFR3-like) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:25608530, PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3A probably acts as the membrane-anchoring component (PubMed:23229899). Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect (PubMed:25380825). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:25380825, ECO:0000269|PubMed:25608530, ECO:0000305}. |
Q14157 | UBAP2L | S337 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14247 | CTTN | S113 | ochoa|psp | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14247 | CTTN | S150 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14247 | CTTN | S261 | ochoa|psp | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14247 | CTTN | S298 | ochoa|psp | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14315 | FLNC | S379 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S1637 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14315 | FLNC | S2428 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14511 | NEDD9 | S333 | ochoa | Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] | Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}. |
Q14676 | MDC1 | S1669 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14D04 | VEPH1 | S476 | ochoa | Ventricular zone-expressed PH domain-containing protein homolog 1 (Protein melted) | Interacts with TGF-beta receptor type-1 (TGFBR1) and inhibits dissociation of activated SMAD2 from TGFBR1, impeding its nuclear accumulation and resulting in impaired TGF-beta signaling. May also affect FOXO, Hippo and Wnt signaling. {ECO:0000269|PubMed:26039994}. |
Q15042 | RAB3GAP1 | S537 | ochoa | Rab3 GTPase-activating protein catalytic subunit (RAB3 GTPase-activating protein 130 kDa subunit) (Rab3-GAP p130) (Rab3-GAP) | Catalytic subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:10859313, PubMed:24891604, PubMed:9030515). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (PubMed:10859313). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (PubMed:15696165). The Rab3GAP complex, acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (PubMed:15696165, PubMed:23420520). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (PubMed:9030515, PubMed:9852129). {ECO:0000269|PubMed:10859313, ECO:0000269|PubMed:15696165, ECO:0000269|PubMed:23420520, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9030515, ECO:0000269|PubMed:9852129}. |
Q15274 | QPRT | S42 | ochoa | Nicotinate-nucleotide pyrophosphorylase [carboxylating] (EC 2.4.2.19) (Quinolinate phosphoribosyltransferase [decarboxylating]) (QAPRTase) (QPRTase) | Involved in the catabolism of quinolinic acid (QA). {ECO:0000269|PubMed:17868694, ECO:0000269|PubMed:24038671, ECO:0000269|PubMed:9473669}. |
Q15417 | CNN3 | S254 | ochoa | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q15642 | TRIP10 | S304 | ochoa | Cdc42-interacting protein 4 (Protein Felic) (Salt tolerant protein) (hSTP) (Thyroid receptor-interacting protein 10) (TR-interacting protein 10) (TRIP-10) | Required for translocation of GLUT4 to the plasma membrane in response to insulin signaling (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by recruiting WASL/N-WASP which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Required for the formation of podosomes, actin-rich adhesion structures specific to monocyte-derived cells. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:11069762, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391}. |
Q15648 | MED1 | S887 | psp | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15653 | NFKBIB | S313 | psp | NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) | Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation. |
Q15654 | TRIP6 | S102 | ochoa | Thyroid receptor-interacting protein 6 (TR-interacting protein 6) (TRIP-6) (Opa-interacting protein 1) (OIP-1) (Zyxin-related protein 1) (ZRP-1) | Relays signals from the cell surface to the nucleus to weaken adherens junction and promote actin cytoskeleton reorganization and cell invasiveness. Involved in lysophosphatidic acid-induced cell adhesion and migration. Acts as a transcriptional coactivator for NF-kappa-B and JUN, and mediates the transrepression of these transcription factors induced by glucocorticoid receptor. {ECO:0000269|PubMed:14688263, ECO:0000269|PubMed:15489293, ECO:0000269|PubMed:16624523, ECO:0000269|PubMed:19017743}. |
Q15758 | SLC1A5 | S27 | ochoa | Neutral amino acid transporter B(0) (ATB(0)) (Baboon M7 virus receptor) (RD114/simian type D retrovirus receptor) (Sodium-dependent neutral amino acid transporter type 2) (Solute carrier family 1 member 5) | Sodium-coupled antiporter of neutral amino acids. In a tri-substrate transport cycle, exchanges neutral amino acids between the extracellular and intracellular compartments, coupled to the inward cotransport of at least one sodium ion (PubMed:17094966, PubMed:23756778, PubMed:26492990, PubMed:29872227, PubMed:34741534, PubMed:8702519). The preferred substrate is the essential amino acid L-glutamine, a precursor for biosynthesis of proteins, nucleotides and amine sugars as well as an alternative fuel for mitochondrial oxidative phosphorylation. Exchanges L-glutamine with other neutral amino acids such as L-serine, L-threonine and L-asparagine in a bidirectional way. Provides L-glutamine to proliferating stem and activated cells driving the metabolic switch toward cell differentiation (PubMed:23756778, PubMed:24953180). The transport cycle is usually pH-independent, with the exception of L-glutamate. Transports extracellular L-glutamate coupled to the cotransport of one proton and one sodium ion in exchange for intracellular L-glutamine counter-ion. May provide for L-glutamate uptake in glial cells regulating glutamine/glutamate cycle in the nervous system (PubMed:32733894). Can transport D-amino acids. Mediates D-serine release from the retinal glia potentially affecting NMDA receptor function in retinal neurons (PubMed:17094966). Displays sodium- and amino acid-dependent but uncoupled channel-like anion conductance with a preference SCN(-) >> NO3(-) > I(-) > Cl(-) (By similarity). Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). {ECO:0000250|UniProtKB:D3ZJ25, ECO:0000269|PubMed:10708449, ECO:0000269|PubMed:17094966, ECO:0000269|PubMed:23492904, ECO:0000269|PubMed:23756778, ECO:0000269|PubMed:24953180, ECO:0000269|PubMed:26492990, ECO:0000269|PubMed:29872227, ECO:0000269|PubMed:32733894, ECO:0000269|PubMed:34741534, ECO:0000269|PubMed:8702519}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Feline endogenous virus RD114. {ECO:0000269|PubMed:10051606, ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for Baboon M7 endogenous virus. {ECO:0000269|PubMed:10196349}.; FUNCTION: (Microbial infection) Acts as a cell surface receptor for type D simian retroviruses. {ECO:0000269|PubMed:10196349}. |
Q15772 | SPEG | S2130 | ochoa | Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) | Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells. |
Q16576 | RBBP7 | S95 | ochoa | Histone-binding protein RBBP7 (Histone acetyltransferase type B subunit 2) (Nucleosome-remodeling factor subunit RBAP46) (Retinoblastoma-binding protein 7) (RBBP-7) (Retinoblastoma-binding protein p46) | Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; and the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
Q16625 | OCLN | S378 | ochoa | Occludin | May play a role in the formation and regulation of the tight junction (TJ) paracellular permeability barrier. It is able to induce adhesion when expressed in cells lacking tight junctions. {ECO:0000269|PubMed:19114660}.; FUNCTION: (Microbial infection) Acts as a coreceptor for hepatitis C virus (HCV) in hepatocytes. {ECO:0000269|PubMed:19182773, ECO:0000269|PubMed:20375010}. |
Q2M1P5 | KIF7 | S466 | ochoa | Kinesin-like protein KIF7 | Essential for hedgehog signaling regulation: acts both as a negative and positive regulator of sonic hedgehog (Shh) and Indian hedgehog (Ihh) pathways, acting downstream of SMO, through both SUFU-dependent and -independent mechanisms (PubMed:21633164). Involved in the regulation of microtubular dynamics. Required for proper organization of the ciliary tip and control of ciliary localization of SUFU-GLI2 complexes (By similarity). Required for localization of GLI3 to cilia in response to Shh. Negatively regulates Shh signaling by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates Shh signaling by preventing the processing of the transcription factor GLI3 into its repressor form. In keratinocytes, promotes the dissociation of SUFU-GLI2 complexes, GLI2 nuclear translocation and Shh signaling activation (By similarity). Involved in the regulation of epidermal differentiation and chondrocyte development (By similarity). {ECO:0000250|UniProtKB:B7ZNG0, ECO:0000269|PubMed:21633164}. |
Q32NB8 | PGS1 | S102 | ochoa | CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, mitochondrial (EC 2.7.8.5) (Phosphatidylglycerophosphate synthase 1) (PGP synthase 1) | Functions in the biosynthesis of the anionic phospholipids phosphatidylglycerol and cardiolipin. {ECO:0000250}. |
Q460N5 | PARP14 | S1324 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q460N5 | PARP14 | S1396 | ochoa | Protein mono-ADP-ribosyltransferase PARP14 (EC 2.4.2.-) (ADP-ribosyltransferase diphtheria toxin-like 8) (ARTD8) (B aggressive lymphoma protein 2) (Poly [ADP-ribose] polymerase 14) (PARP-14) | ADP-ribosyltransferase that mediates mono-ADP-ribosylation of glutamate residues on target proteins (PubMed:16061477, PubMed:18851833, PubMed:25043379, PubMed:27796300). In contrast to PARP1 and PARP2, it is not able to mediate poly-ADP-ribosylation (PubMed:25043379). Has been shown to catalyze the mono-ADP-ribosylation of STAT1 at 'Glu-657' and 'Glu-705', thus decreasing STAT1 phosphorylation which negatively regulates pro-inflammatory cytokine production in macrophages in response to IFNG stimulation (PubMed:27796300). However, the role of ADP-ribosylation in the prevention of STAT1 phosphorylation has been called into question and it has been suggested that the inhibition of phosphorylation may be the result of sumoylation of STAT1 'Lys-703' (PubMed:29858569). Mono-ADP-ribosylates STAT6; enhancing STAT6-dependent transcription (PubMed:27796300). In macrophages, positively regulates MRC1 expression in response to IL4 stimulation by promoting STAT6 phosphorylation (PubMed:27796300). Mono-ADP-ribosylates PARP9 (PubMed:27796300). {ECO:0000269|PubMed:16061477, ECO:0000269|PubMed:18851833, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27796300, ECO:0000305|PubMed:29858569}. |
Q4KMP7 | TBC1D10B | S248 | ochoa | TBC1 domain family member 10B (Rab27A-GAP-beta) | Acts as a GTPase-activating protein for RAB3A, RAB22A, RAB27A, and RAB35. Does not act on RAB2A and RAB6A. {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:19077034}. |
Q4VC05 | BCL7A | S164 | ochoa | B-cell CLL/lymphoma 7 protein family member A | None |
Q53GG5 | PDLIM3 | S273 | ochoa | PDZ and LIM domain protein 3 (Actinin-associated LIM protein) (Alpha-actinin-2-associated LIM protein) | May play a role in the organization of actin filament arrays within muscle cells. {ECO:0000250}. |
Q53HL2 | CDCA8 | S250 | ochoa | Borealin (Cell division cycle-associated protein 8) (Dasra-B) (hDasra-B) (Pluripotent embryonic stem cell-related gene 3 protein) | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Major effector of the TTK kinase in the control of attachment-error-correction and chromosome alignment. {ECO:0000269|PubMed:15249581, ECO:0000269|PubMed:15260989, ECO:0000269|PubMed:16571674, ECO:0000269|PubMed:18243099}. |
Q562E7 | WDR81 | S698 | ochoa | WD repeat-containing protein 81 | Functions as a negative regulator of the PI3 kinase/PI3K activity associated with endosomal membranes via BECN1, a core subunit of the PI3K complex. By modifying the phosphatidylinositol 3-phosphate/PtdInsP3 content of endosomal membranes may regulate endosome fusion, recycling, sorting and early to late endosome transport (PubMed:26783301). It is for instance, required for the delivery of cargos like BST2/tetherin from early to late endosome and thereby participates indirectly to their degradation by the lysosome (PubMed:27126989). May also play a role in aggrephagy, the macroautophagic degradation of ubiquitinated protein aggregates. In this process, may regulate the interaction of SQSTM1 with ubiquitinated proteins and also recruit MAP1LC3C (PubMed:28404643). May also be involved in maintenance of normal mitochondrial structure and organization (By similarity). {ECO:0000250|UniProtKB:Q5ND34, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:27126989, ECO:0000269|PubMed:28404643}. |
Q5PRF9 | SAMD4B | S555 | ochoa | Protein Smaug homolog 2 (Smaug 2) (hSmaug2) (Sterile alpha motif domain-containing protein 4B) (SAM domain-containing protein 4B) | Has transcriptional repressor activity. Overexpression inhibits the transcriptional activities of AP-1, p53/TP53 and CDKN1A. {ECO:0000269|PubMed:20510020}. |
Q5T011 | SZT2 | S2143 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T6F2 | UBAP2 | S956 | ochoa | Ubiquitin-associated protein 2 (UBAP-2) (RNA polymerase II degradation factor UBAP2) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). May promote the degradation of ANXA2 (PubMed:27121050). {ECO:0000269|PubMed:27121050, ECO:0000269|PubMed:35633597}. |
Q5XKK7 | FAM219B | S122 | ochoa | Protein FAM219B | None |
Q68CZ2 | TNS3 | S337 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68DK7 | MSL1 | S201 | ochoa | Male-specific lethal 1 homolog (MSL-1) (Male-specific lethal 1-like 1) (MSL1-like 1) (Male-specific lethal-1 homolog 1) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16227571, PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). Within the MSL complex, acts as a scaffold to tether MSL3 and KAT8 together for enzymatic activity regulation (PubMed:22547026). Greatly enhances MSL2 E3 ubiquitin ligase activity, promoting monoubiquitination of histone H2B at 'Lys-34' (H2BK34Ub) (PubMed:21726816, PubMed:30930284). This modification in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). {ECO:0000250|UniProtKB:Q6PDM1, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q69YQ0 | SPECC1L | S55 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6P4E1 | GOLM2 | S374 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6W2J9 | BCOR | S389 | ochoa | BCL-6 corepressor (BCoR) | Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}. |
Q6XZF7 | DNMBP | S516 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZMZ0 | RNF19B | S561 | ochoa | E3 ubiquitin-protein ligase RNF19B (EC 2.3.2.31) (IBR domain-containing protein 3) (Natural killer lytic-associated molecule) (RING finger protein 19B) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as UCKL1 (PubMed:16709802, PubMed:27485036). Involved in the cytolytic activity of natural killer cells and cytotoxic T-cells (PubMed:10438909). Protects against staurosporin-induced cell death (PubMed:27485036). {ECO:0000269|PubMed:10438909, ECO:0000269|PubMed:16709802, ECO:0000269|PubMed:27485036}. |
Q6ZNJ1 | NBEAL2 | S1363 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZRV2 | FAM83H | S585 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZU35 | CRACD | S697 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q709C8 | VPS13C | S2486 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q7L0J3 | SV2A | S411 | psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L591 | DOK3 | S383 | ochoa | Docking protein 3 (Downstream of tyrosine kinase 3) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}. |
Q7L5N1 | COPS6 | S60 | psp | COP9 signalosome complex subunit 6 (SGN6) (Signalosome subunit 6) (JAB1-containing signalosome subunit 6) (MOV34 homolog) (Vpr-interacting protein) (hVIP) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Has some glucocorticoid receptor-responsive activity. Stabilizes COP1 through reducing COP1 auto-ubiquitination and decelerating COP1 turnover rate, hence regulates the ubiquitination of COP1 targets. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21625211, ECO:0000269|PubMed:9535219}. |
Q7L9B9 | EEPD1 | S247 | ochoa | Endonuclease/exonuclease/phosphatase family domain-containing protein 1 | None |
Q7Z2W4 | ZC3HAV1 | S335 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z2W4 | ZC3HAV1 | S408 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z4S6 | KIF21A | S853 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z5Q1 | CPEB2 | S314 | ochoa | Cytoplasmic polyadenylation element-binding protein 2 (CPE-BP2) (CPE-binding protein 2) (hCPEB-2) | May play a role in translational regulation of stored mRNAs in transcriptionally inactive haploid spermatids. Binds to poly(U) RNA oligomers (By similarity). Required for cell cycle progression, specifically for the transition from metaphase to anaphase (PubMed:26398195). {ECO:0000250|UniProtKB:Q812E0, ECO:0000269|PubMed:26398195}. |
Q86SQ0 | PHLDB2 | S351 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86TV6 | TTC7B | S677 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q86U44 | METTL3 | S350 | ochoa|psp | N(6)-adenosine-methyltransferase catalytic subunit METTL3 (EC 2.1.1.348) (Methyltransferase-like protein 3) (hMETTL3) (N(6)-adenosine-methyltransferase 70 kDa subunit) (MT-A70) | The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:28297716, PubMed:29348140, PubMed:29506078, PubMed:30428350, PubMed:9409616). In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA destabilization and degradation (PubMed:28637692). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian clock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of hepatic lipid metabolism (PubMed:30428350). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). Also required for oogenesis (By similarity). Involved in the response to DNA damage: in response to ultraviolet irradiation, METTL3 rapidly catalyzes the formation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:28297716). M6A is also required for T-cell homeostasis and differentiation: m6A methylation of transcripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes mRNA destabilization and degradation, promoting T-cell differentiation (By similarity). Inhibits the type I interferon response by mediating m6A methylation of IFNB (PubMed:30559377). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates m6A methylation of Xist RNA, thereby participating in random X inactivation: m6A methylation of Xist leads to target YTHDC1 reader on Xist and promote transcription repression activity of Xist (PubMed:27602518). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). METTL3 mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998). Acts as a positive regulator of mRNA translation independently of the methyltransferase activity: promotes translation by interacting with the translation initiation machinery in the cytoplasm (PubMed:27117702). Its overexpression in a number of cancer cells suggests that it may participate in cancer cell proliferation by promoting mRNA translation (PubMed:27117702). During human coronavirus SARS-CoV-2 infection, adds m6A modifications in SARS-CoV-2 RNA leading to decreased RIGI binding and subsequently dampening the sensing and activation of innate immune responses (PubMed:33961823). {ECO:0000250|UniProtKB:Q8C3P7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26321680, ECO:0000269|PubMed:26593424, ECO:0000269|PubMed:27117702, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:28297716, ECO:0000269|PubMed:28637692, ECO:0000269|PubMed:29348140, ECO:0000269|PubMed:29506078, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:33961823, ECO:0000269|PubMed:9409616}. |
Q86UR5 | RIMS1 | S1414 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86US8 | SMG6 | S267 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86UW6 | N4BP2 | S832 | ochoa | NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) | Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}. |
Q86UX7 | FERMT3 | S478 | ochoa | Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) | Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}. |
Q86VF2 | IGFN1 | S446 | ochoa | Immunoglobulin-like and fibronectin type III domain-containing protein 1 (EEF1A2-binding protein 1) (KY-interacting protein 1) | None |
Q86VP1 | TAX1BP1 | S138 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86X27 | RALGPS2 | S446 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) | Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}. |
Q86X51 | EZHIP | S222 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XP3 | DDX42 | S717 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q8IU60 | DCP2 | S276 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IUD2 | ERC1 | S82 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IWE2 | FAM114A1 | S40 | ochoa | Protein NOXP20 (Nervous system overexpressed protein 20) (Protein FAM114A1) | May play a role in neuronal cell development. {ECO:0000250}. |
Q8IWS0 | PHF6 | S54 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IXS8 | HYCC2 | S488 | ochoa | Hyccin 2 | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. {ECO:0000305|PubMed:26571211}. |
Q8IXT5 | RBM12B | S387 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8IYF3 | TEX11 | S185 | ochoa | Testis-expressed protein 11 (Protein ZIP4 homolog) (ZIP4H) | Regulator of crossing-over during meiosis. Involved in initiation and/or maintenance of chromosome synapsis and formation of crossovers. {ECO:0000250|UniProtKB:Q14AT2}. |
Q8IYI6 | EXOC8 | S147 | ochoa | Exocyst complex component 8 (Exocyst complex 84 kDa subunit) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. |
Q8IYN2 | TCEAL8 | S43 | ochoa | Transcription elongation factor A protein-like 8 (TCEA-like protein 8) (Transcription elongation factor S-II protein-like 8) | May be involved in transcriptional regulation. |
Q8IYS0 | GRAMD1C | S531 | ochoa | Protein Aster-C (GRAM domain-containing protein 1C) | Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) (By similarity). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER (By similarity). Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol (By similarity). In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain (By similarity). At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER (By similarity). {ECO:0000250|UniProtKB:Q8CI52}. |
Q8IZD0 | SAMD14 | S56 | ochoa | Sterile alpha motif domain-containing protein 14 (SAM domain-containing protein 14) | None |
Q8N8K9 | KIAA1958 | S291 | ochoa | Uncharacterized protein KIAA1958 | None |
Q8ND56 | LSM14A | S203 | ochoa | Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) | Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}. |
Q8TAQ2 | SMARCC2 | S745 | ochoa | SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q8TBZ8 | ZNF564 | S183 | ochoa | Zinc finger protein 564 | May be involved in transcriptional regulation. |
Q8TCJ0 | FBXO25 | S178 | psp | F-box only protein 25 | Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. May play a role in accumulation of expanded polyglutamine (polyQ) protein huntingtin (HTT) (By similarity). {ECO:0000250}. |
Q8TDD1 | DDX54 | S788 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TEU7 | RAPGEF6 | S1412 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8WUY3 | PRUNE2 | S2325 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WVV9 | HNRNPLL | S285 | ochoa | Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) (Stromal RNA-regulating factor) | RNA-binding protein that functions as a regulator of alternative splicing for multiple target mRNAs, including PTPRC/CD45 and STAT5A. Required for alternative splicing of PTPRC. {ECO:0000269|PubMed:18669861}. |
Q92530 | PSMF1 | S127 | ochoa | Proteasome inhibitor PI31 subunit (hPI31) | Plays an important role in control of proteasome function. Inhibits the hydrolysis of protein and peptide substrates by the 20S proteasome. Also inhibits the activation of the proteasome by the proteasome regulatory proteins PA700 and PA28. {ECO:0000269|PubMed:10764772}. |
Q92598 | HSPH1 | S88 | ochoa | Heat shock protein 105 kDa (Antigen NY-CO-25) (Heat shock 110 kDa protein) (Heat shock protein family H member 1) | Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release (PubMed:24318877). Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities (By similarity). {ECO:0000250|UniProtKB:Q60446, ECO:0000250|UniProtKB:Q61699, ECO:0000269|PubMed:24318877}. |
Q92793 | CREBBP | S437 | psp | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q969I6 | SLC38A4 | S49 | ochoa | Sodium-coupled neutral amino acid transporter 4 (Amino acid transporter A3) (Na(+)-coupled neutral amino acid transporter 4) (Solute carrier family 38 member 4) (System A amino acid transporter 3) (System N amino acid transporter 3) | Symporter that cotransports neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:11342143, PubMed:19015196, PubMed:33928121). The transport is electrogenic, pH dependent and partially tolerates substitution of Na(+) by Li(+) (PubMed:11414754). Preferentially transports smaller amino acids, such as glycine, L-alanine, L-serine, L-asparagine and L-threonine, followed by L-cysteine, L-histidine, L-proline and L-glutamine and L-methionine (PubMed:11414754, PubMed:33928121). {ECO:0000269|PubMed:11342143, ECO:0000269|PubMed:11414754, ECO:0000269|PubMed:19015196, ECO:0000269|PubMed:33928121}. |
