Motif 27 (n=582)

Position-wise Probabilities

Download
uniprot genes site source protein function
A2AJT9 BCLAF3 S489 ochoa BCLAF1 and THRAP3 family member 3 None
A4D1E1 ZNF804B S877 ochoa Zinc finger protein 804B None
A5YKK6 CNOT1 S2188 ochoa CCR4-NOT transcription complex subunit 1 (CCR4-associated factor 1) (Negative regulator of transcription subunit 1 homolog) (NOT1H) (hNOT1) Scaffolding component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mRNA 3'UTRs. Involved in degradation of AU-rich element (ARE)-containing mRNAs probably via association with ZFP36. Mediates the recruitment of the CCR4-NOT complex to miRNA targets and to the RISC complex via association with TNRC6A, TNRC6B or TNRC6C. Acts as a transcriptional repressor. Represses the ligand-dependent transcriptional activation by nuclear receptors. Involved in the maintenance of embryonic stem (ES) cell identity. Plays a role in rapid sperm motility via mediating timely mRNA turnover (By similarity). {ECO:0000250|UniProtKB:Q6ZQ08, ECO:0000269|PubMed:10637334, ECO:0000269|PubMed:16778766, ECO:0000269|PubMed:21278420, ECO:0000269|PubMed:21976065, ECO:0000269|PubMed:21984185, ECO:0000269|PubMed:22367759, ECO:0000269|PubMed:23644599, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:32354837}.
A8K979 ERI2 S302 ochoa ERI1 exoribonuclease 2 (EC 3.1.-.-) (Exonuclease domain-containing protein 1) None
E9PCH4 None S1207 ochoa Rap guanine nucleotide exchange factor 6 None
H7C0S8 None S247 ochoa Argininosuccinate lyase (Calcitonin gene-related peptide-receptor component protein) (DNA-directed RNA polymerase III subunit RPC9) Accessory protein for the calcitonin gene-related peptide (CGRP) receptor. It modulates CGRP responsiveness in a variety of tissues. {ECO:0000256|ARBA:ARBA00043924}.; FUNCTION: Catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine, an intermediate step reaction in the urea cycle mostly providing for hepatic nitrogen detoxification into excretable urea as well as de novo L-arginine synthesis in nonhepatic tissues. Essential regulator of intracellular and extracellular L-arginine pools. As part of citrulline-nitric oxide cycle, forms tissue-specific multiprotein complexes with argininosuccinate synthase ASS1, transport protein SLC7A1 and nitric oxide synthase NOS1, NOS2 or NOS3, allowing for cell-autonomous L-arginine synthesis while channeling extracellular L-arginine to nitric oxide synthesis pathway. {ECO:0000256|ARBA:ARBA00045522}.; FUNCTION: DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. With POLR3H/RPC8 forms a mobile stalk that protrudes from Pol III core and functions primarily in transcription initiation. Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000256|ARBA:ARBA00045808}.
O00151 PDLIM1 S90 ochoa PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}.
O00159 MYO1C S408 ochoa Unconventional myosin-Ic (Myosin I beta) (MMI-beta) (MMIb) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. Involved in glucose transporter recycling in response to insulin by regulating movement of intracellular GLUT4-containing vesicles to the plasma membrane. Component of the hair cell's (the sensory cells of the inner ear) adaptation-motor complex. Acts as a mediator of adaptation of mechanoelectrical transduction in stereocilia of vestibular hair cells. Binds phosphoinositides and links the actin cytoskeleton to cellular membranes. {ECO:0000269|PubMed:24636949}.; FUNCTION: [Isoform 3]: Involved in regulation of transcription. Associated with transcriptional active ribosomal genes. Appears to cooperate with the WICH chromatin-remodeling complex to facilitate transcription. Necessary for the formation of the first phosphodiester bond during transcription initiation. {ECO:0000250|UniProtKB:Q9WTI7}.
O14682 ENC1 S406 ochoa Ectoderm-neural cortex protein 1 (ENC-1) (Kelch-like protein 37) (Nuclear matrix protein NRP/B) (p53-induced gene 10 protein) Actin-binding protein involved in the regulation of neuronal process formation and in differentiation of neural crest cells. Down-regulates transcription factor NF2L2/NRF2 by decreasing the rate of protein synthesis and not via a ubiquitin-mediated proteasomal degradation mechanism. {ECO:0000269|PubMed:19424503}.
O14744 PRMT5 S310 ochoa Protein arginine N-methyltransferase 5 (PRMT5) (EC 2.1.1.320) (72 kDa ICln-binding protein) (Histone-arginine N-methyltransferase PRMT5) (Jak-binding protein 1) (Shk1 kinase-binding protein 1 homolog) (SKB1 homolog) (SKB1Hs) [Cleaved into: Protein arginine N-methyltransferase 5, N-terminally processed] Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA (PubMed:10531356, PubMed:11152681, PubMed:11747828, PubMed:12411503, PubMed:15737618, PubMed:17709427, PubMed:20159986, PubMed:20810653, PubMed:21081503, PubMed:21258366, PubMed:21917714, PubMed:22269951). Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles (PubMed:11747828, PubMed:12411503, PubMed:17709427). Methylates SUPT5H and may regulate its transcriptional elongation properties (PubMed:12718890). May methylate the N-terminal region of MBD2 (PubMed:16428440). Mono- and dimethylates arginine residues of myelin basic protein (MBP) in vitro. May play a role in cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular proliferation. Methylates histone H2A and H4 'Arg-3' during germ cell development (By similarity). Methylates histone H3 'Arg-8', which may repress transcription (By similarity). Methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (By similarity). Methylates RPS10. Attenuates EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels. First, monomethylates EGFR; this enhances EGFR 'Tyr-1197' phosphorylation and PTPN6 recruitment, eventually leading to reduced SOS1 phosphorylation (PubMed:21258366, PubMed:21917714). Second, methylates RAF1 and probably BRAF, hence destabilizing these 2 signaling proteins and reducing their catalytic activity (PubMed:21917714). Required for induction of E-selectin and VCAM-1, on the endothelial cells surface at sites of inflammation. Methylates HOXA9 (PubMed:22269951). Methylates and regulates SRGAP2 which is involved in cell migration and differentiation (PubMed:20810653). Acts as a transcriptional corepressor in CRY1-mediated repression of the core circadian component PER1 by regulating the H4R3 dimethylation at the PER1 promoter (By similarity). Methylates GM130/GOLGA2, regulating Golgi ribbon formation (PubMed:20421892). Methylates H4R3 in genes involved in glioblastomagenesis in a CHTOP- and/or TET1-dependent manner (PubMed:25284789). Symmetrically methylates POLR2A, a modification that allows the recruitment to POLR2A of proteins including SMN1/SMN2 and SETX. This is required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). Along with LYAR, binds the promoter of gamma-globin HBG1/HBG2 and represses its expression (PubMed:25092918). Symmetrically methylates NCL (PubMed:21081503). Methylates p53/TP53; methylation might possibly affect p53/TP53 target gene specificity (PubMed:19011621). Involved in spliceosome maturation and mRNA splicing in prophase I spermatocytes through the catalysis of the symmetrical arginine dimethylation of SNRPB (small nuclear ribonucleoprotein-associated protein) and the interaction with tudor domain-containing protein TDRD6 (By similarity). {ECO:0000250|UniProtKB:Q8CIG8, ECO:0000269|PubMed:10531356, ECO:0000269|PubMed:11152681, ECO:0000269|PubMed:11747828, ECO:0000269|PubMed:12411503, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17709427, ECO:0000269|PubMed:19011621, ECO:0000269|PubMed:20159986, ECO:0000269|PubMed:20421892, ECO:0000269|PubMed:20810653, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:21917714, ECO:0000269|PubMed:22269951, ECO:0000269|PubMed:25092918, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:26700805}.
O14867 BACH1 S196 ochoa Transcription regulator protein BACH1 (BTB and CNC homolog 1) (HA2303) Transcriptional regulator that acts as a repressor or activator, depending on the context. Binds to NF-E2 DNA binding sites. Plays important roles in coordinating transcription activation and repression by MAFK (By similarity). Together with MAF, represses the transcription of genes under the control of the NFE2L2 oxidative stress pathway (PubMed:24035498). {ECO:0000250|UniProtKB:P97302, ECO:0000269|PubMed:24035498, ECO:0000269|PubMed:39504958}.
O43296 ZNF264 S177 ochoa Zinc finger protein 264 May be involved in transcriptional regulation.
O43313 ATMIN S391 ochoa ATM interactor (ATM/ATR-substrate CHK2-interacting zinc finger protein) (ASCIZ) (Zinc finger protein 822) Transcription factor. Plays a crucial role in cell survival and RAD51 foci formation in response to methylating DNA damage. Involved in regulating the activity of ATM in the absence of DNA damage. May play a role in stabilizing ATM. Binds to the DYNLL1 promoter and activates its transcription. {ECO:0000269|PubMed:15933716, ECO:0000269|PubMed:17525732, ECO:0000269|PubMed:22167198}.
O43379 WDR62 S1123 ochoa WD repeat-containing protein 62 Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}.
O43426 SYNJ1 S1439 ochoa Synaptojanin-1 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 1) Phosphatase that acts on various phosphoinositides, including phosphatidylinositol 4-phosphate, phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate (PubMed:23804563, PubMed:27435091). Has a role in clathrin-mediated endocytosis (By similarity). Hydrolyzes PIP2 bound to actin regulatory proteins resulting in the rearrangement of actin filaments downstream of tyrosine kinase and ASH/GRB2 (By similarity). {ECO:0000250|UniProtKB:O18964, ECO:0000250|UniProtKB:Q62910, ECO:0000269|PubMed:23804563, ECO:0000269|PubMed:27435091}.
O60343 TBC1D4 S370 ochoa TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}.
O60503 ADCY9 S1273 ochoa Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}.
O75143 ATG13 S44 psp Autophagy-related protein 13 Autophagy factor required for autophagosome formation and mitophagy. Target of the TOR kinase signaling pathway that regulates autophagy through the control of the phosphorylation status of ATG13 and ULK1, and the regulation of the ATG13-ULK1-RB1CC1 complex. Through its regulation of ULK1 activity, plays a role in the regulation of the kinase activity of mTORC1 and cell proliferation. {ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:19211835, ECO:0000269|PubMed:19225151, ECO:0000269|PubMed:19287211, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:21855797}.
O75312 ZPR1 S190 ochoa Zinc finger protein ZPR1 (Zinc finger protein 259) Acts as a signaling molecule that communicates proliferative growth signals from the cytoplasm to the nucleus. It is involved in the positive regulation of cell cycle progression (PubMed:29851065). Plays a role for the localization and accumulation of the survival motor neuron protein SMN1 in sub-nuclear bodies, including gems and Cajal bodies. Induces neuron differentiation and stimulates axonal growth and formation of growth cone in spinal cord motor neurons. Plays a role in the splicing of cellular pre-mRNAs. May be involved in H(2)O(2)-induced neuronal cell death. {ECO:0000269|PubMed:11283611, ECO:0000269|PubMed:17068332, ECO:0000269|PubMed:22422766, ECO:0000269|PubMed:29851065}.
O75363 BCAS1 S399 ochoa Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}.
O75448 MED24 S431 ochoa Mediator of RNA polymerase II transcription subunit 24 (Activator-recruited cofactor 100 kDa component) (ARC100) (Cofactor required for Sp1 transcriptional activation subunit 4) (CRSP complex subunit 4) (Mediator complex subunit 24) (Thyroid hormone receptor-associated protein 4) (Thyroid hormone receptor-associated protein complex 100 kDa component) (Trap100) (hTRAP100) (Vitamin D3 receptor-interacting protein complex 100 kDa component) (DRIP100) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:16595664}.
O75575 CRCP S62 ochoa DNA-directed RNA polymerase III subunit RPC9 (RNA polymerase III subunit C9) (Calcitonin gene-related peptide-receptor component protein) (CGRP-RCP) (CGRP-receptor component protein) (CGRPRCP) (HsC17) DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:20413673, PubMed:33558764, PubMed:34675218). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. With POLR3H/RPC8 forms a mobile stalk that protrudes from Pol III core and functions primarily in transcription initiation (By similarity) (PubMed:20413673, PubMed:33558764, PubMed:33558766, PubMed:34675218). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:Q9C0Z9, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:34675218}.; FUNCTION: Accessory protein for the calcitonin gene-related peptide (CGRP) receptor. It modulates CGRP responsiveness in a variety of tissues. {ECO:0000250|UniProtKB:O35427}.
O94842 TOX4 S550 ochoa TOX high mobility group box family member 4 Transcription factor that modulates cell fate reprogramming from the somatic state to the pluripotent and neuronal fate (By similarity). In liver, controls the expression of hormone-regulated gluconeogenic genes such as G6PC1 and PCK1 (By similarity). This regulation is independent of the insulin receptor activation (By similarity). Also acts as a regulatory component of protein phosphatase 1 (PP1) complexes (PubMed:39603239, PubMed:39603240). Component of the PNUTS-PP1 protein phosphatase complex, a PP1 complex that regulates RNA polymerase II transcription pause-release (PubMed:39603239, PubMed:39603240). PNUTS-PP1 also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (PubMed:20516061). {ECO:0000250|UniProtKB:Q8BU11, ECO:0000269|PubMed:20516061, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240}.
O95049 TJP3 S378 ochoa Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}.
O95139 NDUFB6 S55 psp NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6 (Complex I-B17) (CI-B17) (NADH-ubiquinone oxidoreductase B17 subunit) Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. {ECO:0000269|PubMed:27626371}.
O95163 ELP1 S1211 ochoa Elongator complex protein 1 (ELP1) (IkappaB kinase complex-associated protein) (IKK complex-associated protein) (p150) Component of the elongator complex which is required for multiple tRNA modifications, including mcm5U (5-methoxycarbonylmethyl uridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), and ncm5U (5-carbamoylmethyl uridine) (PubMed:29332244). The elongator complex catalyzes the formation of carboxymethyluridine in the wobble base at position 34 in tRNAs (PubMed:29332244). Regulates the migration and branching of projection neurons in the developing cerebral cortex, through a process depending on alpha-tubulin acetylation (By similarity). ELP1 binds to tRNA, mediating interaction of the elongator complex with tRNA (By similarity). May act as a scaffold protein that assembles active IKK-MAP3K14 complexes (IKKA, IKKB and MAP3K14/NIK) (PubMed:9751059). {ECO:0000250|UniProtKB:Q06706, ECO:0000250|UniProtKB:Q7TT37, ECO:0000269|PubMed:9751059, ECO:0000303|PubMed:29332244}.
O95171 SCEL S590 ochoa Sciellin May function in the assembly or regulation of proteins in the cornified envelope. The LIM domain may be involved in homotypic or heterotypic associations and may function to localize sciellin to the cornified envelope.
O95251 KAT7 S506 ochoa Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}.
O95714 HERC2 S1601 ochoa E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}.
P04424 ASL S417 psp Argininosuccinate lyase (ASAL) (EC 4.3.2.1) (Arginosuccinase) Catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine, an intermediate step reaction in the urea cycle mostly providing for hepatic nitrogen detoxification into excretable urea as well as de novo L-arginine synthesis in nonhepatic tissues (PubMed:11747432, PubMed:11747433, PubMed:22081021, PubMed:2263616, PubMed:9045711). Essential regulator of intracellular and extracellular L-arginine pools. As part of citrulline-nitric oxide cycle, forms tissue-specific multiprotein complexes with argininosuccinate synthase ASS1, transport protein SLC7A1 and nitric oxide synthase NOS1, NOS2 or NOS3, allowing for cell-autonomous L-arginine synthesis while channeling extracellular L-arginine to nitric oxide synthesis pathway (PubMed:22081021). {ECO:0000269|PubMed:11747432, ECO:0000269|PubMed:11747433, ECO:0000269|PubMed:22081021, ECO:0000269|PubMed:9045711}.
P05023 ATP1A1 S228 ochoa Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}.
P05089 ARG1 S62 ochoa Arginase-1 (EC 3.5.3.1) (Liver-type arginase) (Type I arginase) Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. {ECO:0000305}.; FUNCTION: Functions in L-arginine homeostasis in nonhepatic tissues characterized by the competition between nitric oxide synthase (NOS) and arginase for the available intracellular substrate arginine. Arginine metabolism is a critical regulator of innate and adaptive immune responses. Involved in an antimicrobial effector pathway in polymorphonuclear granulocytes (PMN). Upon PMN cell death is liberated from the phagolysosome and depletes arginine in the microenvironment leading to suppressed T cell and natural killer (NK) cell proliferation and cytokine secretion (PubMed:15546957, PubMed:16709924, PubMed:19380772). In group 2 innate lymphoid cells (ILC2s) promotes acute type 2 inflammation in the lung and is involved in optimal ILC2 proliferation but not survival (By similarity). In humans, the immunological role in the monocytic/macrophage/dendritic cell (DC) lineage is unsure. {ECO:0000250|UniProtKB:Q61176, ECO:0000269|PubMed:15546957, ECO:0000269|PubMed:16709924, ECO:0000269|PubMed:19380772}.
P09874 PARP1 S41 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P0DMM9 SULT1A3 S253 ochoa Sulfotransferase 1A3 (ST1A3) (EC 2.8.2.1) (Aryl sulfotransferase 1A3/1A4) (Catecholamine-sulfating phenol sulfotransferase) (HAST3) (M-PST) (Monoamine-sulfating phenol sulfotransferase) (Placental estrogen sulfotransferase) (Sulfotransferase 1A3/1A4) (Sulfotransferase, monoamine-preferring) (Thermolabile phenol sulfotransferase) (TL-PST) Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, (R)-adrenaline/epinephrine, (R)-noradrenaline/norepinephrine and serotonin) and phenolic and catechol drugs (PubMed:8093002, PubMed:29524394, PubMed:14622112, PubMed:15358107). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:14622112, ECO:0000269|PubMed:15358107, ECO:0000269|PubMed:29524394, ECO:0000269|PubMed:8093002}.
P0DMN0 SULT1A4 S253 ochoa Sulfotransferase 1A4 (ST1A4) (EC 2.8.2.1) (Aryl sulfotransferase 1A3/1A4) (Sulfotransferase 1A3/1A4) Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, (R)-adrenaline/epinephrine, (R)-noradrenaline/norepinephrine and serotonin) and phenolic and catechol drugs (PubMed:15358107, PubMed:29524394). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:15358107, ECO:0000269|PubMed:29524394}.
P10809 HSPD1 S70 ochoa|psp 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
P11137 MAP2 S1155 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P15880 RPS2 S264 ochoa Small ribosomal subunit protein uS5 (40S ribosomal protein S2) (40S ribosomal protein S4) (Protein LLRep3) Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399). Plays a role in the assembly and function of the 40S ribosomal subunit (By similarity). Mutations in this protein affects the control of translational fidelity (By similarity). Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly (By similarity). {ECO:0000250|UniProtKB:P25443, ECO:0000269|PubMed:23636399}.
P16333 NCK1 S262 ochoa SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}.
P20042 EIF2S2 S286 ochoa Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P25054 APC S2674 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25205 MCM3 S112 psp DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P27815 PDE4A S628 ochoa 3',5'-cyclic-AMP phosphodiesterase 4A (EC 3.1.4.53) (DPDE2) (PDE46) (cAMP-specific phosphodiesterase 4A) Hydrolyzes the second messenger 3',5'-cyclic AMP (cAMP), which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:11566027, ECO:0000269|PubMed:2160582}.; FUNCTION: [Isoform 1]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 2]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:15738310}.; FUNCTION: [Isoform 3]: Efficiently hydrolyzes cAMP. The phosphodiesterase activity is not affected by calcium, calmodulin or cyclic GMP (cGMP) levels. Does not hydrolyze cGMP. {ECO:0000269|PubMed:7888306}.; FUNCTION: [Isoform 4]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:9677330}.; FUNCTION: [Isoform 6]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:11306681, ECO:0000269|PubMed:15738310, ECO:0000269|PubMed:17727341}.; FUNCTION: [Isoform 7]: Efficiently hydrolyzes cAMP. {ECO:0000269|PubMed:18095939}.
P28066 PSMA5 S56 ochoa Proteasome subunit alpha type-5 (Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) (Proteasome subunit alpha-5) (alpha-5) (Proteasome zeta chain) Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}.
P28749 RBL1 S749 ochoa Retinoblastoma-like protein 1 (107 kDa retinoblastoma-associated protein) (p107) (pRb1) Key regulator of entry into cell division (PubMed:17671431). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation (By similarity). Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression (By similarity). Controls histone H4 'Lys-20' trimethylation (By similarity). Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters (By similarity). Potent inhibitor of E2F-mediated trans-activation (PubMed:8319904). May act as a tumor suppressor (PubMed:8319904). {ECO:0000250|UniProtKB:Q64701, ECO:0000269|PubMed:17671431, ECO:0000269|PubMed:8319904}.
P38398 BRCA1 S1009 ochoa Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}.
P41227 NAA10 S186 ochoa N-alpha-acetyltransferase 10 (EC 2.3.1.255) (N-terminal acetyltransferase complex ARD1 subunit homolog A) (hARD1) (NatA catalytic subunit Naa10) Catalytic subunit of N-terminal acetyltransferase complexes which display alpha (N-terminal) acetyltransferase activity (PubMed:15496142, PubMed:19420222, PubMed:19826488, PubMed:20145209, PubMed:20154145, PubMed:25489052, PubMed:27708256, PubMed:29754825, PubMed:32042062). Acetylates amino termini that are devoid of initiator methionine (PubMed:19420222). The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation (PubMed:12464182). Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration (PubMed:19826488). Acetylates, and stabilizes TSC2, thereby repressing mTOR activity and suppressing cancer development (PubMed:20145209). Acetylates HSPA1A and HSPA1B at 'Lys-77' which enhances its chaperone activity and leads to preferential binding to co-chaperone HOPX (PubMed:27708256). Acetylates HIST1H4A (PubMed:29754825). Acts as a negative regulator of sister chromatid cohesion during mitosis (PubMed:27422821). {ECO:0000269|PubMed:12464182, ECO:0000269|PubMed:15496142, ECO:0000269|PubMed:19420222, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20145209, ECO:0000269|PubMed:20154145, ECO:0000269|PubMed:25489052, ECO:0000269|PubMed:27422821, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:29754825, ECO:0000269|PubMed:32042062}.
P41970 ELK3 S115 ochoa ETS domain-containing protein Elk-3 (ETS-related protein ERP) (ETS-related protein NET) (Serum response factor accessory protein 2) (SAP-2) (SRF accessory protein 2) May be a negative regulator of transcription, but can activate transcription when coexpressed with Ras, Src or Mos. Forms a ternary complex with the serum response factor and the ETS and SRF motifs of the Fos serum response element.
P42702 LIFR S534 ochoa Leukemia inhibitory factor receptor (LIF receptor) (LIF-R) (CD antigen CD118) Signal-transducing molecule. May have a common pathway with IL6ST. The soluble form inhibits the biological activity of LIF by blocking its binding to receptors on target cells.
P42858 HTT S2074 psp Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}.
P43146 DCC S1178 ochoa Netrin receptor DCC (Colorectal cancer suppressor) (Immunoglobulin superfamily DCC subclass member 1) (Tumor suppressor protein DCC) Receptor for netrin required for axon guidance. Mediates axon attraction of neuronal growth cones in the developing nervous system upon ligand binding. Its association with UNC5 proteins may trigger signaling for axon repulsion. It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand. Implicated as a tumor suppressor gene. {ECO:0000269|PubMed:8187090, ECO:0000269|PubMed:8861902}.
P46100 ATRX S656 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S91 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46940 IQGAP1 S648 ochoa Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P49643 PRIM2 S170 ochoa DNA primase large subunit (DNA primase 58 kDa subunit) (p58) Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}.
P49643 PRIM2 S404 ochoa DNA primase large subunit (DNA primase 58 kDa subunit) (p58) Regulatory subunit of the DNA primase complex and component of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which play an essential role in the initiation of DNA synthesis (PubMed:17893144, PubMed:25550159, PubMed:26975377, PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (PubMed:17893144). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). In the primase complex, both subunits are necessary for the initial di-nucleotide formation, but the extension of the primer depends only on the catalytic subunit (PubMed:17893144, PubMed:25550159). Binds RNA:DNA duplex and coordinates the catalytic activities of PRIM1 and POLA2 during primase-to-polymerase switch. {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P33610, ECO:0000269|PubMed:17893144, ECO:0000269|PubMed:25550159, ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:9705292}.
P49662 CASP4 S83 ochoa Caspase-4 (CASP-4) (EC 3.4.22.57) (ICE and Ced-3 homolog 2) (ICH-2) (ICE(rel)-II) (Mih1) (Protease TX) [Cleaved into: Caspase-4 subunit p10; Caspase-4 subunit p20] Inflammatory caspase that acts as the effector of the non-canonical inflammasome by mediating lipopolysaccharide (LPS)-induced pyroptosis (PubMed:25119034, PubMed:26375003, PubMed:32109412, PubMed:34671164, PubMed:37001519, PubMed:37993712, PubMed:37993714). Also indirectly activates the NLRP3 and NLRP6 inflammasomes (PubMed:23516580, PubMed:26375003, PubMed:32109412, PubMed:7797510). Acts as a thiol protease that cleaves a tetrapeptide after an Asp residue at position P1: catalyzes cleavage of CGAS, GSDMD and IL18 (PubMed:15326478, PubMed:23516580, PubMed:26375003, PubMed:28314590, PubMed:32109412, PubMed:37993712, PubMed:37993714, PubMed:7797510). Effector of the non-canonical inflammasome independently of NLRP3 inflammasome and CASP1: the non-canonical inflammasome promotes pyroptosis through GSDMD cleavage without involving secretion of cytokine IL1B (PubMed:25119034, PubMed:25121752, PubMed:26375003, PubMed:31268602, PubMed:32109412, PubMed:37993712, PubMed:37993714). In the non-canonical inflammasome, CASP4 is activated by direct binding to the lipid A moiety of LPS without the need of an upstream sensor (PubMed:25119034, PubMed:25121752, PubMed:29520027, PubMed:32510692, PubMed:32581219, PubMed:37993712). LPS-binding promotes CASP4 activation and CASP4-mediated cleavage of GSDMD and IL18, followed by IL18 secretion through the GSDMD pore, pyroptosis of infected cells and their extrusion into the gut lumen (PubMed:25119034, PubMed:25121752, PubMed:37993712, PubMed:37993714). Also indirectly promotes secretion of mature cytokines (IL1A and HMGB1) downstream of GSDMD-mediated pyroptosis via activation of the NLRP3 and NLRP6 inflammasomes (PubMed:26375003, PubMed:32109412). Involved in NLRP3-dependent CASP1 activation and IL1B secretion in response to non-canonical activators, such as UVB radiation or cholera enterotoxin (PubMed:22246630, PubMed:23516580, PubMed:24879791, PubMed:25964352, PubMed:26173988, PubMed:26174085, PubMed:26508369). Involved in NLRP6 inflammasome-dependent activation in response to lipoteichoic acid (LTA), a cell-wall component of Gram-positive bacteria, which leads to CASP1 activation and IL1B secretion (PubMed:33377178). Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). The non-canonical inflammasome is required for innate immunity to cytosolic, but not vacuolar, bacteria (By similarity). Plays a crucial role in the restriction of S.typhimurium replication in colonic epithelial cells during infection (PubMed:25121752, PubMed:25964352). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation (PubMed:25121752, PubMed:25964352, PubMed:26375003). May also act as an activator of adaptive immunity in dendritic cells, following activation by oxidized phospholipid 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine, an oxidized phospholipid (oxPAPC) (By similarity). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found in Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Cleavage of GSDMD is not strictly dependent on the consensus cleavage site but depends on an exosite interface on CASP4 that recognizes and binds the Gasdermin-D, C-terminal (GSDMD-CT) part (PubMed:32109412). Catalyzes cleavage and maturation of IL18; IL18 processing also depends of the exosite interface on CASP4 (PubMed:15326478, PubMed:37993712, PubMed:37993714). In contrast, it does not directly process IL1B (PubMed:7743998, PubMed:7797510, PubMed:7797592). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590). {ECO:0000250|UniProtKB:P70343, ECO:0000269|PubMed:15123740, ECO:0000269|PubMed:15326478, ECO:0000269|PubMed:22246630, ECO:0000269|PubMed:23516580, ECO:0000269|PubMed:23661706, ECO:0000269|PubMed:24879791, ECO:0000269|PubMed:25119034, ECO:0000269|PubMed:25121752, ECO:0000269|PubMed:25964352, ECO:0000269|PubMed:26173988, ECO:0000269|PubMed:26174085, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26508369, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:29520027, ECO:0000269|PubMed:31268602, ECO:0000269|PubMed:32109412, ECO:0000269|PubMed:32510692, ECO:0000269|PubMed:32581219, ECO:0000269|PubMed:33377178, ECO:0000269|PubMed:34671164, ECO:0000269|PubMed:37001519, ECO:0000269|PubMed:37993714, ECO:0000269|PubMed:7743998, ECO:0000269|PubMed:7797510, ECO:0000269|PubMed:7797592}.; FUNCTION: (Microbial infection) In response to the Td92 surface protein of the periodontal pathogen T.denticola, activated by cathepsin CTSG which leads to production and secretion of IL1A and pyroptosis of gingival fibroblasts. {ECO:0000269|PubMed:29077095}.