Q96CC6 | RHBDF1 | S136 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96FW1 | OTUB1 | S187 | ochoa | Ubiquitin thioesterase OTUB1 (EC 3.4.19.12) (Deubiquitinating enzyme OTUB1) (OTU domain-containing ubiquitin aldehyde-binding protein 1) (Otubain-1) (hOTU1) (Ubiquitin-specific-processing protease OTUB1) | Hydrolase that can specifically remove 'Lys-48'-linked conjugated ubiquitin from proteins and plays an important regulatory role at the level of protein turnover by preventing degradation (PubMed:12401499, PubMed:12704427, PubMed:14661020, PubMed:23827681). Regulator of T-cell anergy, a phenomenon that occurs when T-cells are rendered unresponsive to antigen rechallenge and no longer respond to their cognate antigen (PubMed:14661020). Acts via its interaction with RNF128/GRAIL, a crucial inductor of CD4 T-cell anergy (PubMed:14661020). Isoform 1 destabilizes RNF128, leading to prevent anergy (PubMed:14661020). In contrast, isoform 2 stabilizes RNF128 and promotes anergy (PubMed:14661020). Surprisingly, it regulates RNF128-mediated ubiquitination, but does not deubiquitinate polyubiquitinated RNF128 (PubMed:14661020). Deubiquitinates estrogen receptor alpha (ESR1) (PubMed:19383985). Mediates deubiquitination of 'Lys-48'-linked polyubiquitin chains, but not 'Lys-63'-linked polyubiquitin chains (PubMed:18954305, PubMed:19211026, PubMed:23827681). Not able to cleave di-ubiquitin (PubMed:18954305, PubMed:23827681). Also capable of removing NEDD8 from NEDD8 conjugates, but with a much lower preference compared to 'Lys-48'-linked ubiquitin (PubMed:18954305, PubMed:23827681). {ECO:0000269|PubMed:12401499, ECO:0000269|PubMed:12704427, ECO:0000269|PubMed:14661020, ECO:0000269|PubMed:18954305, ECO:0000269|PubMed:19211026, ECO:0000269|PubMed:19383985, ECO:0000269|PubMed:23827681}.; FUNCTION: Plays a key non-catalytic role in DNA repair regulation by inhibiting activity of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites (PubMed:20725033, PubMed:22325355). Inhibits RNF168 independently of ubiquitin thioesterase activity by binding and inhibiting UBE2N/UBC13, the E2 partner of RNF168, thereby limiting spreading of 'Lys-63'-linked histone H2A and H2AX marks (PubMed:20725033, PubMed:22325355). Inhibition occurs by binding to free ubiquitin: free ubiquitin acts as an allosteric regulator that increases affinity for UBE2N/UBC13 and disrupts interaction with UBE2V1 (PubMed:20725033, PubMed:22325355). The OTUB1-UBE2N/UBC13-free ubiquitin complex adopts a configuration that mimics a cleaved 'Lys48'-linked di-ubiquitin chain (PubMed:20725033, PubMed:22325355). Acts as a regulator of mTORC1 and mTORC2 complexes (PubMed:29382726, PubMed:35927303). When phosphorylated at Tyr-26, acts as an activator of the mTORC1 complex by mediating deubiquitination of RPTOR via a non-catalytic process: acts by binding and inhibiting the activity of the ubiquitin-conjugating enzyme E2 (UBE2D1/UBCH5A, UBE2W/UBC16 and UBE2N/UBC13), thereby preventing ubiquitination of RPTOR (PubMed:35927303). Can also act as an inhibitor of the mTORC1 and mTORC2 complexes in response to amino acids by mediating non-catalytic deubiquitination of DEPTOR (PubMed:29382726). {ECO:0000269|PubMed:20725033, ECO:0000269|PubMed:22325355, ECO:0000269|PubMed:29382726, ECO:0000269|PubMed:35927303}. |
Q96JZ2 | HSH2D | S251 | ochoa | Hematopoietic SH2 domain-containing protein (Hematopoietic SH2 protein) (Adaptor in lymphocytes of unknown function X) | May be a modulator of the apoptotic response through its ability to affect mitochondrial stability (By similarity). Adapter protein involved in tyrosine kinase and CD28 signaling. Seems to affect CD28-mediated activation of the RE/AP element of the interleukin-2 promoter. {ECO:0000250, ECO:0000269|PubMed:11700021, ECO:0000269|PubMed:12960172, ECO:0000269|PubMed:15284240}. |
Q96K76 | USP47 | S837 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96KQ7 | EHMT2 | S237 | ochoa | Histone-lysine N-methyltransferase EHMT2 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 2) (HLA-B-associated transcript 8) (Histone H3-K9 methyltransferase 3) (H3-K9-HMTase 3) (Lysine N-methyltransferase 1C) (Protein G9a) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also mediates monomethylation of 'Lys-56' of histone H3 (H3K56me1) in G1 phase, leading to promote interaction between histone H3 and PCNA and regulating DNA replication. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. May also methylate histone H1. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Also methylates CDYL, WIZ, ACIN1, DNMT1, HDAC1, ERCC6, KLF12 and itself. {ECO:0000250|UniProtKB:Q9Z148, ECO:0000269|PubMed:11316813, ECO:0000269|PubMed:18438403, ECO:0000269|PubMed:20084102, ECO:0000269|PubMed:20118233, ECO:0000269|PubMed:22387026, ECO:0000269|PubMed:8457211}. |
Q96MG7 | NSMCE3 | S49 | ochoa | Non-structural maintenance of chromosomes element 3 homolog (Non-SMC element 3 homolog) (Hepatocellular carcinoma-associated protein 4) (MAGE-G1 antigen) (Melanoma-associated antigen G1) (Necdin-like protein 2) | Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (PubMed:20864041, PubMed:27427983). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex (PubMed:20864041). May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). {ECO:0000250|UniProtKB:Q9CPR8, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:27427983}. |
Q96PD2 | DCBLD2 | S618 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) | None |
Q96PL5 | ERMAP | S418 | ochoa | Erythroid membrane-associated protein (hERMAP) (Radin blood group antigen) (Scianna blood group antigen) | Possible role as a cell-adhesion or receptor molecule of erythroid cells. |
Q96Q15 | SMG1 | S3570 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96QE2 | SLC2A13 | S47 | ochoa | Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) | H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}. |
Q96QE2 | SLC2A13 | S48 | ochoa | Proton myo-inositol cotransporter (H(+)-myo-inositol cotransporter) (Hmit) (H(+)-myo-inositol symporter) (Solute carrier family 2 member 13) | H(+)-myo-inositol cotransporter (PubMed:11500374). Can also transport related stereoisomers (PubMed:11500374). {ECO:0000269|PubMed:11500374}. |
Q96R06 | SPAG5 | S397 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RI0 | F2RL3 | S366 | ochoa | Proteinase-activated receptor 4 (PAR-4) (Coagulation factor II receptor-like 3) (Thrombin receptor-like 3) | Receptor for activated thrombin or trypsin coupled to G proteins that stimulate phosphoinositide hydrolysis (PubMed:10079109). May play a role in platelets activation (PubMed:10079109). {ECO:0000269|PubMed:10079109}. |
Q96T49 | PPP1R16B | S333 | psp | Protein phosphatase 1 regulatory inhibitor subunit 16B (Ankyrin repeat domain-containing protein 4) (CAAX box protein TIMAP) (TGF-beta-inhibited membrane-associated protein) (hTIMAP) | Regulator of protein phosphatase 1 (PP1) that acts as a positive regulator of pulmonary endothelial cell (EC) barrier function (PubMed:18586956). Involved in the regulation of the PI3K/AKT signaling pathway, angiogenesis and endothelial cell proliferation (PubMed:25007873). Regulates angiogenesis and endothelial cell proliferation through the control of ECE1 dephosphorylation, trafficking and activity (By similarity). Protects the endothelial barrier from lipopolysaccharide (LPS)-induced vascular leakage (By similarity). Involved in the regulation of endothelial cell filopodia extension (By similarity). May be a downstream target for TGF-beta1 signaling cascade in endothelial cells (PubMed:16263087, PubMed:18586956). Involved in PKA-mediated moesin dephosphorylation which is important in EC barrier protection against thrombin stimulation (PubMed:18586956). Promotes the interaction of PPP1CA with RPSA/LAMR1 and in turn facilitates the dephosphorylation of RPSA/LAMR1 (PubMed:16263087). Involved in the dephosphorylation of EEF1A1 (PubMed:26497934). {ECO:0000250|UniProtKB:Q8VHQ3, ECO:0000250|UniProtKB:Q95N27, ECO:0000269|PubMed:16263087, ECO:0000269|PubMed:18586956, ECO:0000269|PubMed:25007873, ECO:0000269|PubMed:26497934}. |
Q99523 | SORT1 | S793 | ochoa|psp | Sortilin (100 kDa NT receptor) (Glycoprotein 95) (Gp95) (Neurotensin receptor 3) (NT3) (NTR3) | Functions as a sorting receptor in the Golgi compartment and as a clearance receptor on the cell surface. Required for protein transport from the Golgi apparatus to the lysosomes by a pathway that is independent of the mannose-6-phosphate receptor (M6PR). Lysosomal proteins bind specifically to the receptor in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex (PubMed:16787399). The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer. Also required for protein transport from the Golgi apparatus to the endosomes. Promotes neuronal apoptosis by mediating endocytosis of the proapoptotic precursor forms of BDNF (proBDNF) and NGFB (proNGFB). Also acts as a receptor for neurotensin. May promote mineralization of the extracellular matrix during osteogenic differentiation by scavenging extracellular LPL. Probably required in adipocytes for the formation of specialized storage vesicles containing the glucose transporter SLC2A4/GLUT4 (GLUT4 storage vesicles, or GSVs). These vesicles provide a stable pool of SLC2A4 and confer increased responsiveness to insulin. May also mediate transport from the endoplasmic reticulum to the Golgi. {ECO:0000269|PubMed:10085125, ECO:0000269|PubMed:11331584, ECO:0000269|PubMed:11390366, ECO:0000269|PubMed:12209882, ECO:0000269|PubMed:12598608, ECO:0000269|PubMed:14657016, ECO:0000269|PubMed:14985763, ECO:0000269|PubMed:15313463, ECO:0000269|PubMed:15930396, ECO:0000269|PubMed:15987945, ECO:0000269|PubMed:16787399, ECO:0000269|PubMed:18817523}. |
Q9BSQ5 | CCM2 | S397 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BTC0 | DIDO1 | S2110 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BVA1 | TUBB2B | S234 | ochoa | Tubulin beta-2B chain | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers (PubMed:23001566, PubMed:26732629, PubMed:28013290). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. Plays a critical role in proper axon guidance in both central and peripheral axon tracts (PubMed:23001566). Implicated in neuronal migration (PubMed:19465910). {ECO:0000269|PubMed:19465910, ECO:0000269|PubMed:23001566, ECO:0000269|PubMed:26732629, ECO:0000269|PubMed:28013290}. |
Q9BXB5 | OSBPL10 | S326 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BXL6 | CARD14 | S498 | ochoa | Caspase recruitment domain-containing protein 14 (CARD-containing MAGUK protein 2) (Carma 2) | Acts as a scaffolding protein that can activate the inflammatory transcription factor NF-kappa-B and p38/JNK MAP kinase signaling pathways. Forms a signaling complex with BCL10 and MALT1, and activates MALT1 proteolytic activity and inflammatory gene expression. MALT1 is indispensable for CARD14-induced activation of NF-kappa-B and p38/JNK MAP kinases (PubMed:11278692, PubMed:21302310, PubMed:27071417, PubMed:27113748). May play a role in signaling mediated by TRAF2, TRAF3 and TRAF6 and protects cells against apoptosis. {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:27071417, ECO:0000269|PubMed:27113748}.; FUNCTION: [Isoform 3]: Not able to activate the inflammatory transcription factor NF-kappa-B and may function as a dominant negative regulator (PubMed:21302310, PubMed:26358359). {ECO:0000269|PubMed:21302310, ECO:0000269|PubMed:26358359}. |
Q9BXT4 | TDRD1 | S685 | ochoa | Tudor domain-containing protein 1 (Cancer/testis antigen 41.1) (CT41.1) | Plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Required for the localization of Piwi proteins to the meiotic nuage. Involved in the piRNA metabolic process by ensuring the entry of correct transcripts into the normal piRNA pool and limiting the entry of cellular transcripts into the piRNA pathway. May act by allowing the recruitment of piRNA biogenesis or loading factors that ensure the correct entry of transcripts and piRNAs into Piwi proteins (By similarity). {ECO:0000250}. |
Q9C0B9 | ZCCHC2 | S764 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9C0C2 | TNKS1BP1 | S1297 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0D6 | FHDC1 | S723 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9GZV5 | WWTR1 | S62 | ochoa | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9GZV5 | WWTR1 | S307 | ochoa | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9GZY8 | MFF | S263 | ochoa | Mitochondrial fission factor | Plays a role in mitochondrial and peroxisomal fission (PubMed:18353969, PubMed:23530241, PubMed:24196833). Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface (PubMed:23530241). May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles (By similarity). {ECO:0000250|UniProtKB:Q4KM98, ECO:0000269|PubMed:18353969, ECO:0000269|PubMed:23530241, ECO:0000269|PubMed:24196833}. |
Q9H0B6 | KLC2 | S537 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H1A4 | ANAPC1 | S46 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1H9 | KIF13A | S1760 | ochoa | Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) | Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}. |
Q9H3R2 | MUC13 | S471 | ochoa | Mucin-13 (MUC-13) (Down-regulated in colon cancer 1) | Epithelial and hemopoietic transmembrane mucin that may play a role in cell signaling. |
Q9H4L5 | OSBPL3 | S30 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H583 | HEATR1 | S1190 | ochoa | HEAT repeat-containing protein 1 (Protein BAP28) (U3 small nucleolar RNA-associated protein 10 homolog) [Cleaved into: HEAT repeat-containing protein 1, N-terminally processed] | Ribosome biogenesis factor; required for recruitment of Myc to nucleoli (PubMed:38225354). Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Involved in neuronal-lineage cell proliferation (PubMed:38225354). {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:38225354}. |
Q9H981 | ACTR8 | S468 | ochoa | Actin-related protein 8 (hArp8) (INO80 complex subunit N) | Plays an important role in the functional organization of mitotic chromosomes. Exhibits low basal ATPase activity, and unable to polymerize.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Required for the recruitment of INO80 (and probably the INO80 complex) to sites of DNA damage. Strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting it may act as a nucleosome recognition module within the complex. |
Q9H9E3 | COG4 | S523 | ochoa | Conserved oligomeric Golgi complex subunit 4 (COG complex subunit 4) (Component of oligomeric Golgi complex 4) | Required for normal Golgi function (PubMed:19536132, PubMed:30290151). Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with SCFD1 (PubMed:19536132). {ECO:0000269|PubMed:19536132, ECO:0000269|PubMed:30290151}. |
Q9HA38 | ZMAT3 | S158 | ochoa | Zinc finger matrin-type protein 3 (Zinc finger protein WIG-1) (p53-activated gene 608 protein) | Acts as a bona fide target gene of p53/TP53. May play a role in the TP53-dependent growth regulatory pathway. May contribute to TP53-mediated apoptosis by regulation of TP53 expression and translocation to the nucleus and nucleolus. {ECO:0000269|PubMed:11571644}. |
Q9HB21 | PLEKHA1 | S125 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HC52 | CBX8 | S315 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9NQS7 | INCENP | S235 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQW6 | ANLN | S356 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NRR3 | CDC42SE2 | S55 | ochoa | CDC42 small effector protein 2 (Small effector of CDC42 protein 2) | Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}. |
Q9NS62 | THSD1 | S477 | ochoa | Thrombospondin type-1 domain-containing protein 1 (Transmembrane molecule with thrombospondin module) | Is a positive regulator of nascent focal adhesion assembly, involved in the modulation of endothelial cell attachment to the extracellular matrix. {ECO:0000269|PubMed:27895300, ECO:0000269|PubMed:29069646}. |
Q9NSY1 | BMP2K | S392 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NT22 | EMILIN3 | S206 | ochoa | EMILIN-3 (EMILIN-5) (Elastin microfibril interface-located protein 3) (Elastin microfibril interfacer 3) (Elastin microfibril interface-located protein 5) (Elastin microfibril interfacer 5) | None |
Q9NUM4 | TMEM106B | S33 | ochoa | Transmembrane protein 106B | In neurons, involved in the transport of late endosomes/lysosomes (PubMed:25066864). May be involved in dendrite morphogenesis and maintenance by regulating lysosomal trafficking (PubMed:25066864). May act as a molecular brake for retrograde transport of late endosomes/lysosomes, possibly via its interaction with MAP6 (By similarity). In motoneurons, may mediate the axonal transport of lysosomes and axonal sorting at the initial segment (By similarity). It remains unclear whether TMEM106B affects the transport of moving lysosomes in the anterograde or retrograde direction in neurites and whether it is important in the sorting of lysosomes in axons or in dendrites (By similarity). In neurons, may also play a role in the regulation of lysosomal size and responsiveness to stress (PubMed:25066864). Required for proper lysosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q6AYA5, ECO:0000250|UniProtKB:Q80X71, ECO:0000269|PubMed:25066864}.; FUNCTION: (Microbial infection) Plays a role in human coronavirus SARS-CoV-2 infection, but not in common cold coronaviruses HCoV-229E and HCoV-OC43 infections. Involved in ACE2-independent SARS-CoV-2 cell entry. Required for post-endocytic stage of virus entry, facilitates spike-mediated membrane fusion. Virus attachment and endocytosis can also be mediated by other cell surface receptors. {ECO:0000269|PubMed:33333024, ECO:0000269|PubMed:33686287, ECO:0000269|PubMed:37421949}. |
Q9NUM4 | TMEM106B | S58 | ochoa | Transmembrane protein 106B | In neurons, involved in the transport of late endosomes/lysosomes (PubMed:25066864). May be involved in dendrite morphogenesis and maintenance by regulating lysosomal trafficking (PubMed:25066864). May act as a molecular brake for retrograde transport of late endosomes/lysosomes, possibly via its interaction with MAP6 (By similarity). In motoneurons, may mediate the axonal transport of lysosomes and axonal sorting at the initial segment (By similarity). It remains unclear whether TMEM106B affects the transport of moving lysosomes in the anterograde or retrograde direction in neurites and whether it is important in the sorting of lysosomes in axons or in dendrites (By similarity). In neurons, may also play a role in the regulation of lysosomal size and responsiveness to stress (PubMed:25066864). Required for proper lysosomal acidification (By similarity). {ECO:0000250|UniProtKB:Q6AYA5, ECO:0000250|UniProtKB:Q80X71, ECO:0000269|PubMed:25066864}.; FUNCTION: (Microbial infection) Plays a role in human coronavirus SARS-CoV-2 infection, but not in common cold coronaviruses HCoV-229E and HCoV-OC43 infections. Involved in ACE2-independent SARS-CoV-2 cell entry. Required for post-endocytic stage of virus entry, facilitates spike-mediated membrane fusion. Virus attachment and endocytosis can also be mediated by other cell surface receptors. {ECO:0000269|PubMed:33333024, ECO:0000269|PubMed:33686287, ECO:0000269|PubMed:37421949}. |
Q9NV58 | RNF19A | S516 | ochoa | E3 ubiquitin-protein ligase RNF19A (EC 2.3.2.31) (Double ring-finger protein) (Dorfin) (RING finger protein 19A) (p38) | E3 ubiquitin-protein ligase which accepts ubiquitin from E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 in the form of a thioester and then directly transfers the ubiquitin to targeted substrates, such as SNCAIP or CASR. Specifically ubiquitinates pathogenic SOD1 variants, which leads to their proteasomal degradation and to neuronal protection. {ECO:0000269|PubMed:11237715, ECO:0000269|PubMed:12145308, ECO:0000269|PubMed:12750386, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16513638}. |
Q9NVP1 | DDX18 | S627 | ochoa | ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) | ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}. |
Q9NW64 | RBM22 | S128 | ochoa | Pre-mRNA-splicing factor RBM22 (RNA-binding motif protein 22) (Zinc finger CCCH domain-containing protein 16) | Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154). Involved in the first step of pre-mRNA splicing. Binds directly to the internal stem-loop (ISL) domain of the U6 snRNA and to the pre-mRNA intron near the 5' splice site during the activation and catalytic phases of the spliceosome cycle. Involved in both translocations of the nuclear SLU7 to the cytoplasm and the cytosolic calcium-binding protein PDCD6 to the nucleus upon cellular stress responses. {ECO:0000269|PubMed:17045351, ECO:0000269|PubMed:21122810, ECO:0000269|PubMed:22246180, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154}. |
Q9NW75 | GPATCH2 | S284 | ochoa | G patch domain-containing protein 2 | Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}. |
Q9NWH9 | SLTM | S748 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWV8 | BABAM1 | S57 | ochoa | BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) | Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}. |
Q9NXF1 | TEX10 | S293 | ochoa | Testis-expressed protein 10 | Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit (PubMed:21326211). {ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q9NXW2 | DNAJB12 | S178 | ochoa | DnaJ homolog subfamily B member 12 | Acts as a co-chaperone with HSPA8/Hsc70; required to promote protein folding and trafficking, prevent aggregation of client proteins, and promote unfolded proteins to endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:21148293, PubMed:21150129). Acts by determining HSPA8/Hsc70's ATPase and polypeptide-binding activities (PubMed:21148293). Can also act independently of HSPA8/Hsc70: together with DNAJB14, acts as a chaperone that promotes maturation of potassium channels KCND2 and KCNH2 by stabilizing nascent channel subunits and assembling them into tetramers (PubMed:27916661). While stabilization of nascent channel proteins is dependent on HSPA8/Hsc70, the process of oligomerization of channel subunits is independent of HSPA8/Hsc70 (PubMed:27916661). When overexpressed, forms membranous structures together with DNAJB14 and HSPA8/Hsc70 within the nucleus; the role of these structures, named DJANGOs, is still unclear (PubMed:24732912). {ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27916661}.; FUNCTION: (Microbial infection) In case of infection by polyomavirus, involved in the virus endoplasmic reticulum membrane penetration and infection (PubMed:21673190, PubMed:24675744). {ECO:0000269|PubMed:21673190, ECO:0000269|PubMed:24675744}. |
Q9NY59 | SMPD3 | S298 | ochoa | Sphingomyelin phosphodiesterase 3 (EC 3.1.4.12) (Neutral sphingomyelinase 2) (nSMase-2) (nSMase2) (Neutral sphingomyelinase II) | Catalyzes the hydrolysis of sphingomyelin to form ceramide and phosphocholine. Ceramide mediates numerous cellular functions, such as apoptosis and growth arrest, and is capable of regulating these 2 cellular events independently. Also hydrolyzes sphingosylphosphocholine. Regulates the cell cycle by acting as a growth suppressor in confluent cells. Probably acts as a regulator of postnatal development and participates in bone and dentin mineralization (PubMed:10823942, PubMed:14741383, PubMed:15051724). Binds to anionic phospholipids (APLs) such as phosphatidylserine (PS) and phosphatidic acid (PA) that modulate enzymatic activity and subcellular location. May be involved in IL-1-beta-induced JNK activation in hepatocytes (By similarity). May act as a mediator in transcriptional regulation of NOS2/iNOS via the NF-kappa-B activation under inflammatory conditions (By similarity). {ECO:0000250|UniProtKB:O35049, ECO:0000250|UniProtKB:Q9JJY3, ECO:0000269|PubMed:10823942, ECO:0000269|PubMed:14741383, ECO:0000269|PubMed:15051724}. |
Q9NYJ8 | TAB2 | S419 | psp | TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 2) (TAK1-binding protein 2) (TAB-2) (TGF-beta-activated kinase 1-binding protein 2) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020, PubMed:33184450, PubMed:36681779). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:10882101, PubMed:11460167, PubMed:15327770, PubMed:22158122, PubMed:27746020). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). Also recognizes and binds Lys-63'-linked polyubiquitin chains of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains (PubMed:27746020). Regulates the IL1-mediated translocation of NCOR1 out of the nucleus (By similarity). Involved in heart development (PubMed:20493459). {ECO:0000250|UniProtKB:Q99K90, ECO:0000269|PubMed:10882101, ECO:0000269|PubMed:11460167, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:20493459, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:33184450, ECO:0000269|PubMed:36681779}. |
Q9NYL2 | MAP3K20 | S661 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NYL2 | MAP3K20 | S757 | ochoa | Mitogen-activated protein kinase kinase kinase 20 (EC 2.7.11.25) (Human cervical cancer suppressor gene 4 protein) (HCCS-4) (Leucine zipper- and sterile alpha motif-containing kinase) (MLK-like mitogen-activated protein triple kinase) (Mitogen-activated protein kinase kinase kinase MLT) (Mixed lineage kinase 7) (Mixed lineage kinase-related kinase) (MLK-related kinase) (MRK) (Sterile alpha motif- and leucine zipper-containing kinase AZK) | Stress-activated component of a protein kinase signal transduction cascade that promotes programmed cell death in response to various stress, such as ribosomal stress, osmotic shock and ionizing radiation (PubMed:10924358, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15350844, PubMed:15737997, PubMed:18331592, PubMed:20559024, PubMed:26999302, PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts by catalyzing phosphorylation of MAP kinase kinases, leading to activation of the JNK (MAPK8/JNK1, MAPK9/JNK2 and/or MAPK10/JNK3) and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11042189, PubMed:11836244, PubMed:12220515, PubMed:14521931, PubMed:15172994, PubMed:15737997, PubMed:32289254, PubMed:32610081, PubMed:35857590). Activates JNK through phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7, and MAP kinase p38 gamma (MAPK12) via phosphorylation of MAP2K3/MKK3 and MAP2K6/MKK6 (PubMed:11836244, PubMed:12220515). Involved in stress associated with adrenergic stimulation: contributes to cardiac decompensation during periods of acute cardiac stress (PubMed:15350844, PubMed:21224381, PubMed:27859413). May be involved in regulation of S and G2 cell cycle checkpoint by mediating phosphorylation of CHEK2 (PubMed:15342622). {ECO:0000269|PubMed:10924358, ECO:0000269|PubMed:11042189, ECO:0000269|PubMed:11836244, ECO:0000269|PubMed:12220515, ECO:0000269|PubMed:14521931, ECO:0000269|PubMed:15172994, ECO:0000269|PubMed:15342622, ECO:0000269|PubMed:15350844, ECO:0000269|PubMed:15737997, ECO:0000269|PubMed:18331592, ECO:0000269|PubMed:20559024, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:26999302, ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKalpha]: Key component of the stress-activated protein kinase signaling cascade in response to ribotoxic stress or UV-B irradiation (PubMed:32289254, PubMed:32610081, PubMed:35857590). Acts as the proximal sensor of ribosome collisions during the ribotoxic stress response (RSR): directly binds to the ribosome by inserting its flexible C-terminus into the ribosomal intersubunit space, thereby acting as a sentinel for colliding ribosomes (PubMed:32289254, PubMed:32610081). Upon ribosome collisions, activates either the stress-activated protein kinase signal transduction cascade or the integrated stress response (ISR), leading to programmed cell death or cell survival, respectively (PubMed:32610081). Dangerous levels of ribosome collisions trigger the autophosphorylation and activation of MAP3K20, which dissociates from colliding ribosomes and phosphorylates MAP kinase kinases, leading to activation of the JNK and MAP kinase p38 pathways that promote programmed cell death (PubMed:32289254, PubMed:32610081). Less dangerous levels of ribosome collisions trigger the integrated stress response (ISR): MAP3K20 activates EIF2AK4/GCN2 independently of its protein-kinase activity, promoting EIF2AK4/GCN2-mediated phosphorylation of EIF2S1/eIF-2-alpha (PubMed:32610081). Also part of the stress-activated protein kinase signaling cascade triggering the NLRP1 inflammasome in response to UV-B irradiation: ribosome collisions activate MAP3K20, which directly phosphorylates NLRP1, leading to activation of the NLRP1 inflammasome and subsequent pyroptosis (PubMed:35857590). NLRP1 is also phosphorylated by MAP kinase p38 downstream of MAP3K20 (PubMed:35857590). Also acts as a histone kinase by phosphorylating histone H3 at 'Ser-28' (H3S28ph) (PubMed:15684425). {ECO:0000269|PubMed:15684425, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}.; FUNCTION: [Isoform ZAKbeta]: Isoform that lacks the C-terminal region that mediates ribosome-binding: does not act as a sensor of ribosome collisions in response to ribotoxic stress (PubMed:32289254, PubMed:32610081, PubMed:35857590). May act as an antagonist of isoform ZAKalpha: interacts with isoform ZAKalpha, leading to decrease the expression of isoform ZAKalpha (PubMed:27859413). {ECO:0000269|PubMed:27859413, ECO:0000269|PubMed:32289254, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:35857590}. |
Q9NZT2 | OGFR | S496 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P2E9 | RRBP1 | S655 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9UBB5 | MBD2 | S47 | ochoa | Methyl-CpG-binding domain protein 2 (Demethylase) (DMTase) (Methyl-CpG-binding protein MBD2) | Binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides (PubMed:9774669). Binds hemimethylated DNA as well (PubMed:10947852, PubMed:24307175). Recruits histone deacetylases and DNA methyltransferases to chromatin (PubMed:10471499, PubMed:10947852). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Acts as a transcriptional repressor and plays a role in gene silencing (PubMed:10471499, PubMed:10947852, PubMed:16415179). Functions as a scaffold protein, targeting GATAD2A and GATAD2B to chromatin to promote repression (PubMed:16415179). May enhance the activation of some unmethylated cAMP-responsive promoters (PubMed:12665568). {ECO:0000269|PubMed:10471499, ECO:0000269|PubMed:10947852, ECO:0000269|PubMed:12665568, ECO:0000269|PubMed:16415179, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:24307175, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:9774669}. |
Q9UBF9 | MYOT | S225 | ochoa | Myotilin (57 kDa cytoskeletal protein) (Myofibrillar titin-like Ig domains protein) (Titin immunoglobulin domain protein) | Component of a complex of multiple actin cross-linking proteins. Involved in the control of myofibril assembly and stability at the Z lines in muscle cells. {ECO:0000269|PubMed:12499399}. |
Q9UBI9 | HECA | S325 | ochoa | Headcase protein homolog (hHDC) | May play an important role in some human cancers. May be part of the regulatory mechanism in the development of epithelial tube networks such as the circulatory system and lungs. {ECO:0000303|PubMed:11696983}. |
Q9UBZ4 | APEX2 | S246 | ochoa | DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) | Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}. |
Q9UGP4 | LIMD1 | S264 | ochoa | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UHR4 | BAIAP2L1 | S354 | ochoa | BAR/IMD domain-containing adapter protein 2-like 1 (Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1) (BAI1-associated protein 2-like protein 1) (Insulin receptor tyrosine kinase substrate) | May function as adapter protein. Involved in the formation of clusters of actin bundles. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. {ECO:0000269|PubMed:17430976, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:22921828}. |
Q9UIF9 | BAZ2A | S1559 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UKY7 | CDV3 | S216 | ochoa | Protein CDV3 homolog | None |
Q9ULD9 | ZNF608 | S421 | ochoa | Zinc finger protein 608 (Renal carcinoma antigen NY-REN-36) | Transcription factor, which represses ZNF609 transcription. {ECO:0000250|UniProtKB:Q56A10}. |
Q9ULL8 | SHROOM4 | S734 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9UMS6 | SYNPO2 | S519 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMS6 | SYNPO2 | S717 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMS6 | SYNPO2 | S847 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UN19 | DAPP1 | S141 | ochoa|psp | Dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-phosphoinositide (hDAPP1) (B lymphocyte adapter protein Bam32) (B-cell adapter molecule of 32 kDa) | May act as a B-cell-associated adapter that regulates B-cell antigen receptor (BCR)-signaling downstream of PI3K. {ECO:0000269|PubMed:10770799}. |
Q9UNF1 | MAGED2 | S191 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UPN3 | MACF1 | S7345 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPU7 | TBC1D2B | S317 | ochoa | TBC1 domain family member 2B | GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}. |
Q9UPU9 | SAMD4A | S578 | ochoa | Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) | Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}. |
Q9UPU9 | SAMD4A | S580 | ochoa | Protein Smaug homolog 1 (Smaug 1) (hSmaug1) (Sterile alpha motif domain-containing protein 4A) (SAM domain-containing protein 4A) | Acts as a translational repressor of SRE-containing messengers. {ECO:0000269|PubMed:16221671}. |
Q9UPW6 | SATB2 | S39 | ochoa | DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) | Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}. |
Q9UQB8 | BAIAP2 | S475 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQC2 | GAB2 | S459 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y2H9 | MAST1 | S139 | ochoa | Microtubule-associated serine/threonine-protein kinase 1 (EC 2.7.11.1) (Syntrophin-associated serine/threonine-protein kinase) | Microtubule-associated protein essential for correct brain development (PubMed:30449657). Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins (By similarity). {ECO:0000250|UniProtKB:Q9R1L5, ECO:0000269|PubMed:30449657}. |
Q9Y2I9 | TBC1D30 | S677 | ochoa | TBC1 domain family member 30 | May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}. |
Q9Y2K6 | USP20 | S289 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2S7 | POLDIP2 | S290 | ochoa | Polymerase delta-interacting protein 2 (38 kDa DNA polymerase delta interaction protein) (p38) | Involved in DNA damage tolerance by regulating translesion synthesis (TLS) of templates carrying DNA damage lesions such as 8oxoG and abasic sites (PubMed:24191025). May act by stimulating activity of DNA polymerases involved in TLS, such as PRIMPOL and polymerase delta (POLD1) (PubMed:24191025, PubMed:26984527). {ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:26984527}. |
Q9Y2U8 | LEMD3 | S728 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2X9 | ZNF281 | S198 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y3B9 | RRP15 | S258 | ochoa | RRP15-like protein (Ribosomal RNA-processing protein 15) | None |
Q9Y3Q8 | TSC22D4 | S301 | ochoa | TSC22 domain family protein 4 (TSC22-related-inducible leucine zipper protein 2) | Binds DNA and acts as a transcriptional repressor (PubMed:10488076). Involved in the regulation of systematic glucose homeostasis and insulin sensitivity, via transcriptional repression of downstream insulin signaling targets such as OBP2A/LCN13 (By similarity). Acts as a negative regulator of lipogenic gene expression in hepatocytes and thereby mediates the control of very low-density lipoprotein release (PubMed:23307490). May play a role in neurite elongation and survival (By similarity). {ECO:0000250|UniProtKB:Q9EQN3, ECO:0000269|PubMed:10488076, ECO:0000269|PubMed:23307490}. |
Q9Y3S1 | WNK2 | S1150 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y446 | PKP3 | S180 | ochoa | Plakophilin-3 | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:24124604). Required for the localization of DSG2, DSP and PKP2 to mature desmosome junctions (PubMed:20859650). May also play a role in the maintenance of DSG3 protein abundance in keratinocytes (By similarity). Required for the formation of DSP-containing desmosome precursors in the cytoplasm during desmosome assembly (PubMed:25208567). Also regulates the accumulation of CDH1 to mature desmosome junctions, via cAMP-dependent signaling and its interaction with activated RAP1A (PubMed:25208567). Positively regulates the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with FXR1, may also regulate the protein abundance of DSP via the same mechanism (PubMed:25225333). May also regulate the protein abundance of the desmosome component PKP1 (By similarity). Required for the organization of desmosome junctions at intercellular borders between basal keratinocytes of the epidermis, as a result plays a role in maintenance of the dermal barrier and regulation of the dermal inflammatory response (By similarity). Required during epidermal keratinocyte differentiation for cell adherence at tricellular cell-cell contacts, via regulation of the timely formation of adherens junctions and desmosomes in a calcium-dependent manner, and may also play a role in the organization of the intracellular actin fiber belt (By similarity). Acts as a negative regulator of the inflammatory response in hematopoietic cells of the skin and intestine, via modulation of proinflammatory cytokine production (By similarity). Important for epithelial barrier maintenance in the intestine to reduce intestinal permeability, thereby plays a role in protection from intestinal-derived endotoxemia (By similarity). Required for the development of hair follicles, via a role in the regulation of inner root sheaf length, correct alignment and anterior-posterior polarity of hair follicles (By similarity). Promotes proliferation and cell-cycle G1/S phase transition of keratinocytes (By similarity). Promotes E2F1-driven transcription of G1/S phase promoting genes by acting to release E2F1 from its inhibitory interaction with RB1, via sequestering RB1 and CDKN1A to the cytoplasm and thereby increasing CDK4- and CDK6-driven phosphorylation of RB1 (By similarity). May act as a scaffold protein to facilitate MAPK phosphorylation of RPS6KA protein family members and subsequently promote downstream EGFR signaling (By similarity). May play a role in the positive regulation of transcription of Wnt-mediated TCF-responsive target genes (PubMed:34058472). {ECO:0000250|UniProtKB:Q9QY23, ECO:0000269|PubMed:20859650, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:34058472}. |
Q9Y490 | TLN1 | S1914 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y490 | TLN1 | S2096 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S1772 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4F5 | CEP170B | S930 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4G8 | RAPGEF2 | S1201 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4H2 | IRS2 | S400 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y5B0 | CTDP1 | S904 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5I7 | CLDN16 | S147 | psp | Claudin-16 (Paracellin-1) (PCLN-1) | Forms paracellular channels: coassembles with CLDN19 into tight junction strands with cation-selective channels through the strands, conveying epithelial permeability in a process known as paracellular tight junction permeability (PubMed:16234325, PubMed:18188451, PubMed:28028216). Involved in the maintenance of ion gradients along the nephron. In the thick ascending limb (TAL) of Henle's loop, facilitates sodium paracellular permeability from the interstitial compartment to the lumen, contributing to the lumen-positive transepithelial potential that drives paracellular magnesium and calcium reabsorption (PubMed:10390358, PubMed:11518780, PubMed:14628289, PubMed:16528408, PubMed:28028216). {ECO:0000269|PubMed:10390358, ECO:0000269|PubMed:11518780, ECO:0000269|PubMed:14628289, ECO:0000269|PubMed:16234325, ECO:0000269|PubMed:16528408, ECO:0000269|PubMed:18188451, ECO:0000269|PubMed:28028216}. |
Q9Y5K8 | ATP6V1D | S118 | ochoa | V-type proton ATPase subunit D (V-ATPase subunit D) (V-ATPase 28 kDa accessory protein) (Vacuolar proton pump subunit D) | Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). May play a role in cilium biogenesis through regulation of the transport and the localization of proteins to the cilium (PubMed:21844891). {ECO:0000250|UniProtKB:P39942, ECO:0000269|PubMed:21844891, ECO:0000269|PubMed:33065002}. |
Q9Y5Y5 | PEX16 | S158 | ochoa | Peroxisomal membrane protein PEX16 (Peroxin-16) (Peroxisomal biogenesis factor 16) | Required for peroxisome membrane biogenesis. May play a role in early stages of peroxisome assembly. Can recruit other peroxisomal proteins, such as PEX3 and PMP34, to de novo peroxisomes derived from the endoplasmic reticulum (ER). May function as receptor for PEX3. {ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:12223482, ECO:0000269|PubMed:16717127}. |
Q9Y6J0 | CABIN1 | S1442 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
O00468 | AGRN | S738 | Sugiyama | Agrin [Cleaved into: Agrin N-terminal 110 kDa subunit; Agrin C-terminal 110 kDa subunit; Agrin C-terminal 90 kDa fragment (C90); Agrin C-terminal 22 kDa fragment (C22)] | [Isoform 1]: Heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clustering. AGRN function in neurons is highly regulated by alternative splicing, glycan binding and proteolytic processing. Modulates calcium ion homeostasis in neurons, specifically by inducing an increase in cytoplasmic calcium ions. Functions differentially in the central nervous system (CNS) by inhibiting the alpha(3)-subtype of Na+/K+-ATPase and evoking depolarization at CNS synapses. This secreted isoform forms a bridge, after release from motor neurons, to basal lamina through binding laminin via the NtA domain.; FUNCTION: [Isoform 2]: Transmembrane form that is the predominate form in neurons of the brain, induces dendritic filopodia and synapse formation in mature hippocampal neurons in large part due to the attached glycosaminoglycan chains and the action of Rho-family GTPases.; FUNCTION: Isoform 1, isoform 4 and isoform 5: neuron-specific (z+) isoforms that contain C-terminal insertions of 8-19 AA are potent activators of AChR clustering. Isoform 5, agrin (z+8), containing the 8-AA insert, forms a receptor complex in myotubules containing the neuronal AGRN, the muscle-specific kinase MUSK and LRP4, a member of the LDL receptor family. The splicing factors, NOVA1 and NOVA2, regulate AGRN splicing and production of the 'z' isoforms.; FUNCTION: Isoform 3 and isoform 6: lack any 'z' insert, are muscle-specific and may be involved in endothelial cell differentiation.; FUNCTION: [Agrin N-terminal 110 kDa subunit]: Is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling (By similarity). {ECO:0000250, ECO:0000269|PubMed:19631309, ECO:0000269|PubMed:21969364}.; FUNCTION: [Agrin C-terminal 22 kDa fragment]: This released fragment is important for agrin signaling and to exert a maximal dendritic filopodia-inducing effect. All 'z' splice variants (z+) of this fragment also show an increase in the number of filopodia. |
P07737 | PFN1 | S85 | Sugiyama | Profilin-1 (Epididymis tissue protein Li 184a) (Profilin I) | Binds to actin and affects the structure of the cytoskeleton. At high concentrations, profilin prevents the polymerization of actin, whereas it enhances it at low concentrations. By binding to PIP2, it inhibits the formation of IP3 and DG. Inhibits androgen receptor (AR) and HTT aggregation and binding of G-actin is essential for its inhibition of AR. {ECO:0000269|PubMed:18573880}. |
Q9C0C2 | TNKS1BP1 | S806 | Sugiyama | 182 kDa tankyrase-1-binding protein | None |
P06744 | GPI | S247 | Sugiyama | Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Autocrine motility factor) (AMF) (Neuroleukin) (NLK) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI) (Sperm antigen 36) (SA-36) | In the cytoplasm, catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, the second step in glycolysis, and the reverse reaction during gluconeogenesis (PubMed:28803808). Besides it's role as a glycolytic enzyme, also acts as a secreted cytokine: acts as an angiogenic factor (AMF) that stimulates endothelial cell motility (PubMed:11437381). Acts as a neurotrophic factor, neuroleukin, for spinal and sensory neurons (PubMed:11004567, PubMed:3352745). It is secreted by lectin-stimulated T-cells and induces immunoglobulin secretion (PubMed:11004567, PubMed:3352745). {ECO:0000269|PubMed:11004567, ECO:0000269|PubMed:11437381, ECO:0000269|PubMed:28803808, ECO:0000269|PubMed:3352745}. |
P20618 | PSMB1 | S157 | Sugiyama | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P18754 | RCC1 | S90 | Sugiyama | Regulator of chromosome condensation (Cell cycle regulatory protein) (Chromosome condensation protein 1) | Guanine-nucleotide releasing factor that promotes the exchange of Ran-bound GDP by GTP, and thereby plays an important role in RAN-mediated functions in nuclear import and mitosis (PubMed:11336674, PubMed:17435751, PubMed:1944575, PubMed:20668449, PubMed:22215983, PubMed:29042532). Contributes to the generation of high levels of chromosome-associated, GTP-bound RAN, which is important for mitotic spindle assembly and normal progress through mitosis (PubMed:12194828, PubMed:17435751, PubMed:22215983). Via its role in maintaining high levels of GTP-bound RAN in the nucleus, contributes to the release of cargo proteins from importins after nuclear import (PubMed:22215983). Involved in the regulation of onset of chromosome condensation in the S phase (PubMed:3678831). Binds both to the nucleosomes and double-stranded DNA (PubMed:17435751, PubMed:18762580). {ECO:0000269|PubMed:11336674, ECO:0000269|PubMed:12194828, ECO:0000269|PubMed:17435751, ECO:0000269|PubMed:18762580, ECO:0000269|PubMed:1944575, ECO:0000269|PubMed:20668449, ECO:0000269|PubMed:22215983, ECO:0000269|PubMed:29042532, ECO:0000269|PubMed:3678831}. |
P10809 | HSPD1 | S187 | Sugiyama | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P27695 | APEX1 | S135 | Sugiyama | DNA repair nuclease/redox regulator APEX1 (EC 3.1.11.2) (EC 3.1.21.-) (APEX nuclease) (APEN) (Apurinic-apyrimidinic endonuclease 1) (AP endonuclease 1) (APE-1) (DNA-(apurinic or apyrimidinic site) endonuclease) (Redox factor-1) (REF-1) [Cleaved into: DNA repair nuclease/redox regulator APEX1, mitochondrial] | Multifunctional protein that plays a central role in the cellular response to oxidative stress. The two major activities of APEX1 are DNA repair and redox regulation of transcriptional factors (PubMed:11118054, PubMed:11452037, PubMed:15831793, PubMed:18439621, PubMed:18579163, PubMed:21762700, PubMed:24079850, PubMed:8355688, PubMed:9108029, PubMed:9560228). Functions as an apurinic/apyrimidinic (AP) endodeoxyribonuclease in the base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also incises at AP sites in the DNA strand of DNA/RNA hybrids, single-stranded DNA regions of R-loop structures, and single-stranded RNA molecules (PubMed:15380100, PubMed:16617147, PubMed:18439621, PubMed:19123919, PubMed:19188445, PubMed:19934257, PubMed:20699270, PubMed:21762700, PubMed:24079850, PubMed:8932375, PubMed:8995436, PubMed:9804799). Operates at switch sites of immunoglobulin (Ig) constant regions where it mediates Ig isotype class switch recombination. Processes AP sites induced by successive action of AICDA and UNG. Generates staggered nicks in opposite DNA strands resulting in the formation of double-strand DNA breaks that are finally resolved via non-homologous end joining repair pathway (By similarity). Has 3'-5' exodeoxyribonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules during short-patch BER (PubMed:11832948, PubMed:1719477). Possesses DNA 3' phosphodiesterase activity capable of removing lesions (such as phosphoglycolate and 8-oxoguanine) blocking the 3' side of DNA strand breaks (PubMed:15831793, PubMed:7516064). Also acts as an endoribonuclease involved in the control of single-stranded RNA metabolism. Plays a role in regulating MYC mRNA turnover by preferentially cleaving in between UA and CA dinucleotides of the MYC coding region determinant (CRD). In association with NMD1, plays a role in the rRNA quality control process during cell cycle progression (PubMed:19188445, PubMed:19401441, PubMed:21762700). Acts as a loading factor for POLB onto non-incised AP sites in DNA and stimulates the 5'-terminal deoxyribose 5'-phosphate (dRp) excision activity of POLB (PubMed:9207062). Exerts reversible nuclear redox activity to regulate DNA binding affinity and transcriptional activity of transcriptional factors by controlling the redox status of their DNA-binding domain, such as the FOS/JUN AP-1 complex after exposure to IR (PubMed:10023679, PubMed:11118054, PubMed:11452037, PubMed:18579163, PubMed:8355688, PubMed:9108029). Involved in calcium-dependent down-regulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs). Together with HNRNPL or the dimer XRCC5/XRCC6, associates with nCaRE, acting as an activator of transcriptional repression (PubMed:11809897, PubMed:14633989, PubMed:8621488). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). Stimulates the YBX1-mediated MDR1 promoter activity, when acetylated at Lys-6 and Lys-7, leading to drug resistance (PubMed:18809583). Plays a role in protection from granzyme-mediated cellular repair leading to cell death (PubMed:18179823). Binds DNA and RNA. Associates, together with YBX1, on the MDR1 promoter. Together with NPM1, associates with rRNA (PubMed:19188445, PubMed:19401441, PubMed:20699270). {ECO:0000250|UniProtKB:P28352, ECO:0000269|PubMed:10023679, ECO:0000269|PubMed:11118054, ECO:0000269|PubMed:11452037, ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:11832948, ECO:0000269|PubMed:12524539, ECO:0000269|PubMed:14633989, ECO:0000269|PubMed:15380100, ECO:0000269|PubMed:15831793, ECO:0000269|PubMed:16617147, ECO:0000269|PubMed:1719477, ECO:0000269|PubMed:18179823, ECO:0000269|PubMed:18439621, ECO:0000269|PubMed:18579163, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19123919, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:19401441, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20699270, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21762700, ECO:0000269|PubMed:24079850, ECO:0000269|PubMed:7516064, ECO:0000269|PubMed:8355688, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:8932375, ECO:0000269|PubMed:8995436, ECO:0000269|PubMed:9108029, ECO:0000269|PubMed:9207062, ECO:0000269|PubMed:9560228, ECO:0000269|PubMed:9804799}. |
P31153 | MAT2A | S247 | Sugiyama | S-adenosylmethionine synthase isoform type-2 (AdoMet synthase 2) (EC 2.5.1.6) (Methionine adenosyltransferase 2) (MAT 2) (Methionine adenosyltransferase II) (MAT-II) | Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. {ECO:0000269|PubMed:10644686, ECO:0000269|PubMed:23189196, ECO:0000269|PubMed:25075345}. |