P50225 SULT1A1 S253 ochoa Sulfotransferase 1A1 (ST1A1) (EC 2.8.2.1) (Aryl sulfotransferase 1) (HAST1/HAST2) (Phenol sulfotransferase 1) (Phenol-sulfating phenol sulfotransferase 1) (P-PST 1) (ST1A3) (Thermostable phenol sulfotransferase) (Ts-PST) Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of a wide variety of acceptor molecules bearing a hydroxyl or an amine group. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Displays broad substrate specificity for small phenolic compounds. Plays an important role in the sulfonation of endogenous molecules such as steroid hormones (PubMed:12471039, PubMed:16221673, PubMed:21723874, PubMed:22069470, PubMed:7834621). Mediates the sulfate conjugation of a variety of xenobiotics, including the drugs acetaminophen and minoxidil (By similarity). Mediates also the metabolic activation of carcinogenic N-hydroxyarylamines leading to highly reactive intermediates capable of forming DNA adducts, potentially resulting in mutagenesis (PubMed:7834621). May play a role in gut microbiota-host metabolic interaction. O-sulfonates 4-ethylphenol (4-EP), a dietary tyrosine-derived metabolite produced by gut bacteria. The product 4-EPS crosses the blood-brain barrier and may negatively regulate oligodendrocyte maturation and myelination, affecting the functional connectivity of different brain regions associated with the limbic system (PubMed:35165440). Catalyzes the sulfate conjugation of dopamine (PubMed:8093002). Catalyzes the sulfation of T4 (L-thyroxine/3,5,3',5'-tetraiodothyronine), T3 (3,5,3'-triiodothyronine), rT3 (3,3',5'-triiodothyronine) and 3,3'-T2 (3,3'-diiodothyronine), with a substrate preference of 3,3'-T2 > rT3 > T3 > T4 (PubMed:10199779). {ECO:0000250|UniProtKB:P17988, ECO:0000269|PubMed:10199779, ECO:0000269|PubMed:12471039, ECO:0000269|PubMed:16221673, ECO:0000269|PubMed:21723874, ECO:0000269|PubMed:22069470, ECO:0000269|PubMed:35165440, ECO:0000269|PubMed:7834621, ECO:0000269|PubMed:8093002}.
P51608 MECP2 S229 ochoa|psp Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}.
P51610 HCFC1 S666 ochoa Host cell factor 1 (HCF) (HCF-1) (C1 factor) (CFF) (VCAF) (VP16 accessory protein) [Cleaved into: HCF N-terminal chain 1; HCF N-terminal chain 2; HCF N-terminal chain 3; HCF N-terminal chain 4; HCF N-terminal chain 5; HCF N-terminal chain 6; HCF C-terminal chain 1; HCF C-terminal chain 2; HCF C-terminal chain 3; HCF C-terminal chain 4; HCF C-terminal chain 5; HCF C-terminal chain 6] Transcriptional coregulator (By similarity). Serves as a scaffold protein, bridging interactions between transcription factors, including THAP11 and ZNF143, and transcriptional coregulators (PubMed:26416877). Involved in control of the cell cycle (PubMed:10629049, PubMed:10779346, PubMed:15190068, PubMed:16624878, PubMed:23629655). Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300 (PubMed:10675337, PubMed:12244100). Coactivator for EGR2 and GABP2 (PubMed:12244100, PubMed:14532282). Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together (PubMed:12670868). Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1 (PubMed:20200153). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Recruits KMT2E/MLL5 to E2F1 responsive promoters promoting transcriptional activation and thereby facilitates G1 to S phase transition (PubMed:23629655). Modulates expression of homeobox protein PDX1, perhaps acting in concert with transcription factor E2F1, thereby regulating pancreatic beta-cell growth and glucose-stimulated insulin secretion (By similarity). May negatively modulate transcriptional activity of FOXO3 (By similarity). {ECO:0000250|UniProtKB:D3ZN95, ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:10675337, ECO:0000269|PubMed:10779346, ECO:0000269|PubMed:12244100, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:14532282, ECO:0000269|PubMed:15190068, ECO:0000269|PubMed:16624878, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:20200153, ECO:0000269|PubMed:23629655, ECO:0000269|PubMed:26416877}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000269|PubMed:10629049, ECO:0000269|PubMed:17578910}.
P51826 AFF3 S878 ochoa AF4/FMR2 family member 3 (Lymphoid nuclear protein related to AF4) (Protein LAF-4) Putative transcription activator that may function in lymphoid development and oncogenesis. Binds, in vitro, to double-stranded DNA.
P52179 MYOM1 S694 ochoa Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P53004 BLVRA S211 ochoa Biliverdin reductase A (BVR A) (EC 1.3.1.24) (Biliverdin-IX alpha-reductase) Reduces the gamma-methene bridge of the open tetrapyrrole, biliverdin IXalpha, to bilirubin with the concomitant oxidation of a NADH or NADPH cofactor (PubMed:10858451, PubMed:7929092, PubMed:8424666, PubMed:8631357). Does not reduce bilirubin IXbeta (PubMed:10858451). Uses the reactants NADH or NADPH depending on the pH; NADH is used at the acidic pH range (6-6.9) and NADPH at the alkaline range (8.5-8.7) (PubMed:7929092, PubMed:8424666, PubMed:8631357). NADPH, however, is the probable reactant in biological systems (PubMed:7929092). {ECO:0000269|PubMed:10858451, ECO:0000269|PubMed:7929092, ECO:0000269|PubMed:8424666, ECO:0000269|PubMed:8631357}.
P53007 SLC25A1 S156 ochoa Tricarboxylate transport protein, mitochondrial (Citrate transport protein) (CTP) (Mitochondrial citrate carrier) (CIC) (Solute carrier family 25 member 1) (Tricarboxylate carrier protein) Mitochondrial electroneutral antiporter that exports citrate from the mitochondria into the cytosol in exchange for malate (PubMed:26870663, PubMed:29031613, PubMed:29238895, PubMed:39881208). Also able to mediate the exchange of citrate for isocitrate, phosphoenolpyruvate, cis-aconitate and to a lesser extent trans-aconitate, maleate and succinate (PubMed:29031613). In the cytoplasm, citrate plays important roles in fatty acid and sterol synthesis, regulation of glycolysis, protein acetylation, and other physiopathological processes (PubMed:29031613, PubMed:29238895, PubMed:39881208). {ECO:0000269|PubMed:26870663, ECO:0000269|PubMed:29031613, ECO:0000269|PubMed:29238895, ECO:0000269|PubMed:39881208}.
P53675 CLTCL1 S889 ochoa Clathrin heavy chain 2 (Clathrin heavy chain on chromosome 22) (CLH-22) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network (By similarity). {ECO:0000250}.
P54132 BLM S714 psp RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P54296 MYOM2 S567 ochoa Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P54296 MYOM2 S601 ochoa Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P54578 USP14 S302 ochoa Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}.
P55196 AFDN S655 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P56817 BACE1 S83 psp Beta-secretase 1 (EC 3.4.23.46) (Aspartyl protease 2) (ASP2) (Asp 2) (Beta-site amyloid precursor protein cleaving enzyme 1) (Beta-site APP cleaving enzyme 1) (Memapsin-2) (Membrane-associated aspartic protease 2) Responsible for the proteolytic processing of the amyloid precursor protein (APP). Cleaves at the N-terminus of the A-beta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated C-terminal fragment which is later released by gamma-secretase (PubMed:10656250, PubMed:10677483, PubMed:20354142). Cleaves CHL1 (By similarity). {ECO:0000250|UniProtKB:P56818, ECO:0000269|PubMed:10656250, ECO:0000269|PubMed:10677483, ECO:0000269|PubMed:20354142}.
P59923 ZNF445 S171 ochoa Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}.
P60866 RPS20 S93 ochoa Small ribosomal subunit protein uS10 (40S ribosomal protein S20) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}.
P61221 ABCE1 S547 ochoa ATP-binding cassette sub-family E member 1 (EC 3.6.5.-) (2'-5'-oligoadenylate-binding protein) (HuHP68) (RNase L inhibitor) (Ribonuclease 4 inhibitor) (RNS4I) Nucleoside-triphosphatase (NTPase) involved in ribosome recycling by mediating ribosome disassembly (PubMed:20122402, PubMed:21448132). Able to hydrolyze ATP, GTP, UTP and CTP (PubMed:20122402). Splits ribosomes into free 60S subunits and tRNA- and mRNA-bound 40S subunits (PubMed:20122402, PubMed:21448132). Acts either after canonical termination facilitated by release factors (ETF1/eRF1) or after recognition of stalled and vacant ribosomes by mRNA surveillance factors (PELO/Pelota) (PubMed:20122402, PubMed:21448132). Involved in the No-Go Decay (NGD) pathway: recruited to stalled ribosomes by the Pelota-HBS1L complex, and drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132). Also plays a role in quality control of translation of mitochondrial outer membrane-localized mRNA (PubMed:29861391). As part of the PINK1-regulated signaling, ubiquitinated by CNOT4 upon mitochondria damage; this modification generates polyubiquitin signals that recruit autophagy receptors to the mitochondrial outer membrane and initiate mitophagy (PubMed:29861391). RNASEL-specific protein inhibitor which antagonizes the binding of 2-5A (5'-phosphorylated 2',5'-linked oligoadenylates) to RNASEL (PubMed:9660177). Negative regulator of the anti-viral effect of the interferon-regulated 2-5A/RNASEL pathway (PubMed:11585831, PubMed:9660177, PubMed:9847332). {ECO:0000269|PubMed:11585831, ECO:0000269|PubMed:20122402, ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:29861391, ECO:0000269|PubMed:9660177, ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) May act as a chaperone for post-translational events during HIV-1 capsid assembly. {ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) Plays a role in the down-regulation of the 2-5A/RNASEL pathway during encephalomyocarditis virus (EMCV) and HIV-1 infections. {ECO:0000269|PubMed:9660177}.
P68402 PAFAH1B2 S64 ochoa Platelet-activating factor acetylhydrolase IB subunit alpha2 (EC 3.1.1.47) (PAF acetylhydrolase 30 kDa subunit) (PAF-AH 30 kDa subunit) (PAF-AH subunit beta) (PAFAH subunit beta) Alpha2 catalytic subunit of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)) heterotetrameric enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and modulates the action of PAF. The activity and substrate specificity of PAF-AH (I) are affected by its subunit composition. The alpha2/alpha2 homodimer (PAFAH1B2/PAFAH1B2 homodimer) hydrolyzes PAF and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylethanolamine (AAGPE) more efficiently than 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoric acid (AAGPA). In contrast, the alpha1/alpha2 heterodimer(PAFAH1B3/PAFAH1B3 heterodimer) hydrolyzes AAGPA more efficiently than PAF, but has little hydrolytic activity towards AAGPE (By similarity). May play a role in male germ cell meiosis during the late pachytenestage and meiotic divisions as well as early spermiogenesis (By similarity). {ECO:0000250|UniProtKB:P68401, ECO:0000250|UniProtKB:Q61206}.
P78362 SRPK2 S380 ochoa SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P78395 PRAME S277 ochoa Melanoma antigen preferentially expressed in tumors (Opa-interacting protein 4) (OIP-4) (Preferentially expressed antigen of melanoma) Substrate-recognition component of a Cul2-RING (CRL2) E3 ubiquitin-protein ligase complex, which mediates ubiquitination of target proteins, leading to their degradation (PubMed:21822215, PubMed:26138980). The CRL2(PRAME) complex mediates ubiquitination and degradation of truncated MSRB1/SEPX1 selenoproteins produced by failed UGA/Sec decoding (PubMed:26138980). In the nucleus, the CRL2(PRAME) complex is recruited to epigenetically and transcriptionally active promoter regions bound by nuclear transcription factor Y (NFY) and probably plays a role in chromstin regulation (PubMed:21822215). Functions as a transcriptional repressor, inhibiting the signaling of retinoic acid through the retinoic acid receptors RARA, RARB and RARG: prevents retinoic acid-induced cell proliferation arrest, differentiation and apoptosis (PubMed:16179254). {ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:21822215, ECO:0000269|PubMed:26138980}.
P85037 FOXK1 S644 ochoa Forkhead box protein K1 (Myocyte nuclear factor) (MNF) Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}.
P98082 DAB2 S227 ochoa|psp Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
Q01085 TIAL1 S278 ochoa Nucleolysin TIAR (TIA-1-related protein) RNA-binding protein involved in alternative pre-RNA splicing and in cytoplasmic stress granules formation (PubMed:10613902, PubMed:1326761, PubMed:17488725, PubMed:8576255). Shows a preference for uridine-rich RNAs (PubMed:8576255). Activates splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on its own pre-mRNA and on TIA1 mRNA (By similarity). Promotes the inclusion of TIA1 exon 5 to give rise to the long isoform (isoform a) of TIA1 (PubMed:17488725). Acts downstream of the stress-induced phosphorylation of EIF2S1/EIF2A to promote the recruitment of untranslated mRNAs to cytoplasmic stress granules (SG) (PubMed:10613902). Possesses nucleolytic activity against cytotoxic lymphocyte target cells (PubMed:1326761). May be involved in apoptosis (PubMed:1326761). {ECO:0000250|UniProtKB:P70318, ECO:0000269|PubMed:10613902, ECO:0000269|PubMed:1326761, ECO:0000269|PubMed:17488725, ECO:0000269|PubMed:8576255}.
Q01484 ANK2 S2405 ochoa Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}.
Q01970 PLCB3 S632 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}.
Q02790 FKBP4 S26 ochoa Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}.
Q03164 KMT2A S351 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q05682 CALD1 S759 ochoa|psp Caldesmon (CDM) Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}.
Q07343 PDE4B S601 ochoa 3',5'-cyclic-AMP phosphodiesterase 4B (EC 3.1.4.53) (DPDE4) (PDE32) (cAMP-specific phosphodiesterase 4B) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes (PubMed:15260978). May be involved in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents. {ECO:0000269|PubMed:10846163, ECO:0000269|PubMed:15003452, ECO:0000269|PubMed:15260978}.
Q08499 PDE4D S657 ochoa 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}.
Q08999 RBL2 S1059 ochoa Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q0IIM8 TBC1D8B S718 ochoa TBC1 domain family member 8B Involved in vesicular recycling, probably as a RAB11B GTPase-activating protein. {ECO:0000269|PubMed:30661770}.
Q12772 SREBF2 S432 psp Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}.
Q12816 TRO S155 ochoa Trophinin (MAGE-D3 antigen) Could be involved with bystin and tastin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. Directly responsible for homophilic cell adhesion.
Q12912 IRAG2 S140 ochoa Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}.
Q13029 PRDM2 S1141 ochoa PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}.
Q13485 SMAD4 S138 psp Mothers against decapentaplegic homolog 4 (MAD homolog 4) (Mothers against DPP homolog 4) (Deletion target in pancreatic carcinoma 4) (SMAD family member 4) (SMAD 4) (Smad4) (hSMAD4) In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression. Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (By similarity). Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling (PubMed:25514493). Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. {ECO:0000250, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:9389648}.
Q13490 BIRC2 S98 ochoa Baculoviral IAP repeat-containing protein 2 (EC 2.3.2.27) (Cellular inhibitor of apoptosis 1) (C-IAP1) (IAP homolog B) (Inhibitor of apoptosis protein 2) (hIAP-2) (hIAP2) (RING finger protein 48) (RING-type E3 ubiquitin transferase BIRC2) (TNFR2-TRAF-signaling complex protein 2) Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and cell proliferation, as well as cell invasion and metastasis. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and regulates both canonical and non-canonical NF-kappa-B signaling by acting in opposite directions: acts as a positive regulator of the canonical pathway and suppresses constitutive activation of non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF2, DIABLO/SMAC, MAP3K14/NIK, MAP3K5/ASK1, IKBKG/NEMO, IKBKE and MXD1/MAD1. Can also function as an E3 ubiquitin-protein ligase of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Acts as an important regulator of innate immune signaling via regulation of Toll-like receptors (TLRs), Nodlike receptors (NLRs) and RIG-I like receptors (RLRs), collectively referred to as pattern recognition receptors (PRRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8. Can stimulate the transcriptional activity of E2F1. Plays a role in the modulation of the cell cycle. {ECO:0000269|PubMed:15665297, ECO:0000269|PubMed:18082613, ECO:0000269|PubMed:21145488, ECO:0000269|PubMed:21653699, ECO:0000269|PubMed:21931591, ECO:0000269|PubMed:23453969}.
Q13505 MTX1 S197 ochoa Metaxin-1 (Mitochondrial outer membrane import complex protein 1) Involved in transport of proteins into the mitochondrion. Essential for embryonic development (By similarity). {ECO:0000250}.
Q13761 RUNX3 S71 ochoa Runt-related transcription factor 3 (Acute myeloid leukemia 2 protein) (Core-binding factor subunit alpha-3) (CBF-alpha-3) (Oncogene AML-2) (Polyomavirus enhancer-binding protein 2 alpha C subunit) (PEA2-alpha C) (PEBP2-alpha C) (SL3-3 enhancer factor 1 alpha C subunit) (SL3/AKV core-binding factor alpha C subunit) Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (By similarity). May be involved in the control of cellular proliferation and/or differentiation. In association with ZFHX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Necessary for the development and survival of sensory neurons expressing parvalbumin (By similarity). {ECO:0000250|UniProtKB:Q64131, ECO:0000269|PubMed:20599712}.
Q13972 RASGRF1 S857 ochoa Ras-specific guanine nucleotide-releasing factor 1 (Ras-GRF1) (Guanine nucleotide-releasing protein) (GNRP) (Ras-specific nucleotide exchange factor CDC25) Promotes the exchange of Ras-bound GDP by GTP. {ECO:0000269|PubMed:11389730}.
Q14161 GIT2 S634 ochoa ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}.
Q14324 MYBPC2 S1017 ochoa Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role.
Q14517 FAT1 S150 ochoa Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}.
Q14517 FAT1 S357 ochoa Protocadherin Fat 1 (Cadherin family member 7) (Cadherin-related tumor suppressor homolog) (Protein fat homolog) [Cleaved into: Protocadherin Fat 1, nuclear form] [Protocadherin Fat 1]: Plays an essential role for cellular polarization, directed cell migration and modulating cell-cell contact. {ECO:0000250}.
Q14653 IRF3 S339 psp Interferon regulatory factor 3 (IRF-3) Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}.
Q15007 WTAP S341 ochoa|psp Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Required for accumulation of METTL3 and METTL14 to nuclear speckle (PubMed:24316715, PubMed:24407421, PubMed:24981863). Acts as a mRNA splicing regulator (PubMed:12444081). Regulates G2/M cell-cycle transition by binding to the 3' UTR of CCNA2, which enhances its stability (PubMed:17088532). Impairs WT1 DNA-binding ability and inhibits expression of WT1 target genes (PubMed:17095724). {ECO:0000269|PubMed:12444081, ECO:0000269|PubMed:17088532, ECO:0000269|PubMed:17095724, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}.
Q15475 SIX1 S204 ochoa Homeobox protein SIX1 (Sine oculis homeobox homolog 1) Transcription factor that is involved in the regulation of cell proliferation, apoptosis and embryonic development (By similarity). Plays an important role in the development of several organs, including kidney, muscle and inner ear (By similarity). Depending on context, functions as a transcriptional repressor or activator (By similarity). Lacks an activation domain, and requires interaction with EYA family members for transcription activation (PubMed:15141091). Mediates nuclear translocation of EYA1 and EYA2 (PubMed:19497856). Binds the 5'-TCA[AG][AG]TTNC-3' motif present in the MEF3 element in the MYOG promoter and CIDEA enhancer (PubMed:15141091, PubMed:19497856, PubMed:23435380, PubMed:27923061). Regulates the expression of numerous genes, including MYC, CCND1 and EZR (By similarity). Acts as an activator of the IGFBP5 promoter, probably coactivated by EYA2 (By similarity). Repression of precursor cell proliferation in myoblasts is switched to activation through recruitment of EYA3 to the SIX1-DACH1 complex (By similarity). During myogenesis, seems to act together with EYA2 and DACH2 (By similarity). Regulates the expression of CCNA1 (PubMed:15123840). Promotes brown adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q62231, ECO:0000269|PubMed:15123840, ECO:0000269|PubMed:15141091, ECO:0000269|PubMed:19497856, ECO:0000269|PubMed:23435380, ECO:0000269|PubMed:27923061}.
Q155Q3 DIXDC1 S211 ochoa Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}.
Q15652 JMJD1C S701 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15652 JMJD1C S2007 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15746 MYLK S947 ochoa|psp Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
Q15911 ZFHX3 S2207 ochoa Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}.
Q15916 ZBTB6 S202 ochoa Zinc finger and BTB domain-containing protein 6 (Zinc finger protein 482) (Zinc finger protein with interaction domain) May be involved in transcriptional regulation.
Q17R98 ZNF827 S771 ochoa Zinc finger protein 827 As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}.
Q1AE95 TMEM183BP S336 ochoa Putative transmembrane protein 183BP (Transmembrane protein 183B pseudogene) None
Q27J81 INF2 S351 ochoa Inverted formin-2 (HBEBP2-binding protein C) Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}.
Q2KHR3 QSER1 S1272 ochoa Glutamine and serine-rich protein 1 Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}.
Q2NKX8 ERCC6L S399 ochoa DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}.
Q3V6T2 CCDC88A S1675 ochoa|psp Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}.
Q52LR7 EPC2 S688 ochoa Enhancer of polycomb homolog 2 (EPC-like) May play a role in transcription or DNA repair. {ECO:0000250}.
Q5JSH3 WDR44 S50 ochoa WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}.
Q5SVQ8 ZBTB41 S191 ochoa Zinc finger and BTB domain-containing protein 41 May be involved in transcriptional regulation.
Q5T0T0 MARCHF8 S253 ochoa E3 ubiquitin-protein ligase MARCHF8 (EC 2.3.2.27) (Cellular modulator of immune recognition) (c-MIR) (Membrane-associated RING finger protein 8) (Membrane-associated RING-CH protein VIII) (MARCH-VIII) (RING finger protein 178) (RING-type E3 ubiquitin transferase MARCHF8) E3 ubiquitin-protein ligase that plays several important roles in innate immunity and adaptive immunity (PubMed:34285233, PubMed:35019698, PubMed:35503863). Mediates ubiquitination of CD86 and MHC class II proteins, such as HLA-DR alpha and beta, and promotes their subsequent endocytosis and sorting to lysosomes via multivesicular bodies (PubMed:19117940, PubMed:19566897). Possesses a very broad antiviral activity by specifically inactivating different viral fusion proteins (PubMed:32934085). Targets and ubiquitinates cytoplasmic lysine residues of viral envelope glycoproteins with single transmembrane domains leading to their lysosomal degradation (PubMed:35019698). Therefore, shows broad-spectrum inhibition against many viruses including retroviruses, rhabdoviruses, arenaviruses, sarbecoviruses or influenzaviruses (PubMed:34285233, PubMed:35019698). Strongly blocks human immunodeficiency virus type 1 envelope glycoprotein incorporation into virions by down-regulating its cell surface expression. Also blocks ebola virus glycoprotein/GP incorporation via surface down-regulation (PubMed:32934085). Mediates 'Lys-63'-linked polyubiquitination of influenza M2 to target it to lysosome for degradation (PubMed:34285233). Mediates the regulation of constitutive ubiquitination and trafficking of the viral restriction factor BST2 within the endocytic pathway (PubMed:28320822). Plays a role in maintenance of immune tolerance to self by promoting the turnover and proteasomal degradation of PD-L1/CD274 via ubiquitination (PubMed:34183449). Catalyzes the 'Lys-63'-linked polyubiquitylation of cGAS thereby inhibiting its DNA binding ability and impairing its antiviral innate immunity (PubMed:35503863). Negatively regulates IL7-mediated T-cell homeostasis by mediating 'Lys-27'-linked polyubiquitination of IL7R, leading to its lysosomal degradation (PubMed:39311660). {ECO:0000269|PubMed:12582153, ECO:0000269|PubMed:14722266, ECO:0000269|PubMed:18389477, ECO:0000269|PubMed:19117940, ECO:0000269|PubMed:19566897, ECO:0000269|PubMed:28320822, ECO:0000269|PubMed:32934085, ECO:0000269|PubMed:34183449, ECO:0000269|PubMed:34285233, ECO:0000269|PubMed:35019698, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:39311660}.; FUNCTION: (Microbial infection) Mediates 'Lys-63'-linked polyubiquitination of hepatitis C virus/HCV protein NS2 which allows its binding to HGS, an ESCRT-0 complex component, and this interaction is essential for HCV envelopment. {ECO:0000269|PubMed:30759391}.
Q5T481 RBM20 S980 ochoa RNA-binding protein 20 (RNA-binding motif protein 20) RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}.
Q5T8P6 RBM26 S795 ochoa RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q5TB80 CEP162 S520 ochoa Centrosomal protein of 162 kDa (Cep162) (Protein QN1 homolog) Required to promote assembly of the transition zone in primary cilia. Acts by specifically recognizing and binding the axonemal microtubule. Localizes to the distal ends of centrioles before ciliogenesis and directly binds to axonemal microtubule, thereby promoting and restricting transition zone formation specifically at the cilia base. Required to mediate CEP290 association with microtubules. {ECO:0000269|PubMed:23644468}.
Q5TH69 ARFGEF3 S1676 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}.
Q5U623 ATF7IP2 S521 ochoa Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}.
Q5VT06 CEP350 S1502 ochoa Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}.