P31943 | HNRNPH1 | S285 | Sugiyama | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P52597 | HNRNPF | S285 | Sugiyama | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
Q08752 | PPID | S119 | Sugiyama | Peptidyl-prolyl cis-trans isomerase D (PPIase D) (EC 5.2.1.8) (40 kDa peptidyl-prolyl cis-trans isomerase) (Cyclophilin-40) (CYP-40) (Cyclophilin-related protein) (Rotamase D) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:11350175, PubMed:20676357). Proposed to act as a co-chaperone in HSP90 complexes such as in unligated steroid receptors heterocomplexes. Different co-chaperones seem to compete for association with HSP90 thus establishing distinct HSP90-co-chaperone-receptor complexes with the potential to exert tissue-specific receptor activity control. May have a preference for estrogen receptor complexes and is not found in glucocorticoid receptor complexes. May be involved in cytoplasmic dynein-dependent movement of the receptor from the cytoplasm to the nucleus. May regulate MYB by inhibiting its DNA-binding activity. Involved in regulation of AHR signaling by promoting the formation of the AHR:ARNT dimer; the function is independent of HSP90 but requires the chaperone activity. Involved in regulation of UV radiation-induced apoptosis. Promotes cell viability in anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK+ ALCL) cell lines. {ECO:0000269|PubMed:11350175, ECO:0000269|PubMed:18708059, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22681779, ECO:0000269|PubMed:23220213, ECO:0000269|PubMed:9659917}.; FUNCTION: (Microbial infection) May be involved in hepatitis C virus (HCV) replication and release. {ECO:0000269|PubMed:19932913, ECO:0000269|PubMed:21711559}. |
Q9BTE6 | AARSD1 | S184 | Sugiyama | Alanyl-tRNA editing protein Aarsd1 (Alanyl-tRNA synthetase domain-containing protein 1) | Functions in trans to edit the amino acid moiety from incorrectly charged tRNA(Ala). {ECO:0000250}. |
Q9NP74 | PALMD | S194 | Sugiyama | Palmdelphin (Paralemmin-like protein) | None |
Q04446 | GBE1 | S75 | Sugiyama | 1,4-alpha-glucan-branching enzyme (EC 2.4.1.18) (Brancher enzyme) (Glycogen-branching enzyme) | Glycogen-branching enzyme participates in the glycogen biosynthetic process along with glycogenin and glycogen synthase. Generates alpha-1,6-glucosidic branches from alpha-1,4-linked glucose chains, to increase solubility of the glycogen polymer (PubMed:26199317, PubMed:8463281, PubMed:8613547). {ECO:0000269|PubMed:26199317, ECO:0000269|PubMed:8463281, ECO:0000269|PubMed:8613547}. |
P05997 | COL5A2 | S1308 | Sugiyama | Collagen alpha-2(V) chain | Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Type V collagen is a key determinant in the assembly of tissue-specific matrices (By similarity). {ECO:0000250}. |
P25205 | MCM3 | S447 | Sugiyama | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P21333 | FLNA | S1029 | Sugiyama | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P31939 | ATIC | S554 | Sugiyama | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
Q9NX58 | LYAR | S32 | Sugiyama | Cell growth-regulating nucleolar protein | Plays a role in the maintenance of the appropriate processing of 47S/45S pre-rRNA to 32S/30S pre-rRNAs and their subsequent processing to produce 18S and 28S rRNAs (PubMed:24495227). Also acts at the level of transcription regulation. Along with PRMT5, binds the gamma-globin (HBG1/HBG2) promoter and represses its expression (PubMed:25092918). In neuroblastoma cells, may also repress the expression of oxidative stress genes, including CHAC1, HMOX1, SLC7A11, ULBP1 and SNORD41 that encodes a small nucleolar RNA (PubMed:28686580). Preferentially binds to a DNA motif containing 5'-GGTTAT-3' (PubMed:25092918). Negatively regulates the antiviral innate immune response by targeting IRF3 and impairing its DNA-binding activity (PubMed:31413131). In addition, inhibits NF-kappa-B-mediated expression of pro-inflammatory cytokines (PubMed:31413131). Stimulates phagocytosis of photoreceptor outer segments by retinal pigment epithelial cells (By similarity). Prevents nucleolin/NCL self-cleavage, maintaining a normal steady-state level of NCL protein in undifferentiated embryonic stem cells (ESCs), which in turn is essential for ESC self-renewal (By similarity). {ECO:0000250|UniProtKB:Q08288, ECO:0000269|PubMed:24495227, ECO:0000269|PubMed:25092918, ECO:0000269|PubMed:28686580, ECO:0000269|PubMed:31413131}. |
Q07157 | TJP1 | S585 | Sugiyama | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q14694 | USP10 | S265 | Sugiyama | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14103 | HNRNPD | S271 | Sugiyama | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
P12268 | IMPDH2 | S432 | Sugiyama | Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2) (IMPD 2) (IMPDH 2) (EC 1.1.1.205) (Inosine-5'-monophosphate dehydrogenase type II) (IMP dehydrogenase II) (IMPDH-II) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (PubMed:7763314, PubMed:7903306). Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism (PubMed:14766016). It may also have a role in the development of malignancy and the growth progression of some tumors. {ECO:0000269|PubMed:14766016, ECO:0000269|PubMed:7763314, ECO:0000269|PubMed:7903306}. |
P30086 | PEBP1 | S104 | Sugiyama | Phosphatidylethanolamine-binding protein 1 (PEBP-1) (HCNPpp) (Neuropolypeptide h3) (Prostatic-binding protein) (Raf kinase inhibitor protein) (RKIP) [Cleaved into: Hippocampal cholinergic neurostimulating peptide (HCNP)] | Binds ATP, opioids and phosphatidylethanolamine. Has lower affinity for phosphatidylinositol and phosphatidylcholine. Serine protease inhibitor which inhibits thrombin, neuropsin and chymotrypsin but not trypsin, tissue type plasminogen activator and elastase (By similarity). Inhibits the kinase activity of RAF1 by inhibiting its activation and by dissociating the RAF1/MEK complex and acting as a competitive inhibitor of MEK phosphorylation. {ECO:0000250, ECO:0000269|PubMed:18294816}.; FUNCTION: HCNP may be involved in the function of the presynaptic cholinergic neurons of the central nervous system. HCNP increases the production of choline acetyltransferase but not acetylcholinesterase. Seems to be mediated by a specific receptor (By similarity). {ECO:0000250}. |
Q99615 | DNAJC7 | S88 | Sugiyama | DnaJ homolog subfamily C member 7 (Tetratricopeptide repeat protein 2) (TPR repeat protein 2) | Acts as a co-chaperone regulating the molecular chaperones HSP70 and HSP90 in folding of steroid receptors, such as the glucocorticoid receptor and the progesterone receptor. Proposed to act as a recycling chaperone by facilitating the return of chaperone substrates to early stages of chaperoning if further folding is required. In vitro, induces ATP-independent dissociation of HSP90 but not of HSP70 from the chaperone-substrate complexes. Recruits NR1I3 to the cytoplasm (By similarity). {ECO:0000250, ECO:0000269|PubMed:12853476, ECO:0000269|PubMed:18620420}. |
Q6ZN44 | UNC5A | S532 | SIGNOR | Netrin receptor UNC5A (Protein unc-5 homolog 1) (Protein unc-5 homolog A) | Receptor for netrin required for axon guidance. Functions in the netrin signaling pathway and promotes neurite outgrowth in response to NTN1. Mediates axon repulsion of neuronal growth cones in the developing nervous system in response to netrin. Axon repulsion in growth cones may be mediated by its association with DCC that may trigger signaling for repulsion. It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand. {ECO:0000250|UniProtKB:O08721}. |
Q99626 | CDX2 | S291 | SIGNOR | Homeobox protein CDX-2 (CDX-3) (Caudal-type homeobox protein 2) | Transcription factor which regulates the transcription of multiple genes expressed in the intestinal epithelium (By similarity). Binds to the promoter of the intestinal sucrase-isomaltase SI and activates SI transcription (By similarity). Binds to the DNA sequence 5'-ATAAAAACTTAT-3' in the promoter region of VDR and activates VDR transcription (By similarity). Binds to and activates transcription of LPH (By similarity). Activates transcription of CLDN2 and intestinal mucin MUC2 (By similarity). Binds to the 5'-AATTTTTTACAACACCT-3' DNA sequence in the promoter region of CA1 and activates CA1 transcription (By similarity). Important in broad range of functions from early differentiation to maintenance of the intestinal epithelial lining of both the small and large intestine. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000250|UniProtKB:P43241, ECO:0000250|UniProtKB:Q04649, ECO:0000269|PubMed:28473536}. |
Q8NDV7 | TNRC6A | S1047 | Sugiyama | Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}. |
P27448 | MARK3 | S451 | Sugiyama | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
Q9BS26 | ERP44 | S353 | Sugiyama | Endoplasmic reticulum resident protein 44 (ER protein 44) (ERp44) (Thioredoxin domain-containing protein 4) | Mediates thiol-dependent retention in the early secretory pathway, forming mixed disulfides with substrate proteins through its conserved CRFS motif (PubMed:11847130, PubMed:14517240). Inhibits the calcium channel activity of ITPR1 (PubMed:15652484). May have a role in the control of oxidative protein folding in the endoplasmic reticulum (PubMed:11847130, PubMed:14517240, PubMed:29858230). Required to retain ERO1A and ERO1B in the endoplasmic reticulum (PubMed:11847130, PubMed:29858230). {ECO:0000269|PubMed:11847130, ECO:0000269|PubMed:14517240, ECO:0000269|PubMed:15652484, ECO:0000269|PubMed:29858230}. |
P53634 | CTSC | S343 | Sugiyama | Dipeptidyl peptidase 1 (EC 3.4.14.1) (Cathepsin C) (Cathepsin J) (Dipeptidyl peptidase I) (DPP-I) (DPPI) (Dipeptidyl transferase) [Cleaved into: Dipeptidyl peptidase 1 exclusion domain chain (Dipeptidyl peptidase I exclusion domain chain); Dipeptidyl peptidase 1 heavy chain (Dipeptidyl peptidase I heavy chain); Dipeptidyl peptidase 1 light chain (Dipeptidyl peptidase I light chain)] | Thiol protease (PubMed:1586157). Has dipeptidylpeptidase activity (PubMed:1586157). Active against a broad range of dipeptide substrates composed of both polar and hydrophobic amino acids (PubMed:1586157). Proline cannot occupy the P1 position and arginine cannot occupy the P2 position of the substrate (PubMed:1586157). Can act as both an exopeptidase and endopeptidase (PubMed:1586157). Activates serine proteases such as elastase, cathepsin G and granzymes A and B (PubMed:8428921). {ECO:0000269|PubMed:1586157, ECO:0000269|PubMed:8428921}. |
Q04760 | GLO1 | S114 | Sugiyama | Lactoylglutathione lyase (EC 4.4.1.5) (Aldoketomutase) (Glyoxalase I) (Glx I) (Ketone-aldehyde mutase) (Methylglyoxalase) (S-D-lactoylglutathione methylglyoxal lyase) | Catalyzes the conversion of hemimercaptal, formed from methylglyoxal and glutathione, to S-lactoylglutathione (PubMed:20454679, PubMed:23122816, PubMed:9705294). Involved in the regulation of TNF-induced transcriptional activity of NF-kappa-B (PubMed:19199007). Required for normal osteoclastogenesis (By similarity). {ECO:0000250|UniProtKB:Q9CPU0, ECO:0000269|PubMed:19199007, ECO:0000269|PubMed:20454679, ECO:0000269|PubMed:23122816, ECO:0000269|PubMed:9705294}. |
Q8NBS9 | TXNDC5 | S125 | Sugiyama | Thioredoxin domain-containing protein 5 (EC 1.8.4.-) (EC 5.3.4.1) (Endoplasmic reticulum resident protein 46) (ER protein 46) (ERp46) (Thioredoxin-like protein p46) | Protein disulfide isomerase of the endoplasmic reticulum lumen involved in the formation of disulfide bonds in proteins. Can reduce insulin disulfide bonds. {ECO:0000250|UniProtKB:Q91W90}. |
P23284 | PPIB | S139 | Sugiyama | Peptidyl-prolyl cis-trans isomerase B (PPIase B) (EC 5.2.1.8) (CYP-S1) (Cyclophilin B) (Rotamase B) (S-cyclophilin) (SCYLP) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding. {ECO:0000269|PubMed:20676357}. |
Q9Y3B8 | REXO2 | S92 | Sugiyama | Oligoribonuclease, mitochondrial (EC 3.1.15.-) (RNA exonuclease 2 homolog) (Small fragment nuclease) | 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides (PubMed:23741365, PubMed:30926754, PubMed:31588022, PubMed:32365187). Binds and degrades longer oligonucleotides with a lower affinity (PubMed:30926754, PubMed:31588022, PubMed:32365187). Plays dual roles in mitochondria, scavenging nanoRNAs (small RNA oligonucleotides of <5 nucleotides) that are produced by the degradosome and clearing short RNAs that are generated by RNA processing (PubMed:30926754, PubMed:31588022, PubMed:32365187). Essential for correct initiation of mitochondrial transcription, degrading mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome (PubMed:31588022). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:Q9D8S4, ECO:0000269|PubMed:23741365, ECO:0000269|PubMed:30926754, ECO:0000269|PubMed:31588022, ECO:0000269|PubMed:32365187}.; FUNCTION: [Isoform 3]: 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides. {ECO:0000269|PubMed:10851236, ECO:0000269|PubMed:16682444}. |
P22061 | PCMT1 | S133 | Sugiyama | Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT) (EC 2.1.1.77) (L-isoaspartyl protein carboxyl methyltransferase) (Protein L-isoaspartyl/D-aspartyl methyltransferase) (Protein-beta-aspartate methyltransferase) | Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins (PubMed:3167043, PubMed:6469980). Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity). {ECO:0000250|UniProtKB:P23506, ECO:0000269|PubMed:3167043, ECO:0000269|PubMed:6469980}. |
Q9UPQ9 | TNRC6B | S992 | Sugiyama | Trinucleotide repeat-containing gene 6B protein | Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs) (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). Required for miRNA-dependent translational repression and siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins (PubMed:16289642, PubMed:19167051, PubMed:19304925, PubMed:32354837). As scaffolding protein associates with argonaute proteins bound to partially complementary mRNAs and simultaneously can recruit CCR4-NOT and PAN deadenylase complexes (PubMed:21981923). {ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:19167051, ECO:0000269|PubMed:19304925, ECO:0000269|PubMed:21981923, ECO:0000269|PubMed:32354837}. |
P17987 | TCP1 | S27 | Sugiyama | T-complex protein 1 subunit alpha (TCP-1-alpha) (EC 3.6.1.-) (CCT-alpha) (Chaperonin containing T-complex polypeptide 1 subunit 1) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P31327 | CPS1 | S205 | Sugiyama | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
Q96IZ0 | PAWR | S238 | Sugiyama | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q05513 | PRKCZ | S148 | Sugiyama | Protein kinase C zeta type (EC 2.7.11.13) (nPKC-zeta) | Calcium- and diacylglycerol-independent serine/threonine-protein kinase that functions in phosphatidylinositol 3-kinase (PI3K) pathway and mitogen-activated protein (MAP) kinase cascade, and is involved in NF-kappa-B activation, mitogenic signaling, cell proliferation, cell polarity, inflammatory response and maintenance of long-term potentiation (LTP). Upon lipopolysaccharide (LPS) treatment in macrophages, or following mitogenic stimuli, functions downstream of PI3K to activate MAP2K1/MEK1-MAPK1/ERK2 signaling cascade independently of RAF1 activation. Required for insulin-dependent activation of AKT3, but may function as an adapter rather than a direct activator. Upon insulin treatment may act as a downstream effector of PI3K and contribute to the activation of translocation of the glucose transporter SLC2A4/GLUT4 and subsequent glucose transport in adipocytes. In EGF-induced cells, binds and activates MAP2K5/MEK5-MAPK7/ERK5 independently of its kinase activity and can activate JUN promoter through MEF2C. Through binding with SQSTM1/p62, functions in interleukin-1 signaling and activation of NF-kappa-B with the specific adapters RIPK1 and TRAF6. Participates in TNF-dependent transactivation of NF-kappa-B by phosphorylating and activating IKBKB kinase, which in turn leads to the degradation of NF-kappa-B inhibitors. In migrating astrocytes, forms a cytoplasmic complex with PARD6A and is recruited by CDC42 to function in the establishment of cell polarity along with the microtubule motor and dynein. In association with FEZ1, stimulates neuronal differentiation in PC12 cells. In the inflammatory response, is required for the T-helper 2 (Th2) differentiation process, including interleukin production, efficient activation of JAK1 and the subsequent phosphorylation and nuclear translocation of STAT6. May be involved in development of allergic airway inflammation (asthma), a process dependent on Th2 immune response. In the NF-kappa-B-mediated inflammatory response, can relieve SETD6-dependent repression of NF-kappa-B target genes by phosphorylating the RELA subunit at 'Ser-311'. Phosphorylates VAMP2 in vitro (PubMed:17313651). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11035106, ECO:0000269|PubMed:12162751, ECO:0000269|PubMed:15084291, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:17313651, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9447975}.; FUNCTION: [Isoform 2]: Involved in late synaptic long term potention phase in CA1 hippocampal cells and long term memory maintenance. {ECO:0000250|UniProtKB:Q02956}. |
Q12778 | FOXO1 | S234 | PSP | Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) | Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}. |
P09972 | ALDOC | S65 | Sugiyama | Fructose-bisphosphate aldolase C (EC 4.1.2.13) (Brain-type aldolase) | None |
O15067 | PFAS | S513 | Sugiyama | Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) | Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}. |
Q16644 | MAPKAPK3 | S46 | Sugiyama | MAP kinase-activated protein kinase 3 (MAPK-activated protein kinase 3) (MAPKAP kinase 3) (MAPKAP-K3) (MAPKAPK-3) (MK-3) (EC 2.7.11.1) (Chromosome 3p kinase) (3pK) | Stress-activated serine/threonine-protein kinase involved in cytokines production, endocytosis, cell migration, chromatin remodeling and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. MAPKAPK2 and MAPKAPK3, share the same function and substrate specificity, but MAPKAPK3 kinase activity and level in protein expression are lower compared to MAPKAPK2. Phosphorylates HSP27/HSPB1, KRT18, KRT20, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to dissociate HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impair their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins, such as TTP/ZFP36, leading to regulate the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity leading to inhibition of dependent degradation of ARE-containing transcript. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. Also acts as a modulator of Polycomb-mediated repression. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:15563468, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20599781, ECO:0000269|PubMed:8626550, ECO:0000269|PubMed:8774846}. |
P29144 | TPP2 | S25 | Sugiyama | Tripeptidyl-peptidase 2 (TPP-2) (EC 3.4.14.10) (Tripeptidyl aminopeptidase) (Tripeptidyl-peptidase II) (TPP-II) | Cytosolic tripeptidyl-peptidase that releases N-terminal tripeptides from polypeptides and is a component of the proteolytic cascade acting downstream of the 26S proteasome in the ubiquitin-proteasome pathway (PubMed:25525876, PubMed:30533531). It plays an important role in intracellular amino acid homeostasis (PubMed:25525876). Stimulates adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q64514, ECO:0000269|PubMed:25525876, ECO:0000269|PubMed:30533531}. |
P62913 | RPL11 | S51 | Sugiyama | Large ribosomal subunit protein uL5 (60S ribosomal protein L11) (CLL-associated antigen KW-12) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:19191325, PubMed:32669547). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:19191325, PubMed:32669547). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:19191325, PubMed:32669547). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:19191325, PubMed:32669547). As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). Promotes nucleolar location of PML (By similarity). {ECO:0000250|UniProtKB:Q9CXW4, ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:19191325, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:32669547}. |
P10586 | PTPRF | S1853 | Sugiyama | Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) | Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. |
P23468 | PTPRD | S1858 | Sugiyama | Receptor-type tyrosine-protein phosphatase delta (Protein-tyrosine phosphatase delta) (R-PTP-delta) (EC 3.1.3.48) | Can bidirectionally induce pre- and post-synaptic differentiation of neurons by mediating interaction with IL1RAP and IL1RAPL1 trans-synaptically. Involved in pre-synaptic differentiation through interaction with SLITRK2. {ECO:0000250|UniProtKB:Q64487}. |
Q13332 | PTPRS | S1894 | Sugiyama | Receptor-type tyrosine-protein phosphatase S (R-PTP-S) (EC 3.1.3.48) (Receptor-type tyrosine-protein phosphatase sigma) (R-PTP-sigma) | Cell surface receptor that binds to glycosaminoglycans, including chondroitin sulfate proteoglycans and heparan sulfate proteoglycan (PubMed:21454754). Binding to chondroitin sulfate and heparan sulfate proteoglycans has opposite effects on PTPRS oligomerization and regulation of neurite outgrowth. Contributes to the inhibition of neurite and axonal outgrowth by chondroitin sulfate proteoglycans, also after nerve transection. Plays a role in stimulating neurite outgrowth in response to the heparan sulfate proteoglycan GPC2. Required for normal brain development, especially for normal development of the pituitary gland and the olfactory bulb. Functions as a tyrosine phosphatase (PubMed:8524829). Mediates dephosphorylation of NTRK1, NTRK2 and NTRK3 (By similarity). Plays a role in down-regulation of signaling cascades that lead to the activation of Akt and MAP kinases (By similarity). Down-regulates TLR9-mediated activation of NF-kappa-B, as well as production of TNF, interferon alpha and interferon beta (PubMed:26231120). {ECO:0000250|UniProtKB:B0V2N1, ECO:0000250|UniProtKB:F1NWE3, ECO:0000269|PubMed:21454754, ECO:0000269|PubMed:26231120, ECO:0000269|PubMed:8524829}. |
P13489 | RNH1 | S225 | Sugiyama | Ribonuclease inhibitor (Placental ribonuclease inhibitor) (Placental RNase inhibitor) (Ribonuclease/angiogenin inhibitor 1) (RAI) | Ribonuclease inhibitor which inhibits RNASE1, RNASE2 and angiogenin (ANG) (PubMed:12578357, PubMed:14515218, PubMed:3219362, PubMed:3243277, PubMed:3470787, PubMed:9050852). May play a role in redox homeostasis (PubMed:17292889). Required to inhibit the cytotoxic tRNA ribonuclease activity of ANG in the cytoplasm in absence of stress (PubMed:23843625, PubMed:32510170). Relocates to the nucleus in response to stress, relieving inhibition of ANG in the cytoplasm, and inhibiting the angiogenic activity of ANG in the nucleus (PubMed:23843625). {ECO:0000269|PubMed:12578357, ECO:0000269|PubMed:14515218, ECO:0000269|PubMed:17292889, ECO:0000269|PubMed:23843625, ECO:0000269|PubMed:3219362, ECO:0000269|PubMed:3243277, ECO:0000269|PubMed:32510170, ECO:0000269|PubMed:3470787, ECO:0000269|PubMed:9050852}. |
Q8IY84 | NIM1K | S206 | Sugiyama | Serine/threonine-protein kinase NIM1 (EC 2.7.11.1) (NIM1 serine/threonine-protein kinase) | None |
P46013 | MKI67 | S2116 | Sugiyama | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P57721 | PCBP3 | S139 | Sugiyama | Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}. |
Q15366 | PCBP2 | S107 | Sugiyama | Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}. |
Q96RG2 | PASK | S996 | Sugiyama | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q86UP3 | ZFHX4 | S314 | Sugiyama | Zinc finger homeobox protein 4 (Zinc finger homeodomain protein 4) (ZFH-4) | May play a role in neural and muscle differentiation (By similarity). May be involved in transcriptional regulation. {ECO:0000250}. |
Q9BT78 | COPS4 | S340 | Sugiyama | COP9 signalosome complex subunit 4 (SGN4) (Signalosome subunit 4) (JAB1-containing signalosome subunit 4) | Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. Also involved in the deneddylation of non-cullin subunits such as STON2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1, IRF8/ICSBP and SNAPIN, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:21102408, ECO:0000269|PubMed:9535219}. |
Q9H1R3 | MYLK2 | S287 | Sugiyama | Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) | Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}. |
P13984 | GTF2F2 | S28 | Sugiyama | General transcription factor IIF subunit 2 (General transcription factor IIF 30 kDa subunit) (Transcription initiation factor IIF subunit beta) (TFIIF-beta) (Transcription initiation factor RAP30) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. {ECO:0000269|PubMed:2477704}. |
Q9NWZ3 | IRAK4 | S186 | Sugiyama | Interleukin-1 receptor-associated kinase 4 (IRAK-4) (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-64) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways (PubMed:17878374). Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation to form the Myddosome together with IRAK2. Phosphorylates initially IRAK1, thus stimulating the kinase activity and intensive autophosphorylation of IRAK1. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates NCF1 and regulates NADPH oxidase activation after LPS stimulation suggesting a similar mechanism during microbial infections. {ECO:0000269|PubMed:11960013, ECO:0000269|PubMed:12538665, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:17217339, ECO:0000269|PubMed:17337443, ECO:0000269|PubMed:17878374, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509, ECO:0000269|PubMed:24316379}. |