Q5VWN6 TASOR2 S1087 ochoa Protein TASOR 2 None
Q68CP9 ARID2 S1391 ochoa AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q6DN90 IQSEC1 S225 ochoa IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}.
Q6EKJ0 GTF2IRD2B S205 ochoa General transcription factor II-I repeat domain-containing protein 2B (GTF2I repeat domain-containing protein 2B) (Transcription factor GTF2IRD2-beta) None
Q6NW34 NEPRO S265 ochoa Nucleolus and neural progenitor protein May play a role in cortex development as part of the Notch signaling pathway. Downstream of Notch may repress the expression of proneural genes and inhibit neuronal differentiation thereby maintaining neural progenitors. May also play a role in preimplentation embryo development. {ECO:0000250|UniProtKB:Q8R2U2}.
Q6P4F7 ARHGAP11A S675 ochoa Rho GTPase-activating protein 11A (Rho-type GTPase-activating protein 11A) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000269|PubMed:27957544}.
Q6P9H4 CNKSR3 S244 ochoa Connector enhancer of kinase suppressor of ras 3 (Connector enhancer of KSR 3) (CNK homolog protein 3) (CNK3) (CNKSR family member 3) (Maguin-like protein) Involved in transepithelial sodium transport. Regulates aldosterone-induced and epithelial sodium channel (ENaC)-mediated sodium transport through regulation of ENaC cell surface expression. Acts as a scaffold protein coordinating the assembly of an ENaC-regulatory complex (ERC). {ECO:0000269|PubMed:22851176}.
Q6PL18 ATAD2 S696 ochoa ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}.
Q6SZW1 SARM1 S548 ochoa|psp NAD(+) hydrolase SARM1 (NADase SARM1) (hSARM1) (EC 3.2.2.6) (NADP(+) hydrolase SARM1) (EC 3.2.2.-) (Sterile alpha and Armadillo repeat protein) (Sterile alpha and TIR motif-containing protein 1) (Sterile alpha motif domain-containing protein 2) (MyD88-5) (SAM domain-containing protein 2) (Tir-1 homolog) (HsTIR) NAD(+) hydrolase, which plays a key role in axonal degeneration following injury by regulating NAD(+) metabolism (PubMed:25908823, PubMed:27671644, PubMed:28334607). Acts as a negative regulator of MYD88- and TRIF-dependent toll-like receptor signaling pathway by promoting Wallerian degeneration, an injury-induced form of programmed subcellular death which involves degeneration of an axon distal to the injury site (PubMed:15123841, PubMed:16964262, PubMed:20306472, PubMed:25908823). Wallerian degeneration is triggered by NAD(+) depletion: in response to injury, SARM1 is activated and catalyzes cleavage of NAD(+) into ADP-D-ribose (ADPR), cyclic ADPR (cADPR) and nicotinamide; NAD(+) cleavage promoting cytoskeletal degradation and axon destruction (PubMed:25908823, PubMed:28334607, PubMed:30333228, PubMed:31128467, PubMed:31439792, PubMed:31439793, PubMed:32049506, PubMed:32828421, PubMed:33053563). Also able to hydrolyze NADP(+), but not other NAD(+)-related molecules (PubMed:29395922). Can activate neuronal cell death in response to stress (PubMed:20306472). Regulates dendritic arborization through the MAPK4-JNK pathway (By similarity). Involved in innate immune response: inhibits both TICAM1/TRIF- and MYD88-dependent activation of JUN/AP-1, TRIF-dependent activation of NF-kappa-B and IRF3, and the phosphorylation of MAPK14/p38 (PubMed:16964262). {ECO:0000250|UniProtKB:Q6PDS3, ECO:0000269|PubMed:15123841, ECO:0000269|PubMed:16964262, ECO:0000269|PubMed:20306472, ECO:0000269|PubMed:25908823, ECO:0000269|PubMed:27671644, ECO:0000269|PubMed:28334607, ECO:0000269|PubMed:29395922, ECO:0000269|PubMed:30333228, ECO:0000269|PubMed:31128467, ECO:0000269|PubMed:31439792, ECO:0000269|PubMed:31439793, ECO:0000269|PubMed:32049506, ECO:0000269|PubMed:32828421, ECO:0000269|PubMed:33053563}.
Q6ZMT4 KDM7A S503 ochoa Lysine-specific demethylase 7A (JmjC domain-containing histone demethylation protein 1D) (Lysine-specific demethylase 7) ([histone H3]-dimethyl-L-lysine9 demethylase 7A) (EC 1.14.11.65) Histone demethylase required for brain development. Specifically demethylates dimethylated 'Lys-9', 'Lys-27' and 'Lys-36' (H3K9me2, H3K27me2, H3K36me2, respectively) of histone H3 and monomethylated histone H4 'Lys-20' residue (H4K20Me1), thereby playing a central role in histone code (PubMed:20023638, PubMed:20622853). Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: in presence of H3K4me3, it has no demethylase activity toward H3K9me2, while it has high activity toward H3K27me2. Demethylates H3K9me2 in absence of H3K4me3 (PubMed:20023638). Has activity toward H4K20Me1 only when nucleosome is used as a substrate and when not histone octamer is used as substrate (PubMed:20622853). {ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20622853}.
Q6ZNC4 ZNF704 S97 ochoa Zinc finger protein 704 Transcription factor which binds to RE2 sequence elements in the MYOD1 enhancer. {ECO:0000250|UniProtKB:Q9ERQ3}.
Q6ZSZ6 TSHZ1 S544 ochoa Teashirt homolog 1 (Antigen NY-CO-33) (Serologically defined colon cancer antigen 33) Probable transcriptional regulator involved in developmental processes. May act as a transcriptional repressor (Potential). {ECO:0000305}.
Q709C8 VPS13C S1894 ochoa Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}.
Q76L83 ASXL2 S51 ochoa Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}.
Q7L591 DOK3 S194 ochoa Docking protein 3 (Downstream of tyrosine kinase 3) DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK3 is a negative regulator of JNK signaling in B-cells through interaction with INPP5D/SHIP1. May modulate ABL1 function (By similarity). {ECO:0000250}.
Q7Z2Z1 TICRR S599 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q7Z3T8 ZFYVE16 S815 ochoa Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}.
Q7Z401 DENND4A S1303 ochoa C-myc promoter-binding protein (DENN domain-containing protein 4A) Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}.
Q7Z5L2 R3HCC1L S42 ochoa Coiled-coil domain-containing protein R3HCC1L (Growth inhibition and differentiation-related protein 88) (Putative mitochondrial space protein 32.1) (R3H and coiled-coil domain-containing protein 1-like) None
Q7Z5L2 R3HCC1L S688 ochoa Coiled-coil domain-containing protein R3HCC1L (Growth inhibition and differentiation-related protein 88) (Putative mitochondrial space protein 32.1) (R3H and coiled-coil domain-containing protein 1-like) None
Q7Z5U6 WDR53 S60 ochoa WD repeat-containing protein 53 None
Q7Z7A1 CNTRL S831 ochoa Centriolin (Centrosomal protein 1) (Centrosomal protein of 110 kDa) (Cep110) Involved in cell cycle progression and cytokinesis. During the late steps of cytokinesis, anchors exocyst and SNARE complexes at the midbody, thereby allowing secretory vesicle-mediated abscission. {ECO:0000269|PubMed:12732615, ECO:0000269|PubMed:16213214}.
Q7Z7L9 ZSCAN2 S191 ochoa Zinc finger and SCAN domain-containing protein 2 (Zinc finger protein 29 homolog) (Zfp-29) (Zinc finger protein 854) May be involved in transcriptional regulation during the post-meiotic stages of spermatogenesis. {ECO:0000250}.
Q7Z7M9 GALNT5 S202 ochoa Polypeptide N-acetylgalactosaminyltransferase 5 (EC 2.4.1.41) (Polypeptide GalNAc transferase 5) (GalNAc-T5) (pp-GaNTase 5) (Protein-UDP acetylgalactosaminyltransferase 5) (UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 5) Catalyzes the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue on the protein receptor. Has activity toward EA2 peptide substrate, but has a weak activity toward Muc2 or Muc1b substrates (By similarity). {ECO:0000250}.
Q86UP8 GTF2IRD2 S205 ochoa General transcription factor II-I repeat domain-containing protein 2A (GTF2I repeat domain-containing protein 2A) (Transcription factor GTF2IRD2-alpha) None
Q86UR5 RIMS1 S578 ochoa Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}.
Q86V20 SHLD2 S70 ochoa Shieldin complex subunit 2 (Protein FAM35A) (RINN1-REV7-interacting novel NHEJ regulator 2) (Shield complex subunit 2) Component of the shieldin complex, which plays an important role in repair of DNA double-stranded breaks (DSBs) (PubMed:29656893, PubMed:29789392). During G1 and S phase of the cell cycle, the complex functions downstream of TP53BP1 to promote non-homologous end joining (NHEJ) and suppress DNA end resection (PubMed:29656893, PubMed:29789392). Mediates various NHEJ-dependent processes including immunoglobulin class-switch recombination, and fusion of unprotected telomeres (PubMed:29656893). {ECO:0000269|PubMed:29656893, ECO:0000269|PubMed:29789392}.
Q86WW8 COA5 S37 ochoa Cytochrome c oxidase assembly factor 5 Involved in an early step of the mitochondrial complex IV assembly process. {ECO:0000269|PubMed:21457908}.
Q86YC2 PALB2 S357 ochoa Partner and localizer of BRCA2 Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}.
Q8IUD2 ERC1 S1005 ochoa ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}.
Q8IVL0 NAV3 S358 ochoa Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}.
Q8IW50 FAM219A S47 ochoa Protein FAM219A None
Q8IWC1 MAP7D3 S770 ochoa MAP7 domain-containing protein 3 Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}.
Q8IWY8 ZSCAN29 S405 ochoa Zinc finger and SCAN domain-containing protein 29 (Zinc finger protein 690) May be involved in transcriptional regulation.
Q8IX01 SUGP2 S277 ochoa SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) May play a role in mRNA splicing. {ECO:0000305}.
Q8IX18 DHX40 S197 ochoa Probable ATP-dependent RNA helicase DHX40 (EC 3.6.4.13) (DEAH box protein 40) (Protein PAD) Probable ATP-dependent RNA helicase. {ECO:0000250}.
Q8IXJ9 ASXL1 S51 ochoa Polycomb group protein ASXL1 (Additional sex combs-like protein 1) Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}.
Q8IXX5 TMEM183A S336 ochoa Transmembrane protein 183A None
Q8IZJ1 UNC5B S471 ochoa Netrin receptor UNC5B (Protein unc-5 homolog 2) (Protein unc-5 homolog B) (p53-regulated receptor for death and life protein 1) (p53RDL1) Receptor for netrin required for axon guidance. Mediates axon repulsion of neuronal growth cones in the developing nervous system upon ligand binding. Axon repulsion in growth cones may be caused by its association with DCC that may trigger signaling for repulsion (By similarity). Functions as a netrin receptor that negatively regulates vascular branching during angiogenesis. Mediates retraction of tip cell filopodia on endothelial growth cones in response to netrin (By similarity). It also acts as a dependence receptor required for apoptosis induction when not associated with netrin ligand (PubMed:12598906). Mediates apoptosis by activating DAPK1. In the absence of NTN1, activates DAPK1 by reducing its autoinhibitory phosphorylation at Ser-308 thereby increasing its catalytic activity (By similarity). {ECO:0000250|UniProtKB:O08722, ECO:0000250|UniProtKB:Q8K1S3, ECO:0000269|PubMed:12598906}.
Q8IZT6 ASPM S392 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N3J3 HROB S273 ochoa Homologous recombination OB-fold protein DNA-binding protein involved in homologous recombination that acts by recruiting the MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. {ECO:0000269|PubMed:31467087}.
Q8N883 ZNF614 S92 ochoa Zinc finger protein 614 May be involved in transcriptional regulation.
Q8NBT0 POC1A S70 ochoa POC1 centriolar protein homolog A (Pix2) (Proteome of centriole protein 1A) (WD repeat-containing protein 51A) Plays an important role in centriole assembly and/or stability and ciliogenesis. Involved in early steps of centriole duplication, as well as in the later steps of centriole length control. Acts in concert with POC1B to ensure centriole integrity and proper mitotic spindle formation. {ECO:0000269|PubMed:19109428, ECO:0000269|PubMed:23015594}.
Q8NBW4 SLC38A9 S99 ochoa Neutral amino acid transporter 9 (Solute carrier family 38 member 9) (Up-regulated in lung cancer 11) Lysosomal amino acid transporter involved in the activation of mTORC1 in response to amino acid levels (PubMed:25561175, PubMed:25567906, PubMed:29053970). Probably acts as an amino acid sensor of the Rag GTPases and Ragulator complexes, 2 complexes involved in amino acid sensing and activation of mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels, and amino acids (PubMed:25567906, PubMed:29053970). Following activation by amino acids, the Ragulator and Rag GTPases function as a scaffold recruiting mTORC1 to lysosomes where it is in turn activated (PubMed:25561175, PubMed:25567906). SLC38A9 mediates transport of amino acids with low capacity and specificity with a slight preference for polar amino acids (PubMed:25561175, PubMed:25567906). Acts as an arginine sensor (PubMed:25567906, PubMed:29053970, PubMed:31295473). Following activation by arginine binding, mediates transport of L-glutamine, leucine and tyrosine with high efficiency, and is required for the efficient utilization of these amino acids after lysosomal protein degradation (PubMed:29053970, PubMed:31295473). However, the transport mechanism is not well defined and the role of sodium is not clear (PubMed:25561175, PubMed:31295473). Can disassemble the lysosomal folliculin complex (LFC), and thereby triggers GAP activity of FLCN:FNIP2 toward RRAGC (PubMed:32868926). Acts as an cholesterol sensor that conveys increases in lysosomal cholesterol, leading to lysosomal recruitment and activation of mTORC1 via the Rag GTPases (PubMed:28336668). Guanine exchange factor (GEF) that, upon arginine binding, stimulates GDP release from RRAGA and therefore activates the Rag GTPase heterodimer and the mTORC1 pathway in response to nutrient sufficiency (PubMed:30181260). {ECO:0000269|PubMed:25561175, ECO:0000269|PubMed:25567906, ECO:0000269|PubMed:28336668, ECO:0000269|PubMed:29053970, ECO:0000269|PubMed:30181260, ECO:0000269|PubMed:31295473, ECO:0000269|PubMed:32868926, ECO:0000305|PubMed:31295473}.
Q8NCD3 HJURP S595 ochoa|psp Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}.
Q8NHU6 TDRD7 S190 ochoa Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}.
Q8TCN5 ZNF507 S195 ochoa Zinc finger protein 507 May be involved in transcriptional regulation.
Q8TCU6 PREX1 S839 ochoa Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils.
Q8TD26 CHD6 S21 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TDJ6 DMXL2 S588 ochoa DmX-like protein 2 (Rabconnectin-3) May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}.
Q8TE76 MORC4 S532 ochoa MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}.
Q8TE76 MORC4 S545 ochoa MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}.
Q8TEU7 RAPGEF6 S1157 ochoa Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}.
Q8WUJ0 STYX S184 ochoa Serine/threonine/tyrosine-interacting protein (Inactive tyrosine-protein phosphatase STYX) (Phosphoserine/threonine/tyrosine interaction protein) Catalytically inactive phosphatase (PubMed:23847209). Acts as a nuclear anchor for MAPK1/MAPK3 (ERK1/ERK2) (PubMed:23847209). Modulates cell-fate decisions and cell migration by spatiotemporal regulation of MAPK1/MAPK3 (ERK1/ERK2) (PubMed:23847209). By binding to the F-box of FBXW7, prevents the assembly of FBXW7 into the SCF E3 ubiquitin-protein ligase complex, and thereby inhibits degradation of its substrates (PubMed:28007894). Plays a role in spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q60969, ECO:0000269|PubMed:23847209, ECO:0000269|PubMed:28007894}.
Q8WVV4 POF1B S123 ochoa Protein POF1B (Premature ovarian failure protein 1B) Plays a key role in the organization of epithelial monolayers by regulating the actin cytoskeleton. May be involved in ovary development. {ECO:0000269|PubMed:16773570, ECO:0000269|PubMed:21940798}.
Q8WXH0 SYNE2 S5087 ochoa Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}.
Q8WXI2 CNKSR2 S248 ochoa Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}.
Q8WYA6 CTNNBL1 S389 ochoa Beta-catenin-like protein 1 (Nuclear-associated protein) (NAP) (Testis development protein NYD-SP19) Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. Participates in AID/AICDA-mediated somatic hypermutation (SHM) and class-switch recombination (CSR), 2 processes resulting in the production of high-affinity, mutated isotype-switched antibodies (PubMed:32484799). {ECO:0000269|PubMed:32484799}.
Q8WYB5 KAT6B S889 ochoa Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}.
Q8WYP5 AHCTF1 S1898 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92610 ZNF592 S1052 ochoa Zinc finger protein 592 May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}.
Q92794 KAT6A S678 ochoa Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}.
Q969F9 HPS3 S648 ochoa BLOC-2 complex member HPS3 (Hermansky-Pudlak syndrome 3 protein) Involved in early stages of melanosome biogenesis and maturation. {ECO:0000250|UniProtKB:Q91VB4}.
Q96C34 RUNDC1 S290 ochoa RUN domain-containing protein 1 May play a role as p53/TP53 inhibitor and thus may have oncogenic activity. {ECO:0000269|PubMed:16929179}.
Q96I51 RCC1L S272 ochoa RCC1-like G exchanging factor-like protein (RCC1-like protein) (Williams-Beuren syndrome chromosomal region 16 protein) Guanine nucleotide exchange factor (GEF) for mitochondrial dynamin-related GTPase OPA1. Activates OPA1, by exchanging bound GDP for free GTP, and drives OPA1 and MFN1-dependent mitochondrial fusion (PubMed:28746876). Plays an essential role in mitochondrial ribosome biogenesis. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation of core subunits of the oxidative phosphorylation system (PubMed:27667664). {ECO:0000269|PubMed:27667664, ECO:0000269|PubMed:28746876}.; FUNCTION: [Isoform 1]: Plays an essential role in mitochondrial ribosome biogenesis via its association with GTPases that play a role in the assembly of the large ribosome subunit. {ECO:0000269|PubMed:32735630}.; FUNCTION: [Isoform 2]: Plays an essential role in mitochondrial ribosome biogenesis via its association with GTPases that play a role in the assembly of the small ribosome subunit. {ECO:0000269|PubMed:32735630}.
Q96JK9 MAML3 S170 ochoa Mastermind-like protein 3 (Mam-3) Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. {ECO:0000269|PubMed:12370315, ECO:0000269|PubMed:12386158}.
Q96KR1 ZFR S960 ochoa Zinc finger RNA-binding protein (hZFR) (M-phase phosphoprotein homolog) Involved in postimplantation and gastrulation stages of development. Involved in the nucleocytoplasmic shuttling of STAU2. Binds to DNA and RNA (By similarity). {ECO:0000250}.
Q96M89 CCDC138 S469 ochoa Coiled-coil domain-containing protein 138 None
Q96QE3 ATAD5 S86 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96RT1 ERBIN S569 ochoa Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}.
Q96RT1 ERBIN S682 ochoa Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}.
Q99550 MPHOSPH9 S267 ochoa M-phase phosphoprotein 9 Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}.
Q99959 PKP2 S102 ochoa Plakophilin-2 A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:25208567). Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins (PubMed:23884246). Required to maintain gingival epithelial barrier function (PubMed:34368962). Important component of the desmosome that is also required for localization of desmosome component proteins such as DSC2, DSG2 and JUP to the desmosome cell-cell junction (PubMed:22781308, PubMed:25208567). Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls (By similarity). Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments (By similarity). Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling (By similarity). Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program (PubMed:35959657). Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation (PubMed:35959657). Binds single-stranded DNA (ssDNA) (PubMed:20613778). May regulate the localization of GJA1 to gap junctions in intercalated disks of the heart (PubMed:18662195). Involved in the inhibition of viral infection by influenza A viruses (IAV) (PubMed:28169297). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins (PubMed:28169297). {ECO:0000250|UniProtKB:F1M7L9, ECO:0000250|UniProtKB:Q9CQ73, ECO:0000269|PubMed:18662195, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:22781308, ECO:0000269|PubMed:23884246, ECO:0000269|PubMed:25208567, ECO:0000269|PubMed:28169297, ECO:0000269|PubMed:34368962, ECO:0000269|PubMed:35959657}.
Q9BPZ7 MAPKAP1 S447 ochoa Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}.
Q9BQ67 GRWD1 S344 ochoa Glutamate-rich WD repeat-containing protein 1 Histone binding-protein that regulates chromatin dynamics and minichromosome maintenance (MCM) loading at replication origins, possibly by promoting chromatin openness (PubMed:25990725). {ECO:0000269|PubMed:25990725}.
Q9BQE4 SELENOS S140 ochoa Selenoprotein S (SelS) (VCP-interacting membrane protein) Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination. {ECO:0000269|PubMed:15215856}.
Q9BQI3 EIF2AK1 S498 ochoa Eukaryotic translation initiation factor 2-alpha kinase 1 (EC 2.7.11.1) (Heme-controlled repressor) (HCR) (Heme-regulated eukaryotic initiation factor eIF-2-alpha kinase) (Heme-regulated inhibitor) (hHRI) (Hemin-sensitive initiation factor 2-alpha kinase) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress conditions (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). Key activator of the integrated stress response (ISR) required for adaptation to various stress, such as heme deficiency, oxidative stress, osmotic shock, mitochondrial dysfunction and heat shock (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707, PubMed:37327776). Acts as a key sensor of heme-deficiency: in normal conditions, binds hemin via a cysteine thiolate and histidine nitrogenous coordination, leading to inhibit the protein kinase activity (By similarity). This binding occurs with moderate affinity, allowing it to sense the heme concentration within the cell: heme depletion relieves inhibition and stimulates kinase activity, activating the ISR (By similarity). Thanks to this unique heme-sensing capacity, plays a crucial role to shut off protein synthesis during acute heme-deficient conditions (By similarity). In red blood cells (RBCs), controls hemoglobin synthesis ensuring a coordinated regulation of the synthesis of its heme and globin moieties (By similarity). It thereby plays an essential protective role for RBC survival in anemias of iron deficiency (By similarity). Iron deficiency also triggers activation by full-length DELE1 (PubMed:37327776). Also activates the ISR in response to mitochondrial dysfunction: HRI/EIF2AK1 protein kinase activity is activated upon binding to the processed form of DELE1 (S-DELE1), thereby promoting the ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707). Also acts as an activator of mitophagy in response to mitochondrial damage: catalyzes phosphorylation of eIF-2-alpha (EIF2S1) following activation by S-DELE1, thereby promoting mitochondrial localization of EIF2S1, triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000250|UniProtKB:Q9Z2R9, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:32197074, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:38340717}.
Q9BVR0 HERC2P3 S328 ochoa Putative HERC2-like protein 3 None
Q9BYX2 TBC1D2 S436 ochoa TBC1 domain family member 2A (Armus) (Prostate antigen recognized and identified by SEREX 1) (PARIS-1) Acts as a GTPase-activating protein for RAB7A. Signal effector acting as a linker between RAC1 and RAB7A, leading to RAB7A inactivation and subsequent inhibition of cadherin degradation and reduced cell-cell adhesion. {ECO:0000269|PubMed:20116244}.
Q9BZC7 ABCA2 S2381 ochoa ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}.
Q9C000 NLRP1 S1371 psp NACHT, LRR and PYD domains-containing protein 1 (EC 3.4.-.-) (EC 3.6.4.-) (Caspase recruitment domain-containing protein 7) (Death effector filament-forming ced-4-like apoptosis protein) (Nucleotide-binding domain and caspase recruitment domain) [Cleaved into: NACHT, LRR and PYD domains-containing protein 1, C-terminus (NLRP1-CT); NACHT, LRR and PYD domains-containing protein 1, N-terminus (NLRP1-NT)] Acts as the sensor component of the NLRP1 inflammasome, which mediates inflammasome activation in response to various pathogen-associated signals, leading to subsequent pyroptosis (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:27662089, PubMed:31484767, PubMed:33093214, PubMed:33410748, PubMed:33731929, PubMed:33731932, PubMed:35857590). Inflammasomes are supramolecular complexes that assemble in the cytosol in response to pathogens and other damage-associated signals and play critical roles in innate immunity and inflammation (PubMed:12191486, PubMed:17349957, PubMed:22665479). Acts as a recognition receptor (PRR): recognizes specific pathogens and other damage-associated signals, such as cleavage by some human enteroviruses and rhinoviruses, double-stranded RNA, UV-B irradiation, or Val-boroPro inhibitor, and mediates the formation of the inflammasome polymeric complex composed of NLRP1, CASP1 and PYCARD/ASC (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:25562666, PubMed:30096351, PubMed:30291141, PubMed:33093214, PubMed:33243852, PubMed:33410748, PubMed:35857590). In response to pathogen-associated signals, the N-terminal part of NLRP1 is degraded by the proteasome, releasing the cleaved C-terminal part of the protein (NACHT, LRR and PYD domains-containing protein 1, C-terminus), which polymerizes and associates with PYCARD/ASC to initiate the formation of the inflammasome complex: the NLRP1 inflammasome recruits pro-caspase-1 (proCASP1) and promotes caspase-1 (CASP1) activation, which subsequently cleaves and activates inflammatory cytokines IL1B and IL18 and gasdermin-D (GSDMD), leading to pyroptosis (PubMed:12191486, PubMed:17349957, PubMed:22665479, PubMed:32051255, PubMed:33093214). In the absence of GSDMD expression, the NLRP1 inflammasome is able to recruit and activate CASP8, leading to activation of gasdermin-E (GSDME) (PubMed:33852854, PubMed:35594856). Activation of NLRP1 inflammasome is also required for HMGB1 secretion; the active cytokines and HMGB1 stimulate inflammatory responses (PubMed:22801494). Binds ATP and shows ATPase activity (PubMed:11113115, PubMed:15212762, PubMed:33243852). Plays an important role in antiviral immunity and inflammation in the human airway epithelium (PubMed:33093214). Specifically recognizes a number of pathogen-associated signals: upon infection by human rhinoviruses 14 and 16 (HRV-14 and HRV-16), NLRP1 is cleaved and activated which triggers NLRP1-dependent inflammasome activation and IL18 secretion (PubMed:33093214). Positive-strand RNA viruses, such as Semliki forest virus and long dsRNA activate the NLRP1 inflammasome, triggering IL1B release in a NLRP1-dependent fashion (PubMed:33243852). Acts as a direct sensor for long dsRNA and thus RNA virus infection (PubMed:33243852). May also be activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, in a NOD2-dependent manner (PubMed:18511561). The NLRP1 inflammasome is also activated in response to UV-B irradiation causing ribosome collisions: ribosome collisions cause phosphorylation and activation of NLRP1 in a MAP3K20-dependent manner, leading to pyroptosis (PubMed:35857590). {ECO:0000269|PubMed:11113115, ECO:0000269|PubMed:12191486, ECO:0000269|PubMed:15212762, ECO:0000269|PubMed:17349957, ECO:0000269|PubMed:18511561, ECO:0000269|PubMed:22665479, ECO:0000269|PubMed:22801494, ECO:0000269|PubMed:25562666, ECO:0000269|PubMed:27662089, ECO:0000269|PubMed:30096351, ECO:0000269|PubMed:30291141, ECO:0000269|PubMed:31484767, ECO:0000269|PubMed:32051255, ECO:0000269|PubMed:33093214, ECO:0000269|PubMed:33243852, ECO:0000269|PubMed:33410748, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932, ECO:0000269|PubMed:33852854, ECO:0000269|PubMed:35594856, ECO:0000269|PubMed:35857590}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1]: Constitutes the precursor of the NLRP1 inflammasome, which mediates autoproteolytic processing within the FIIND domain to generate the N-terminal and C-terminal parts, which are associated non-covalently in absence of pathogens and other damage-associated signals. {ECO:0000269|PubMed:22087307}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1, N-terminus]: Regulatory part that prevents formation of the NLRP1 inflammasome: in absence of pathogens and other damage-associated signals, interacts with the C-terminal part of NLRP1 (NACHT, LRR and PYD domains-containing protein 1, C-terminus), preventing activation of the NLRP1 inflammasome (PubMed:33093214). In response to pathogen-associated signals, this part is ubiquitinated and degraded by the proteasome, releasing the cleaved C-terminal part of the protein, which polymerizes and forms the NLRP1 inflammasome (PubMed:33093214). {ECO:0000269|PubMed:33093214}.; FUNCTION: [NACHT, LRR and PYD domains-containing protein 1, C-terminus]: Constitutes the active part of the NLRP1 inflammasome (PubMed:33093214, PubMed:33731929, PubMed:33731932). In absence of pathogens and other damage-associated signals, interacts with the N-terminal part of NLRP1 (NACHT, LRR and PYD domains-containing protein 1, N-terminus), preventing activation of the NLRP1 inflammasome (PubMed:33093214). In response to pathogen-associated signals, the N-terminal part of NLRP1 is degraded by the proteasome, releasing this form, which polymerizes and associates with PYCARD/ASC to form of the NLRP1 inflammasome complex: the NLRP1 inflammasome complex then directly recruits pro-caspase-1 (proCASP1) and promotes caspase-1 (CASP1) activation, leading to gasdermin-D (GSDMD) cleavage and subsequent pyroptosis (PubMed:33093214). {ECO:0000269|PubMed:33093214, ECO:0000269|PubMed:33731929, ECO:0000269|PubMed:33731932}.; FUNCTION: [Isoform 2]: It is unclear whether is involved in inflammasome formation. It is not cleaved within the FIIND domain, does not assemble into specks, nor promote IL1B release (PubMed:22665479). However, in an vitro cell-free system, it has been shown to be activated by MDP (PubMed:17349957). {ECO:0000269|PubMed:17349957, ECO:0000269|PubMed:22665479}.
Q9C0J9 BHLHE41 S122 ochoa Class E basic helix-loop-helix protein 41 (bHLHe41) (Class B basic helix-loop-helix protein 3) (bHLHb3) (Differentially expressed in chondrocytes protein 2) (hDEC2) (Enhancer-of-split and hairy-related protein 1) (SHARP-1) Transcriptional repressor involved in the regulation of the circadian rhythm by negatively regulating the activity of the clock genes and clock-controlled genes (PubMed:11278948, PubMed:14672706, PubMed:15193144, PubMed:15560782, PubMed:18411297, PubMed:19786558, PubMed:25083013). Acts as the negative limb of a novel autoregulatory feedback loop (DEC loop) which differs from the one formed by the PER and CRY transcriptional repressors (PER/CRY loop). Both these loops are interlocked as it represses the expression of PER1 and in turn is repressed by PER1/2 and CRY1/2. Represses the activity of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer by competing for the binding to E-box elements (5'-CACGTG-3') found within the promoters of its target genes (PubMed:25083013). Negatively regulates its own expression and the expression of DBP and BHLHE41/DEC2. Acts as a corepressor of RXR and the RXR-LXR heterodimers and represses the ligand-induced RXRA/B/G, NR1H3/LXRA, NR1H4 and VDR transactivation activity. Inhibits HNF1A-mediated transactivation of CYP1A2, CYP2E1 AND CYP3A11 (By similarity). {ECO:0000250|UniProtKB:Q99PV5, ECO:0000269|PubMed:11278948, ECO:0000269|PubMed:14672706, ECO:0000269|PubMed:15193144, ECO:0000269|PubMed:15560782, ECO:0000269|PubMed:18411297, ECO:0000269|PubMed:19786558, ECO:0000269|PubMed:25083013}.
Q9H1H9 KIF13A S1679 ochoa Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}.
Q9H410 DSN1 S331 ochoa|psp Kinetochore-associated protein DSN1 homolog Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}.
Q9H5U6 ZCCHC4 S381 ochoa rRNA N(6)-adenosine-methyltransferase ZCCHC4 (EC 2.1.1.-) (Zinc finger CCHC domain-containing protein 4) rRNA N6-methyltransferase that specifically methylates the adenine in position 4220 of 28S rRNA (PubMed:30531910, PubMed:31328227, PubMed:31695039, PubMed:31799605). N6-methylation of adenine(4220) in 28S rRNA is required for translation (PubMed:30531910, PubMed:31799605). {ECO:0000269|PubMed:30531910, ECO:0000269|PubMed:31328227, ECO:0000269|PubMed:31695039, ECO:0000269|PubMed:31799605}.
Q9H5Y7 SLITRK6 S652 ochoa SLIT and NTRK-like protein 6 Regulator of neurite outgrowth required for normal hearing and vision. {ECO:0000269|PubMed:23543054}.
Q9H5Y7 SLITRK6 S728 ochoa SLIT and NTRK-like protein 6 Regulator of neurite outgrowth required for normal hearing and vision. {ECO:0000269|PubMed:23543054}.
Q9H6X4 TMEM134 S70 ochoa Transmembrane protein 134 None
Q9H7D0 DOCK5 S365 ochoa Dedicator of cytokinesis protein 5 Guanine nucleotide exchange factor (GEF) for Rho and Rac. GEF proteins activate small GTPases by exchanging bound GDP for free GTP (By similarity). Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). {ECO:0000250|UniProtKB:B2RY04, ECO:0000269|PubMed:19004829}.
Q9H7F0 ATP13A3 S98 ochoa Polyamine-transporting ATPase 13A3 (ATPase family homolog up-regulated in senescence cells 1) (Putrescine transporting ATPase) (EC 7.6.2.16) ATP-driven pump involved in endocytosis-dependent polyamine transport. Uses ATP as an energy source to transfer polyamine precursor putrescine from the endosomal compartment to the cytosol. {ECO:0000269|PubMed:27429841, ECO:0000269|PubMed:33310703}.
Q9H7Z6 KAT8 S348 ochoa Histone acetyltransferase KAT8 (EC 2.3.1.48) (Lysine acetyltransferase 8) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 1) (MYST-1) (Males-absent on the first protein homolog) (hMOF) (Protein acetyltransferase KAT8) (EC 2.3.1.-) (Protein propionyltransferase KAT8) (EC 2.3.1.-) Histone acetyltransferase that catalyzes histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) or 'Lys-16' (H4K16ac), depending on the context (PubMed:12397079, PubMed:16227571, PubMed:16543150, PubMed:20018852, PubMed:21217699, PubMed:22020126, PubMed:22547026, PubMed:31794431, PubMed:33837287). Catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:12397079, PubMed:16227571, PubMed:16543150, PubMed:21217699, PubMed:22020126, PubMed:22547026, PubMed:33657400, PubMed:33837287). H4K16ac constitutes the only acetylation mark intergenerationally transmitted and regulates key biological processes, such as oogenesis, embryonic stem cell pluripotency, hematopoiesis or glucose metabolism (By similarity). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). As part of the NSL histone acetyltransferase complex, catalyzes histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria: KAT8 associates with mitochondrial DNA and controls expression of respiratory genes in an acetyltransferase-dependent mechanism (PubMed:27768893). Also functions as an acetyltransferase for non-histone targets, such as ALKBH5, COX17, IRF3, KDM1A/LSD1, LMNA, PAX7 or TP53/p53 (PubMed:17189187, PubMed:19854137, PubMed:37369679). Acts as an inhibitor of antiviral immunity by acetylating IRF3, preventing IRF3 recruitment to promoters (By similarity). Acts as a regulator of asymmetric division in muscle stem cells by mediating acetylation of PAX7 (By similarity). As part of the NSL complex, acetylates TP53/p53 at 'Lys-120' (PubMed:17189187, PubMed:19854137). Acts as a regulator of epithelial-to-mesenchymal transition as part of the NSL complex by mediating acetylation of KDM1A/LSD1 (PubMed:27292636). The NSL complex is required for nuclear architecture maintenance by mediating acetylation of LMNA (By similarity). Promotes mitochondrial integrity by catalyzing acetylation of COX17 (By similarity). In addition to protein acetyltransferase activity, able to mediate protein propionylation (PubMed:29321206). {ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:12397079, ECO:0000269|PubMed:16227571, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:19854137, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:21217699, ECO:0000269|PubMed:22020126, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:27292636, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:29321206, ECO:0000269|PubMed:31794431, ECO:0000269|PubMed:33657400, ECO:0000269|PubMed:33837287, ECO:0000269|PubMed:37369679}.
Q9H9E1 ANKRA2 S124 ochoa Ankyrin repeat family A protein 2 (RFXANK-like protein 2) May regulate the interaction between the 3M complex and the histone deacetylases HDAC4 and HDAC5 (PubMed:25752541). May also regulate LRP2/megalin (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000269|PubMed:25752541}.
Q9HC44 GPBP1L1 S216 ochoa Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) Possible transcription factor. {ECO:0000305}.
Q9HCE1 MOV10 S791 ochoa Helicase MOV-10 (EC 3.6.4.13) (Armitage homolog) (Moloney leukemia virus 10 protein) 5' to 3' RNA helicase that is involved in a number of cellular roles ranging from mRNA metabolism and translation, modulation of viral infectivity, inhibition of retrotransposition, or regulation of synaptic transmission (PubMed:23093941). Plays an important role in innate antiviral immunity by promoting type I interferon production (PubMed:27016603, PubMed:27974568, PubMed:35157734). Mechanistically, specifically uses IKKepsilon/IKBKE as the mediator kinase for IRF3 activation (PubMed:27016603, PubMed:35157734). Blocks HIV-1 virus replication at a post-entry step (PubMed:20215113). Counteracts HIV-1 Vif-mediated degradation of APOBEC3G through its helicase activity by interfering with the ubiquitin-proteasome pathway (PubMed:29258557). Also inhibits hepatitis B virus/HBV replication by interacting with HBV RNA and thereby inhibiting the early step of viral reverse transcription (PubMed:31722967). Contributes to UPF1 mRNA target degradation by translocation along 3' UTRs (PubMed:24726324). Required for microRNA (miRNA)-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:16289642, PubMed:17507929, PubMed:22791714). In cooperation with FMR1, regulates miRNA-mediated translational repression by AGO2 (PubMed:25464849). Restricts retrotransposition of long interspersed element-1 (LINE-1) in cooperation with TUT4 and TUT7 counteracting the RNA chaperonne activity of L1RE1 (PubMed:23093941, PubMed:30122351). Facilitates LINE-1 uridylation by TUT4 and TUT7 (PubMed:30122351). Required for embryonic viability and for normal central nervous system development and function. Plays two critical roles in early brain development: suppresses retroelements in the nucleus by directly inhibiting cDNA synthesis, while regulates cytoskeletal mRNAs to influence neurite outgrowth in the cytosol (By similarity). May function as a messenger ribonucleoprotein (mRNP) clearance factor (PubMed:24726324). {ECO:0000250|UniProtKB:P23249, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:20215113, ECO:0000269|PubMed:22791714, ECO:0000269|PubMed:23093941, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25464849, ECO:0000269|PubMed:27016603, ECO:0000269|PubMed:27974568, ECO:0000269|PubMed:29258557, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31722967, ECO:0000269|PubMed:35157734}.; FUNCTION: (Microbial infection) Required for RNA-directed transcription and replication of the human hepatitis delta virus (HDV). Interacts with small capped HDV RNAs derived from genomic hairpin structures that mark the initiation sites of RNA-dependent HDV RNA transcription. {ECO:0000269|PubMed:18552826}.
Q9NPQ8 RIC8A S502 ochoa|psp Chaperone Ric-8A (Synembryn-A) Chaperone that specifically binds and folds nascent G alpha proteins prior to G protein heterotrimer formation, promoting their stability and activity: folds GNAI1, GNAO1, GNA13 and GNAQ (By similarity). Does not fold G(s) G-alpha proteins GNAS nor GNAL (By similarity). Also acts as a guanine nucleotide exchange factor (GEF) for G alpha proteins by stimulating exchange of bound GDP for free GTP (By similarity). Involved in regulation of microtubule pulling forces during mitotic movement of chromosomes by stimulating G(i)-alpha protein (GNAI1), possibly leading to release G(i)-alpha-GTP and NuMA proteins from the NuMA-GPSM2-G(i)-alpha-GDP complex (By similarity). Also acts as an activator for G(q)-alpha (GNAQ) protein by enhancing the G(q)-coupled receptor-mediated ERK activation (PubMed:16629901). {ECO:0000250|UniProtKB:Q80ZG1, ECO:0000269|PubMed:16629901}.
Q9NQ66 PLCB1 S582 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}.
Q9NQW6 ANLN S518 ochoa Anillin Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}.
Q9NUL7 DDX28 S28 ochoa Probable ATP-dependent RNA helicase DDX28 (EC 3.6.4.13) (Mitochondrial DEAD box protein 28) Plays an essential role in facilitating the proper assembly of the mitochondrial large ribosomal subunit and its helicase activity is essential for this function (PubMed:25683708, PubMed:25683715). May be involved in RNA processing or transport. Has RNA and Mg(2+)-dependent ATPase activity (PubMed:11350955). {ECO:0000269|PubMed:11350955, ECO:0000269|PubMed:25683708, ECO:0000269|PubMed:25683715}.
Q9NUQ2 AGPAT5 S298 ochoa 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon (EC 2.3.1.51) (1-acylglycerol-3-phosphate O-acyltransferase 5) (1-AGP acyltransferase 5) (1-AGPAT 5) (Lysophosphatidic acid acyltransferase epsilon) (LPAAT-epsilon) Converts 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn-glycerol-3-phosphate (phosphatidic acid or PA) by incorporating an acyl moiety at the sn-2 position of the glycerol backbone (PubMed:21173190). Acts on LPA containing saturated or unsaturated fatty acids C15:0-C20:4 at the sn-1 position using C18:1-CoA as the acyl donor (PubMed:21173190). Also acts on lysophosphatidylethanolamine using oleoyl-CoA, but not arachidonoyl-CoA, and lysophosphatidylinositol using arachidonoyl-CoA, but not oleoyl-CoA (PubMed:21173190). Activity toward lysophosphatidylglycerol not detectable (PubMed:21173190). {ECO:0000269|PubMed:21173190}.
Q9NVN8 GNL3L S465 ochoa Guanine nucleotide-binding protein-like 3-like protein Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}.
Q9NVR5 DNAAF2 S641 ochoa Protein kintoun (Dynein assembly factor 2, axonemal) Required for cytoplasmic pre-assembly of axonemal dyneins, thereby playing a central role in motility in cilia and flagella. Involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment. {ECO:0000255|HAMAP-Rule:MF_03069}.
Q9NW08 POLR3B S680 ochoa DNA-directed RNA polymerase III subunit RPC2 (RNA polymerase III subunit C2) (EC 2.7.7.6) (C128) (DNA-directed RNA polymerase III 127.6 kDa polypeptide) (DNA-directed RNA polymerase III subunit B) Catalytic core component of RNA polymerase III (Pol III), a DNA-dependent RNA polymerase which synthesizes small non-coding RNAs using the four ribonucleoside triphosphates as substrates. Synthesizes 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (PubMed:20413673, PubMed:33558766). Pol III-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33558766, PubMed:33674783, PubMed:34675218). Forms Pol III active center together with the largest subunit POLR3A/RPC1. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate (PubMed:19609254, PubMed:20413673, PubMed:33335104, PubMed:33558764, PubMed:33674783, PubMed:34675218). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway. {ECO:0000250, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:33335104, ECO:0000269|PubMed:33558764, ECO:0000269|PubMed:33558766, ECO:0000269|PubMed:33674783, ECO:0000269|PubMed:34675218}.
Q9NWA0 MED9 S110 ochoa Mediator of RNA polymerase II transcription subunit 9 (Mediator complex subunit 9) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
Q9NY74 ETAA1 S433 ochoa Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}.
Q9NYQ3 HAO2 S184 ochoa 2-Hydroxyacid oxidase 2 (HAOX2) (EC 1.1.3.15) ((S)-2-hydroxy-acid oxidase, peroxisomal) (Cell growth-inhibiting gene 16 protein) (Long chain alpha-hydroxy acid oxidase) (Long-chain L-2-hydroxy acid oxidase) Oxidase that catalyzes the oxidation of medium and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, to the correspondong 2-oxoacids (PubMed:10777549). Its role in the oxidation of 2-hydroxy fatty acids may contribute to the general pathway of fatty acid alpha-oxidation (Probable). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2. Is not active on glycolate, glyoxylate, L-lactate and 2-hydroxybutanoate (PubMed:10777549). {ECO:0000269|PubMed:10777549, ECO:0000305|PubMed:10777549}.
Q9NZJ5 EIF2AK3 S715 ochoa|psp Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}.
Q9P0L1 ZKSCAN7 S369 ochoa Zinc finger protein with KRAB and SCAN domains 7 (Zinc finger protein 167) (Zinc finger protein 448) (Zinc finger protein 64) May be involved in transcriptional regulation.
Q9P2R6 RERE S142 ochoa Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}.
Q9UBU7 DBF4 S613 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBZ4 APEX2 S349 ochoa DNA-(apurinic or apyrimidinic site) endonuclease 2 (EC 3.1.11.2) (AP endonuclease XTH2) (APEX nuclease 2) (APEX nuclease-like 2) (Apurinic-apyrimidinic endonuclease 2) (AP endonuclease 2) Functions as a weak apurinic/apyrimidinic (AP) endodeoxyribonuclease in the DNA base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents (PubMed:16687656). Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also displays double-stranded DNA 3'-5' exonuclease, 3'-phosphodiesterase activities (PubMed:16687656, PubMed:19443450, PubMed:32516598). Shows robust 3'-5' exonuclease activity on 3'-recessed heteroduplex DNA and is able to remove mismatched nucleotides preferentially (PubMed:16687656, PubMed:19443450). Also exhibits 3'-5' exonuclease activity on a single nucleotide gap containing heteroduplex DNA and on blunt-ended substrates (PubMed:16687656). Shows fairly strong 3'-phosphodiesterase activity involved in the removal of 3'-damaged termini formed in DNA by oxidative agents (PubMed:16687656, PubMed:19443450). In the nucleus functions in the PCNA-dependent BER pathway (PubMed:11376153). Plays a role in reversing blocked 3' DNA ends, problematic lesions that preclude DNA synthesis (PubMed:32516598). Required for somatic hypermutation (SHM) and DNA cleavage step of class switch recombination (CSR) of immunoglobulin genes (By similarity). Required for proper cell cycle progression during proliferation of peripheral lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q68G58, ECO:0000269|PubMed:11376153, ECO:0000269|PubMed:16687656, ECO:0000269|PubMed:19443450, ECO:0000269|PubMed:32516598}.
Q9UEY8 ADD3 S600 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UG63 ABCF2 S512 ochoa ATP-binding cassette sub-family F member 2 (Iron-inhibited ABC transporter 2) None
Q9UGN5 PARP2 S226 ochoa Poly [ADP-ribose] polymerase 2 (PARP-2) (hPARP-2) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 2) (ARTD2) (DNA ADP-ribosyltransferase PARP2) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 2) (ADPRT-2) (Poly[ADP-ribose] synthase 2) (pADPRT-2) (Protein poly-ADP-ribosyltransferase PARP2) (EC 2.4.2.-) Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:10364231, PubMed:25043379, PubMed:27471034, PubMed:30104678, PubMed:32028527, PubMed:32939087, PubMed:34108479, PubMed:34486521, PubMed:34874266). Mediates glutamate, aspartate or serine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:25043379, PubMed:30104678, PubMed:30321391). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:32939087). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed:25043379). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed:28190768, PubMed:32028527, PubMed:34108479, PubMed:34486521, PubMed:34874266). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:10364231, PubMed:32939087, PubMed:34108479). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly-ADP-ribose chains (PubMed:34732825, PubMed:34795260). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed:30104678). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed:30104678). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:27471034, PubMed:29361132). {ECO:0000269|PubMed:10364231, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30321391, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32939087, ECO:0000269|PubMed:34108479, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266}.
Q9UHF7 TRPS1 S1041 ochoa Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}.
Q9UHQ1 NARF S196 ochoa Nuclear prelamin A recognition factor (Iron-only hydrogenase-like protein 2) (IOP2) None
Q9UIF8 BAZ2B S1541 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UK58 CCNL1 S166 ochoa Cyclin-L1 (Cyclin-L) Involved in pre-mRNA splicing. Functions in association with cyclin-dependent kinases (CDKs) (PubMed:18216018). Inhibited by the CDK-specific inhibitor CDKN1A/p21 (PubMed:11980906). May play a role in the regulation of RNA polymerase II (pol II). May be a candidate proto-oncogene in head and neck squamous cell carcinomas (HNSCC) (PubMed:12414649, PubMed:15700036). {ECO:0000269|PubMed:11980906, ECO:0000269|PubMed:12414649, ECO:0000269|PubMed:15700036, ECO:0000269|PubMed:18216018}.
Q9UK61 TASOR S927 ochoa Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q9UKA4 AKAP11 S743 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9UKD2 MRTO4 S80 ochoa mRNA turnover protein 4 homolog (Ribosome assembly factor MRTO4) Component of the ribosome assembly machinery. Nuclear paralog of the ribosomal protein P0, it binds pre-60S subunits at an early stage of assembly in the nucleolus, and is replaced by P0 in cytoplasmic pre-60S subunits and mature 80S ribosomes. {ECO:0000269|PubMed:20083226}.
Q9ULJ7 ANKRD50 S1234 ochoa Ankyrin repeat domain-containing protein 50 Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552).
Q9ULM2 ZNF490 S118 ochoa Zinc finger protein 490 May be involved in transcriptional regulation.
Q9ULV4 CORO1C S299 ochoa Coronin-1C (Coronin-3) (hCRNN4) Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (PubMed:25074804, PubMed:25925950). Increases the presence of activated RAC1 at the leading edge of migrating cells (PubMed:25074804, PubMed:25925950). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). {ECO:0000250|UniProtKB:Q9WUM4, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:25925950, ECO:0000269|PubMed:30220460, ECO:0000269|PubMed:34106209}.; FUNCTION: [Isoform 3]: Involved in myogenic differentiation. {ECO:0000269|PubMed:19651142}.
Q9UMS6 SYNPO2 S902 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UNX4 WDR3 S373 ochoa WD repeat-containing protein 3 Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}.
Q9UPN3 MACF1 S3298 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPW0 FOXJ3 S223 ochoa Forkhead box protein J3 Transcriptional activator of MEF2C involved in the regulation of adult muscle fiber type identity and skeletal muscle regeneration (By similarity). Plays an important role in spermatogenesis (By similarity). Required for the survival of spermatogonia and participates in spermatocyte meiosis (By similarity). {ECO:0000250|UniProtKB:Q8BUR3}.
Q9UPZ3 HPS5 S712 ochoa BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}.
Q9Y2F5 ICE1 S516 ochoa Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}.
Q9Y2I6 NINL S185 psp Ninein-like protein Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}.
Q9Y2X0 MED16 S326 ochoa Mediator of RNA polymerase II transcription subunit 16 (Mediator complex subunit 16) (Thyroid hormone receptor-associated protein 5) (Thyroid hormone receptor-associated protein complex 95 kDa component) (Trap95) (Vitamin D3 receptor-interacting protein complex 92 kDa component) (DRIP92) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:10198638, ECO:0000269|PubMed:10235266}.
Q9Y485 DMXL1 S1754 ochoa DmX-like protein 1 (X-like 1 protein) None
Q9Y4B5 MTCL1 S1772 ochoa Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}.
Q9Y4D2 DAGLA S952 ochoa Diacylglycerol lipase-alpha (DAGL-alpha) (DGL-alpha) (EC 3.1.1.116) (Neural stem cell-derived dendrite regulator) (Sn1-specific diacylglycerol lipase alpha) Serine hydrolase that hydrolyzes arachidonic acid-esterified diacylglycerols (DAGs) to produce the principal endocannabinoid, 2-arachidonoylglycerol (2-AG) (PubMed:14610053, PubMed:23502535, PubMed:26668358). Preferentially hydrolyzes sn-1 fatty acids from diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to biosynthesize 2-AG (PubMed:14610053, PubMed:23502535, PubMed:26668358). Has negligible activity against other lipids including monoacylglycerols and phospholipids (PubMed:14610053). Plays a key role in regulating 2-AG signaling in the central nervous system (CNS). Regulates 2-AG involved in retrograde suppression at central synapses. Supports axonal growth during development and adult neurogenesis. Plays a role for eCB signaling in the physiological regulation of anxiety and depressive behaviors. Also regulates neuroinflammatory responses in the brain, in particular, LPS-induced microglial activation (By similarity). {ECO:0000250|UniProtKB:Q6WQJ1, ECO:0000269|PubMed:14610053, ECO:0000269|PubMed:23502535, ECO:0000269|PubMed:26668358}.
Q9Y580 RBM7 S163 ochoa RNA-binding protein 7 (RNA-binding motif protein 7) RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104, PubMed:27871484). NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:25189701, PubMed:25852104, PubMed:27871484). Binds preferentially polyuridine sequences and associates with newly synthesized RNAs, including pre-mRNAs and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from small nuclear RNAs (snRNAs) (PubMed:25189701, PubMed:25525152, PubMed:25578728, PubMed:25852104). Participates in several biological processes including DNA damage response (DDR) and stress response (PubMed:25525152, PubMed:30824372). During stress response, activation of the p38MAPK-MK2 pathway decreases RBM7-RNA-binding and subsequently the RNA exosome degradation activities, thereby modulating the turnover of non-coding transcriptome (PubMed:25525152). Participates in DNA damage response (DDR), through its interaction with MEPCE and LARP7, the core subunits of 7SK snRNP complex, that release the positive transcription elongation factor b (P-TEFb) complex from the 7SK snRNP. In turn, activation of P-TEFb complex induces the transcription of P-TEFb-dependent DDR genes to promote cell viability (PubMed:30824372). {ECO:0000269|PubMed:25189701, ECO:0000269|PubMed:25525152, ECO:0000269|PubMed:25578728, ECO:0000269|PubMed:25852104, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:30824372}.
Q9Y5J3 HEY1 S40 ochoa Hairy/enhancer-of-split related with YRPW motif protein 1 (Cardiovascular helix-loop-helix factor 2) (CHF-2) (Class B basic helix-loop-helix protein 31) (bHLHb31) (HES-related repressor protein 1) (Hairy and enhancer of split-related protein 1) (HESR-1) (Hairy-related transcription factor 1) (HRT-1) (hHRT1) Transcriptional repressor which binds preferentially to the canonical E box sequence 5'-CACGTG-3' (PubMed:11095750). Downstream effector of Notch signaling required for cardiovascular development. Specifically required for the Notch-induced endocardial epithelial to mesenchymal transition, which is itself criticial for cardiac valve and septum development. May be required in conjunction with HEY2 to specify arterial cell fate or identity. Promotes maintenance of neuronal precursor cells and glial versus neuronal fate specification. Represses transcription by the cardiac transcriptional activators GATA4 and GATA6 and by the neuronal bHLH factors ASCL1/MASH1 and NEUROD4/MATH3 (PubMed:15485867). Involved in the regulation of liver cancer cells self-renewal (PubMed:25985737). {ECO:0000250|UniProtKB:Q9WV93, ECO:0000269|PubMed:11095750, ECO:0000269|PubMed:15485867, ECO:0000269|PubMed:25985737}.