Q9P2K8 | EIF2AK4 | S1504 | Sugiyama | eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}. |
Q96IU4 | ABHD14B | S149 | Sugiyama | Putative protein-lysine deacylase ABHD14B (EC 2.3.1.-) (Alpha/beta hydrolase domain-containing protein 14B) (Abhydrolase domain-containing protein 14B) (CCG1-interacting factor B) | Acts as an atypical protein-lysine deacetylase in vitro (PubMed:31478652). Catalyzes the deacetylation of lysine residues using CoA as substrate, generating acetyl-CoA and the free amine of protein-lysine residues (PubMed:31478652). Additional experiments are however required to confirm the protein-lysine deacetylase activity in vivo (Probable). Has hydrolase activity towards various surrogate p-nitrophenyl (pNp) substrates, such as pNp-butyrate, pNp-acetate and pNp-octanoate in vitro, with a strong preference for pNp-acetate (PubMed:14672934, PubMed:31478652). May activate transcription (PubMed:14672934). {ECO:0000269|PubMed:14672934, ECO:0000269|PubMed:31478652, ECO:0000305}. |
Q9NS15 | LTBP3 | S871 | Sugiyama | Latent-transforming growth factor beta-binding protein 3 (LTBP-3) | Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space. Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta. {ECO:0000303|PubMed:10743502, ECO:0000303|PubMed:11104663}. |
Q8NBP7 | PCSK9 | S595 | Sugiyama | Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) | Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 0.000005 | 5.302 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.000004 | 5.417 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 0.000007 | 5.178 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.000017 | 4.765 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.000022 | 4.666 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.000029 | 4.538 |
R-HSA-114608 | Platelet degranulation | 0.000027 | 4.568 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.000029 | 4.534 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.000035 | 4.452 |
R-HSA-8953897 | Cellular responses to stimuli | 0.000033 | 4.479 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.000046 | 4.335 |
R-HSA-983189 | Kinesins | 0.000042 | 4.379 |
R-HSA-9020591 | Interleukin-12 signaling | 0.000049 | 4.307 |
R-HSA-391251 | Protein folding | 0.000063 | 4.204 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.000065 | 4.189 |
R-HSA-2262752 | Cellular responses to stress | 0.000070 | 4.154 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.000077 | 4.111 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.000075 | 4.127 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.000103 | 3.989 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.000120 | 3.921 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.000160 | 3.795 |
R-HSA-447115 | Interleukin-12 family signaling | 0.000157 | 3.804 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.000208 | 3.681 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.000223 | 3.651 |
R-HSA-190861 | Gap junction assembly | 0.000243 | 3.615 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.000329 | 3.483 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.000392 | 3.407 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.000390 | 3.409 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.000484 | 3.315 |
R-HSA-9646399 | Aggrephagy | 0.000544 | 3.264 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.000565 | 3.248 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.000615 | 3.211 |
R-HSA-68877 | Mitotic Prometaphase | 0.000650 | 3.187 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000664 | 3.178 |
R-HSA-68882 | Mitotic Anaphase | 0.000743 | 3.129 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.000778 | 3.109 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.000838 | 3.077 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 0.000938 | 3.028 |
R-HSA-1538133 | G0 and Early G1 | 0.000999 | 3.000 |
R-HSA-190828 | Gap junction trafficking | 0.000975 | 3.011 |
R-HSA-373753 | Nephrin family interactions | 0.000938 | 3.028 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.000999 | 3.000 |
R-HSA-1500931 | Cell-Cell communication | 0.001133 | 2.946 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.001139 | 2.943 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.001229 | 2.911 |
R-HSA-75153 | Apoptotic execution phase | 0.001209 | 2.918 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 0.001341 | 2.872 |
R-HSA-162582 | Signal Transduction | 0.001332 | 2.875 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.001660 | 2.780 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.001784 | 2.749 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.001784 | 2.749 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.001996 | 2.700 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.002077 | 2.683 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.002558 | 2.592 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.002583 | 2.588 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.003042 | 2.517 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.003042 | 2.517 |
R-HSA-2132295 | MHC class II antigen presentation | 0.002743 | 2.562 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.002850 | 2.545 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.002889 | 2.539 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.003002 | 2.523 |
R-HSA-422475 | Axon guidance | 0.002948 | 2.530 |
R-HSA-109582 | Hemostasis | 0.002926 | 2.534 |
R-HSA-1640170 | Cell Cycle | 0.003256 | 2.487 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.003615 | 2.442 |
R-HSA-9675108 | Nervous system development | 0.003820 | 2.418 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.003984 | 2.400 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.004281 | 2.369 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.004269 | 2.370 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.004853 | 2.314 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.004896 | 2.310 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.005525 | 2.258 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.005589 | 2.253 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.005589 | 2.253 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.005589 | 2.253 |
R-HSA-6802949 | Signaling by RAS mutants | 0.005589 | 2.253 |
R-HSA-373760 | L1CAM interactions | 0.005611 | 2.251 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.006229 | 2.206 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.006156 | 2.211 |
R-HSA-70171 | Glycolysis | 0.006057 | 2.218 |
R-HSA-437239 | Recycling pathway of L1 | 0.006091 | 2.215 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.006214 | 2.207 |
R-HSA-6804754 | Regulation of TP53 Expression | 0.006322 | 2.199 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.006876 | 2.163 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.006631 | 2.178 |
R-HSA-9762292 | Regulation of CDH11 function | 0.006876 | 2.163 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.006730 | 2.172 |
R-HSA-70263 | Gluconeogenesis | 0.006626 | 2.179 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.006906 | 2.161 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.006906 | 2.161 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.007633 | 2.117 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.007633 | 2.117 |
R-HSA-446728 | Cell junction organization | 0.007751 | 2.111 |
R-HSA-5357801 | Programmed Cell Death | 0.007424 | 2.129 |
R-HSA-109581 | Apoptosis | 0.007654 | 2.116 |
R-HSA-69275 | G2/M Transition | 0.008358 | 2.078 |
R-HSA-68886 | M Phase | 0.008833 | 2.054 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.009008 | 2.045 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.009750 | 2.011 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.010013 | 1.999 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.009927 | 2.003 |
R-HSA-3000178 | ECM proteoglycans | 0.009395 | 2.027 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.010129 | 1.994 |
R-HSA-3000170 | Syndecan interactions | 0.010969 | 1.960 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.011200 | 1.951 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.012024 | 1.920 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.012544 | 1.902 |
R-HSA-191650 | Regulation of gap junction activity | 0.013688 | 1.864 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.014119 | 1.850 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.013688 | 1.864 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.013784 | 1.861 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.014256 | 1.846 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.014628 | 1.835 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.015441 | 1.811 |
R-HSA-9833482 | PKR-mediated signaling | 0.016065 | 1.794 |
R-HSA-72172 | mRNA Splicing | 0.016268 | 1.789 |
R-HSA-70326 | Glucose metabolism | 0.016339 | 1.787 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.016408 | 1.785 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.016690 | 1.778 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.017784 | 1.750 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.018278 | 1.738 |
R-HSA-426496 | Post-transcriptional silencing by small RNAs | 0.018278 | 1.738 |
R-HSA-9854909 | Regulation of MITF-M dependent genes involved in invasion | 0.018278 | 1.738 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.018649 | 1.729 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.018893 | 1.724 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.018893 | 1.724 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.019233 | 1.716 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.019532 | 1.709 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.021668 | 1.664 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.022047 | 1.657 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.022047 | 1.657 |
R-HSA-8939211 | ESR-mediated signaling | 0.020994 | 1.678 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.021574 | 1.666 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.021068 | 1.676 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.022125 | 1.655 |
R-HSA-9833110 | RSV-host interactions | 0.022380 | 1.650 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.022960 | 1.639 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.024291 | 1.615 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.024291 | 1.615 |
R-HSA-438064 | Post NMDA receptor activation events | 0.024344 | 1.614 |
R-HSA-199991 | Membrane Trafficking | 0.024501 | 1.611 |
R-HSA-6798695 | Neutrophil degranulation | 0.026522 | 1.576 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.028677 | 1.542 |
R-HSA-5620924 | Intraflagellar transport | 0.025595 | 1.592 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.027897 | 1.554 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.027897 | 1.554 |
R-HSA-9663891 | Selective autophagy | 0.025551 | 1.593 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.028090 | 1.551 |
R-HSA-449147 | Signaling by Interleukins | 0.026812 | 1.572 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.028809 | 1.540 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 0.028826 | 1.540 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.028826 | 1.540 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 0.028826 | 1.540 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.030799 | 1.511 |
R-HSA-3928664 | Ephrin signaling | 0.030799 | 1.511 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.030799 | 1.511 |
R-HSA-421270 | Cell-cell junction organization | 0.030847 | 1.511 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.031034 | 1.508 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.032430 | 1.489 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.035234 | 1.453 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.037924 | 1.421 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.038773 | 1.411 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.035234 | 1.453 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.036952 | 1.432 |
R-HSA-8853659 | RET signaling | 0.038773 | 1.411 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.039682 | 1.401 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.041505 | 1.382 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.041576 | 1.381 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.041576 | 1.381 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.041774 | 1.379 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.041835 | 1.378 |
R-HSA-216083 | Integrin cell surface interactions | 0.042609 | 1.370 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.043834 | 1.358 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.044203 | 1.355 |
R-HSA-1566948 | Elastic fibre formation | 0.044491 | 1.352 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.044609 | 1.351 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.045690 | 1.340 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.051282 | 1.290 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.050038 | 1.301 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.048772 | 1.312 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.047400 | 1.324 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.050038 | 1.301 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.053903 | 1.268 |
R-HSA-448706 | Interleukin-1 processing | 0.048856 | 1.311 |
R-HSA-5617833 | Cilium Assembly | 0.046344 | 1.334 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.050678 | 1.295 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.048856 | 1.311 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.047517 | 1.323 |
R-HSA-5610787 | Hedgehog 'off' state | 0.046912 | 1.329 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.054480 | 1.264 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.056377 | 1.249 |
R-HSA-3642279 | TGFBR2 MSI Frameshift Mutants in Cancer | 0.056824 | 1.245 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.057262 | 1.242 |
R-HSA-429947 | Deadenylation of mRNA | 0.059032 | 1.229 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.059425 | 1.226 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.059425 | 1.226 |
R-HSA-73930 | Abasic sugar-phosphate removal via the single-nucleotide replacement pathway | 0.084015 | 1.076 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 0.110425 | 0.957 |
R-HSA-3878781 | Glycogen storage disease type IV (GBE1) | 0.110425 | 0.957 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 0.110425 | 0.957 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 0.110425 | 0.957 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.136075 | 0.866 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 0.136075 | 0.866 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 0.136075 | 0.866 |
R-HSA-8865999 | MET activates PTPN11 | 0.136075 | 0.866 |
R-HSA-5603037 | IRAK4 deficiency (TLR5) | 0.136075 | 0.866 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.160986 | 0.793 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.160986 | 0.793 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.160986 | 0.793 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 0.160986 | 0.793 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 0.160986 | 0.793 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.064044 | 1.194 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.064044 | 1.194 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.185181 | 0.732 |
R-HSA-74713 | IRS activation | 0.185181 | 0.732 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 0.185181 | 0.732 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 0.185181 | 0.732 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.072156 | 1.142 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.080579 | 1.094 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.080579 | 1.094 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.080579 | 1.094 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 0.080579 | 1.094 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 0.080579 | 1.094 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.080579 | 1.094 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.080579 | 1.094 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.080579 | 1.094 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.080579 | 1.094 |
R-HSA-164525 | Plus-strand DNA synthesis | 0.208679 | 0.681 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.208679 | 0.681 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 0.208679 | 0.681 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 0.208679 | 0.681 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.089287 | 1.049 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.231501 | 0.635 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.231501 | 0.635 |
R-HSA-9645135 | STAT5 Activation | 0.231501 | 0.635 |
R-HSA-162585 | Uncoating of the HIV Virion | 0.231501 | 0.635 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.231501 | 0.635 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.107468 | 0.969 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.107468 | 0.969 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.107468 | 0.969 |
R-HSA-9708530 | Regulation of BACH1 activity | 0.116898 | 0.932 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.116898 | 0.932 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.253667 | 0.596 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.253667 | 0.596 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 0.253667 | 0.596 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.253667 | 0.596 |
R-HSA-112412 | SOS-mediated signalling | 0.253667 | 0.596 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 0.253667 | 0.596 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.126526 | 0.898 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 0.126526 | 0.898 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 0.126526 | 0.898 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.073829 | 1.132 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.073829 | 1.132 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.136334 | 0.865 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 0.136334 | 0.865 |
R-HSA-162589 | Reverse Transcription of HIV RNA | 0.275194 | 0.560 |
R-HSA-164516 | Minus-strand DNA synthesis | 0.275194 | 0.560 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 0.275194 | 0.560 |
R-HSA-8875656 | MET receptor recycling | 0.275194 | 0.560 |
R-HSA-196025 | Formation of annular gap junctions | 0.275194 | 0.560 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 0.275194 | 0.560 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.079093 | 1.102 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.079093 | 1.102 |
R-HSA-180292 | GAB1 signalosome | 0.146303 | 0.835 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.156416 | 0.806 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.156416 | 0.806 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.296102 | 0.529 |
R-HSA-201688 | WNT mediated activation of DVL | 0.296102 | 0.529 |
R-HSA-190873 | Gap junction degradation | 0.296102 | 0.529 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.166657 | 0.778 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.166657 | 0.778 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.166657 | 0.778 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.166657 | 0.778 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.166657 | 0.778 |
R-HSA-202040 | G-protein activation | 0.177009 | 0.752 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.177009 | 0.752 |
R-HSA-173107 | Binding and entry of HIV virion | 0.316407 | 0.500 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.316407 | 0.500 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.316407 | 0.500 |
R-HSA-4839744 | Signaling by APC mutants | 0.336129 | 0.473 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.336129 | 0.473 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.336129 | 0.473 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.336129 | 0.473 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.208589 | 0.681 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.068263 | 1.166 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.219245 | 0.659 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.355282 | 0.449 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.355282 | 0.449 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.077788 | 1.109 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.229946 | 0.638 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.160206 | 0.795 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.091539 | 1.038 |
R-HSA-380287 | Centrosome maturation | 0.098853 | 1.005 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.262206 | 0.581 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.262206 | 0.581 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.272977 | 0.564 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.272977 | 0.564 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.272977 | 0.564 |
R-HSA-774815 | Nucleosome assembly | 0.203668 | 0.691 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.203668 | 0.691 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.074744 | 1.126 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.074744 | 1.126 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.211165 | 0.675 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.142957 | 0.845 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.257226 | 0.590 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.257226 | 0.590 |
R-HSA-390522 | Striated Muscle Contraction | 0.326569 | 0.486 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.176550 | 0.753 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.265042 | 0.577 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.265042 | 0.577 |
R-HSA-72649 | Translation initiation complex formation | 0.272887 | 0.564 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.280755 | 0.552 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.288644 | 0.540 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.288644 | 0.540 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.358248 | 0.446 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.216792 | 0.664 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.304467 | 0.516 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.335899 | 0.474 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.317943 | 0.498 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.240681 | 0.619 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.164849 | 0.783 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.177009 | 0.752 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.177009 | 0.752 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.136334 | 0.865 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.136334 | 0.865 |
R-HSA-167169 | HIV Transcription Elongation | 0.160206 | 0.795 |
R-HSA-2022928 | HS-GAG biosynthesis | 0.358248 | 0.446 |
R-HSA-354192 | Integrin signaling | 0.107701 | 0.968 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.187457 | 0.727 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.089287 | 1.049 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.166969 | 0.777 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.303175 | 0.518 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.160206 | 0.795 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.146303 | 0.835 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.098257 | 1.008 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 0.337182 | 0.472 |
R-HSA-4641258 | Degradation of DVL | 0.368691 | 0.433 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.304467 | 0.516 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.203668 | 0.691 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.064044 | 1.194 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.063794 | 1.195 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.063794 | 1.195 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.073829 | 1.132 |
R-HSA-198203 | PI3K/AKT activation | 0.316407 | 0.500 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.187457 | 0.727 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.153261 | 0.815 |
R-HSA-156902 | Peptide chain elongation | 0.316233 | 0.500 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.226771 | 0.644 |
R-HSA-5620971 | Pyroptosis | 0.079093 | 1.102 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.197988 | 0.703 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.139673 | 0.855 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.196236 | 0.707 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.272977 | 0.564 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 0.219245 | 0.659 |