Q9Y5T4 DNAJC15 S104 ochoa DnaJ homolog subfamily C member 15 (Cell growth-inhibiting gene 22 protein) (Methylation-controlled J protein) (MCJ) Negative regulator of the mitochondrial respiratory chain. Prevents mitochondrial hyperpolarization state and restricts mitochondrial generation of ATP (By similarity). Acts as an import component of the TIM23 translocase complex. Stimulates the ATPase activity of HSPA9. {ECO:0000250, ECO:0000269|PubMed:23263864}.
Q9Y6K5 OAS3 S792 ochoa 2'-5'-oligoadenylate synthase 3 ((2-5')oligo(A) synthase 3) (2-5A synthase 3) (EC 2.7.7.84) (p100 OAS) (p100OAS) Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical role in cellular innate antiviral response. In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation. Synthesizes preferentially dimers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation. Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication. Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L. Displays antiviral activity against Chikungunya virus (CHIKV), Dengue virus, Sindbis virus (SINV) and Semliki forest virus (SFV). {ECO:0000269|PubMed:19056102, ECO:0000269|PubMed:19923450, ECO:0000269|PubMed:9880533}.
O00444 PLK4 S499 Sugiyama Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}.
P60228 EIF3E S203 Sugiyama Eukaryotic translation initiation factor 3 subunit E (eIF3e) (Eukaryotic translation initiation factor 3 subunit 6) (Viral integration site protein INT-6 homolog) (eIF-3 p48) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). Required for nonsense-mediated mRNA decay (NMD); may act in conjunction with UPF2 to divert mRNAs from translation to the NMD pathway (PubMed:17468741). May interact with MCM7 and EPAS1 and regulate the proteasome-mediated degradation of these proteins (PubMed:17310990, PubMed:17324924). {ECO:0000255|HAMAP-Rule:MF_03004, ECO:0000269|PubMed:17310990, ECO:0000269|PubMed:17324924, ECO:0000269|PubMed:17468741, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q96HE7 ERO1A S173 Sugiyama ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}.
Q08881 ITK S526 Sugiyama Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}.
P11047 LAMC1 S401 Sugiyama Laminin subunit gamma-1 (Laminin B2 chain) (Laminin-1 subunit gamma) (Laminin-10 subunit gamma) (Laminin-11 subunit gamma) (Laminin-2 subunit gamma) (Laminin-3 subunit gamma) (Laminin-4 subunit gamma) (Laminin-6 subunit gamma) (Laminin-7 subunit gamma) (Laminin-8 subunit gamma) (Laminin-9 subunit gamma) (S-laminin subunit gamma) (S-LAM gamma) Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components.
O15031 PLXNB2 S650 Sugiyama Plexin-B2 (MM1) Cell surface receptor for SEMA4C, SEMA4D and SEMA4G that plays an important role in cell-cell signaling (By similarity). Plays a role in glutamatergic synapse development and is required for SEMA4A-mediated excitatory synapse development (By similarity). Binding to class 4 semaphorins promotes downstream activation of RHOA and phosphorylation of ERBB2 at 'Tyr-1248' (By similarity). Also acts as a cell surface receptor for angiogenin (ANG); promoting ANG endocytosis and translocation to the cytoplasm or nucleus (PubMed:29100074, PubMed:32510170). Required for normal differentiation and migration of neuronal cells during brain corticogenesis and for normal embryonic brain development (By similarity). Regulates the migration of cerebellar granule cells in the developing brain (By similarity). Plays a role in RHOA activation and subsequent changes of the actin cytoskeleton (PubMed:12183458). Plays a role in axon guidance, invasive growth and cell migration (PubMed:15184888). May modulate the activity of RAC1 and CDC42 (By similarity). {ECO:0000250|UniProtKB:B2RXS4, ECO:0000269|PubMed:12183458, ECO:0000269|PubMed:15184888, ECO:0000269|PubMed:29100074, ECO:0000269|PubMed:32510170}.
Q9UM73 ALK S1075 Sugiyama ALK tyrosine kinase receptor (EC 2.7.10.1) (Anaplastic lymphoma kinase) (CD antigen CD246) Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150). {ECO:0000250|UniProtKB:P97793, ECO:0000269|PubMed:11121404, ECO:0000269|PubMed:11278720, ECO:0000269|PubMed:11387242, ECO:0000269|PubMed:11809760, ECO:0000269|PubMed:12107166, ECO:0000269|PubMed:12122009, ECO:0000269|PubMed:15226403, ECO:0000269|PubMed:16317043, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:17274988, ECO:0000269|PubMed:30061385, ECO:0000269|PubMed:33411331, ECO:0000269|PubMed:34646012, ECO:0000269|PubMed:34819673}.
A2VDJ0 TMEM131L S1122 ochoa Transmembrane protein 131-like [Isoform 1]: Membrane-associated form that antagonizes canonical Wnt signaling by triggering lysosome-dependent degradation of Wnt-activated LRP6. Regulates thymocyte proliferation. {ECO:0000269|PubMed:23690469}.
A8MPP1 DDX11L8 S44 ochoa Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) Putative DNA helicase. {ECO:0000305}.
O14686 KMT2D S4011 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O14733 MAP2K7 S35 ochoa Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}.
O14901 KLF11 S260 ochoa Krueppel-like factor 11 (Transforming growth factor-beta-inducible early growth response protein 2) (TGFB-inducible early growth response protein 2) (TIEG-2) Transcription factor (PubMed:10207080, PubMed:9748269). Activates the epsilon- and gamma-globin gene promoters and, to a much lower degree, the beta-globin gene and represses promoters containing SP1-like binding inhibiting cell growth (PubMed:10207080, PubMed:16131492, PubMed:9748269). Represses transcription of SMAD7 which enhances TGF-beta signaling (By similarity). Induces apoptosis (By similarity). {ECO:0000250|UniProtKB:Q8K1S5, ECO:0000269|PubMed:10207080, ECO:0000269|PubMed:16131492}.
O14936 CASK S51 ochoa Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}.
O14939 PLD2 S888 ochoa Phospholipase D2 (PLD 2) (hPLD2) (EC 3.1.4.4) (Choline phosphatase 2) (PLD1C) (Phosphatidylcholine-hydrolyzing phospholipase D2) Function as phospholipase selective for phosphatidylcholine (PubMed:9582313). May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity). {ECO:0000250|UniProtKB:P97813, ECO:0000269|PubMed:9582313}.
O15014 ZNF609 S252 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15018 PDZD2 S1919 ochoa PDZ domain-containing protein 2 (Activated in prostate cancer protein) (PDZ domain-containing protein 3) [Cleaved into: Processed PDZ domain-containing protein 2] None
O15446 POLR1G S27 ochoa DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}.
O43586 PSTPIP1 S359 ochoa Proline-serine-threonine phosphatase-interacting protein 1 (PEST phosphatase-interacting protein 1) (CD2-binding protein 1) (H-PIP) Involved in regulation of the actin cytoskeleton. May regulate WAS actin-bundling activity. Bridges the interaction between ABL1 and PTPN18 leading to ABL1 dephosphorylation. May play a role as a scaffold protein between PTPN12 and WAS and allow PTPN12 to dephosphorylate WAS. Has the potential to physically couple CD2 and CD2AP to WAS. Acts downstream of CD2 and CD2AP to recruit WAS to the T-cell:APC contact site so as to promote the actin polymerization required for synapse induction during T-cell activation (By similarity). Down-regulates CD2-stimulated adhesion through the coupling of PTPN12 to CD2. Also has a role in innate immunity and the inflammatory response. Recruited to inflammasomes by MEFV. Induces formation of pyroptosomes, large supramolecular structures composed of oligomerized PYCARD dimers which form prior to inflammatory apoptosis. Binding to MEFV allows MEFV to bind to PYCARD and facilitates pyroptosome formation. Regulates endocytosis and cell migration in neutrophils. {ECO:0000250, ECO:0000269|PubMed:17964261, ECO:0000269|PubMed:18480402, ECO:0000269|PubMed:19109554, ECO:0000269|PubMed:19584923, ECO:0000269|PubMed:9857189}.
O60292 SIPA1L3 S158 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60292 SIPA1L3 S1559 ochoa Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}.
O60318 MCM3AP S557 ochoa Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}.
O60568 PLOD3 S702 ochoa Multifunctional procollagen lysine hydroxylase and glycosyltransferase LH3 [Includes: Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (EC 1.14.11.4) (Lysyl hydroxylase 3) (LH3); Procollagen glycosyltransferase (EC 2.4.1.50) (EC 2.4.1.66) (Galactosylhydroxylysine-glucosyltransferase) (Procollagen galactosyltransferase) (Procollagen glucosyltransferase)] Multifunctional enzyme that catalyzes a series of essential post-translational modifications on Lys residues in procollagen (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Plays a redundant role in catalyzing the formation of hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens (PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812, PubMed:9582318, PubMed:9724729). Plays a redundant role in catalyzing the transfer of galactose onto hydroxylysine groups, giving rise to galactosyl 5-hydroxylysine (PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Has an essential role by catalyzing the subsequent transfer of glucose moieties, giving rise to 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:10934207, PubMed:11896059, PubMed:11956192, PubMed:12475640, PubMed:18298658, PubMed:18834968, PubMed:30089812). Catalyzes hydroxylation and glycosylation of Lys residues in the MBL1 collagen-like domain, giving rise to hydroxylysine and 1,2-glucosylgalactosyl-5-hydroxylysine residues (PubMed:25419660). Essential for normal biosynthesis and secretion of type IV collagens (Probable) (PubMed:18834968). Essential for normal formation of basement membranes (By similarity). {ECO:0000250|UniProtKB:Q9R0E1, ECO:0000269|PubMed:10934207, ECO:0000269|PubMed:11896059, ECO:0000269|PubMed:11956192, ECO:0000269|PubMed:12475640, ECO:0000269|PubMed:18298658, ECO:0000269|PubMed:18834968, ECO:0000269|PubMed:25419660, ECO:0000269|PubMed:30089812, ECO:0000269|PubMed:9582318, ECO:0000269|PubMed:9724729, ECO:0000305}.
O60711 LPXN S188 ochoa Leupaxin Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}.
O60716 CTNND1 S651 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O60762 DPM1 S21 ochoa Dolichol-phosphate mannosyltransferase subunit 1 (EC 2.4.1.83) (Dolichol-phosphate mannose synthase subunit 1) (DPM synthase subunit 1) (Dolichyl-phosphate beta-D-mannosyltransferase subunit 1) (Mannose-P-dolichol synthase subunit 1) (MPD synthase subunit 1) Transfers mannose from GDP-mannose to dolichol monophosphate to form dolichol phosphate mannose (Dol-P-Man) which is the mannosyl donor in pathways leading to N-glycosylation, glycosyl phosphatidylinositol membrane anchoring, and O-mannosylation of proteins; catalytic subunit of the dolichol-phosphate mannose (DPM) synthase complex. {ECO:0000269|PubMed:10835346}.
O75128 COBL S269 ochoa Protein cordon-bleu Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}.
O75140 DEPDC5 S445 ochoa GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}.
O75376 NCOR1 S999 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75899 GABBR2 S884 ochoa Gamma-aminobutyric acid type B receptor subunit 2 (GABA-B receptor 2) (GABA-B-R2) (GABA-BR2) (GABABR2) (Gb2) (G-protein coupled receptor 51) (HG20) Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2 (PubMed:15617512, PubMed:18165688, PubMed:22660477, PubMed:24305054, PubMed:9872316, PubMed:9872744). Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins (PubMed:18165688). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase (PubMed:10075644, PubMed:10773016, PubMed:24305054). Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis (PubMed:10075644, PubMed:10773016, PubMed:10906333, PubMed:9872744). Plays a critical role in the fine-tuning of inhibitory synaptic transmission (PubMed:22660477, PubMed:9872744). Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials (PubMed:10075644, PubMed:22660477, PubMed:9872316, PubMed:9872744). Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception (Probable). {ECO:0000269|PubMed:10075644, ECO:0000269|PubMed:10328880, ECO:0000269|PubMed:15617512, ECO:0000269|PubMed:18165688, ECO:0000269|PubMed:22660477, ECO:0000269|PubMed:24305054, ECO:0000269|PubMed:9872316, ECO:0000269|PubMed:9872744, ECO:0000305}.
O75970 MPDZ S1194 ochoa Multiple PDZ domain protein (Multi-PDZ domain protein 1) Member of the NMDAR signaling complex that may play a role in control of AMPAR potentiation and synaptic plasticity in excitatory synapses (PubMed:11150294, PubMed:15312654). Promotes clustering of HT2RC at the cell surface (By similarity). {ECO:0000250|UniProtKB:O55164, ECO:0000269|PubMed:11150294, ECO:0000269|PubMed:15312654}.
O94885 SASH1 S442 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O94901 SUN1 S48 psp SUN domain-containing protein 1 (Protein unc-84 homolog A) (Sad1/unc-84 protein-like 1) As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton (PubMed:18039933, PubMed:18396275). The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (By similarity). Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration (By similarity). Involved in telomere attachment to nuclear envelope in the prophase of meiosis implicating a SUN1/2:KASH5 LINC complex in which SUN1 and SUN2 seem to act at least partial redundantly (By similarity). Required for gametogenesis and involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis (By similarity). Helps to define the distribution of nuclear pore complexes (NPCs) (By similarity). Required for efficient localization of SYNE4 in the nuclear envelope (By similarity). May be involved in nuclear remodeling during sperm head formation in spermatogenesis (By similarity). May play a role in DNA repair by suppressing non-homologous end joining repair to facilitate the repair of DNA cross-links (PubMed:24375709). {ECO:0000250|UniProtKB:Q9D666, ECO:0000269|PubMed:18039933, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:24375709}.
O94913 PCF11 S705 ochoa Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}.
O94915 FRYL S1923 ochoa Protein furry homolog-like (ALL1-fused gene from chromosome 4p12 protein) Plays a key role in maintaining the integrity of polarized cell extensions during morphogenesis, regulates the actin cytoskeleton and plays a key role in patterning sensory neuron dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching (By similarity). May function as a transcriptional activator. {ECO:0000250, ECO:0000269|PubMed:16061630}.
O95197 RTN3 S453 ochoa Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}.
O95402 MED26 S535 ochoa Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors.
O95487 SEC24B S556 ochoa Protein transport protein Sec24B (SEC24-related protein B) Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24A may have a different specificity compared to SEC24C and SEC24D. May package preferentially cargos with cytoplasmic DxE or LxxLE motifs and may also recognize conformational epitopes (PubMed:17499046, PubMed:18843296). {ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}.
O95613 PCNT S2279 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95644 NFATC1 S151 ochoa|psp Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}.
O95782 AP2A1 S518 ochoa AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}.
P01303 NPY S69 ochoa Pro-neuropeptide Y [Cleaved into: Neuropeptide Y (Neuropeptide tyrosine) (NPY); C-flanking peptide of NPY (CPON)] NPY is implicated in the control of feeding and in secretion of gonadotrophin-release hormone.
P04637 TP53 S315 ochoa|psp Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}.
P05412 JUN S63 ochoa|psp Transcription factor Jun (Activator protein 1) (AP1) (Proto-oncogene c-Jun) (Transcription factor AP-1 subunit Jun) (V-jun avian sarcoma virus 17 oncogene homolog) (p39) Transcription factor that recognizes and binds to the AP-1 consensus motif 5'-TGA[GC]TCA-3' (PubMed:10995748, PubMed:22083952). Heterodimerizes with proteins of the FOS family to form an AP-1 transcription complex, thereby enhancing its DNA binding activity to the AP-1 consensus sequence 5'-TGA[GC]TCA-3' and enhancing its transcriptional activity (By similarity). Together with FOSB, plays a role in activation-induced cell death of T cells by binding to the AP-1 promoter site of FASLG/CD95L, and inducing its transcription in response to activation of the TCR/CD3 signaling pathway (PubMed:12618758). Promotes activity of NR5A1 when phosphorylated by HIPK3 leading to increased steroidogenic gene expression upon cAMP signaling pathway stimulation (PubMed:17210646). Involved in activated KRAS-mediated transcriptional activation of USP28 in colorectal cancer (CRC) cells (PubMed:24623306). Binds to the USP28 promoter in colorectal cancer (CRC) cells (PubMed:24623306). {ECO:0000250|UniProtKB:P05627, ECO:0000269|PubMed:10995748, ECO:0000269|PubMed:12618758, ECO:0000269|PubMed:17210646, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24623306}.; FUNCTION: (Microbial infection) Upon Epstein-Barr virus (EBV) infection, binds to viral BZLF1 Z promoter and activates viral BZLF1 expression. {ECO:0000269|PubMed:31341047}.
P06239 LCK S194 ochoa|psp Tyrosine-protein kinase Lck (EC 2.7.10.2) (Leukocyte C-terminal Src kinase) (LSK) (Lymphocyte cell-specific protein-tyrosine kinase) (Protein YT16) (Proto-oncogene Lck) (T cell-specific protein-tyrosine kinase) (p56-LCK) Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosine residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP. Interacts with FYB2 (PubMed:27335501). {ECO:0000269|PubMed:16339550, ECO:0000269|PubMed:16709819, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:20851766, ECO:0000269|PubMed:21269457, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:27335501, ECO:0000269|PubMed:38614099}.
P06401 PGR S554 psp Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone.
P06744 GPI S455 ochoa Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) (Autocrine motility factor) (AMF) (Neuroleukin) (NLK) (Phosphoglucose isomerase) (PGI) (Phosphohexose isomerase) (PHI) (Sperm antigen 36) (SA-36) In the cytoplasm, catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate, the second step in glycolysis, and the reverse reaction during gluconeogenesis (PubMed:28803808). Besides it's role as a glycolytic enzyme, also acts as a secreted cytokine: acts as an angiogenic factor (AMF) that stimulates endothelial cell motility (PubMed:11437381). Acts as a neurotrophic factor, neuroleukin, for spinal and sensory neurons (PubMed:11004567, PubMed:3352745). It is secreted by lectin-stimulated T-cells and induces immunoglobulin secretion (PubMed:11004567, PubMed:3352745). {ECO:0000269|PubMed:11004567, ECO:0000269|PubMed:11437381, ECO:0000269|PubMed:28803808, ECO:0000269|PubMed:3352745}.
P07101 TH S502 ochoa Tyrosine 3-monooxygenase (EC 1.14.16.2) (Tyrosine 3-hydroxylase) (TH) Catalyzes the conversion of L-tyrosine to L-dihydroxyphenylalanine (L-Dopa), the rate-limiting step in the biosynthesis of catecholamines, dopamine, noradrenaline, and adrenaline. Uses tetrahydrobiopterin and molecular oxygen to convert tyrosine to L-Dopa (PubMed:15287903, PubMed:1680128, PubMed:17391063, PubMed:24753243, PubMed:34922205, PubMed:8528210, Ref.18). In addition to tyrosine, is able to catalyze the hydroxylation of phenylalanine and tryptophan with lower specificity (By similarity). Positively regulates the regression of retinal hyaloid vessels during postnatal development (By similarity). {ECO:0000250|UniProtKB:P04177, ECO:0000250|UniProtKB:P24529, ECO:0000269|PubMed:15287903, ECO:0000269|PubMed:1680128, ECO:0000269|PubMed:17391063, ECO:0000269|PubMed:24753243, ECO:0000269|PubMed:34922205, ECO:0000269|PubMed:8528210, ECO:0000269|Ref.18}.; FUNCTION: [Isoform 5]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.; FUNCTION: [Isoform 6]: Lacks catalytic activity. {ECO:0000269|PubMed:17391063}.
P11137 MAP2 S881 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P11388 TOP2A S1361 psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11532 DMD S3490 ochoa|psp Dystrophin Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}.
P12883 MYH7 S680 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P15976 GATA1 S116 ochoa Erythroid transcription factor (Eryf1) (GATA-binding factor 1) (GATA-1) (GF-1) (NF-E1 DNA-binding protein) Transcriptional activator or repressor which serves as a general switch factor for erythroid development (PubMed:35030251). It binds to DNA sites with the consensus sequence 5'-[AT]GATA[AG]-3' within regulatory regions of globin genes and of other genes expressed in erythroid cells. Activates the transcription of genes involved in erythroid differentiation of K562 erythroleukemia cells, including HBB, HBG1/2, ALAS2 and HMBS (PubMed:24245781). {ECO:0000269|PubMed:22235304, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:35030251}.
P17980 PSMC3 S376 ochoa 26S proteasome regulatory subunit 6A (26S proteasome AAA-ATPase subunit RPT5) (Proteasome 26S subunit ATPase 3) (Proteasome subunit P50) (Tat-binding protein 1) (TBP-1) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC3 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}.
P18031 PTPN1 S386 ochoa|psp Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}.
P18583 SON S283 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P18615 NELFE S281 ochoa Negative elongation factor E (NELF-E) (RNA-binding protein RD) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
P25054 APC S744 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25054 APC S2064 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P27816 MAP4 S280 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P30876 POLR2B S487 ochoa DNA-directed RNA polymerase II subunit RPB2 (EC 2.7.7.6) (3'-5' exoribonuclease) (EC 3.1.13.-) (DNA-directed RNA polymerase II 140 kDa polypeptide) (DNA-directed RNA polymerase II subunit B) (RNA polymerase II subunit 2) (RNA polymerase II subunit B2) (RNA-directed RNA polymerase II subunit RPB2) (EC 2.7.7.48) Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates (By similarity) (PubMed:27193682, PubMed:30190596, PubMed:9852112). Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA (PubMed:27193682, PubMed:30190596, PubMed:9852112). Forms Pol II active center together with the largest subunit POLR2A/RPB1. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations (By similarity) (PubMed:30190596, PubMed:9852112). Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide (By similarity) (PubMed:8381534). {ECO:0000250|UniProtKB:A5PJW8, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:30190596, ECO:0000269|PubMed:8381534, ECO:0000269|PubMed:9852112}.; FUNCTION: RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription. {ECO:0000269|PubMed:23395899}.
P33240 CSTF2 S154 ochoa Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}.
P40926 MDH2 S47 ochoa Malate dehydrogenase, mitochondrial (EC 1.1.1.37) None
P42684 ABL2 S203 ochoa Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P46379 BAG6 S1081 ochoa Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}.
P46531 NOTCH1 S2121 ochoa Neurogenic locus notch homolog protein 1 (Notch 1) (hN1) (Translocation-associated notch protein TAN-1) [Cleaved into: Notch 1 extracellular truncation (NEXT); Notch 1 intracellular domain (NICD)] Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the maturation of both CD4(+) and CD8(+) cells in the thymus. Important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, functions as a receptor for neuronal DNER and is involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May play an essential role in postimplantation development, probably in some aspect of cell specification and/or differentiation. May be involved in mesoderm development, somite formation and neurogenesis. May enhance HIF1A function by sequestering HIF1AN away from HIF1A. Required for the THBS4 function in regulating protective astrogenesis from the subventricular zone (SVZ) niche after injury. Involved in determination of left/right symmetry by modulating the balance between motile and immotile (sensory) cilia at the left-right organiser (LRO). {ECO:0000269|PubMed:20616313}.
P46937 YAP1 S340 ochoa Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.
P48436 SOX9 S199 ochoa Transcription factor SOX-9 Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}.
P49023 PXN S130 ochoa|psp Paxillin Cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extracellular matrix (focal adhesion). Recruits other proteins such as TRIM15 to focal adhesion. {ECO:0000269|PubMed:25015296}.
P49327 FASN S361 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P49366 DHPS S233 psp Deoxyhypusine synthase (DHS) (EC 2.5.1.46) Catalyzes the NAD-dependent oxidative cleavage of spermidine and the subsequent transfer of the butylamine moiety of spermidine to the epsilon-amino group of a critical lysine residue of the eIF-5A precursor protein to form the intermediate deoxyhypusine residue (PubMed:30661771). This is the first step of the post-translational modification of that lysine into an unusual amino acid residue named hypusine. Hypusination is unique to mature eIF-5A factor and is essential for its function. {ECO:0000269|PubMed:30661771}.
P51946 CCNH S132 ochoa Cyclin-H (MO15-associated protein) (p34) (p37) Regulates CDK7, the catalytic subunit of the CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. Its expression and activity are constant throughout the cell cycle. {ECO:0000269|PubMed:10024882, ECO:0000269|PubMed:7533895}.
P55060 CSE1L S103 ochoa Exportin-2 (Exp2) (Cellular apoptosis susceptibility protein) (Chromosome segregation 1-like protein) (Importin-alpha re-exporter) Export receptor for importin-alpha. Mediates importin-alpha re-export from the nucleus to the cytoplasm after import substrates (cargos) have been released into the nucleoplasm. In the nucleus binds cooperatively to importin-alpha and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the importin-alpha from the export receptor. CSE1L/XPO2 then return to the nuclear compartment and mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:9323134}.
P55072 VCP S664 psp Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}.
P55265 ADAR S825 ochoa|psp Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}.
P57076 CFAP298 S267 ochoa Cilia- and flagella-associated protein 298 (Protein kurly homolog) Plays a role in motile cilium function, possibly by acting on outer dynein arm assembly (PubMed:24094744). Seems to be important for initiation rather than maintenance of cilium motility (By similarity). Required for correct positioning of the cilium at the apical cell surface, suggesting an additional role in the planar cell polarity (PCP) pathway (By similarity). May suppress canonical Wnt signaling activity (By similarity). {ECO:0000250|UniProtKB:Q6DRC3, ECO:0000269|PubMed:24094744}.
P60983 GMFB S53 psp Glia maturation factor beta (GMF-beta) This protein causes differentiation of brain cells, stimulation of neural regeneration, and inhibition of proliferation of tumor cells.
P61371 ISL1 S269 ochoa|psp Insulin gene enhancer protein ISL-1 (Islet-1) DNA-binding transcriptional activator. Recognizes and binds to the consensus octamer binding site 5'-ATAATTAA-3' in promoter of target genes. Plays a fundamental role in the gene regulatory network essential for retinal ganglion cell (RGC) differentiation. Cooperates with the transcription factor POU4F2 to achieve maximal levels of expression of RGC target genes and RGC fate specification in the developing retina. Involved in the specification of motor neurons in cooperation with LHX3 and LDB1 (By similarity). Binds to insulin gene enhancer sequences (By similarity). Essential for heart development. Marker of one progenitor cell population that give rise to the outflow tract, right ventricle, a subset of left ventricular cells, and a large number of atrial cells as well, its function is required for these progenitors to contribute to the heart. Controls the expression of FGF and BMP growth factors in this cell population and is required for proliferation and survival of cells within pharyngeal foregut endoderm and adjacent splanchnic mesoderm as well as for migration of cardiac progenitors into the heart (By similarity). {ECO:0000250|UniProtKB:P61372, ECO:0000250|UniProtKB:P61374}.
P78527 PRKDC S2547 ochoa DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}.
P78563 ADARB1 S344 ochoa Double-stranded RNA-specific editase 1 (EC 3.5.4.37) (RNA-editing deaminase 1) (RNA-editing enzyme 1) (dsRNA adenosine deaminase) Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159}.; FUNCTION: [Isoform 1]: Has a lower catalytic activity than isoform 2. {ECO:0000269|PubMed:9149227}.; FUNCTION: [Isoform 2]: Has a higher catalytic activity than isoform 1. {ECO:0000269|PubMed:9149227}.
P86790 CCZ1B S76 ochoa Vacuolar fusion protein CCZ1 homolog B (Vacuolar fusion protein CCZ1 homolog-like) None
P86791 CCZ1 S76 ochoa Vacuolar fusion protein CCZ1 homolog Acts in concert with MON1A, as a guanine exchange factor (GEF) for RAB7, promotes the exchange of GDP to GTP, converting it from an inactive GDP-bound form into an active GTP-bound form (PubMed:23084991). {ECO:0000269|PubMed:23084991}.
Q01196 RUNX1 S67 ochoa Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}.
Q01484 ANK2 S2172 ochoa Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}.
Q01658 DR1 S67 ochoa Protein Dr1 (Down-regulator of transcription 1) (Negative cofactor 2-beta) (NC2-beta) (TATA-binding protein-associated phosphoprotein) The association of the DR1/DRAP1 heterodimer with TBP results in a functional repression of both activated and basal transcription of class II genes. This interaction precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Can bind to DNA on its own. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:8670811}.
Q03989 ARID5A S256 ochoa AT-rich interactive domain-containing protein 5A (ARID domain-containing protein 5A) (Modulator recognition factor 1) (MRF-1) DNA-binding protein that may regulate transcription and act as a repressor by binding to AT-rich stretches in the promoter region of target genes (PubMed:8649988). May positively regulate chondrocyte-specific transcription such as of COL2A1 in collaboration with SOX9 and positively regulate histone H3 acetylation at chondrocyte-specific genes. May stimulate early-stage chondrocyte differentiation and inhibit later stage differention (By similarity). Can repress ESR1-mediated transcriptional activation; proposed to act as corepressor for selective nuclear hormone receptors (PubMed:15941852). As an RNA-binding protein, involved in the regulation of inflammatory response by stabilizing selective inflammation-related mRNAs, such as STAT3 and TBX21 (By similarity). Also stabilizes IL6 mRNA (PubMed:32209697). Binds to stem loop structures located in the 3'UTRs of IL6, STAT3 and TBX21 mRNAs; at least for STAT3 prevents binding of ZC3H12A to the mRNA stem loop structure thus inhibiting its degradation activity. Contributes to elevated IL6 levels possibly implicated in autoimmunity processes. IL6-dependent stabilization of STAT3 mRNA may promote differentiation of naive CD4+ T-cells into T-helper Th17 cells. In CD4+ T-cells may also inhibit RORC-induced Th17 cell differentiation independently of IL6 signaling. Stabilization of TBX21 mRNA contributes to elevated interferon-gamma secretion in Th1 cells possibly implicated in the establishment of septic shock (By similarity). Stabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR; thereby competing with the mRNA-destabilizing functions of RC3H1 and endoribonuclease ZC3H12A (By similarity). {ECO:0000250|UniProtKB:Q3U108, ECO:0000269|PubMed:15941852, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:8649988}.
Q04726 TLE3 S521 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q05397 PTK2 S29 ochoa Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}.
Q07020 RPL18 S130 ochoa Large ribosomal subunit protein eL18 (60S ribosomal protein L18) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q08AM6 VAC14 S743 ochoa Protein VAC14 homolog (Tax1-binding protein 2) Scaffold protein component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Pentamerizes into a star-shaped structure and nucleates the assembly of the complex. The pentamer binds a single copy each of PIKFYVE and FIG4 and coordinates both PIKfyve kinase activity and FIG4 phosphatase activity, being required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:33098764). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes. {ECO:0000269|PubMed:15542851, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:33098764}.
Q0VDF9 HSPA14 S186 ochoa Heat shock 70 kDa protein 14 (HSP70-like protein 1) (Heat shock protein HSP60) (Heat shock protein family A member 14) Component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, binds to the nascent polypeptide chain, while DNAJC2 stimulates its ATPase activity. {ECO:0000269|PubMed:16002468}.
Q12770 SCAP S907 ochoa Sterol regulatory element-binding protein cleavage-activating protein (SCAP) (SREBP cleavage-activating protein) Escort protein required for cholesterol as well as lipid homeostasis (By similarity). Regulates export of the SCAP-SREBP complex from the endoplasmic reticulum to the Golgi upon low cholesterol, thereby regulating the processing of sterol regulatory element-binding proteins (SREBPs) SREBF1/SREBP1 and SREBF2/SREBP2 (PubMed:26311497). At high sterol concentrations, formation of a ternary complex with INSIG (INSIG1 or INSIG2) leads to mask the ER export signal in SCAP, promoting retention of the complex in the endoplasmic reticulum (By similarity). Low sterol concentrations trigger release of INSIG, a conformational change in the SSD domain of SCAP, unmasking of the ER export signal, promoting recruitment into COPII-coated vesicles and transport of the SCAP-SREBP to the Golgi: in the Golgi, SREBPs are then processed, releasing the transcription factor fragment of SREBPs from the membrane, its import into the nucleus and up-regulation of LDLR, INSIG1 and the mevalonate pathway (PubMed:26311497). Binds cholesterol via its SSD domain (By similarity). {ECO:0000250|UniProtKB:P97260, ECO:0000269|PubMed:26311497}.
Q12772 SREBF2 S1098 ochoa Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}.
Q12802 AKAP13 S983 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q13105 ZBTB17 S120 ochoa Zinc finger and BTB domain-containing protein 17 (Myc-interacting zinc finger protein 1) (Miz-1) (Zinc finger protein 151) (Zinc finger protein 60) Transcription factor that can function as an activator or repressor depending on its binding partners, and by targeting negative regulators of cell cycle progression. Plays a critical role in early lymphocyte development, where it is essential to prevent apoptosis in lymphoid precursors, allowing them to survive in response to IL7 and undergo proper lineage commitment. Has been shown to bind to the promoters of adenovirus major late protein and cyclin D1 and activate transcription. Required for early embryonic development during gastrulation. Represses RB1 transcription; this repression can be blocked by interaction with ZBTB49 isoform 3/ZNF509S1 (PubMed:25245946). {ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:25245946, ECO:0000269|PubMed:9308237, ECO:0000269|PubMed:9312026}.
Q13127 REST S864 ochoa|psp RE1-silencing transcription factor (Neural-restrictive silencer factor) (X2 box repressor) Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells (PubMed:11741002, PubMed:11779185, PubMed:12399542, PubMed:26551668, PubMed:7697725, PubMed:7871435, PubMed:8568247). Restricts the expression of neuronal genes by associating with two distinct corepressors, SIN3A and RCOR1, which in turn recruit histone deacetylase to the promoters of REST-regulated genes (PubMed:10449787, PubMed:10734093). Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier (By similarity). Transcriptional repression by REST-CDYL via the recruitment of histone methyltransferase EHMT2 may be important in transformation suppression (PubMed:19061646). Represses the expression of SRRM4 in non-neural cells to prevent the activation of neural-specific splicing events and to prevent production of REST isoform 3 (By similarity). Repressor activity may be inhibited by forming heterodimers with isoform 3, thereby preventing binding to NRSE or binding to corepressors and leading to derepression of target genes (PubMed:11779185). Also maintains repression of neuronal genes in neural stem cells, and allows transcription and differentiation into neurons by dissociation from RE1/NRSE sites of target genes (By similarity). Thereby is involved in maintaining the quiescent state of adult neural stem cells and preventing premature differentiation into mature neurons (PubMed:21258371). Plays a role in the developmental switch in synaptic NMDA receptor composition during postnatal development, by repressing GRIN2B expression and thereby altering NMDA receptor properties from containing primarily GRIN2B to primarily GRIN2A subunits (By similarity). Acts as a regulator of osteoblast differentiation (By similarity). Key repressor of gene expression in hypoxia; represses genes in hypoxia by direct binding to an RE1/NRSE site on their promoter regions (PubMed:27531581). May also function in stress resistance in the brain during aging; possibly by regulating expression of genes involved in cell death and in the stress response (PubMed:24670762). Repressor of gene expression in the hippocampus after ischemia by directly binding to RE1/NRSE sites and recruiting SIN3A and RCOR1 to promoters of target genes, thereby promoting changes in chromatin modifications and ischemia-induced cell death (By similarity). After ischemia, might play a role in repression of miR-132 expression in hippocampal neurons, thereby leading to neuronal cell death (By similarity). Negatively regulates the expression of SRRM3 in breast cancer cell lines (PubMed:26053433). {ECO:0000250|UniProtKB:O54963, ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:10449787, ECO:0000269|PubMed:10734093, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:24670762, ECO:0000269|PubMed:26053433, ECO:0000269|PubMed:26551668, ECO:0000269|PubMed:27531581, ECO:0000269|PubMed:7697725, ECO:0000269|PubMed:7871435, ECO:0000269|PubMed:8568247}.; FUNCTION: [Isoform 3]: Binds to the 3' region of the neuron-restrictive silencer element (NRSE), with lower affinity than full-length REST isoform 1 (By similarity). Exhibits weaker repressor activity compared to isoform 1 (PubMed:11779185). May negatively regulate the repressor activity of isoform 1 by binding to isoform 1, thereby preventing its binding to NRSE and leading to derepression of target genes (PubMed:11779185). However, in another study, does not appear to be implicated in repressor activity of a NRSE motif-containing reporter construct nor in inhibitory activity on the isoform 1 transcriptional repressor activity (PubMed:11741002). Post-transcriptional inactivation of REST by SRRM4-dependent alternative splicing into isoform 3 is required in mechanosensory hair cells in the inner ear for derepression of neuronal genes and hearing (By similarity). {ECO:0000250|UniProtKB:Q8VIG1, ECO:0000269|PubMed:11741002, ECO:0000269|PubMed:11779185}.
Q13129 RLF S41 ochoa Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) May be involved in transcriptional regulation.
Q13415 ORC1 S610 ochoa Origin recognition complex subunit 1 (Replication control protein 1) Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication.
Q13576 IQGAP2 S396 ochoa Ras GTPase-activating-like protein IQGAP2 Binds to activated CDC42 and RAC1 but does not seem to stimulate their GTPase activity. Associates with calmodulin.
Q13950 RUNX2 S118 ochoa|psp Runt-related transcription factor 2 (Acute myeloid leukemia 3 protein) (Core-binding factor subunit alpha-1) (CBF-alpha-1) (Oncogene AML-3) (Osteoblast-specific transcription factor 2) (OSF-2) (Polyomavirus enhancer-binding protein 2 alpha A subunit) (PEA2-alpha A) (PEBP2-alpha A) (SL3-3 enhancer factor 1 alpha A subunit) (SL3/AKV core-binding factor alpha A subunit) Transcription factor involved in osteoblastic differentiation and skeletal morphogenesis (PubMed:28505335, PubMed:28703881, PubMed:28738062). Essential for the maturation of osteoblasts and both intramembranous and endochondral ossification. CBF binds to the core site, 5'-PYGPYGGT-3', of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, osteocalcin, osteopontin, bone sialoprotein, alpha 1(I) collagen, LCK, IL-3 and GM-CSF promoters. In osteoblasts, supports transcription activation: synergizes with SPEN/MINT to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Inhibits KAT6B-dependent transcriptional activation. {ECO:0000250, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:28505335, ECO:0000269|PubMed:28703881, ECO:0000269|PubMed:28738062}.
Q14157 UBAP2L S398 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14203 DCTN1 S212 psp Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}.
Q14624 ITIH4 S225 ochoa Inter-alpha-trypsin inhibitor heavy chain H4 (ITI heavy chain H4) (ITI-HC4) (Inter-alpha-inhibitor heavy chain 4) (Inter-alpha-trypsin inhibitor family heavy chain-related protein) (IHRP) (Plasma kallikrein sensitive glycoprotein 120) (Gp120) (PK-120) [Cleaved into: 70 kDa inter-alpha-trypsin inhibitor heavy chain H4; 35 kDa inter-alpha-trypsin inhibitor heavy chain H4] Type II acute-phase protein (APP) involved in inflammatory responses to trauma. May also play a role in liver development or regeneration. {ECO:0000269|PubMed:19263524}.
Q14674 ESPL1 S1153 psp Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}.
Q14676 MDC1 S882 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14738 PPP2R5D S109 ochoa Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform (PP2A B subunit isoform B'-delta) (PP2A B subunit isoform B56-delta) (PP2A B subunit isoform PR61-delta) (PP2A B subunit isoform R5-delta) The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment.
Q14807 KIF22 S543 ochoa Kinesin-like protein KIF22 (Kinesin-like DNA-binding protein) (Kinesin-like protein 4) Kinesin family member that is involved in spindle formation and the movements of chromosomes during mitosis and meiosis. Binds to microtubules and to DNA (By similarity). Plays a role in congression of laterally attached chromosomes in NDC80-depleted cells (PubMed:25743205). {ECO:0000250|UniProtKB:Q9I869, ECO:0000269|PubMed:25743205}.
Q14999 CUL7 S616 ochoa Cullin-7 (CUL-7) Core component of the 3M and Cul7-RING(FBXW8) complexes, which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:12481031, PubMed:12904573, PubMed:21572988, PubMed:21737058, PubMed:24793695, PubMed:35982156). Core component of the 3M complex, a complex required to regulate microtubule dynamics and genome integrity (PubMed:21572988, PubMed:21737058, PubMed:24793695). It is unclear how the 3M complex regulates microtubules, it could act by controlling the level of a microtubule stabilizer (PubMed:24793695). The Cul7-RING(FBXW8) complex alone lacks ubiquitination activity and does not promote polyubiquitination and proteasomal degradation of p53/TP53 (PubMed:16547496, PubMed:17332328, PubMed:35982156). However it mediates recruitment of p53/TP53 for ubiquitination by neddylated CUL1-RBX1 (PubMed:35982156). Interaction with CUL9 is required to inhibit CUL9 activity and ubiquitination of BIRC5 (PubMed:24793696). The Cul7-RING(FBXW8) complex also mediates ubiquitination and consequent degradation of target proteins such as GORASP1, IRS1 and MAP4K1/HPK1 (PubMed:21572988, PubMed:24362026). Ubiquitination of GORASP1 regulates Golgi morphogenesis and dendrite patterning in brain (PubMed:21572988). Mediates ubiquitination and degradation of IRS1 in a mTOR-dependent manner: the Cul7-RING(FBXW8) complex recognizes and binds IRS1 previously phosphorylated by S6 kinase (RPS6KB1 or RPS6KB2) (PubMed:18498745). The Cul7-RING(FBXW8) complex also mediates ubiquitination of MAP4K1/HPK1: recognizes and binds autophosphorylated MAP4K1/HPK1, leading to its degradation, thereby affecting cell proliferation and differentiation (PubMed:24362026). Acts as a regulator in trophoblast cell epithelial-mesenchymal transition and placental development (PubMed:20139075). While the Cul7-RING(FBXW8) and the 3M complexes are associated and involved in common processes, CUL7 and the Cul7-RING(FBXW8) complex may have additional functions. Probably plays a role in the degradation of proteins involved in endothelial proliferation and/or differentiation. {ECO:0000269|PubMed:12481031, ECO:0000269|PubMed:12904573, ECO:0000269|PubMed:16547496, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:18498745, ECO:0000269|PubMed:20139075, ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:21737058, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:35982156}.
Q15025 TNIP1 S442 ochoa TNFAIP3-interacting protein 1 (A20-binding inhibitor of NF-kappa-B activation 1) (ABIN-1) (HIV-1 Nef-interacting protein) (Nef-associated factor 1) (Naf1) (Nip40-1) (Virion-associated nuclear shuttling protein) (VAN) (hVAN) Inhibits NF-kappa-B activation and TNF-induced NF-kappa-B-dependent gene expression by regulating TAX1BP1 and A20/TNFAIP3-mediated deubiquitination of IKBKG; proposed to link A20/TNFAIP3 to ubiquitinated IKBKG (PubMed:21885437). Involved in regulation of EGF-induced ERK1/ERK2 signaling pathway; blocks MAPK3/MAPK1 nuclear translocation and MAPK1-dependent transcription. Increases cell surface CD4(T4) antigen expression. Involved in the anti-inflammatory response of macrophages and positively regulates TLR-induced activation of CEBPB. Involved in the prevention of autoimmunity; this function implicates binding to polyubiquitin. Involved in leukocyte integrin activation during inflammation; this function is mediated by association with SELPLG and dependent on phosphorylation by SRC-family kinases. Interacts with HIV-1 matrix protein and is packaged into virions and overexpression can inhibit viral replication. May regulate matrix nuclear localization, both nuclear import of PIC (Preintegration complex) and export of GAG polyprotein and viral genomic RNA during virion production. In case of infection, promotes association of IKBKG with Shigella flexneri E3 ubiquitin-protein ligase ipah9.8 p which in turn promotes polyubiquitination of IKBKG leading to its proteasome-dependent degradation and thus is perturbing NF-kappa-B activation during bacterial infection. {ECO:0000269|PubMed:12220502, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17016622, ECO:0000269|PubMed:17632516, ECO:0000269|PubMed:20010814, ECO:0000269|PubMed:21885437}.
Q15052 ARHGEF6 S622 ochoa Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) Acts as a RAC1 guanine nucleotide exchange factor (GEF).
Q15398 DLGAP5 S618 ochoa Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}.
Q15561 TEAD4 S254 ochoa Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}.
Q15596 NCOA2 S736 ochoa|psp Nuclear receptor coactivator 2 (NCoA-2) (Class E basic helix-loop-helix protein 75) (bHLHe75) (Transcriptional intermediary factor 2) (hTIF2) Transcriptional coactivator for steroid receptors and nuclear receptors (PubMed:23508108, PubMed:8670870, PubMed:9430642, PubMed:22504882, PubMed:26553876). Coactivator of the steroid binding domain (AF-2) but not of the modulating N-terminal domain (AF-1) (PubMed:23508108, PubMed:8670870, PubMed:9430642). Required with NCOA1 to control energy balance between white and brown adipose tissues (PubMed:23508108, PubMed:8670870, PubMed:9430642). Critical regulator of glucose metabolism regulation, acts as a RORA coactivator to specifically modulate G6PC1 expression (PubMed:23508108, PubMed:8670870, PubMed:9430642). Involved in the positive regulation of the transcriptional activity of the glucocorticoid receptor NR3C1 by sumoylation enhancer RWDD3 (PubMed:23508108). Positively regulates the circadian clock by acting as a transcriptional coactivator for the CLOCK-BMAL1 heterodimer (By similarity). {ECO:0000250|UniProtKB:Q61026, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23508108, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:8670870, ECO:0000269|PubMed:9430642}.
Q15643 TRIP11 S1313 ochoa Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}.
Q15648 MED1 S1536 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16512 PKN1 S205 ochoa Serine/threonine-protein kinase N1 (EC 2.7.11.13) (Protease-activated kinase 1) (PAK-1) (Protein kinase C-like 1) (Protein kinase C-like PKN) (Protein kinase PKN-alpha) (Protein-kinase C-related kinase 1) (Serine-threonine protein kinase N) PKC-related serine/threonine-protein kinase involved in various processes such as regulation of the intermediate filaments of the actin cytoskeleton, cell migration, tumor cell invasion and transcription regulation. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Regulates the cytoskeletal network by phosphorylating proteins such as VIM and neurofilament proteins NEFH, NEFL and NEFM, leading to inhibit their polymerization. Phosphorylates 'Ser-575', 'Ser-637' and 'Ser-669' of MAPT/Tau, lowering its ability to bind to microtubules, resulting in disruption of tubulin assembly. Acts as a key coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-11' of histone H3 (H3T11ph), a specific tag for epigenetic transcriptional activation that promotes demethylation of histone H3 'Lys-9' (H3K9me) by KDM4C/JMJD2C. Phosphorylates HDAC5, HDAC7 and HDAC9, leading to impair their import in the nucleus. Phosphorylates 'Thr-38' of PPP1R14A, 'Ser-159', 'Ser-163' and 'Ser-170' of MARCKS, and GFAP. Able to phosphorylate RPS6 in vitro. {ECO:0000269|PubMed:11104762, ECO:0000269|PubMed:12514133, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:18066052, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:24248594, ECO:0000269|PubMed:8557118, ECO:0000269|PubMed:8621664, ECO:0000269|PubMed:9175763}.
Q16594 TAF9 S85 ochoa Transcription initiation factor TFIID subunit 9 (RNA polymerase II TBP-associated factor subunit G) (STAF31/32) (Transcription initiation factor TFIID 31 kDa subunit) (TAFII-31) (TAFII31) (Transcription initiation factor TFIID 32 kDa subunit) (TAFII-32) (TAFII32) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF9 is also a component of the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:15899866). TAF9 and its paralog TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes (PubMed:15899866). Essential for cell viability (PubMed:15899866). May have a role in gene regulation associated with apoptosis (PubMed:15899866). {ECO:0000269|PubMed:15899866, ECO:0000269|PubMed:33795473}.
Q16665 HIF1A S687 ochoa|psp Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}.
Q2WGJ9 FER1L6 S62 ochoa Fer-1-like protein 6 None
Q3KP66 INAVA S107 ochoa Innate immunity activator protein Expressed in peripheral macrophages and intestinal myeloid-derived cells, is required for optimal PRR (pattern recognition receptor)-induced signaling, cytokine secretion, and bacterial clearance. Upon stimulation of a broad range of PRRs (pattern recognition receptor) such as NOD2 or TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9, associates with YWHAQ/14-3-3T, which in turn leads to the recruitment and activation of MAP kinases and NF-kappa-B signaling complexes that amplifies PRR-induced downstream signals and cytokine secretion (PubMed:28436939). In the intestine, regulates adherens junction stability by regulating the degradation of CYTH1 and CYTH2, probably acting as substrate cofactor for SCF E3 ubiquitin-protein ligase complexes. Stabilizes adherens junctions by limiting CYTH1-dependent ARF6 activation (PubMed:29420262). {ECO:0000269|PubMed:28436939, ECO:0000269|PubMed:29420262}.
Q4AC94 C2CD3 S728 ochoa C2 domain-containing protein 3 Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}.
Q4KWH8 PLCH1 S1307 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}.
Q52LW3 ARHGAP29 S190 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q53GA4 PHLDA2 S42 ochoa Pleckstrin homology-like domain family A member 2 (Beckwith-Wiedemann syndrome chromosomal region 1 candidate gene C protein) (Imprinted in placenta and liver protein) (Tumor-suppressing STF cDNA 3 protein) (Tumor-suppressing subchromosomal transferable fragment candidate gene 3 protein) (p17-Beckwith-Wiedemann region 1 C) (p17-BWR1C) Plays a role in regulating placenta growth. May act via its PH domain that competes with other PH domain-containing proteins, thereby preventing their binding to membrane lipids (By similarity). {ECO:0000250}.
Q5D1E8 ZC3H12A S386 ochoa Endoribonuclease ZC3H12A (EC 3.1.-.-) (Monocyte chemotactic protein-induced protein 1) (MCP-induced protein 1) (MCPIP-1) (Regnase-1) (Reg1) (Zinc finger CCCH domain-containing protein 12A) Endoribonuclease involved in various biological functions such as cellular inflammatory response and immune homeostasis, glial differentiation of neuroprogenitor cells, cell death of cardiomyocytes, adipogenesis and angiogenesis. Functions as an endoribonuclease involved in mRNA decay (PubMed:19909337). Modulates the inflammatory response by promoting the degradation of a set of translationally active cytokine-induced inflammation-related mRNAs, such as IL6 and IL12B, during the early phase of inflammation (PubMed:26320658). Prevents aberrant T-cell-mediated immune reaction by degradation of multiple mRNAs controlling T-cell activation, such as those encoding cytokines (IL6 and IL2), cell surface receptors (ICOS, TNFRSF4 and TNFR2) and transcription factor (REL) (By similarity). Inhibits cooperatively with ZC3H12A the differentiation of helper T cells Th17 in lungs. They repress target mRNA encoding the Th17 cell-promoting factors IL6, ICOS, REL, IRF4, NFKBID and NFKBIZ. The cooperation requires RNA-binding by RC3H1 and the nuclease activity of ZC3H12A (By similarity). Together with RC3H1, destabilizes TNFRSF4/OX40 mRNA by binding to the conserved stem loop structure in its 3'UTR (By similarity). Self regulates by destabilizing its own mRNA (By similarity). Cleaves mRNA harboring a stem-loop (SL), often located in their 3'-UTRs, during the early phase of inflammation in a helicase UPF1-dependent manner (PubMed:19909337, PubMed:22561375, PubMed:26134560, PubMed:26320658). Plays a role in the inhibition of microRNAs (miRNAs) biogenesis (PubMed:22055188). Cleaves the terminal loop of a set of precursor miRNAs (pre-miRNAs) important for the regulation of the inflammatory response leading to their degradation, and thus preventing the biosynthesis of mature miRNAs (PubMed:22055188). Also plays a role in promoting angiogenesis in response to inflammatory cytokines by inhibiting the production of antiangiogenic microRNAs via its anti-dicer RNase activity (PubMed:24048733). Affects the overall ubiquitination of cellular proteins (By similarity). Positively regulates deubiquitinase activity promoting the cleavage at 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains on TNF receptor-associated factors (TRAFs), preventing JNK and NF-kappa-B signaling pathway activation, and hence negatively regulating macrophage-mediated inflammatory response and immune homeostasis (By similarity). Also induces deubiquitination of the transcription factor HIF1A, probably leading to its stabilization and nuclear import, thereby positively regulating the expression of proangiogenic HIF1A-targeted genes (PubMed:24048733). Involved in a TANK-dependent negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Prevents stress granule (SGs) formation and promotes macrophage apoptosis under stress conditions, including arsenite-induced oxidative stress, heat shock and energy deprivation (By similarity). Plays a role in the regulation of macrophage polarization; promotes IL4-induced polarization of macrophages M1 into anti-inflammatory M2 state (By similarity). May also act as a transcription factor that regulates the expression of multiple genes involved in inflammatory response, angiogenesis, adipogenesis and apoptosis (PubMed:16574901, PubMed:18364357). Functions as a positive regulator of glial differentiation of neuroprogenitor cells through an amyloid precursor protein (APP)-dependent signaling pathway (PubMed:19185603). Attenuates septic myocardial contractile dysfunction in response to lipopolysaccharide (LPS) by reducing I-kappa-B-kinase (IKK)-mediated NF-kappa-B activation, and hence myocardial pro-inflammatory cytokine production (By similarity). {ECO:0000250|UniProtKB:Q5D1E7, ECO:0000269|PubMed:16574901, ECO:0000269|PubMed:18364357, ECO:0000269|PubMed:19185603, ECO:0000269|PubMed:19909337, ECO:0000269|PubMed:22055188, ECO:0000269|PubMed:22561375, ECO:0000269|PubMed:24048733, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:26134560, ECO:0000269|PubMed:26320658}.; FUNCTION: (Microbial infection) Binds to Japanese encephalitis virus (JEV) and Dengue virus (DEN) RNAs. {ECO:0000269|PubMed:23355615}.; FUNCTION: (Microbial infection) Exhibits antiviral activity against HIV-1 in lymphocytes by decreasing the abundance of HIV-1 viral RNA species. {ECO:0000269|PubMed:24191027}.