R-HSA-9609690 | HCMV Early Events | 0.103783 | 0.984 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.349041 | 0.457 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.197988 | 0.703 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.184078 | 0.735 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.231501 | 0.635 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.073829 | 1.132 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.105816 | 0.975 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.184078 | 0.735 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.326569 | 0.486 |
R-HSA-392518 | Signal amplification | 0.337182 | 0.472 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.098257 | 1.008 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.126526 | 0.898 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 0.275194 | 0.560 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.146303 | 0.835 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.355282 | 0.449 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.315912 | 0.500 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.315912 | 0.500 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.142957 | 0.845 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.181417 | 0.741 |
R-HSA-5673000 | RAF activation | 0.337182 | 0.472 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.327785 | 0.484 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.081261 | 1.090 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.312393 | 0.505 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 0.160986 | 0.793 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 0.160986 | 0.793 |
R-HSA-5250992 | Toxicity of botulinum toxin type E (botE) | 0.208679 | 0.681 |
R-HSA-5250981 | Toxicity of botulinum toxin type F (botF) | 0.231501 | 0.635 |
R-HSA-5250955 | Toxicity of botulinum toxin type D (botD) | 0.231501 | 0.635 |
R-HSA-5250968 | Toxicity of botulinum toxin type A (botA) | 0.296102 | 0.529 |
R-HSA-9865881 | Complex III assembly | 0.219245 | 0.659 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.296549 | 0.528 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.264450 | 0.578 |
R-HSA-8875878 | MET promotes cell motility | 0.146415 | 0.834 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.065331 | 1.185 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.283741 | 0.547 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.240681 | 0.619 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.219245 | 0.659 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.355282 | 0.449 |
R-HSA-525793 | Myogenesis | 0.240681 | 0.619 |
R-HSA-1268020 | Mitochondrial protein import | 0.336191 | 0.473 |
R-HSA-9711097 | Cellular response to starvation | 0.259034 | 0.587 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.101184 | 0.995 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.305216 | 0.515 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.063428 | 1.198 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.337182 | 0.472 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.126526 | 0.898 |
R-HSA-5689603 | UCH proteinases | 0.102617 | 0.989 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.103746 | 0.984 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.321071 | 0.493 |
R-HSA-6807070 | PTEN Regulation | 0.176171 | 0.754 |
R-HSA-9636667 | Manipulation of host energy metabolism | 0.084015 | 1.076 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 0.084015 | 1.076 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.136075 | 0.866 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.208679 | 0.681 |
R-HSA-1483101 | Synthesis of PS | 0.208679 | 0.681 |
R-HSA-9796292 | Formation of axial mesoderm | 0.089287 | 1.049 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.231501 | 0.635 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.107468 | 0.969 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 0.253667 | 0.596 |
R-HSA-418886 | Netrin mediated repulsion signals | 0.253667 | 0.596 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.253667 | 0.596 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.146303 | 0.835 |
R-HSA-176974 | Unwinding of DNA | 0.296102 | 0.529 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.316407 | 0.500 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.316407 | 0.500 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.219245 | 0.659 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.355282 | 0.449 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.355282 | 0.449 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.355282 | 0.449 |
R-HSA-9839394 | TGFBR3 expression | 0.229946 | 0.638 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.160206 | 0.795 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.135294 | 0.869 |
R-HSA-77387 | Insulin receptor recycling | 0.262206 | 0.581 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.337182 | 0.472 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.237903 | 0.624 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.328259 | 0.484 |
R-HSA-1234174 | Cellular response to hypoxia | 0.359945 | 0.444 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.335899 | 0.474 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.188873 | 0.724 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.208482 | 0.681 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.184812 | 0.733 |
R-HSA-9711123 | Cellular response to chemical stress | 0.084496 | 1.073 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.156416 | 0.806 |
R-HSA-9694614 | Attachment and Entry | 0.187457 | 0.727 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.357080 | 0.447 |
R-HSA-112399 | IRS-mediated signalling | 0.296549 | 0.528 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.090093 | 1.045 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.136334 | 0.865 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.275194 | 0.560 |
R-HSA-74749 | Signal attenuation | 0.316407 | 0.500 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.326569 | 0.486 |
R-HSA-180746 | Nuclear import of Rev protein | 0.337182 | 0.472 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.336191 | 0.473 |
R-HSA-212436 | Generic Transcription Pathway | 0.195391 | 0.709 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.113191 | 0.946 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.074537 | 1.128 |
R-HSA-3371556 | Cellular response to heat stress | 0.206210 | 0.686 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.328259 | 0.484 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.079687 | 1.099 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.111865 | 0.951 |
R-HSA-9734767 | Developmental Cell Lineages | 0.131066 | 0.883 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.291436 | 0.535 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 0.160986 | 0.793 |
R-HSA-156711 | Polo-like kinase mediated events | 0.146303 | 0.835 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.296102 | 0.529 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.107701 | 0.968 |
R-HSA-8963888 | Chylomicron assembly | 0.336129 | 0.473 |
R-HSA-9766229 | Degradation of CDH1 | 0.088001 | 1.056 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.337182 | 0.472 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.352037 | 0.453 |
R-HSA-5218859 | Regulated Necrosis | 0.184812 | 0.733 |
R-HSA-9020702 | Interleukin-1 signaling | 0.113528 | 0.945 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.095820 | 1.019 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.187457 | 0.727 |
R-HSA-74752 | Signaling by Insulin receptor | 0.181417 | 0.741 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.089287 | 1.049 |
R-HSA-69481 | G2/M Checkpoints | 0.126343 | 0.898 |
R-HSA-4086398 | Ca2+ pathway | 0.214531 | 0.669 |
R-HSA-5653656 | Vesicle-mediated transport | 0.137630 | 0.861 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.100089 | 1.000 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.111953 | 0.951 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.118370 | 0.927 |
R-HSA-9609646 | HCMV Infection | 0.269567 | 0.569 |
R-HSA-2428924 | IGF1R signaling cascade | 0.352037 | 0.453 |
R-HSA-9006936 | Signaling by TGFB family members | 0.081261 | 1.090 |
R-HSA-1474290 | Collagen formation | 0.362188 | 0.441 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.211165 | 0.675 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.146863 | 0.833 |
R-HSA-8953854 | Metabolism of RNA | 0.095442 | 1.020 |
R-HSA-190704 | Oligomerization of connexins into connexons | 0.084015 | 1.076 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 0.136075 | 0.866 |
R-HSA-5626978 | TNFR1-mediated ceramide production | 0.160986 | 0.793 |
R-HSA-205025 | NADE modulates death signalling | 0.160986 | 0.793 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.185181 | 0.732 |
R-HSA-429593 | Inositol transporters | 0.185181 | 0.732 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.231501 | 0.635 |
R-HSA-8964041 | LDL remodeling | 0.253667 | 0.596 |
R-HSA-420029 | Tight junction interactions | 0.063794 | 1.195 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.296102 | 0.529 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.177009 | 0.752 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.219245 | 0.659 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.095160 | 1.022 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.135188 | 0.869 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.164849 | 0.783 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.197244 | 0.705 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.103366 | 0.986 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.103366 | 0.986 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.103366 | 0.986 |
R-HSA-2559583 | Cellular Senescence | 0.070889 | 1.149 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.197244 | 0.705 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.210748 | 0.676 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.198825 | 0.702 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.100089 | 1.000 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.202921 | 0.693 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.126521 | 0.898 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.359945 | 0.444 |
R-HSA-4839726 | Chromatin organization | 0.265973 | 0.575 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.210748 | 0.676 |
R-HSA-196780 | Biotin transport and metabolism | 0.107468 | 0.969 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.162958 | 0.788 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.139551 | 0.855 |
R-HSA-9607240 | FLT3 Signaling | 0.167245 | 0.777 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.175502 | 0.756 |
R-HSA-200425 | Carnitine shuttle | 0.208589 | 0.681 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.202483 | 0.694 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.167245 | 0.777 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.219371 | 0.659 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.251437 | 0.600 |
R-HSA-163685 | Integration of energy metabolism | 0.164849 | 0.783 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.368691 | 0.433 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.231501 | 0.635 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.095820 | 1.019 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.347743 | 0.459 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.079735 | 1.098 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.337182 | 0.472 |
R-HSA-418990 | Adherens junctions interactions | 0.094217 | 1.026 |
R-HSA-446652 | Interleukin-1 family signaling | 0.232991 | 0.633 |
R-HSA-5683057 | MAPK family signaling cascades | 0.076752 | 1.115 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.087990 | 1.056 |
R-HSA-2028269 | Signaling by Hippo | 0.136334 | 0.865 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.140503 | 0.852 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.071786 | 1.144 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.215320 | 0.667 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 0.136075 | 0.866 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.160986 | 0.793 |
R-HSA-9707587 | Regulation of HMOX1 expression and activity | 0.160986 | 0.793 |
R-HSA-111457 | Release of apoptotic factors from the mitochondria | 0.208679 | 0.681 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.253667 | 0.596 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 0.253667 | 0.596 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 0.296102 | 0.529 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.296102 | 0.529 |
R-HSA-166208 | mTORC1-mediated signalling | 0.197988 | 0.703 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.208589 | 0.681 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.355282 | 0.449 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.153261 | 0.815 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.240681 | 0.619 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.130167 | 0.886 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.098853 | 1.005 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.142957 | 0.845 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.248665 | 0.604 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.358546 | 0.445 |
R-HSA-5688426 | Deubiquitination | 0.064243 | 1.192 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.129197 | 0.889 |
R-HSA-9707616 | Heme signaling | 0.336191 | 0.473 |
R-HSA-5654738 | Signaling by FGFR2 | 0.118370 | 0.927 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.177009 | 0.752 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.117024 | 0.932 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.248665 | 0.604 |
R-HSA-1474244 | Extracellular matrix organization | 0.095706 | 1.019 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.122219 | 0.913 |
R-HSA-1266738 | Developmental Biology | 0.064635 | 1.190 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.139551 | 0.855 |
R-HSA-913531 | Interferon Signaling | 0.139820 | 0.854 |
R-HSA-9645723 | Diseases of programmed cell death | 0.316233 | 0.500 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.315912 | 0.500 |
R-HSA-114452 | Activation of BH3-only proteins | 0.283741 | 0.547 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.265042 | 0.577 |
R-HSA-9612973 | Autophagy | 0.250257 | 0.602 |
R-HSA-190236 | Signaling by FGFR | 0.216792 | 0.664 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.185181 | 0.732 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.208679 | 0.681 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.208679 | 0.681 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.098257 | 1.008 |
R-HSA-164944 | Nef and signal transduction | 0.231501 | 0.635 |
R-HSA-8866423 | VLDL assembly | 0.231501 | 0.635 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.253667 | 0.596 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.336129 | 0.473 |
R-HSA-419037 | NCAM1 interactions | 0.139673 | 0.855 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.232957 | 0.633 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.327722 | 0.484 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.287216 | 0.542 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.287216 | 0.542 |
R-HSA-9824446 | Viral Infection Pathways | 0.187369 | 0.727 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.259549 | 0.586 |
R-HSA-2024096 | HS-GAG degradation | 0.305216 | 0.515 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.136334 | 0.865 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.146303 | 0.835 |
R-HSA-445144 | Signal transduction by L1 | 0.166657 | 0.778 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.196236 | 0.707 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.242326 | 0.616 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.115832 | 0.936 |
R-HSA-168249 | Innate Immune System | 0.248212 | 0.605 |
R-HSA-264876 | Insulin processing | 0.251437 | 0.600 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.063097 | 1.200 |
R-HSA-168256 | Immune System | 0.237832 | 0.624 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.191766 | 0.717 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 0.208679 | 0.681 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.296102 | 0.529 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.181583 | 0.741 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.262206 | 0.581 |
R-HSA-109704 | PI3K Cascade | 0.241696 | 0.617 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.239184 | 0.621 |
R-HSA-9845576 | Glycosphingolipid transport | 0.358248 | 0.446 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.063097 | 1.200 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.187457 | 0.727 |
R-HSA-5358351 | Signaling by Hedgehog | 0.088381 | 1.054 |
R-HSA-447043 | Neurofascin interactions | 0.231501 | 0.635 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 0.253667 | 0.596 |
R-HSA-210990 | PECAM1 interactions | 0.336129 | 0.473 |
R-HSA-162592 | Integration of provirus | 0.355282 | 0.449 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.245449 | 0.610 |
R-HSA-1632852 | Macroautophagy | 0.183900 | 0.735 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.181583 | 0.741 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.352037 | 0.453 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.358248 | 0.446 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.196536 | 0.707 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.358248 | 0.446 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.320325 | 0.494 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.296102 | 0.529 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.283741 | 0.547 |
R-HSA-69205 | G1/S-Specific Transcription | 0.358248 | 0.446 |
R-HSA-2586552 | Signaling by Leptin | 0.316407 | 0.500 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.087575 | 1.058 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.355282 | 0.449 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.257226 | 0.590 |
R-HSA-194138 | Signaling by VEGF | 0.119885 | 0.921 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.294490 | 0.531 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.347743 | 0.459 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.336191 | 0.473 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.197620 | 0.704 |
R-HSA-9020933 | Interleukin-23 signaling | 0.275194 | 0.560 |
R-HSA-376176 | Signaling by ROBO receptors | 0.325748 | 0.487 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.288644 | 0.540 |
R-HSA-2980736 | Peptide hormone metabolism | 0.338177 | 0.471 |
R-HSA-8948216 | Collagen chain trimerization | 0.368691 | 0.433 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.315391 | 0.501 |
R-HSA-9679506 | SARS-CoV Infections | 0.180232 | 0.744 |
R-HSA-75893 | TNF signaling | 0.288644 | 0.540 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.167245 | 0.777 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.257226 | 0.590 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.208589 | 0.681 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.337182 | 0.472 |
R-HSA-9020558 | Interleukin-2 signaling | 0.336129 | 0.473 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.283713 | 0.547 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.368759 | 0.433 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.373884 | 0.427 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.373884 | 0.427 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.373884 | 0.427 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.373884 | 0.427 |
R-HSA-8983432 | Interleukin-15 signaling | 0.373884 | 0.427 |
R-HSA-8983711 | OAS antiviral response | 0.373884 | 0.427 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.375327 | 0.426 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.375327 | 0.426 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.375327 | 0.426 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.375715 | 0.425 |
R-HSA-162909 | Host Interactions of HIV factors | 0.378302 | 0.422 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.379067 | 0.421 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.379067 | 0.421 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.379163 | 0.421 |
R-HSA-167172 | Transcription of the HIV genome | 0.383572 | 0.416 |
R-HSA-69541 | Stabilization of p53 | 0.389370 | 0.410 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.389370 | 0.410 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.389370 | 0.410 |
R-HSA-69206 | G1/S Transition | 0.389774 | 0.409 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.391951 | 0.407 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.391951 | 0.407 |
R-HSA-8949664 | Processing of SMDT1 | 0.391951 | 0.407 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.391951 | 0.407 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.394641 | 0.404 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.399214 | 0.399 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.399214 | 0.399 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.399214 | 0.399 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.399214 | 0.399 |
R-HSA-3371568 | Attenuation phase | 0.399596 | 0.398 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.399596 | 0.398 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.399596 | 0.398 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.399596 | 0.398 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.399596 | 0.398 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.399596 | 0.398 |
R-HSA-5260271 | Diseases of Immune System | 0.399596 | 0.398 |
R-HSA-202433 | Generation of second messenger molecules | 0.399596 | 0.398 |
R-HSA-451927 | Interleukin-2 family signaling | 0.399596 | 0.398 |
R-HSA-3214847 | HATs acetylate histones | 0.401520 | 0.396 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.402519 | 0.395 |
R-HSA-162587 | HIV Life Cycle | 0.404954 | 0.393 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.406995 | 0.390 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.406995 | 0.390 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.406995 | 0.390 |
R-HSA-5663205 | Infectious disease | 0.408371 | 0.389 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.409497 | 0.388 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.409497 | 0.388 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.409497 | 0.388 |
R-HSA-1433559 | Regulation of KIT signaling | 0.409497 | 0.388 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.409497 | 0.388 |
R-HSA-5578768 | Physiological factors | 0.409497 | 0.388 |
R-HSA-9686114 | Non-canonical inflammasome activation | 0.409497 | 0.388 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.409742 | 0.387 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.409742 | 0.387 |
R-HSA-2408557 | Selenocysteine synthesis | 0.414547 | 0.382 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.414746 | 0.382 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.416695 | 0.380 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.419803 | 0.377 |
R-HSA-6811438 | Intra-Golgi traffic | 0.419803 | 0.377 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.419803 | 0.377 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.419803 | 0.377 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.421063 | 0.376 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.421063 | 0.376 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.422464 | 0.374 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.426538 | 0.370 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.426538 | 0.370 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 0.426538 | 0.370 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.426538 | 0.370 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.426538 | 0.370 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.426538 | 0.370 |
R-HSA-171007 | p38MAPK events | 0.426538 | 0.370 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.426538 | 0.370 |
R-HSA-5676934 | Protein repair | 0.426538 | 0.370 |
R-HSA-418885 | DCC mediated attractive signaling | 0.426538 | 0.370 |
R-HSA-192823 | Viral mRNA Translation | 0.427512 | 0.369 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.429776 | 0.367 |
R-HSA-165159 | MTOR signalling | 0.429776 | 0.367 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.430148 | 0.366 |
R-HSA-1236394 | Signaling by ERBB4 | 0.430148 | 0.366 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.430148 | 0.366 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.433967 | 0.363 |
R-HSA-73894 | DNA Repair | 0.434582 | 0.362 |
R-HSA-162906 | HIV Infection | 0.434962 | 0.362 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.439658 | 0.357 |
R-HSA-9710421 | Defective pyroptosis | 0.439658 | 0.357 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.440402 | 0.356 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.440402 | 0.356 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.443088 | 0.354 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 0.443088 | 0.354 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 0.443088 | 0.354 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.443088 | 0.354 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.443088 | 0.354 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.443088 | 0.354 |
R-HSA-9664420 | Killing mechanisms | 0.443088 | 0.354 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.443088 | 0.354 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 0.443088 | 0.354 |