Q5GLZ8 HERC4 S180 ochoa Probable E3 ubiquitin-protein ligase HERC4 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 4) (HECT-type E3 ubiquitin transferase HERC4) Probable E3 ubiquitin-protein ligase involved in either protein trafficking or in the distribution of cellular structures. Required for spermatozoon maturation and fertility, and for the removal of the cytoplasmic droplet of the spermatozoon. E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer it to targeted substrates. {ECO:0000250|UniProtKB:Q6PAV2}.
Q5H9L2 TCEAL5 S127 ochoa Transcription elongation factor A protein-like 5 (TCEA-like protein 5) (Transcription elongation factor S-II protein-like 5) May be involved in transcriptional regulation.
Q5JSH3 WDR44 S96 ochoa WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}.
Q5QJ74 TBCEL S41 ochoa Tubulin-specific chaperone cofactor E-like protein (EL) (Leucine-rich repeat-containing protein 35) Acts as a regulator of tubulin stability. {ECO:0000269|PubMed:15728251}.
Q5T0W9 FAM83B S915 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T1M5 FKBP15 S356 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 S198 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T481 RBM20 S1120 ochoa RNA-binding protein 20 (RNA-binding motif protein 20) RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}.
Q5TC79 ZBTB37 S310 ochoa Zinc finger and BTB domain-containing protein 37 May be involved in transcriptional regulation.
Q5THK1 PRR14L S1391 ochoa Protein PRR14L (Proline rich 14-like protein) None
Q5VT06 CEP350 S939 ochoa Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}.
Q5VUA4 ZNF318 S1043 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VUA4 ZNF318 S1896 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VV41 ARHGEF16 S191 ochoa Rho guanine nucleotide exchange factor 16 (Ephexin-4) Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}.
Q63HK5 TSHZ3 S515 ochoa Teashirt homolog 3 (Zinc finger protein 537) Transcriptional regulator involved in developmental processes. Functions in association with APBB1, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4. TSHZ3-mediated transcription repression involves the recruitment of histone deacetylases HDAC1 and HDAC2. Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Regulates the development of neurons involved in both respiratory rhythm and airflow control. Promotes maintenance of nucleus ambiguus (nA) motoneurons, which govern upper airway function, and establishes a respiratory rhythm generator (RRG) activity compatible with survival at birth. Involved in the differentiation of the proximal uretic smooth muscle cells during developmental processes. Involved in the up-regulation of myocardin, that directs the expression of smooth muscle cells in the proximal ureter (By similarity). Involved in the modulation of glutamatergic synaptic transmission and long-term synaptic potentiation (By similarity). {ECO:0000250|UniProtKB:Q8CGV9, ECO:0000269|PubMed:19343227}.
Q641Q2 WASHC2A S352 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q68DQ2 CRYBG3 S1280 ochoa Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}.
Q6BDS2 BLTP3A S1337 ochoa Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}.
Q6H8Q1 ABLIM2 S476 ochoa Actin-binding LIM protein 2 (abLIM-2) (Actin-binding LIM protein family member 2) May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}.
Q6ICB0 DESI1 S25 ochoa Desumoylating isopeptidase 1 (DeSI-1) (EC 3.4.-.-) (PPPDE peptidase domain-containing protein 2) (Palmitoyl protein thioesterase DESI1) (EC 3.1.2.22) (Polyubiquitinated substrate transporter) (POST) (S-depalmitoylase DESI1) Protease which deconjugates SUMO1, SUMO2 and SUMO3 from some substrate proteins. Has isopeptidase but not SUMO-processing activity (By similarity). Desumoylates ZBTB46 (By similarity). Collaborates with UBQLN4 in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Exhibits palmitoyl protein thioesterase (S-depalmitoylation) activity towards synthetic substrates 4-methylumbelliferyl-6-S-palmitoyl-beta-D-glucopyranoside and S-depalmitoylation probe 5 (DPP-5) (PubMed:35427157). {ECO:0000250|UniProtKB:Q9CQT7, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:35427157}.
Q6IE81 JADE1 S603 ochoa Protein Jade-1 (Jade family PHD finger protein 1) (PHD finger protein 17) Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity (PubMed:16387653, PubMed:19187766, PubMed:20129055, PubMed:24065767). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:20129055, PubMed:24065767). May also promote acetylation of nucleosomal histone H4 by KAT5 (PubMed:15502158). Promotes apoptosis (PubMed:16046545). May act as a renal tumor suppressor (PubMed:16046545). Negatively regulates canonical Wnt signaling; at least in part, cooperates with NPHP4 in this function (PubMed:22654112). {ECO:0000269|PubMed:15502158, ECO:0000269|PubMed:16046545, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22654112, ECO:0000269|PubMed:24065767}.
Q6IPX3 TCEAL6 S121 ochoa Transcription elongation factor A protein-like 6 (TCEA-like protein 6) (Transcription elongation factor S-II protein-like 6) May be involved in transcriptional regulation.
Q6IQ26 DENND5A S455 ochoa DENN domain-containing protein 5A (Rab6-interacting protein 1) (Rab6IP1) Guanine nucleotide exchange factor (GEF) which may activate RAB6A and RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. Involved in the negative regulation of neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:G3V7Q0, ECO:0000269|PubMed:20937701}.
Q6NYC8 PPP1R18 S530 ochoa Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}.
Q6NZY4 ZCCHC8 S557 ochoa Zinc finger CCHC domain-containing protein 8 (TRAMP-like complex RNA-binding factor ZCCHC8) Scaffolding subunit of the trimeric nuclear exosome targeting (NEXT) complex that is involved in the surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. May be involved in pre-mRNA splicing (Probable). It is required for 3'-end maturation of telomerase RNA component (TERC), TERC 3'-end targeting to the nuclear RNA exosome, and for telomerase function (PubMed:31488579). {ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:31488579, ECO:0000305|PubMed:16263084}.
Q6P0Q8 MAST2 S900 ochoa Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q6P3S6 FBXO42 S552 ochoa F-box only protein 42 (Just one F-box and Kelch domain-containing protein) Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. Specifically recognizes p53/TP53, promoting its ubiquitination and degradation. {ECO:0000269|PubMed:19509332}.
Q6P5Z2 PKN3 S171 ochoa Serine/threonine-protein kinase N3 (EC 2.7.11.13) (Protein kinase PKN-beta) (Protein-kinase C-related kinase 3) Contributes to invasiveness in malignant prostate cancer. {ECO:0000269|PubMed:15282551}.
Q6PD62 CTR9 S159 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PI48 DARS2 S242 ochoa Aspartate--tRNA ligase, mitochondrial (EC 6.1.1.12) (Aspartyl-tRNA synthetase) (AspRS) Catalyzes the attachment of aspartate to tRNA(Asp) in a two-step reaction: aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp). {ECO:0000269|PubMed:15779907, ECO:0000269|PubMed:23275545}.
Q6PII3 CCDC174 S197 ochoa Coiled-coil domain-containing protein 174 Probably involved in neuronal development. {ECO:0000269|PubMed:26358778}.
Q6VAB6 KSR2 S357 ochoa Kinase suppressor of Ras 2 (hKSR2) (EC 2.7.11.1) Location-regulated scaffold connecting MEK to RAF. Has very low protein kinase activity and can phosphorylate MAP2K1 at several Ser and Thr residues with very low efficiency (in vitro). Acts as MAP2K1/MEK1-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 (PubMed:29433126). Interaction with BRAF enhances KSR2-mediated phosphorylation of MAP2K1 (in vitro). Blocks MAP3K8 kinase activity and MAP3K8-mediated signaling. Acts as a negative regulator of MAP3K3-mediated activation of ERK, JNK and NF-kappa-B pathways, inhibiting MAP3K3-mediated interleukin-8 production. {ECO:0000269|PubMed:12975377, ECO:0000269|PubMed:16039990, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126}.
Q6WCQ1 MPRIP S619 ochoa Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}.
Q6XQN6 NAPRT S513 ochoa Nicotinate phosphoribosyltransferase (NAPRTase) (EC 6.3.4.21) (FHA-HIT-interacting protein) (Nicotinate phosphoribosyltransferase domain-containing protein 1) Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate (PubMed:17604275, PubMed:21742010, PubMed:26042198). Helps prevent cellular oxidative stress via its role in NAD biosynthesis (PubMed:17604275). {ECO:0000269|PubMed:17604275, ECO:0000269|PubMed:21742010, ECO:0000269|PubMed:26042198}.
Q6ZN28 MACC1 S201 ochoa Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}.
Q70EL2 USP45 S599 ochoa Ubiquitin carboxyl-terminal hydrolase 45 (EC 3.4.19.12) (Deubiquitinating enzyme 45) (Ubiquitin thioesterase 45) (Ubiquitin-specific-processing protease 45) Catalyzes the deubiquitination of SPDL1 (PubMed:30258100). Plays a role in the repair of UV-induced DNA damage via deubiquitination of ERCC1, promoting its recruitment to DNA damage sites (PubMed:25538220). May be involved in the maintenance of photoreceptor function (PubMed:30573563). May play a role in normal retinal development (By similarity). Plays a role in cell migration (PubMed:30258100). {ECO:0000250|UniProtKB:E9QG68, ECO:0000269|PubMed:25538220, ECO:0000269|PubMed:30258100, ECO:0000269|PubMed:30573563}.
Q7KZI7 MARK2 S486 ochoa Serine/threonine-protein kinase MARK2 (EC 2.7.11.1) (EC 2.7.11.26) (ELKL motif kinase 1) (EMK-1) (MAP/microtubule affinity-regulating kinase 2) (PAR1 homolog) (PAR1 homolog b) (Par-1b) (Par1b) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates CRTC2/TORC2, DCX, HDAC7, KIF13B, MAP2, MAP4 and RAB11FIP2. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Plays a key role in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Regulates epithelial cell polarity by phosphorylating RAB11FIP2. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Regulates axogenesis by phosphorylating KIF13B, promoting interaction between KIF13B and 14-3-3 and inhibiting microtubule-dependent accumulation of KIF13B. Also required for neurite outgrowth and establishment of neuronal polarity. Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). Modulates the developmental decision to build a columnar versus a hepatic epithelial cell apparently by promoting a switch from a direct to a transcytotic mode of apical protein delivery. Essential for the asymmetric development of membrane domains of polarized epithelial cells. {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:12429843, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15158914, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:15365179, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:18626018, ECO:0000269|PubMed:20194617, ECO:0000269|PubMed:23666762}.
Q7RTP6 MICAL3 S649 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7RTP6 MICAL3 S1310 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z417 NUFIP2 S572 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z6J2 TAMALIN S94 ochoa Protein TAMALIN (General receptor for phosphoinositides 1-associated scaffold protein) (GRP1-associated scaffold protein) Plays a role in intracellular trafficking and contributes to the macromolecular organization of group 1 metabotropic glutamate receptors (mGluRs) at synapses. {ECO:0000250}.
Q86SQ0 PHLDB2 S334 ochoa Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}.
Q86TC9 MYPN S418 ochoa Myopalladin (145 kDa sarcomeric protein) Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}.
Q86U86 PBRM1 S178 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UD0 SAPCD2 S284 ochoa Suppressor APC domain-containing protein 2 (Tumor specificity and mitosis phase-dependent expression protein) (TS/MDEP) (p42.3) Plays a role in planar mitotic spindle orientation in retinal progenitor cells (RPCs) and promotes the production of symmetric terminal divisions (By similarity). Negatively regulates the mitotic apical cortex localization of GPSM2 (PubMed:26766442). Involved also in positive regulation of cell proliferation and tumor cell growth (PubMed:23576022, PubMed:23704824). {ECO:0000250|UniProtKB:Q9D818, ECO:0000269|PubMed:23576022, ECO:0000269|PubMed:23704824, ECO:0000269|PubMed:26766442}.
Q86UU1 PHLDB1 S501 ochoa Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) None
Q86VI3 IQGAP3 S539 ochoa Ras GTPase-activating-like protein IQGAP3 None
Q86WB0 ZC3HC1 S62 ochoa Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}.
Q86WG5 SBF2 S1687 ochoa Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}.
Q86XA9 HEATR5A S63 ochoa HEAT repeat-containing protein 5A None
Q86YD1 PTOV1 S73 ochoa Prostate tumor-overexpressed gene 1 protein (PTOV-1) (Activator interaction domain-containing protein 2) May activate transcription. Required for nuclear translocation of FLOT1. Promotes cell proliferation. {ECO:0000269|PubMed:12598323, ECO:0000269|PubMed:15713644, ECO:0000269|PubMed:17641689}.
Q8IWJ2 GCC2 S1483 ochoa GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}.
Q8IWQ3 BRSK2 S489 ochoa Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}.
Q8IWT3 CUL9 S976 ochoa Cullin-9 (CUL-9) (UbcH7-associated protein 1) (p53-associated parkin-like cytoplasmic protein) Core component of a Cul9-RING ubiquitin-protein ligase complex composed of CUL9 and RBX1 (PubMed:38605244). The CUL9-RBX1 complex mediates ubiquitination and subsequent degradation of BIRC5 and is required to maintain microtubule dynamics and genome integrity. Acts downstream of the 3M complex, which inhibits the ubiquitination of BIRC5 (PubMed:24793696). The CUL9-RBX1 complex also mediates mono-ubiquitination of p53/TP53 (PubMed:38605244). Acts as a cytoplasmic anchor protein in p53/TP53-associated protein complex. Regulates the subcellular localization of p53/TP53 and its subsequent function (PubMed:12526791, PubMed:17332328). Ubiquitinates apurinic/apyrimidinic endodeoxyribonuclease APEX2 (PubMed:38605244). Ubiquitination by the CUL9-RBX1 complex is predominantly mediated by E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2D2 (PubMed:38605244). {ECO:0000269|PubMed:12526791, ECO:0000269|PubMed:17332328, ECO:0000269|PubMed:24793696, ECO:0000269|PubMed:38605244}.
Q8IWU2 LMTK2 S886 ochoa Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) Phosphorylates PPP1C, phosphorylase b and CFTR.
Q8IX90 SKA3 S155 ochoa Spindle and kinetochore-associated protein 3 Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}.
Q8IXZ2 ZC3H3 S320 ochoa Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}.
Q8IYD8 FANCM S1322 ochoa Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}.
Q8IZD4 DCP1B S448 ochoa mRNA-decapping enzyme 1B (EC 3.6.1.62) May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}.
Q8IZT6 ASPM S190 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8IZT6 ASPM S446 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N157 AHI1 S331 ochoa Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}.
Q8N2R0 OSR2 S145 ochoa Protein odd-skipped-related 2 May be involved in the development of the mandibular molar tooth germ at the bud stage. {ECO:0000250|UniProtKB:Q91ZD1}.
Q8N4C6 NIN S1970 ochoa Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}.
Q8N4X5 AFAP1L2 S213 ochoa Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}.
Q8N5H7 SH2D3C S196 ochoa SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}.
Q8N6F7 GCSAM S143 ochoa Germinal center-associated signaling and motility protein (Germinal center B-cell-expressed transcript 2 protein) (Germinal center-associated lymphoma protein) (hGAL) Involved in the negative regulation of lymphocyte motility. It mediates the migration-inhibitory effects of IL6. Serves as a positive regulator of the RhoA signaling pathway. Enhancement of RhoA activation results in inhibition of lymphocyte and lymphoma cell motility by activation of its downstream effector ROCK. Is a regulator of B-cell receptor signaling, that acts through SYK kinase activation. {ECO:0000269|PubMed:17823310, ECO:0000269|PubMed:20844236, ECO:0000269|PubMed:23299888}.
Q8NDT2 RBM15B S504 ochoa Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:16129689, PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:27602518). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Functions in the regulation of alternative or illicit splicing, possibly by regulating m6A methylation (PubMed:16129689). Inhibits pre-mRNA splicing (PubMed:21044963). Also functions as a mRNA export factor by acting as a cofactor for the nuclear export receptor NXF1 (PubMed:19586903). {ECO:0000269|PubMed:19586903, ECO:0000269|PubMed:21044963, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:16129689}.
Q8NEM0 MCPH1 S287 ochoa Microcephalin Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}.
Q8NFM4 ADCY4 S499 ochoa Adenylate cyclase type 4 (EC 4.6.1.1) (ATP pyrophosphate-lyase 4) (Adenylate cyclase type IV) (Adenylyl cyclase 4) Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. {ECO:0000250|UniProtKB:P26770}.
Q8NFU7 TET1 S322 ochoa Methylcytosine dioxygenase TET1 (EC 1.14.11.80) (CXXC-type zinc finger protein 6) (Leukemia-associated protein with a CXXC domain) (Ten-eleven translocation 1 gene protein) Dioxygenase that plays a key role in active DNA demethylation, by catalyzing the sequential oxidation of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (PubMed:19372391, PubMed:21496894, PubMed:21778364, PubMed:35798741). In addition to its role in DNA demethylation, plays a more general role in chromatin regulation by recruiting histone modifying protein complexes to alter histone marks and chromatin accessibility, leading to both activation and repression of gene expression (PubMed:33833093). Plays therefore a role in many biological processes, including stem cell maintenance, T- and B-cell development, inflammation regulation, genomic imprinting, neural activity or DNA repair (PubMed:31278917). Involved in the balance between pluripotency and lineage commitment of cells and plays a role in embryonic stem cells maintenance and inner cell mass cell specification. Together with QSER1, plays an essential role in the protection and maintenance of transcriptional and developmental programs to inhibit the binding of DNMT3A/3B and therefore de novo methylation (PubMed:33833093). May play a role in pancreatic beta-cell specification during development. In this context, may function as an upstream epigenetic regulator of PAX4 presumably through direct recruitment by FOXA2 to a PAX4 enhancer to preserve its unmethylated status, thereby potentiating PAX4 expression to adopt beta-cell fate during endocrine lineage commitment (PubMed:35798741). Under DNA hypomethylation conditions, such as in female meiotic germ cells, may induce epigenetic reprogramming of pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions. PCH forms chromocenters in the interphase nucleus and chromocenters cluster at the prophase of meiosis. In this context, may also be essential for chromocenter clustering in a catalytic activity-independent manner, possibly through the recruitment polycomb repressive complex 1 (PRC1) to the chromocenters (By similarity). During embryonic development, may be required for normal meiotic progression in oocytes and meiotic gene activation (By similarity). Binds preferentially to DNA containing cytidine-phosphate-guanosine (CpG) dinucleotides over CpH (H=A, T, and C), hemimethylated-CpG and hemimethylated-hydroxymethyl-CpG (PubMed:29276034). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:12124344, ECO:0000269|PubMed:19372391, ECO:0000269|PubMed:19372393, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21778364, ECO:0000269|PubMed:25284789, ECO:0000269|PubMed:29276034, ECO:0000269|PubMed:31278917, ECO:0000269|PubMed:33833093, ECO:0000269|PubMed:35798741}.; FUNCTION: [Isoform 1]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). Binds to promoters, particularly to those with high CG content (By similarity). In hippocampal neurons, isoform 1 regulates the expression of a unique subset of genes compared to isoform 2, although some overlap exists between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 1 controls both miniature excitatory postsynaptic current amplitude and frequency (By similarity). Isoform 1 may regulate genes involved in hippocampal-dependent memory, leading to positive regulation of memory, contrary to isoform 2 that may decrease memory (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.; FUNCTION: [Isoform 2]: Dioxygenase that plays a key role in active DNA demethylation (PubMed:28531272). As isoform 1, binds to promoters, particularly to those with high CG content, however displays reduced global chromatin affinity compared with isoform 1, leading to decreased global DNA demethylation compared with isoform 1 (By similarity). Contrary to isoform 1, isoform 2 localizes during S phase to sites of ongoing DNA replication in heterochromatin, causing a significant de novo 5hmC formation, globally, and more so in heterochromatin, including LINE 1 interspersed DNA repeats leading to their activation (By similarity). In hippocampal neurons, isoform 2 regulates the expression of a unique subset of genes compared to isoform 1, although some overlap between both isoforms, hence differentially regulates excitatory synaptic transmission (By similarity). In hippocampal neuron cell cultures, isoform 2 controls miniature excitatory postsynaptic current frequency, but not amplitude (By similarity). Isoform 2 may regulate genes involved in hippocampal-dependent memory, leading to negative regulation of memory, contrary to isoform 1 that may improve memory (By similarity). In immature and partially differentiated gonadotrope cells, directly represses luteinizing hormone gene LHB expression and does not catalyze 5hmC at the gene promoter (By similarity). {ECO:0000250|UniProtKB:Q3URK3, ECO:0000269|PubMed:28531272}.
Q8NFW9 MYRIP S350 ochoa Rab effector MyRIP (Exophilin-8) (Myosin-VIIa- and Rab-interacting protein) (Synaptotagmin-like protein lacking C2 domains C) (SlaC2-c) (Slp homolog lacking C2 domains c) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor proteins MYO5A and MYO7A. May link RAB27A-containing vesicles to actin filaments. Functions as a protein kinase A-anchoring protein (AKAP). May act as a scaffolding protein that links PKA to components of the exocytosis machinery, thus facilitating exocytosis, including insulin release (By similarity). {ECO:0000250}.
Q8NG31 KNL1 S1076 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NHU6 TDRD7 S159 ochoa Tudor domain-containing protein 7 (PCTAIRE2-binding protein) (Tudor repeat associator with PCTAIRE-2) (Trap) Component of specific cytoplasmic RNA granules involved in post-transcriptional regulation of specific genes: probably acts by binding to specific mRNAs and regulating their translation. Required for lens transparency during lens development, by regulating translation of genes such as CRYBB3 and HSPB1 in the developing lens. Also required during spermatogenesis. {ECO:0000269|PubMed:21436445}.
Q8NHY3 GAS2L2 S662 ochoa GAS2-like protein 2 (GAS2-related protein on chromosome 17) (Growth arrest-specific protein 2-like 2) Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). Enhances ADORA2-mediated adenylyl cyclase activation by acting as a scaffold to recruit trimeric G-protein complexes to ADORA2A (By similarity). Regulates ciliary orientation and performance in cells located in the airway (PubMed:30665704). {ECO:0000250|UniProtKB:Q5SSG4, ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950, ECO:0000269|PubMed:30665704}.
Q8NI77 KIF18A S674 ochoa Kinesin-like protein KIF18A (Marrow stromal KIF18A) (MS-KIF18A) Microtubule-depolymerizing kinesin which plays a role in chromosome congression by reducing the amplitude of preanaphase oscillations and slowing poleward movement during anaphase, thus suppressing chromosome movements. May stabilize the CENPE-BUB1B complex at the kinetochores during early mitosis and maintains CENPE levels at kinetochores during chromosome congression. {ECO:0000269|PubMed:17346968, ECO:0000269|PubMed:18267093, ECO:0000269|PubMed:18513970, ECO:0000269|PubMed:19625775}.
Q8TBC5 ZSCAN18 S140 ochoa Zinc finger and SCAN domain-containing protein 18 (Zinc finger protein 447) May be involved in transcriptional regulation.
Q8TC07 TBC1D15 S186 ochoa TBC1 domain family member 15 (GTPase-activating protein RAB7) (GAP for RAB7) (Rab7-GAP) Acts as a GTPase activating protein for RAB7A. Does not act on RAB4, RAB5 or RAB6 (By similarity). {ECO:0000250}.
Q8TD16 BICD2 S329 ochoa Protein bicaudal D homolog 2 (Bic-D 2) Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates and stabilizes the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25814576). Facilitates the binding of RAB6A to the Golgi by stabilizing its GTP-bound form. Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport via its interaction with RAB6A and recruitment of the dynein-dynactin motor complex (PubMed:25962623). Contributes to nuclear and centrosomal positioning prior to mitotic entry through regulation of both dynein and kinesin-1. During G2 phase of the cell cycle, associates with RANBP2 at the nuclear pores and recruits dynein and dynactin to the nuclear envelope to ensure proper positioning of the nucleus relative to centrosomes prior to the onset of mitosis (By similarity). {ECO:0000250|UniProtKB:Q921C5, ECO:0000269|PubMed:25814576, ECO:0000269|PubMed:25962623}.
Q8TDJ6 DMXL2 S1857 ochoa DmX-like protein 2 (Rabconnectin-3) May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}.
Q8TDQ1 CD300LF S216 psp CMRF35-like molecule 1 (CLM-1) (CD300 antigen-like family member F) (Immune receptor expressed on myeloid cells 1) (IREM-1) (Immunoglobulin superfamily member 13) (IgSF13) (NK inhibitory receptor) (CD antigen CD300f) Acts as an inhibitory receptor for myeloid cells and mast cells (PubMed:15549731). Positively regulates the phagocytosis of apoptotic cells (efferocytosis) via phosphatidylserine (PS) recognition; recognizes and binds PS as a ligand which is expressed on the surface of apoptotic cells. Plays an important role in the maintenance of immune homeostasis, by promoting macrophage-mediated efferocytosis and by inhibiting dendritic cell-mediated efferocytosis (By similarity). Negatively regulates Fc epsilon receptor-dependent mast cell activation and allergic responses via binding to ceramide and sphingomyelin which act as ligands (PubMed:24035150). May act as a coreceptor for interleukin 4 (IL-4). Associates with and regulates IL-4 receptor alpha-mediated responses by augmenting IL-4- and IL-13-induced signaling (By similarity). Negatively regulates the Toll-like receptor (TLR) signaling mediated by MYD88 and TRIF through activation of PTPN6/SHP-1 and PTPN11/SHP-2 (PubMed:22043923). Inhibits osteoclast formation. Induces macrophage cell death upon engagement (By similarity). {ECO:0000250|UniProtKB:Q6SJQ7, ECO:0000269|PubMed:15549731, ECO:0000269|PubMed:22043923, ECO:0000269|PubMed:24035150}.
Q8TEB9 RHBDD1 S291 ochoa|psp Rhomboid-related protein 4 (RRP4) (EC 3.4.21.105) (Rhomboid domain-containing protein 1) (Rhomboid-like protein 4) Intramembrane-cleaving serine protease that cleaves single transmembrane or multi-pass membrane proteins in the hydrophobic plane of the membrane, luminal loops and juxtamembrane regions. Involved in regulated intramembrane proteolysis and the subsequent release of functional polypeptides from their membrane anchors. Functional component of endoplasmic reticulum-associated degradation (ERAD) for misfolded membrane proteins. Required for the degradation process of some specific misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Functions in BIK, MPZ, PKD1, PTCRA, RHO, STEAP3 and TRAC processing. Involved in the regulation of exosomal secretion; inhibits the TSAP6-mediated secretion pathway. Involved in the regulation of apoptosis; modulates BIK-mediated apoptotic activity. Also plays a role in the regulation of spermatogenesis; inhibits apoptotic activity in spermatogonia. {ECO:0000269|PubMed:18953687, ECO:0000269|PubMed:22624035}.
Q8WUA2 PPIL4 S178 ochoa Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
Q8WXI7 MUC16 S12468 ochoa Mucin-16 (MUC-16) (Ovarian cancer-related tumor marker CA125) (CA-125) (Ovarian carcinoma antigen CA125) Thought to provide a protective, lubricating barrier against particles and infectious agents at mucosal surfaces. {ECO:0000250}.
Q8WYL5 SSH1 S521 ochoa Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}.
Q8WYL5 SSH1 S897 ochoa Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}.