R-HSA-2485179 | Activation of the phototransduction cascade | 0.443088 | 0.354 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.443088 | 0.354 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.443088 | 0.354 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.443088 | 0.354 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.443088 | 0.354 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.446816 | 0.350 |
R-HSA-9907900 | Proteasome assembly | 0.449445 | 0.347 |
R-HSA-373752 | Netrin-1 signaling | 0.449445 | 0.347 |
R-HSA-195721 | Signaling by WNT | 0.452609 | 0.344 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.453206 | 0.344 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.459134 | 0.338 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 0.459134 | 0.338 |
R-HSA-9824272 | Somitogenesis | 0.459134 | 0.338 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 0.459161 | 0.338 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.459161 | 0.338 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.459161 | 0.338 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.459161 | 0.338 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.459161 | 0.338 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.459161 | 0.338 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.459161 | 0.338 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 0.459161 | 0.338 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.459161 | 0.338 |
R-HSA-1566977 | Fibronectin matrix formation | 0.459161 | 0.338 |
R-HSA-1483148 | Synthesis of PG | 0.459161 | 0.338 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.459161 | 0.338 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.459573 | 0.338 |
R-HSA-211000 | Gene Silencing by RNA | 0.459573 | 0.338 |
R-HSA-4086400 | PCP/CE pathway | 0.460492 | 0.337 |
R-HSA-1280218 | Adaptive Immune System | 0.467845 | 0.330 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.468724 | 0.329 |
R-HSA-9675135 | Diseases of DNA repair | 0.468724 | 0.329 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.468724 | 0.329 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.468724 | 0.329 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.468724 | 0.329 |
R-HSA-9948299 | Ribosome-associated quality control | 0.474755 | 0.324 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 0.474772 | 0.324 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.474772 | 0.324 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 0.474772 | 0.324 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 0.474772 | 0.324 |
R-HSA-3229121 | Glycogen storage diseases | 0.474772 | 0.324 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.474772 | 0.324 |
R-HSA-6806834 | Signaling by MET | 0.475403 | 0.323 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.478212 | 0.320 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.478212 | 0.320 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.478212 | 0.320 |
R-HSA-202403 | TCR signaling | 0.478515 | 0.320 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.487596 | 0.312 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.487596 | 0.312 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.489933 | 0.310 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 0.489933 | 0.310 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 0.489933 | 0.310 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.489933 | 0.310 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.489933 | 0.310 |
R-HSA-432142 | Platelet sensitization by LDL | 0.489933 | 0.310 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 0.489933 | 0.310 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.489933 | 0.310 |
R-HSA-210993 | Tie2 Signaling | 0.489933 | 0.310 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.489933 | 0.310 |
R-HSA-5689880 | Ub-specific processing proteases | 0.491452 | 0.309 |
R-HSA-1643685 | Disease | 0.493717 | 0.307 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.496873 | 0.304 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.496873 | 0.304 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.497195 | 0.303 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.497406 | 0.303 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.503359 | 0.298 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.504657 | 0.297 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.504657 | 0.297 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.504657 | 0.297 |
R-HSA-392851 | Prostacyclin signalling through prostacyclin receptor | 0.504657 | 0.297 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 0.504657 | 0.297 |
R-HSA-9834899 | Specification of the neural plate border | 0.504657 | 0.297 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.504657 | 0.297 |
R-HSA-392517 | Rap1 signalling | 0.504657 | 0.297 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 0.504657 | 0.297 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.504657 | 0.297 |
R-HSA-844456 | The NLRP3 inflammasome | 0.504657 | 0.297 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.506043 | 0.296 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.506043 | 0.296 |
R-HSA-9748787 | Azathioprine ADME | 0.506043 | 0.296 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.515104 | 0.288 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.515104 | 0.288 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.515104 | 0.288 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.515104 | 0.288 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.518957 | 0.285 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.518957 | 0.285 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.518957 | 0.285 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.518957 | 0.285 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.518957 | 0.285 |
R-HSA-9823730 | Formation of definitive endoderm | 0.518957 | 0.285 |
R-HSA-3322077 | Glycogen synthesis | 0.518957 | 0.285 |
R-HSA-1181150 | Signaling by NODAL | 0.518957 | 0.285 |
R-HSA-168255 | Influenza Infection | 0.521063 | 0.283 |
R-HSA-68949 | Orc1 removal from chromatin | 0.524054 | 0.281 |
R-HSA-597592 | Post-translational protein modification | 0.530476 | 0.275 |
R-HSA-74160 | Gene expression (Transcription) | 0.532419 | 0.274 |
R-HSA-392170 | ADP signalling through P2Y purinoceptor 12 | 0.532845 | 0.273 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.532845 | 0.273 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.532845 | 0.273 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.532845 | 0.273 |
R-HSA-167044 | Signalling to RAS | 0.532845 | 0.273 |
R-HSA-210991 | Basigin interactions | 0.532845 | 0.273 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.532892 | 0.273 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.532892 | 0.273 |
R-HSA-445355 | Smooth Muscle Contraction | 0.532892 | 0.273 |
R-HSA-70268 | Pyruvate metabolism | 0.533008 | 0.273 |
R-HSA-69242 | S Phase | 0.534572 | 0.272 |
R-HSA-5693538 | Homology Directed Repair | 0.539608 | 0.268 |
R-HSA-9758941 | Gastrulation | 0.539860 | 0.268 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.540423 | 0.267 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.541617 | 0.266 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.541617 | 0.266 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.545121 | 0.264 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.545519 | 0.263 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.546333 | 0.263 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.546333 | 0.263 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.546333 | 0.263 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.546333 | 0.263 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.546333 | 0.263 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.546333 | 0.263 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.546333 | 0.263 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.546333 | 0.263 |
R-HSA-3214815 | HDACs deacetylate histones | 0.550229 | 0.259 |
R-HSA-9753281 | Paracetamol ADME | 0.550229 | 0.259 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.550229 | 0.259 |
R-HSA-112310 | Neurotransmitter release cycle | 0.553675 | 0.257 |
R-HSA-202424 | Downstream TCR signaling | 0.553675 | 0.257 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.555555 | 0.255 |
R-HSA-73886 | Chromosome Maintenance | 0.557223 | 0.254 |
R-HSA-177929 | Signaling by EGFR | 0.558727 | 0.253 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.558727 | 0.253 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.559432 | 0.252 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.559432 | 0.252 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.559432 | 0.252 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.559432 | 0.252 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 0.559432 | 0.252 |
R-HSA-9669938 | Signaling by KIT in disease | 0.559432 | 0.252 |
R-HSA-8964038 | LDL clearance | 0.559432 | 0.252 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.559432 | 0.252 |
R-HSA-9857377 | Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... | 0.559432 | 0.252 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.560728 | 0.251 |
R-HSA-9609507 | Protein localization | 0.560728 | 0.251 |
R-HSA-73887 | Death Receptor Signaling | 0.565871 | 0.247 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.567109 | 0.246 |
R-HSA-112316 | Neuronal System | 0.569360 | 0.245 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 0.572154 | 0.242 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 0.572154 | 0.242 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 0.572154 | 0.242 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.572154 | 0.242 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.572154 | 0.242 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 0.572154 | 0.242 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.572154 | 0.242 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.572154 | 0.242 |
R-HSA-982772 | Growth hormone receptor signaling | 0.572154 | 0.242 |
R-HSA-6809371 | Formation of the cornified envelope | 0.574471 | 0.241 |
R-HSA-392499 | Metabolism of proteins | 0.574698 | 0.241 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.575376 | 0.240 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.580367 | 0.236 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.582677 | 0.235 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.583528 | 0.234 |
R-HSA-191859 | snRNP Assembly | 0.583528 | 0.234 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 0.583528 | 0.234 |
R-HSA-186712 | Regulation of beta-cell development | 0.583528 | 0.234 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.583528 | 0.234 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.583528 | 0.234 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.584509 | 0.233 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.584509 | 0.233 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.584509 | 0.233 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.584509 | 0.233 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.584509 | 0.233 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.584509 | 0.233 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.584509 | 0.233 |
R-HSA-9836573 | Mitochondrial RNA degradation | 0.584509 | 0.233 |
R-HSA-1227986 | Signaling by ERBB2 | 0.591563 | 0.228 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.596508 | 0.224 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 0.596508 | 0.224 |
R-HSA-1296059 | G protein gated Potassium channels | 0.596508 | 0.224 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 0.596508 | 0.224 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 0.596508 | 0.224 |
R-HSA-9620244 | Long-term potentiation | 0.596508 | 0.224 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.596508 | 0.224 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.596508 | 0.224 |
R-HSA-3000157 | Laminin interactions | 0.596508 | 0.224 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.596508 | 0.224 |
R-HSA-9830364 | Formation of the nephric duct | 0.596508 | 0.224 |
R-HSA-1266695 | Interleukin-7 signaling | 0.596508 | 0.224 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.599483 | 0.222 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.599483 | 0.222 |
R-HSA-450294 | MAP kinase activation | 0.599483 | 0.222 |
R-HSA-1442490 | Collagen degradation | 0.599483 | 0.222 |
R-HSA-72312 | rRNA processing | 0.605474 | 0.218 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.606031 | 0.218 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.607287 | 0.217 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.607287 | 0.217 |
R-HSA-186797 | Signaling by PDGF | 0.607287 | 0.217 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.608162 | 0.216 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 0.608162 | 0.216 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.608162 | 0.216 |
R-HSA-5689901 | Metalloprotease DUBs | 0.608162 | 0.216 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.608162 | 0.216 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.608162 | 0.216 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.608162 | 0.216 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 0.608162 | 0.216 |
R-HSA-70635 | Urea cycle | 0.608162 | 0.216 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.608162 | 0.216 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.608162 | 0.216 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.614974 | 0.211 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.614974 | 0.211 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.615532 | 0.211 |
R-HSA-422356 | Regulation of insulin secretion | 0.618466 | 0.209 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.619479 | 0.208 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.619479 | 0.208 |
R-HSA-8949613 | Cristae formation | 0.619479 | 0.208 |
R-HSA-201451 | Signaling by BMP | 0.619479 | 0.208 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.619479 | 0.208 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.619479 | 0.208 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.619479 | 0.208 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.619479 | 0.208 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.619479 | 0.208 |
R-HSA-9843745 | Adipogenesis | 0.623852 | 0.205 |
R-HSA-9614085 | FOXO-mediated transcription | 0.624584 | 0.204 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.630470 | 0.200 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.630470 | 0.200 |
R-HSA-622312 | Inflammasomes | 0.630470 | 0.200 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.630634 | 0.200 |
R-HSA-9615710 | Late endosomal microautophagy | 0.641145 | 0.193 |
R-HSA-72086 | mRNA Capping | 0.641145 | 0.193 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.641145 | 0.193 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.641145 | 0.193 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.641145 | 0.193 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.641145 | 0.193 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.641145 | 0.193 |
R-HSA-180024 | DARPP-32 events | 0.641145 | 0.193 |
R-HSA-1483255 | PI Metabolism | 0.642530 | 0.192 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.644571 | 0.191 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.644571 | 0.191 |
R-HSA-196807 | Nicotinate metabolism | 0.644571 | 0.191 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.651512 | 0.186 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.651512 | 0.186 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.651512 | 0.186 |
R-HSA-2424491 | DAP12 signaling | 0.651512 | 0.186 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.651512 | 0.186 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.651512 | 0.186 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.651512 | 0.186 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.651512 | 0.186 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.651512 | 0.186 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.652766 | 0.185 |
R-HSA-111885 | Opioid Signalling | 0.654154 | 0.184 |
R-HSA-9658195 | Leishmania infection | 0.654737 | 0.184 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.654737 | 0.184 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.661579 | 0.179 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.661579 | 0.179 |
R-HSA-182971 | EGFR downregulation | 0.661579 | 0.179 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.661579 | 0.179 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.661579 | 0.179 |
R-HSA-5694530 | Cargo concentration in the ER | 0.661579 | 0.179 |
R-HSA-162710 | Synthesis of glycosylphosphatidylinositol (GPI) | 0.661579 | 0.179 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.665568 | 0.177 |
R-HSA-448424 | Interleukin-17 signaling | 0.665568 | 0.177 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.665568 | 0.177 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.670501 | 0.174 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 0.671357 | 0.173 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.671357 | 0.173 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.671357 | 0.173 |
R-HSA-69190 | DNA strand elongation | 0.671357 | 0.173 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.671357 | 0.173 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.672341 | 0.172 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.672341 | 0.172 |
R-HSA-975634 | Retinoid metabolism and transport | 0.672341 | 0.172 |
R-HSA-5632684 | Hedgehog 'on' state | 0.672341 | 0.172 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.674283 | 0.171 |
R-HSA-9664407 | Parasite infection | 0.674283 | 0.171 |
R-HSA-9664417 | Leishmania phagocytosis | 0.674283 | 0.171 |
R-HSA-69239 | Synthesis of DNA | 0.676584 | 0.170 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.679003 | 0.168 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.680853 | 0.167 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.680853 | 0.167 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 0.680853 | 0.167 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.680853 | 0.167 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.680853 | 0.167 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.680853 | 0.167 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.680853 | 0.167 |
R-HSA-9733709 | Cardiogenesis | 0.680853 | 0.167 |
R-HSA-159418 | Recycling of bile acids and salts | 0.680853 | 0.167 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.680853 | 0.167 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.685555 | 0.164 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.687389 | 0.163 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.690075 | 0.161 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.690075 | 0.161 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.690075 | 0.161 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.690075 | 0.161 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.690075 | 0.161 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.690075 | 0.161 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.691996 | 0.160 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.698328 | 0.156 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.699031 | 0.156 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.699031 | 0.156 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.699031 | 0.156 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.699031 | 0.156 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.699031 | 0.156 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 0.699031 | 0.156 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.699031 | 0.156 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.707728 | 0.150 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.707728 | 0.150 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.707728 | 0.150 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.707728 | 0.150 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.707728 | 0.150 |
R-HSA-169911 | Regulation of Apoptosis | 0.707728 | 0.150 |
R-HSA-917977 | Transferrin endocytosis and recycling | 0.707728 | 0.150 |
R-HSA-381042 | PERK regulates gene expression | 0.707728 | 0.150 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.707728 | 0.150 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.707728 | 0.150 |
R-HSA-187687 | Signalling to ERKs | 0.707728 | 0.150 |
R-HSA-166520 | Signaling by NTRKs | 0.715510 | 0.145 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.716175 | 0.145 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.716175 | 0.145 |
R-HSA-9682385 | FLT3 signaling in disease | 0.716175 | 0.145 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.716175 | 0.145 |
R-HSA-3371511 | HSF1 activation | 0.716175 | 0.145 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 0.716175 | 0.145 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.716679 | 0.145 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.716679 | 0.145 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 0.724378 | 0.140 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.724378 | 0.140 |
R-HSA-4641257 | Degradation of AXIN | 0.724378 | 0.140 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.724378 | 0.140 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.724378 | 0.140 |
R-HSA-196757 | Metabolism of folate and pterines | 0.724378 | 0.140 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.727905 | 0.138 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.728386 | 0.138 |
R-HSA-9931953 | Biofilm formation | 0.732345 | 0.135 |
R-HSA-74217 | Purine salvage | 0.732345 | 0.135 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.732345 | 0.135 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.732345 | 0.135 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 0.732345 | 0.135 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.734084 | 0.134 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.734084 | 0.134 |
R-HSA-69306 | DNA Replication | 0.736699 | 0.133 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.737142 | 0.132 |
R-HSA-9007101 | Rab regulation of trafficking | 0.737366 | 0.132 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.737366 | 0.132 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.739681 | 0.131 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.740082 | 0.131 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.740082 | 0.131 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.740082 | 0.131 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.740082 | 0.131 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.740082 | 0.131 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.745176 | 0.128 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.747596 | 0.126 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.747596 | 0.126 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.747596 | 0.126 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.747596 | 0.126 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.747596 | 0.126 |
R-HSA-8982491 | Glycogen metabolism | 0.747596 | 0.126 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.750572 | 0.125 |
R-HSA-68875 | Mitotic Prophase | 0.751068 | 0.124 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.754893 | 0.122 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.754893 | 0.122 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.754893 | 0.122 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.754893 | 0.122 |
R-HSA-1500620 | Meiosis | 0.755869 | 0.122 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.756678 | 0.121 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.761070 | 0.119 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.761979 | 0.118 |
R-HSA-167161 | HIV Transcription Initiation | 0.761979 | 0.118 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.761979 | 0.118 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.761979 | 0.118 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.761979 | 0.118 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.761979 | 0.118 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.761979 | 0.118 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.761979 | 0.118 |
R-HSA-9683701 | Translation of Structural Proteins | 0.761979 | 0.118 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.766173 | 0.116 |
R-HSA-991365 | Activation of GABAB receptors | 0.768861 | 0.114 |
R-HSA-977444 | GABA B receptor activation | 0.768861 | 0.114 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.768861 | 0.114 |
R-HSA-73928 | Depyrimidination | 0.768861 | 0.114 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.768861 | 0.114 |
R-HSA-157118 | Signaling by NOTCH | 0.772062 | 0.112 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.775544 | 0.110 |
R-HSA-5654743 | Signaling by FGFR4 | 0.775544 | 0.110 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.775544 | 0.110 |
R-HSA-8854214 | TBC/RABGAPs | 0.775544 | 0.110 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.775544 | 0.110 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.776749 | 0.110 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.776749 | 0.110 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.776749 | 0.110 |
R-HSA-2172127 | DAP12 interactions | 0.782035 | 0.107 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.782035 | 0.107 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.782035 | 0.107 |
R-HSA-69236 | G1 Phase | 0.782035 | 0.107 |
R-HSA-156581 | Methylation | 0.782035 | 0.107 |
R-HSA-5683826 | Surfactant metabolism | 0.782035 | 0.107 |
R-HSA-73884 | Base Excision Repair | 0.785652 | 0.105 |
R-HSA-8957322 | Metabolism of steroids | 0.788208 | 0.103 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.788338 | 0.103 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.788338 | 0.103 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.788338 | 0.103 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.788338 | 0.103 |
R-HSA-5654741 | Signaling by FGFR3 | 0.788338 | 0.103 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.788338 | 0.103 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.788338 | 0.103 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.788338 | 0.103 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.788338 | 0.103 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.790294 | 0.102 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.794459 | 0.100 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.794459 | 0.100 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.794459 | 0.100 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.794459 | 0.100 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 0.794459 | 0.100 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.794459 | 0.100 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.794847 | 0.100 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.799312 | 0.097 |
R-HSA-389356 | Co-stimulation by CD28 | 0.806177 | 0.094 |
R-HSA-9634597 | GPER1 signaling | 0.806177 | 0.094 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.806177 | 0.094 |
R-HSA-9909396 | Circadian clock | 0.807567 | 0.093 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.807567 | 0.093 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.807985 | 0.093 |
R-HSA-397014 | Muscle contraction | 0.808572 | 0.092 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.811784 | 0.091 |
R-HSA-73893 | DNA Damage Bypass | 0.811784 | 0.091 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.815895 | 0.088 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.820370 | 0.086 |
R-HSA-912446 | Meiotic recombination | 0.822516 | 0.085 |
R-HSA-2514856 | The phototransduction cascade | 0.822516 | 0.085 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.822516 | 0.085 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.827650 | 0.082 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.827650 | 0.082 |
R-HSA-6794361 | Neurexins and neuroligins | 0.827650 | 0.082 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.827650 | 0.082 |
R-HSA-5173105 | O-linked glycosylation | 0.828262 | 0.082 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.832035 | 0.080 |
R-HSA-1221632 | Meiotic synapsis | 0.832637 | 0.080 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.832637 | 0.080 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.834724 | 0.078 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.837479 | 0.077 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.840976 | 0.075 |
R-HSA-418597 | G alpha (z) signalling events | 0.842182 | 0.075 |
R-HSA-3781865 | Diseases of glycosylation | 0.844851 | 0.073 |
R-HSA-5654736 | Signaling by FGFR1 | 0.846749 | 0.072 |
R-HSA-193648 | NRAGE signals death through JNK | 0.846749 | 0.072 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.846749 | 0.072 |
R-HSA-5621480 | Dectin-2 family | 0.851184 | 0.070 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.855694 | 0.068 |
R-HSA-180786 | Extension of Telomeres | 0.859674 | 0.066 |
R-HSA-418346 | Platelet homeostasis | 0.859870 | 0.066 |
R-HSA-2187338 | Visual phototransduction | 0.861274 | 0.065 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.863736 | 0.064 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.863736 | 0.064 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.863736 | 0.064 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.863736 | 0.064 |
R-HSA-8873719 | RAB geranylgeranylation | 0.863736 | 0.064 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.863736 | 0.064 |
R-HSA-977443 | GABA receptor activation | 0.863736 | 0.064 |
R-HSA-351202 | Metabolism of polyamines | 0.863736 | 0.064 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.867680 | 0.062 |
R-HSA-445717 | Aquaporin-mediated transport | 0.867680 | 0.062 |
R-HSA-112043 | PLC beta mediated events | 0.867680 | 0.062 |
R-HSA-8956321 | Nucleotide salvage | 0.867680 | 0.062 |
R-HSA-15869 | Metabolism of nucleotides | 0.869088 | 0.061 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.871510 | 0.060 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.872148 | 0.059 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.875230 | 0.058 |
R-HSA-8848021 | Signaling by PTK6 | 0.875230 | 0.058 |
R-HSA-6799198 | Complex I biogenesis | 0.875230 | 0.058 |
R-HSA-373755 | Semaphorin interactions | 0.875230 | 0.058 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.876163 | 0.057 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.879265 | 0.056 |
R-HSA-112040 | G-protein mediated events | 0.889065 | 0.051 |
R-HSA-9830369 | Kidney development | 0.889065 | 0.051 |
R-HSA-913709 | O-linked glycosylation of mucins | 0.892278 | 0.049 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.892278 | 0.049 |
R-HSA-6805567 | Keratinization | 0.897166 | 0.047 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.898427 | 0.047 |
R-HSA-9840310 | Glycosphingolipid catabolism | 0.898427 | 0.047 |
R-HSA-1483257 | Phospholipid metabolism | 0.898955 | 0.046 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.901467 | 0.045 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.904226 | 0.044 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.907001 | 0.042 |
R-HSA-9749641 | Aspirin ADME | 0.907001 | 0.042 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.907001 | 0.042 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.909695 | 0.041 |
R-HSA-8852135 | Protein ubiquitination | 0.912311 | 0.040 |
R-HSA-917937 | Iron uptake and transport | 0.912311 | 0.040 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.914852 | 0.039 |
R-HSA-9694635 | Translation of Structural Proteins | 0.917319 | 0.037 |
R-HSA-416476 | G alpha (q) signalling events | 0.918499 | 0.037 |
R-HSA-5619084 | ABC transporter disorders | 0.919715 | 0.036 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.921825 | 0.035 |
R-HSA-9659379 | Sensory processing of sound | 0.922042 | 0.035 |
R-HSA-8951664 | Neddylation | 0.922294 | 0.035 |
R-HSA-977225 | Amyloid fiber formation | 0.926495 | 0.033 |
R-HSA-1474165 | Reproduction | 0.927224 | 0.033 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.928625 | 0.032 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.932728 | 0.030 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.936549 | 0.028 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.938388 | 0.028 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.942902 | 0.026 |
R-HSA-1236974 | ER-Phagosome pathway | 0.943594 | 0.025 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.945230 | 0.024 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.949859 | 0.022 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.950552 | 0.022 |
R-HSA-2029481 | FCGR activation | 0.951313 | 0.022 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.951313 | 0.022 |
R-HSA-72766 | Translation | 0.952613 | 0.021 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.956722 | 0.019 |
R-HSA-1296071 | Potassium Channels | 0.956722 | 0.019 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.957738 | 0.019 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.957738 | 0.019 |
R-HSA-157579 | Telomere Maintenance | 0.957978 | 0.019 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.960381 | 0.018 |
R-HSA-1989781 | PPARA activates gene expression | 0.962249 | 0.017 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.964069 | 0.016 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 0.966799 | 0.015 |
R-HSA-9748784 | Drug ADME | 0.970327 | 0.013 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.970491 | 0.013 |
R-HSA-2672351 | Stimuli-sensing channels | 0.970491 | 0.013 |
R-HSA-6803157 | Antimicrobial peptides | 0.972988 | 0.012 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.973772 | 0.012 |
R-HSA-418555 | G alpha (s) signalling events | 0.975270 | 0.011 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.976481 | 0.010 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.976481 | 0.010 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.978397 | 0.009 |
R-HSA-611105 | Respiratory electron transport | 0.979262 | 0.009 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.980695 | 0.008 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.981037 | 0.008 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 0.982124 | 0.008 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.982124 | 0.008 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.984114 | 0.007 |
R-HSA-983712 | Ion channel transport | 0.984306 | 0.007 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.985827 | 0.006 |
R-HSA-9717189 | Sensory perception of taste | 0.986692 | 0.006 |
R-HSA-5576891 | Cardiac conduction | 0.986692 | 0.006 |
R-HSA-5668914 | Diseases of metabolism | 0.990696 | 0.004 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.992843 | 0.003 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.993039 | 0.003 |
R-HSA-9610379 | HCMV Late Events | 0.994181 | 0.003 |
R-HSA-5619102 | SLC transporter disorders | 0.995671 | 0.002 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.995805 | 0.002 |
R-HSA-72306 | tRNA processing | 0.996154 | 0.002 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.996601 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.997606 | 0.001 |
R-HSA-382551 | Transport of small molecules | 0.997806 | 0.001 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.998250 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998465 | 0.001 |
R-HSA-9640148 | Infection with Enterobacteria | 0.998553 | 0.001 |
R-HSA-418594 | G alpha (i) signalling events | 0.998615 | 0.001 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999461 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999957 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 0.999983 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999995 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999998 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999998 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-381753 | Olfactory Signaling Pathway | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.916 | 0.219 | 2 | 0.919 |
CDC7 |
0.905 | 0.101 | 1 | 0.887 |
MOS |
0.901 | 0.143 | 1 | 0.915 |
PRPK |
0.901 | -0.013 | -1 | 0.898 |
PIM3 |
0.901 | 0.105 | -3 | 0.834 |
DSTYK |
0.901 | 0.107 | 2 | 0.939 |
CLK3 |
0.899 | 0.194 | 1 | 0.856 |
ATR |
0.898 | 0.171 | 1 | 0.916 |
GCN2 |
0.898 | -0.089 | 2 | 0.837 |
IKKB |
0.897 | -0.046 | -2 | 0.809 |
RAF1 |
0.896 | -0.059 | 1 | 0.877 |
PRKD1 |
0.896 | 0.149 | -3 | 0.829 |
NLK |
0.895 | 0.071 | 1 | 0.854 |
MTOR |
0.895 | -0.093 | 1 | 0.815 |
TBK1 |
0.894 | -0.045 | 1 | 0.776 |
NEK6 |
0.894 | 0.063 | -2 | 0.899 |
ULK2 |
0.894 | -0.074 | 2 | 0.823 |
NDR2 |
0.894 | 0.019 | -3 | 0.837 |
CAMK2G |
0.894 | -0.010 | 2 | 0.855 |
BMPR2 |
0.893 | -0.038 | -2 | 0.925 |
CAMK1B |
0.893 | 0.013 | -3 | 0.863 |
PDHK4 |
0.893 | -0.215 | 1 | 0.893 |
SKMLCK |
0.892 | 0.142 | -2 | 0.901 |
PKN3 |
0.892 | 0.070 | -3 | 0.826 |
CDKL1 |
0.892 | 0.060 | -3 | 0.803 |
IKKE |
0.891 | -0.074 | 1 | 0.767 |
ERK5 |
0.891 | 0.071 | 1 | 0.807 |
MLK1 |
0.891 | 0.029 | 2 | 0.862 |
RIPK3 |
0.890 | 0.024 | 3 | 0.806 |
NEK7 |
0.890 | -0.051 | -3 | 0.851 |
FAM20C |
0.890 | 0.234 | 2 | 0.707 |
RSK2 |
0.889 | 0.080 | -3 | 0.770 |
WNK1 |
0.889 | 0.045 | -2 | 0.918 |
PRKD2 |
0.889 | 0.105 | -3 | 0.769 |
PDHK1 |
0.888 | -0.192 | 1 | 0.877 |
TGFBR2 |
0.888 | 0.000 | -2 | 0.823 |
NUAK2 |
0.888 | 0.047 | -3 | 0.832 |
NIK |
0.887 | 0.002 | -3 | 0.884 |
ATM |
0.887 | 0.163 | 1 | 0.870 |
IKKA |
0.887 | 0.027 | -2 | 0.798 |
PIM1 |
0.887 | 0.099 | -3 | 0.774 |
MARK4 |
0.887 | 0.040 | 4 | 0.891 |
SRPK1 |
0.887 | 0.107 | -3 | 0.753 |
CAMK2D |
0.887 | 0.052 | -3 | 0.842 |
CAMLCK |
0.886 | 0.040 | -2 | 0.897 |
GRK5 |
0.886 | -0.108 | -3 | 0.863 |
CDKL5 |
0.886 | 0.073 | -3 | 0.795 |
GRK1 |
0.886 | 0.089 | -2 | 0.817 |
PKCD |
0.886 | 0.103 | 2 | 0.846 |
P90RSK |
0.886 | 0.041 | -3 | 0.776 |
NDR1 |
0.886 | -0.024 | -3 | 0.830 |
MST4 |
0.885 | 0.024 | 2 | 0.891 |
DAPK2 |
0.885 | 0.045 | -3 | 0.869 |
HIPK4 |
0.885 | 0.076 | 1 | 0.827 |
CHAK2 |
0.885 | -0.010 | -1 | 0.855 |
HUNK |
0.884 | -0.066 | 2 | 0.828 |
PKN2 |
0.884 | 0.038 | -3 | 0.831 |
TSSK2 |
0.884 | 0.114 | -5 | 0.879 |
MAPKAPK3 |
0.884 | 0.029 | -3 | 0.770 |
NEK9 |
0.884 | -0.017 | 2 | 0.878 |
AMPKA1 |
0.883 | 0.029 | -3 | 0.849 |
BCKDK |
0.883 | -0.116 | -1 | 0.846 |
RSK3 |
0.883 | 0.024 | -3 | 0.765 |
GRK6 |
0.883 | -0.006 | 1 | 0.878 |
MLK2 |
0.882 | 0.012 | 2 | 0.867 |
MLK3 |
0.882 | 0.079 | 2 | 0.803 |
ICK |
0.882 | 0.049 | -3 | 0.840 |
ULK1 |
0.881 | -0.171 | -3 | 0.833 |
TSSK1 |
0.881 | 0.095 | -3 | 0.872 |
CAMK2B |
0.881 | 0.105 | 2 | 0.838 |
LATS2 |
0.881 | -0.011 | -5 | 0.777 |
MAPKAPK2 |
0.880 | 0.058 | -3 | 0.722 |
IRE1 |
0.880 | 0.023 | 1 | 0.852 |
P70S6KB |
0.879 | -0.003 | -3 | 0.790 |
WNK3 |
0.879 | -0.210 | 1 | 0.872 |
AMPKA2 |
0.878 | 0.033 | -3 | 0.812 |
PKR |
0.878 | 0.124 | 1 | 0.899 |
KIS |
0.878 | 0.015 | 1 | 0.700 |
SMG1 |
0.878 | 0.143 | 1 | 0.875 |
CDK8 |
0.878 | 0.023 | 1 | 0.673 |
MASTL |
0.878 | -0.259 | -2 | 0.863 |
BMPR1B |
0.877 | 0.130 | 1 | 0.811 |
ANKRD3 |
0.877 | -0.088 | 1 | 0.910 |
GRK4 |
0.877 | -0.107 | -2 | 0.859 |
PKACG |
0.877 | 0.001 | -2 | 0.776 |
SRPK2 |
0.877 | 0.072 | -3 | 0.669 |
RIPK1 |
0.877 | -0.132 | 1 | 0.878 |
NIM1 |
0.876 | -0.052 | 3 | 0.839 |
DLK |
0.876 | -0.162 | 1 | 0.872 |
DNAPK |
0.876 | 0.180 | 1 | 0.798 |
CAMK2A |
0.876 | 0.064 | 2 | 0.842 |
AURC |
0.876 | 0.076 | -2 | 0.691 |
MLK4 |
0.876 | 0.048 | 2 | 0.783 |
PKCB |
0.876 | 0.075 | 2 | 0.802 |
TGFBR1 |
0.875 | 0.068 | -2 | 0.832 |
ALK4 |
0.875 | 0.013 | -2 | 0.863 |
IRE2 |
0.875 | 0.031 | 2 | 0.795 |
PKCA |
0.874 | 0.085 | 2 | 0.790 |
MNK2 |
0.874 | 0.048 | -2 | 0.834 |
SRPK3 |
0.874 | 0.063 | -3 | 0.720 |
LATS1 |
0.874 | 0.066 | -3 | 0.853 |
DYRK2 |
0.874 | 0.064 | 1 | 0.718 |
TTBK2 |
0.874 | -0.172 | 2 | 0.740 |
PRKD3 |
0.873 | 0.037 | -3 | 0.739 |
PLK1 |
0.873 | -0.044 | -2 | 0.844 |
PAK1 |
0.873 | 0.002 | -2 | 0.831 |
CAMK4 |
0.872 | -0.084 | -3 | 0.809 |
MELK |
0.872 | -0.006 | -3 | 0.798 |
MSK2 |
0.872 | -0.019 | -3 | 0.737 |
QSK |
0.872 | 0.025 | 4 | 0.864 |
NUAK1 |
0.872 | -0.015 | -3 | 0.781 |
CDK19 |
0.872 | 0.025 | 1 | 0.630 |
PKCG |
0.872 | 0.018 | 2 | 0.795 |
NEK2 |
0.872 | -0.008 | 2 | 0.856 |
PKCZ |
0.871 | 0.030 | 2 | 0.835 |
PAK3 |
0.871 | -0.040 | -2 | 0.831 |
TLK2 |
0.871 | 0.021 | 1 | 0.871 |
VRK2 |
0.871 | -0.077 | 1 | 0.919 |
RSK4 |
0.870 | 0.046 | -3 | 0.734 |
QIK |
0.870 | -0.079 | -3 | 0.827 |
YSK4 |
0.870 | -0.080 | 1 | 0.802 |
ACVR2B |
0.870 | 0.042 | -2 | 0.836 |
MEK1 |
0.870 | -0.140 | 2 | 0.867 |
CDK5 |
0.870 | 0.075 | 1 | 0.701 |
ACVR2A |
0.869 | 0.024 | -2 | 0.823 |
MSK1 |
0.869 | 0.043 | -3 | 0.738 |
CDK7 |
0.869 | -0.007 | 1 | 0.679 |
ALK2 |
0.869 | 0.056 | -2 | 0.838 |
CLK4 |
0.869 | 0.054 | -3 | 0.760 |
GRK7 |
0.869 | 0.047 | 1 | 0.802 |
CHAK1 |
0.869 | -0.084 | 2 | 0.801 |
SIK |
0.868 | -0.002 | -3 | 0.749 |
PHKG1 |
0.868 | -0.032 | -3 | 0.821 |
PKACB |
0.868 | 0.072 | -2 | 0.709 |
PKCH |
0.868 | 0.009 | 2 | 0.779 |
MNK1 |
0.868 | 0.029 | -2 | 0.841 |
PLK3 |
0.868 | -0.035 | 2 | 0.798 |
CDK13 |
0.868 | 0.012 | 1 | 0.650 |
JNK3 |
0.868 | 0.057 | 1 | 0.659 |
MYLK4 |
0.867 | 0.012 | -2 | 0.813 |
AURB |
0.867 | 0.041 | -2 | 0.692 |
CHK1 |
0.867 | 0.002 | -3 | 0.819 |
JNK2 |
0.867 | 0.078 | 1 | 0.616 |
CLK1 |
0.866 | 0.064 | -3 | 0.738 |
PKG2 |
0.866 | 0.044 | -2 | 0.709 |
CDK18 |
0.866 | 0.062 | 1 | 0.604 |
PAK6 |
0.866 | 0.048 | -2 | 0.758 |
CDK1 |
0.866 | 0.043 | 1 | 0.631 |
MARK3 |
0.866 | 0.016 | 4 | 0.826 |
MARK2 |
0.866 | 0.013 | 4 | 0.790 |
P38A |
0.865 | 0.056 | 1 | 0.704 |
PRP4 |
0.865 | 0.141 | -3 | 0.842 |
BRSK1 |
0.865 | -0.047 | -3 | 0.785 |
CLK2 |
0.865 | 0.140 | -3 | 0.746 |
SGK3 |
0.865 | 0.037 | -3 | 0.751 |
AKT2 |
0.865 | 0.047 | -3 | 0.678 |
BRAF |
0.864 | -0.025 | -4 | 0.871 |
PIM2 |
0.864 | 0.039 | -3 | 0.737 |
PERK |
0.864 | -0.069 | -2 | 0.869 |
HRI |
0.863 | -0.106 | -2 | 0.890 |
MEKK1 |
0.863 | -0.049 | 1 | 0.864 |
PAK2 |
0.863 | -0.068 | -2 | 0.817 |
P38B |
0.863 | 0.070 | 1 | 0.627 |
NEK5 |
0.863 | 0.034 | 1 | 0.892 |
BRSK2 |
0.862 | -0.092 | -3 | 0.811 |
DRAK1 |
0.862 | -0.071 | 1 | 0.810 |
AURA |
0.862 | 0.032 | -2 | 0.664 |
ERK1 |
0.861 | 0.036 | 1 | 0.616 |
PRKX |
0.861 | 0.080 | -3 | 0.660 |
HIPK1 |
0.861 | 0.059 | 1 | 0.733 |
MAPKAPK5 |
0.861 | -0.112 | -3 | 0.710 |
MEKK2 |
0.860 | -0.029 | 2 | 0.846 |
CDK2 |
0.860 | -0.009 | 1 | 0.724 |
BMPR1A |
0.860 | 0.080 | 1 | 0.795 |
CDK12 |
0.860 | 0.010 | 1 | 0.622 |
P38G |
0.860 | 0.047 | 1 | 0.537 |
MARK1 |
0.860 | -0.034 | 4 | 0.846 |
HIPK2 |
0.860 | 0.064 | 1 | 0.621 |
CAMK1G |
0.860 | -0.040 | -3 | 0.752 |
WNK4 |
0.859 | -0.080 | -2 | 0.913 |
DCAMKL1 |
0.859 | -0.025 | -3 | 0.778 |
CDK9 |
0.858 | -0.024 | 1 | 0.657 |
IRAK4 |
0.858 | -0.047 | 1 | 0.864 |
DYRK1A |
0.858 | 0.026 | 1 | 0.756 |
MEK5 |
0.858 | -0.236 | 2 | 0.857 |
GRK2 |
0.858 | -0.083 | -2 | 0.755 |
ZAK |
0.858 | -0.125 | 1 | 0.821 |
MST3 |
0.858 | 0.020 | 2 | 0.876 |
PINK1 |
0.857 | -0.144 | 1 | 0.864 |
TLK1 |
0.857 | -0.095 | -2 | 0.862 |
PKCT |
0.857 | 0.011 | 2 | 0.790 |
SSTK |
0.857 | 0.028 | 4 | 0.857 |
SNRK |
0.857 | -0.223 | 2 | 0.697 |
ERK2 |
0.857 | -0.020 | 1 | 0.673 |
MEKK3 |
0.857 | -0.182 | 1 | 0.839 |
CDK17 |
0.857 | 0.014 | 1 | 0.547 |
PLK4 |
0.856 | -0.145 | 2 | 0.645 |
TAO3 |
0.856 | -0.012 | 1 | 0.830 |
SMMLCK |
0.855 | -0.019 | -3 | 0.814 |
MPSK1 |
0.855 | 0.067 | 1 | 0.821 |
CDK3 |
0.855 | 0.068 | 1 | 0.566 |
GSK3B |
0.855 | 0.067 | 4 | 0.526 |
HIPK3 |
0.855 | 0.019 | 1 | 0.733 |
GSK3A |
0.854 | 0.109 | 4 | 0.534 |
AKT1 |
0.854 | 0.050 | -3 | 0.694 |
PKACA |
0.854 | 0.046 | -2 | 0.657 |
P38D |
0.853 | 0.075 | 1 | 0.567 |
PASK |
0.853 | -0.022 | -3 | 0.849 |
DYRK4 |
0.853 | 0.041 | 1 | 0.630 |
CAMKK1 |
0.853 | -0.075 | -2 | 0.818 |
CDK14 |
0.852 | 0.027 | 1 | 0.652 |
PHKG2 |
0.852 | -0.050 | -3 | 0.789 |
ERK7 |
0.852 | 0.105 | 2 | 0.620 |
CK1E |
0.852 | -0.063 | -3 | 0.538 |
NEK8 |
0.852 | -0.087 | 2 | 0.856 |
DYRK3 |
0.852 | 0.043 | 1 | 0.743 |
CDK16 |
0.852 | 0.060 | 1 | 0.569 |
DAPK3 |
0.851 | 0.056 | -3 | 0.792 |
PKCI |
0.851 | -0.000 | 2 | 0.803 |
P70S6K |
0.851 | -0.053 | -3 | 0.694 |
TAO2 |
0.851 | -0.034 | 2 | 0.895 |
LKB1 |
0.850 | 0.007 | -3 | 0.857 |
CAMK1D |
0.850 | -0.001 | -3 | 0.676 |
GAK |
0.850 | 0.027 | 1 | 0.873 |
EEF2K |
0.850 | 0.069 | 3 | 0.880 |
DCAMKL2 |
0.849 | -0.083 | -3 | 0.803 |
DYRK1B |
0.848 | 0.002 | 1 | 0.665 |
PKCE |
0.847 | 0.039 | 2 | 0.779 |
PDK1 |
0.847 | -0.065 | 1 | 0.856 |
CAMKK2 |
0.847 | -0.090 | -2 | 0.816 |
TNIK |
0.847 | 0.064 | 3 | 0.904 |
NEK4 |
0.847 | -0.058 | 1 | 0.841 |
GCK |
0.847 | -0.002 | 1 | 0.829 |
PAK5 |
0.846 | -0.016 | -2 | 0.691 |
MST2 |
0.846 | -0.050 | 1 | 0.843 |
TTBK1 |
0.846 | -0.206 | 2 | 0.650 |
HGK |
0.846 | 0.017 | 3 | 0.900 |
IRAK1 |
0.846 | -0.248 | -1 | 0.795 |
CDK10 |
0.846 | 0.035 | 1 | 0.638 |
CK2A2 |
0.846 | 0.062 | 1 | 0.741 |
NEK11 |
0.845 | -0.208 | 1 | 0.833 |
VRK1 |
0.845 | -0.005 | 2 | 0.872 |
TAK1 |
0.845 | -0.021 | 1 | 0.871 |
MINK |
0.845 | -0.002 | 1 | 0.826 |
PLK2 |
0.845 | 0.019 | -3 | 0.820 |
CK1G1 |
0.845 | -0.091 | -3 | 0.538 |
PKN1 |
0.844 | 0.013 | -3 | 0.713 |
NEK1 |
0.844 | 0.018 | 1 | 0.858 |
PAK4 |
0.844 | -0.001 | -2 | 0.695 |
GRK3 |
0.843 | -0.076 | -2 | 0.704 |
DAPK1 |
0.843 | 0.018 | -3 | 0.773 |
JNK1 |
0.843 | 0.015 | 1 | 0.606 |
MEKK6 |
0.842 | -0.085 | 1 | 0.829 |
CK1D |
0.842 | -0.067 | -3 | 0.485 |
LRRK2 |
0.842 | -0.111 | 2 | 0.883 |
AKT3 |
0.841 | 0.041 | -3 | 0.614 |
MAK |
0.840 | 0.111 | -2 | 0.790 |
HPK1 |
0.840 | -0.026 | 1 | 0.809 |
MAP3K15 |
0.840 | -0.113 | 1 | 0.803 |
CHK2 |
0.840 | -0.006 | -3 | 0.622 |
BUB1 |
0.839 | 0.111 | -5 | 0.823 |
CDK6 |
0.839 | 0.027 | 1 | 0.630 |
KHS1 |
0.839 | 0.036 | 1 | 0.812 |
SGK1 |
0.839 | 0.026 | -3 | 0.594 |
LOK |
0.839 | -0.057 | -2 | 0.814 |
CAMK1A |
0.838 | 0.008 | -3 | 0.643 |
CK1A2 |
0.838 | -0.078 | -3 | 0.482 |
ROCK2 |
0.838 | 0.043 | -3 | 0.777 |
CDK4 |
0.837 | 0.018 | 1 | 0.610 |
KHS2 |
0.837 | 0.058 | 1 | 0.822 |
MST1 |
0.837 | -0.096 | 1 | 0.827 |
MRCKB |
0.836 | 0.010 | -3 | 0.726 |
CK2A1 |
0.836 | 0.045 | 1 | 0.718 |
MOK |
0.835 | 0.071 | 1 | 0.752 |
YSK1 |
0.834 | -0.042 | 2 | 0.854 |
MEK2 |
0.833 | -0.225 | 2 | 0.837 |
MRCKA |
0.833 | -0.022 | -3 | 0.742 |
SLK |
0.833 | -0.107 | -2 | 0.757 |
PDHK3_TYR |
0.833 | 0.221 | 4 | 0.944 |
STK33 |
0.832 | -0.192 | 2 | 0.637 |
TTK |
0.832 | 0.060 | -2 | 0.851 |
PBK |
0.831 | -0.018 | 1 | 0.794 |
SBK |
0.831 | 0.004 | -3 | 0.557 |
DMPK1 |
0.829 | 0.049 | -3 | 0.749 |
RIPK2 |
0.828 | -0.304 | 1 | 0.781 |
OSR1 |
0.828 | -0.031 | 2 | 0.839 |
NEK3 |
0.828 | -0.118 | 1 | 0.809 |
MYO3B |
0.827 | 0.047 | 2 | 0.866 |
ROCK1 |
0.825 | 0.019 | -3 | 0.741 |
PKG1 |
0.825 | -0.026 | -2 | 0.625 |
PDHK4_TYR |
0.823 | 0.049 | 2 | 0.904 |
TESK1_TYR |
0.823 | -0.052 | 3 | 0.912 |
BIKE |
0.822 | 0.035 | 1 | 0.742 |
MAP2K4_TYR |
0.821 | -0.090 | -1 | 0.901 |
MAP2K6_TYR |
0.821 | -0.036 | -1 | 0.905 |
HASPIN |
0.821 | -0.045 | -1 | 0.689 |
PKMYT1_TYR |
0.820 | -0.082 | 3 | 0.884 |
TAO1 |
0.819 | -0.065 | 1 | 0.762 |
ALPHAK3 |
0.819 | -0.037 | -1 | 0.798 |
CRIK |
0.819 | -0.007 | -3 | 0.693 |
MYO3A |
0.819 | -0.048 | 1 | 0.831 |
MAP2K7_TYR |
0.819 | -0.231 | 2 | 0.885 |
LIMK2_TYR |
0.817 | 0.005 | -3 | 0.903 |
BMPR2_TYR |
0.817 | -0.043 | -1 | 0.876 |
ASK1 |
0.817 | -0.174 | 1 | 0.788 |
PDHK1_TYR |
0.816 | -0.102 | -1 | 0.904 |
PINK1_TYR |
0.816 | -0.185 | 1 | 0.880 |
EPHA6 |
0.815 | 0.046 | -1 | 0.870 |
EPHB4 |
0.814 | 0.037 | -1 | 0.864 |
RET |
0.813 | -0.082 | 1 | 0.852 |
ROS1 |
0.813 | -0.010 | 3 | 0.823 |
TYRO3 |
0.812 | -0.035 | 3 | 0.841 |
ABL2 |
0.812 | 0.065 | -1 | 0.849 |
YANK3 |
0.812 | -0.106 | 2 | 0.419 |
TYK2 |
0.812 | -0.096 | 1 | 0.849 |
CSF1R |
0.811 | -0.007 | 3 | 0.824 |
TXK |
0.811 | 0.122 | 1 | 0.865 |
MST1R |
0.811 | -0.095 | 3 | 0.847 |
LIMK1_TYR |
0.811 | -0.180 | 2 | 0.888 |
JAK2 |
0.809 | -0.091 | 1 | 0.842 |
DDR1 |
0.808 | -0.128 | 4 | 0.877 |
YES1 |
0.807 | -0.010 | -1 | 0.867 |
ABL1 |
0.807 | 0.017 | -1 | 0.842 |
FER |
0.807 | -0.065 | 1 | 0.909 |
FGR |
0.807 | -0.063 | 1 | 0.888 |
STLK3 |
0.806 | -0.209 | 1 | 0.788 |
TNNI3K_TYR |
0.805 | 0.083 | 1 | 0.864 |
HCK |
0.805 | -0.008 | -1 | 0.854 |
SRMS |
0.805 | -0.015 | 1 | 0.885 |
INSRR |
0.805 | -0.065 | 3 | 0.797 |
TNK2 |
0.805 | -0.003 | 3 | 0.790 |
LCK |
0.805 | 0.067 | -1 | 0.851 |
BLK |
0.805 | 0.109 | -1 | 0.848 |
AAK1 |
0.805 | 0.077 | 1 | 0.628 |
CK1A |
0.804 | -0.100 | -3 | 0.393 |
JAK3 |
0.804 | -0.116 | 1 | 0.832 |
ITK |
0.803 | -0.021 | -1 | 0.837 |
EPHB1 |
0.802 | -0.050 | 1 | 0.878 |
EPHA4 |
0.802 | -0.052 | 2 | 0.795 |
JAK1 |
0.801 | 0.004 | 1 | 0.784 |
EPHB3 |
0.801 | -0.039 | -1 | 0.854 |
EPHB2 |
0.800 | -0.023 | -1 | 0.842 |
PDGFRB |
0.800 | -0.139 | 3 | 0.841 |
MERTK |
0.800 | -0.018 | 3 | 0.815 |
BMX |
0.800 | 0.012 | -1 | 0.775 |
KIT |
0.800 | -0.110 | 3 | 0.822 |
FGFR2 |
0.799 | -0.148 | 3 | 0.839 |
FLT3 |
0.799 | -0.115 | 3 | 0.836 |
TEC |
0.799 | -0.018 | -1 | 0.783 |
AXL |
0.799 | -0.077 | 3 | 0.813 |
TNK1 |
0.798 | -0.090 | 3 | 0.823 |
KDR |
0.798 | -0.101 | 3 | 0.801 |
NEK10_TYR |
0.796 | -0.135 | 1 | 0.710 |
BTK |
0.796 | -0.125 | -1 | 0.817 |
TEK |
0.795 | -0.163 | 3 | 0.781 |
WEE1_TYR |
0.795 | -0.060 | -1 | 0.804 |
ALK |
0.795 | -0.110 | 3 | 0.759 |
FYN |
0.794 | 0.023 | -1 | 0.820 |
MET |
0.794 | -0.109 | 3 | 0.816 |
LTK |
0.794 | -0.101 | 3 | 0.778 |
FGFR1 |
0.794 | -0.190 | 3 | 0.806 |
PDGFRA |
0.793 | -0.205 | 3 | 0.843 |
PTK6 |
0.793 | -0.174 | -1 | 0.781 |
EPHA7 |
0.792 | -0.062 | 2 | 0.802 |
DDR2 |
0.792 | -0.002 | 3 | 0.780 |
NTRK1 |
0.791 | -0.185 | -1 | 0.856 |
EPHA1 |
0.791 | -0.072 | 3 | 0.798 |
FRK |
0.791 | -0.065 | -1 | 0.862 |
LYN |
0.790 | -0.062 | 3 | 0.758 |
EPHA3 |
0.789 | -0.146 | 2 | 0.770 |
INSR |
0.789 | -0.143 | 3 | 0.775 |
NTRK2 |
0.788 | -0.200 | 3 | 0.793 |
FGFR3 |
0.787 | -0.181 | 3 | 0.810 |
NTRK3 |
0.787 | -0.122 | -1 | 0.821 |
FLT1 |
0.786 | -0.180 | -1 | 0.829 |
ERBB2 |
0.786 | -0.205 | 1 | 0.802 |
PTK2B |
0.786 | -0.073 | -1 | 0.822 |
EPHA5 |
0.786 | -0.065 | 2 | 0.786 |
FLT4 |
0.784 | -0.225 | 3 | 0.795 |
CK1G3 |
0.783 | -0.107 | -3 | 0.344 |
EPHA8 |
0.783 | -0.093 | -1 | 0.825 |
SRC |
0.783 | -0.088 | -1 | 0.821 |
MATK |
0.783 | -0.140 | -1 | 0.776 |
EGFR |
0.781 | -0.097 | 1 | 0.711 |
CSK |
0.780 | -0.161 | 2 | 0.797 |
YANK2 |
0.779 | -0.136 | 2 | 0.439 |
FGFR4 |
0.776 | -0.124 | -1 | 0.796 |
MUSK |
0.773 | -0.151 | 1 | 0.701 |
PTK2 |
0.773 | -0.063 | -1 | 0.761 |
SYK |
0.772 | -0.065 | -1 | 0.775 |
IGF1R |
0.772 | -0.167 | 3 | 0.716 |
EPHA2 |
0.771 | -0.116 | -1 | 0.790 |
ERBB4 |
0.766 | -0.103 | 1 | 0.726 |
CK1G2 |
0.760 | -0.125 | -3 | 0.446 |
FES |
0.759 | -0.174 | -1 | 0.751 |
ZAP70 |
0.749 | -0.096 | -1 | 0.724 |