Q8WZ75 ROBO4 S684 ochoa Roundabout homolog 4 (Magic roundabout) Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function (PubMed:30455415). {ECO:0000250, ECO:0000269|PubMed:30455415}.
Q92503 SEC14L1 S586 ochoa SEC14-like protein 1 May play a role in innate immunity by inhibiting the antiviral RIG-I signaling pathway. In this pathway, functions as a negative regulator of RIGI, the cytoplasmic sensor of viral nucleic acids. Prevents the interaction of RIGI with MAVS/IPS1, an important step in signal propagation (PubMed:23843640). May also regulate the SLC18A3 and SLC5A7 cholinergic transporters (PubMed:17092608). {ECO:0000269|PubMed:17092608, ECO:0000269|PubMed:23843640}.
Q92556 ELMO1 S80 ochoa Engulfment and cell motility protein 1 (Protein ced-12 homolog) Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:12134158}.
Q92560 BAP1 S369 ochoa|psp Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}.
Q92565 RAPGEF5 S212 ochoa Rap guanine nucleotide exchange factor 5 (Guanine nucleotide exchange factor for Rap1) (M-Ras-regulated Rap GEF) (MR-GEF) (Related to Epac) (Repac) Guanine nucleotide exchange factor (GEF) for RAP1A, RAP2A and MRAS/M-Ras-GTP. Its association with MRAS inhibits Rap1 activation. {ECO:0000269|PubMed:10777494, ECO:0000269|PubMed:10934204}.
Q92608 DOCK2 S1780 ochoa Dedicator of cytokinesis protein 2 Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}.
Q92731 ESR2 S105 psp Estrogen receptor beta (ER-beta) (Nuclear receptor subfamily 3 group A member 2) Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1/ER-alpha, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). {ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:29261182, ECO:0000269|PubMed:30113650, ECO:0000269|PubMed:9325313}.; FUNCTION: [Isoform 2]: Lacks ligand binding ability and has no or only very low ERE binding activity resulting in the loss of ligand-dependent transactivation ability. {ECO:0000269|PubMed:9671811}.
Q92771 DDX12P S63 ochoa Putative ATP-dependent DNA helicase DDX12 (EC 5.6.2.-) (CHL1-related protein 2) (hCHLR2) (DEAD/H box protein 12) DNA helicase involved in cellular proliferation. Probably required for maintaining the chromosome segregation (By similarity). {ECO:0000250}.
Q92794 KAT6A S954 ochoa Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}.
Q92831 KAT2B S117 ochoa Histone acetyltransferase KAT2B (EC 2.3.1.48) (Histone acetyltransferase PCAF) (Histone acetylase PCAF) (Lysine acetyltransferase 2B) (P300/CBP-associated factor) (P/CAF) (Spermidine acetyltransferase KAT2B) (EC 2.3.1.57) Functions as a histone acetyltransferase (HAT) to promote transcriptional activation (PubMed:8945521). Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles (PubMed:8945521). Has a a strong preference for acetylation of H3 at 'Lys-9' (H3K9ac) (PubMed:21131905). Also acetylates non-histone proteins, such as ACLY, MAPRE1/EB1, PLK4, RRP9/U3-55K and TBX5 (PubMed:10675335, PubMed:23001180, PubMed:23932781, PubMed:26867678, PubMed:27796307, PubMed:29174768, PubMed:9707565). Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A (PubMed:8684459). Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Involved in heart and limb development by mediating acetylation of TBX5, acetylation regulating nucleocytoplasmic shuttling of TBX5 (PubMed:29174768). Acts as a negative regulator of centrosome amplification by mediating acetylation of PLK4 (PubMed:27796307). Acetylates RRP9/U3-55K, a core subunit of the U3 snoRNP complex, impairing pre-rRNA processing (PubMed:26867678). Acetylates MAPRE1/EB1, promoting dynamic kinetochore-microtubule interactions in early mitosis (PubMed:23001180). Also acetylates spermidine (PubMed:27389534). {ECO:0000269|PubMed:10675335, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:23001180, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:27389534, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:29174768, ECO:0000269|PubMed:8684459, ECO:0000269|PubMed:8945521, ECO:0000269|PubMed:9707565}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. {ECO:0000269|PubMed:12486002}.
Q92974 ARHGEF2 S163 ochoa Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}.
Q969E4 TCEAL3 S121 ochoa Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) May be involved in transcriptional regulation.
Q969V6 MRTFA S156 ochoa Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}.
Q96B70 LENG9 S440 ochoa Leukocyte receptor cluster member 9 None
Q96FC9 DDX11 S44 ochoa ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}.
Q96FZ2 HMCES S45 ochoa Abasic site processing protein HMCES (EC 4.-.-.-) (Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein) (ES cell-specific 5hmC-binding protein) (Peptidase HMCES) (EC 3.4.-.-) (SRAP domain-containing protein 1) Sensor of abasic sites in single-stranded DNA (ssDNA) required to preserve genome integrity by promoting error-free repair of abasic sites (PubMed:30554877, PubMed:31235913, PubMed:31235915, PubMed:32307824, PubMed:32492421). Acts as an enzyme that recognizes and binds abasic sites in ssDNA at replication forks and chemically modifies the lesion by forming a covalent cross-link with DNA: forms a stable thiazolidine linkage between a ring-opened abasic site and the alpha-amino and sulfhydryl substituents of its N-terminal catalytic cysteine residue (PubMed:30554877, PubMed:31235913). Promotes error-free repair by protecting abasic sites from translesion synthesis (TLS) polymerases and endonucleases that are error-prone and would generate mutations and double-strand breaks (PubMed:30554877). The HMCES DNA-protein cross-link is then either reversed or degraded (PubMed:30554877, PubMed:36608669, PubMed:37519246, PubMed:37950866). HMCES is able to catalyze the reversal of its thiazolidine cross-link and cycle between a cross-link and a non-cross-linked state depending on DNA context: mediates self-reversal of the thiazolidine cross-link in double stranded DNA, allowing APEX1 to initiate downstream repair of abasic sites (PubMed:37519246, PubMed:37950866). The HMCES DNA-protein cross-link can also be degraded by the SPRTN metalloprotease following unfolding by the BRIP1/FANCJ helicase (PubMed:36608669). Has preference for ssDNA, but can also accommodate double-stranded DNA with 3' or 5' overhang (dsDNA), and dsDNA-ssDNA 3' junction (PubMed:31235915, PubMed:31806351). Plays a protective role during somatic hypermutation of immunoglobulin genes in B-cells: acts via its ability to form covalent cross-links with abasic sites, thereby limiting the accumulation of deletions in somatic hypermutation target regions (PubMed:35450882). Also involved in class switch recombination (CSR) in B-cells independently of the formation of a DNA-protein cross-link: acts by binding and protecting ssDNA overhangs to promote DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway (By similarity). Acts as a protease: mediates autocatalytic processing of its N-terminal methionine in order to expose the catalytic cysteine (By similarity). {ECO:0000250|UniProtKB:Q8R1M0, ECO:0000269|PubMed:30554877, ECO:0000269|PubMed:31235913, ECO:0000269|PubMed:31235915, ECO:0000269|PubMed:31806351, ECO:0000269|PubMed:32307824, ECO:0000269|PubMed:32492421, ECO:0000269|PubMed:35450882, ECO:0000269|PubMed:36608669, ECO:0000269|PubMed:37519246, ECO:0000269|PubMed:37950866}.
Q96JN0 LCOR S90 ochoa Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}.
Q96JQ2 CLMN S449 ochoa Calmin (Calponin-like transmembrane domain protein) None
Q96K83 ZNF521 S273 ochoa Zinc finger protein 521 (Early hematopoietic zinc finger protein) (LYST-interacting protein 3) Transcription factor that can both act as an activator or a repressor depending on the context. Involved in BMP signaling and in the regulation of the immature compartment of the hematopoietic system. Associates with SMADs in response to BMP2 leading to activate transcription of BMP target genes. Acts as a transcriptional repressor via its interaction with EBF1, a transcription factor involved specification of B-cell lineage; this interaction preventing EBF1 to bind DNA and activate target genes. {ECO:0000269|PubMed:14630787}.
Q96L73 NSD1 S979 ochoa Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}.
Q96LR2 LURAP1 S213 ochoa Leucine rich adaptor protein 1 (Leucine repeat adapter protein 35A) Acts as an activator of the canonical NF-kappa-B pathway and drive the production of pro-inflammatory cytokines. Promotes the antigen (Ag)-presenting and priming function of dendritic cells via the canonical NF-kappa-B pathway (PubMed:21048106). In concert with MYO18A and CDC42BPA/CDC42BPB, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration. Activates CDC42BPA/CDC42BPB and targets it to actomyosin through its interaction with MYO18A, leading to MYL9/MLC2 phosphorylation and MYH9/MYH10-dependent actomyosin assembly in the lamella (By similarity). {ECO:0000250|UniProtKB:D4A8G3, ECO:0000269|PubMed:21048106}.
Q96MY7 FAM161B S627 ochoa Protein FAM161B None
Q96NB3 ZNF830 S40 ochoa Zinc finger protein 830 (Coiled-coil domain-containing protein 16) May play a role in pre-mRNA splicing as component of the spliceosome (PubMed:25599396). Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth, plays a role in oocyte survival by preventing chromosomal breaks formation, activation of TP63 and reduction of transcription (By similarity). {ECO:0000250|UniProtKB:Q8R1N0, ECO:0000305|PubMed:25599396}.
Q96PN7 TRERF1 S689 ochoa Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}.
Q96RG2 PASK S843 ochoa PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}.
Q96T23 RSF1 S1375 ochoa|psp Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T58 SPEN S1287 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99460 PSMD1 S315 ochoa 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}.
Q99549 MPHOSPH8 S149 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99550 MPHOSPH9 S874 ochoa M-phase phosphoprotein 9 Negatively regulates cilia formation by recruiting the CP110-CEP97 complex (a negative regulator of ciliogenesis) at the distal end of the mother centriole in ciliary cells (PubMed:30375385). At the beginning of cilia formation, MPHOSPH9 undergoes TTBK2-mediated phosphorylation and degradation via the ubiquitin-proteasome system and removes itself and the CP110-CEP97 complex from the distal end of the mother centriole, which subsequently promotes cilia formation (PubMed:30375385). {ECO:0000269|PubMed:30375385}.
Q99569 PKP4 S427 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99650 OSMR S889 ochoa Oncostatin-M-specific receptor subunit beta (Interleukin-31 receptor subunit beta) (IL-31 receptor subunit beta) (IL-31R subunit beta) (IL-31R-beta) (IL-31RB) Associates with IL31RA to form the IL31 receptor. Binds IL31 to activate STAT3 and possibly STAT1 and STAT5. Capable of transducing OSM-specific signaling events. {ECO:0000269|PubMed:15184896, ECO:0000269|PubMed:8999038}.
Q99741 CDC6 S45 ochoa Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated.
Q99798 ACO2 S559 ochoa Aconitate hydratase, mitochondrial (Aconitase) (EC 4.2.1.3) (Citrate hydro-lyase) Catalyzes the isomerization of citrate to isocitrate via cis-aconitate. {ECO:0000250|UniProtKB:P16276}.
Q99856 ARID3A S362 ochoa AT-rich interactive domain-containing protein 3A (ARID domain-containing protein 3A) (B-cell regulator of IgH transcription) (Bright) (Dead ringer-like protein 1) (E2F-binding protein 1) Transcription factor which may be involved in the control of cell cycle progression by the RB1/E2F1 pathway and in B-cell differentiation. {ECO:0000269|PubMed:11812999, ECO:0000269|PubMed:12692263}.
Q99973 TEP1 S1344 ochoa Telomerase protein component 1 (Telomerase-associated protein 1) (Telomerase protein 1) (p240) (p80 telomerase homolog) Component of the telomerase ribonucleoprotein complex that is essential for the replication of chromosome termini (PubMed:19179534). Also a component of the ribonucleoprotein vaults particle, a multi-subunit structure involved in nucleo-cytoplasmic transport (By similarity). Responsible for the localizing and stabilizing vault RNA (vRNA) association in the vault ribonucleoprotein particle. Binds to TERC (By similarity). {ECO:0000250|UniProtKB:P97499, ECO:0000269|PubMed:19179534}.
Q9BQ04 RBM4B S86 ochoa RNA-binding protein 4B (RNA-binding motif protein 30) (RNA-binding motif protein 4B) (RNA-binding protein 30) Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA (By similarity). {ECO:0000250}.
Q9BQ89 FAM110A S78 ochoa Protein FAM110A None
Q9BQA1 WDR77 S176 ochoa Methylosome protein WDR77 (Androgen receptor cofactor p44) (Methylosome protein 50) (MEP-50) (WD repeat-containing protein 77) (p44/Mep50) Non-catalytic component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A, which modifies specific arginines to dimethylarginines in several spliceosomal Sm proteins and histones (PubMed:11756452). This modification targets Sm proteins to the survival of motor neurons (SMN) complex for assembly into small nuclear ribonucleoprotein core particles. Might play a role in transcription regulation. The methylosome complex also methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (PubMed:23071334). {ECO:0000269|PubMed:11756452, ECO:0000269|PubMed:23071334}.
Q9BUA3 SPINDOC S82 ochoa Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}.
Q9BUB4 ADAT1 S191 ochoa tRNA-specific adenosine deaminase 1 (hADAT1) (EC 3.5.4.34) (tRNA-specific adenosine-37 deaminase) Specifically deaminates adenosine-37 to inosine in tRNA-Ala.
Q9BUB4 ADAT1 S227 ochoa tRNA-specific adenosine deaminase 1 (hADAT1) (EC 3.5.4.34) (tRNA-specific adenosine-37 deaminase) Specifically deaminates adenosine-37 to inosine in tRNA-Ala.
Q9BWF2 TRAIP S295 ochoa E3 ubiquitin-protein ligase TRAIP (EC 2.3.2.27) (RING finger protein 206) (TRAF-interacting protein) E3 ubiquitin ligase required to protect genome stability in response to replication stress (PubMed:25335891, PubMed:26595769, PubMed:26711499, PubMed:26781088, PubMed:27462463, PubMed:31545170). Acts as a key regulator of interstrand cross-link repair, which takes place when both strands of duplex DNA are covalently tethered together, thereby blocking replication and transcription (By similarity). Controls the choice between the two pathways of replication-coupled interstrand-cross-link repair by mediating ubiquitination of MCM7 subunit of the CMG helicase complex (By similarity). Short ubiquitin chains on MCM7 promote recruitment of DNA glycosylase NEIL3 (By similarity). If the interstrand cross-link cannot be cleaved by NEIL3, the ubiquitin chains continue to grow on MCM7, promoting the unloading of the CMG helicase complex by the VCP/p97 ATPase, enabling the Fanconi anemia DNA repair pathway (By similarity). Only catalyzes ubiquitination of MCM7 when forks converge (By similarity). Also involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis: promotes ubiquitination of DPCs, leading to their degradation by the proteasome (By similarity). Has also been proposed to play a role in promoting translesion synthesis by mediating the assembly of 'Lys-63'-linked poly-ubiquitin chains on the Y-family polymerase POLN in order to facilitate bypass of DNA lesions and preserve genomic integrity (PubMed:24553286). The function in translesion synthesis is however controversial (PubMed:26595769). Acts as a regulator of the spindle assembly checkpoint (PubMed:25335891). Also acts as a negative regulator of innate immune signaling by inhibiting activation of NF-kappa-B mediated by TNF (PubMed:22945920). Negatively regulates TLR3/4- and RIG-I-mediated IRF3 activation and subsequent IFNB1 production and cellular antiviral response by promoting 'Lys-48'-linked polyubiquitination of TNK1 leading to its proteasomal degradation (PubMed:22945920). {ECO:0000250|UniProtKB:Q6NRV0, ECO:0000269|PubMed:22945920, ECO:0000269|PubMed:24553286, ECO:0000269|PubMed:25335891, ECO:0000269|PubMed:26595769, ECO:0000269|PubMed:26711499, ECO:0000269|PubMed:26781088, ECO:0000269|PubMed:27462463, ECO:0000269|PubMed:31545170}.
Q9BWF3 RBM4 S86 ochoa RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}.
Q9BYW2 SETD2 S131 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BYW2 SETD2 S744 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BZ29 DOCK9 S443 ochoa Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}.
Q9BZH6 WDR11 S619 ochoa WD repeat-containing protein 11 (Bromodomain and WD repeat-containing protein 2) (WD repeat-containing protein 15) Involved in the Hedgehog (Hh) signaling pathway, is essential for normal ciliogenesis (PubMed:29263200). Regulates the proteolytic processing of GLI3 and cooperates with the transcription factor EMX1 in the induction of downstream Hh pathway gene expression and gonadotropin-releasing hormone production (PubMed:29263200). WDR11 complex facilitates the tethering of Adaptor protein-1 complex (AP-1)-derived vesicles. WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). {ECO:0000269|PubMed:29263200, ECO:0000269|PubMed:29426865}.
Q9C0C2 TNKS1BP1 S435 ochoa 182 kDa tankyrase-1-binding protein None
Q9GZR7 DDX24 S60 ochoa ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9H211 CDT1 S491 ochoa|psp DNA replication factor Cdt1 (Double parked homolog) (DUP) Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}.
Q9H2I8 LRMDA S153 ochoa Leucine-rich melanocyte differentiation-associated protein Required for melanocyte differentiation. {ECO:0000269|PubMed:23395477}.
Q9H3D4 TP63 S395 ochoa|psp Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}.
Q9H4X1 RGCC S97 ochoa Regulator of cell cycle RGCC (Response gene to complement 32 protein) (RGC-32) Modulates the activity of cell cycle-specific kinases. Enhances CDK1 activity. May contribute to the regulation of the cell cycle. May inhibit growth of glioma cells by promoting arrest of mitotic progression at the G2/M transition. Fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation. {ECO:0000269|PubMed:11687586, ECO:0000269|PubMed:17146433, ECO:0000269|PubMed:19158077, ECO:0000269|PubMed:22163048}.
Q9H609 ZNF576 S23 ochoa Zinc finger protein 576 May be involved in transcriptional regulation.
Q9H6Q4 CIAO3 S214 ochoa Cytosolic iron-sulfur assembly component 3 (Cytosolic Fe-S cluster assembly factor NARFL) (Iron-only hydrogenase-like protein 1) (IOP1) (Nuclear prelamin A recognition factor-like protein) (Protein related to Narf) Component of the cytosolic iron-sulfur protein assembly (CIA) complex, a multiprotein complex that mediates the incorporation of iron-sulfur cluster into extramitochondrial Fe/S proteins. Seems to negatively regulate the level of HIF1A expression, although this effect could be indirect. {ECO:0000269|PubMed:16956324, ECO:0000269|PubMed:18270200}.
Q9H7P9 PLEKHG2 S1261 ochoa Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}.
Q9H8U3 ZFAND3 S129 ochoa AN1-type zinc finger protein 3 (Testis-expressed protein 27) None
Q9H972 C14orf93 S119 ochoa Uncharacterized protein C14orf93 None
Q9HAW4 CLSPN S225 ochoa Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q9HBM6 TAF9B S85 ochoa Transcription initiation factor TFIID subunit 9B (Neuronal cell death-related protein 7) (DN-7) (Transcription initiation factor TFIID subunit 9-like) (Transcription-associated factor TAFII31L) Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription. {ECO:0000269|PubMed:15899866}.
Q9NP74 PALMD S498 ochoa Palmdelphin (Paralemmin-like protein) None
Q9NQC3 RTN4 S739 ochoa Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}.
Q9NQT4 EXOSC5 S20 ochoa Exosome complex component RRP46 (Chronic myelogenous leukemia tumor antigen 28) (Exosome component 5) (Ribosomal RNA-processing protein 46) (p12B) Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes (PubMed:11782436, PubMed:21269460). In vitro, EXOSC5 does not bind or digest single-stranded RNA and binds to double-stranded DNA without detectable DNase activity (PubMed:20660080). {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:20660080, ECO:0000269|PubMed:21269460}.
Q9NSI2 SLX9 S203 ochoa Ribosome biogenesis protein SLX9 homolog May be involved in ribosome biogenesis. {ECO:0000250|UniProtKB:P53251}.
Q9NSV4 DIAPH3 S175 ochoa Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}.
Q9NU22 MDN1 S1754 ochoa Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}.
Q9NVH0 EXD2 S352 ochoa Exonuclease 3'-5' domain-containing protein 2 (EC 3.1.11.1) (3'-5' exoribonuclease EXD2) (EC 3.1.13.-) (Exonuclease 3'-5' domain-like-containing protein 2) Exonuclease that has both 3'-5' exoribonuclease and exodeoxyribonuclease activities, depending on the divalent metal cation used as cofactor (PubMed:29335528, PubMed:31127291). In presence of Mg(2+), only shows 3'-5' exoribonuclease activity, while it shows both exoribonuclease and exodeoxyribonuclease activities in presence of Mn(2+) (PubMed:29335528, PubMed:31127291). Acts as an exoribonuclease in mitochondrion, possibly by regulating ATP production and mitochondrial translation (PubMed:29335528). Also involved in the response to DNA damage (PubMed:26807646, PubMed:31255466). Acts as 3'-5' exodeoxyribonuclease for double-strand breaks resection and efficient homologous recombination (PubMed:20603073, PubMed:26807646). Plays a key role in controlling the initial steps of chromosomal break repair, it is recruited to chromatin in a damage-dependent manner and functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks (PubMed:26807646). Also involved in response to replicative stress: recruited to stalled forks and is required to stabilize and restart stalled replication forks by restraining excessive fork regression, thereby suppressing their degradation (PubMed:31255466). {ECO:0000269|PubMed:20603073, ECO:0000269|PubMed:26807646, ECO:0000269|PubMed:29335528, ECO:0000269|PubMed:31127291, ECO:0000269|PubMed:31255466}.
Q9NVV0 TMEM38B S262 ochoa Trimeric intracellular cation channel type B (TRIC-B) (TRICB) (Transmembrane protein 38B) Intracellular monovalent cation channel required for maintenance of rapid intracellular calcium release. Acts as a potassium counter-ion channel that functions in synchronization with calcium release from intracellular stores (By similarity). Activated by increased cytosolic Ca(2+) levels (By similarity). {ECO:0000250|UniProtKB:Q6GN30}.
Q9NW13 RBM28 S397 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NZ56 FMN2 S747 ochoa Formin-2 Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}.
Q9P0K7 RAI14 S412 ochoa Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q9P266 JCAD S1235 ochoa Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) None
Q9P2D0 IBTK S1069 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2F8 SIPA1L2 S379 ochoa Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) None
Q9P2F8 SIPA1L2 S1029 ochoa Signal-induced proliferation-associated 1-like protein 2 (SIPA1-like protein 2) None
Q9P2K3 RCOR3 S234 ochoa REST corepressor 3 May act as a component of a corepressor complex that represses transcription. {ECO:0000305}.
Q9UDV7 ZNF282 S319 ochoa Zinc finger protein 282 (HTLV-I U5RE-binding protein 1) (HUB-1) Binds to the U5 repressive element (U5RE) of the human T cell leukemia virus type I long terminal repeat. It recognizes the 5'-TCCACCCC-3' sequence as a core motif and exerts a strong repressive effect on HTLV-I LTR-mediated expression.
Q9UKF6 CPSF3 S328 ochoa Cleavage and polyadenylation specificity factor subunit 3 (EC 3.1.27.-) (Cleavage and polyadenylation specificity factor 73 kDa subunit) (CPSF 73 kDa subunit) (mRNA 3'-end-processing endonuclease CPSF-73) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as an mRNA 3'-end-processing endonuclease (PubMed:30507380). Also involved in the histone 3'-end pre-mRNA processing (PubMed:30507380). U7 snRNP-dependent protein that induces both the 3'-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' to 3' exonuclease for degrading the subsequent downstream cleavage product (DCP) of mature histone mRNAs. Cleavage occurs after the 5'-ACCCA-3' sequence in the histone pre-mRNA leaving a 3'hydroxyl group on the upstream fragment containing the stem loop (SL) and 5' phosphate on the downstream cleavage product (DCP) starting with CU nucleotides. The U7-dependent 5' to 3' exonuclease activity is processive and degrades the DCP RNA substrate even after complete removal of the U7-binding site. Binds to the downstream cleavage product (DCP) of histone pre-mRNAs and the cleaved DCP RNA substrate in a U7 snRNP dependent manner. Required for entering/progressing through S-phase of the cell cycle (PubMed:30507380). Required for the selective processing of microRNAs (miRNAs) during embryonic stem cell differentiation via its interaction with ISY1 (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). {ECO:0000250|UniProtKB:Q9QXK7, ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:15037765, ECO:0000269|PubMed:17128255, ECO:0000269|PubMed:18688255, ECO:0000269|PubMed:30507380}.
Q9ULD4 BRPF3 S740 ochoa Bromodomain and PHD finger-containing protein 3 Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}.
Q9ULL1 PLEKHG1 S445 ochoa Pleckstrin homology domain-containing family G member 1 None
Q9ULM3 YEATS2 S868 ochoa YEATS domain-containing protein 2 Chromatin reader component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4 (PubMed:18838386, PubMed:19103755, PubMed:27103431). YEATS2 specifically recognizes and binds histone H3 crotonylated at 'Lys-27' (H3K27cr) (PubMed:27103431). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:27103431). {ECO:0000269|PubMed:18838386, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:27103431}.
Q9UM01 SLC7A7 S25 ochoa Y+L amino acid transporter 1 (Monocyte amino acid permease 2) (MOP-2) (Solute carrier family 7 member 7) (y(+)L-type amino acid transporter 1) (Y+LAT1) (y+LAT-1) Heterodimer with SLC3A2, that functions as an antiporter which operates as an efflux route by exporting cationic amino acids from inside the cells in exchange with neutral amino acids plus sodium ions and may participate in nitric oxide synthesis via the transport of L-arginine (PubMed:10080182, PubMed:10655553, PubMed:14603368, PubMed:15756301, PubMed:15776427, PubMed:17329401, PubMed:9829974, PubMed:9878049). Also mediates arginine transport in non-polarized cells, such as monocytes, and is essential for the correct function of these cells (PubMed:15280038, PubMed:31705628). The transport mechanism is electroneutral and operates with a stoichiometry of 1:1 (By similarity). In vitro, Na(+) and Li(+), but also H(+), are cotransported with the neutral amino acids (By similarity). {ECO:0000250|UniProtKB:Q9R0S5, ECO:0000269|PubMed:10080182, ECO:0000269|PubMed:10655553, ECO:0000269|PubMed:14603368, ECO:0000269|PubMed:15280038, ECO:0000269|PubMed:15756301, ECO:0000269|PubMed:15776427, ECO:0000269|PubMed:17329401, ECO:0000269|PubMed:31705628, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.
Q9UMS6 SYNPO2 S705 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UNE0 EDAR S297 ochoa Tumor necrosis factor receptor superfamily member EDAR (Anhidrotic ectodysplasin receptor 1) (Downless homolog) (EDA-A1 receptor) (Ectodermal dysplasia receptor) (Ectodysplasin-A receptor) Receptor for EDA isoform A1, but not for EDA isoform A2. Mediates the activation of NF-kappa-B and JNK. May promote caspase-independent cell death.
Q9UPN3 MACF1 S1367 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN3 MACF1 S3914 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPV0 CEP164 S1374 ochoa Centrosomal protein of 164 kDa (Cep164) Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}.
Q9UPW6 SATB2 S294 ochoa DNA-binding protein SATB2 (Special AT-rich sequence-binding protein 2) Binds to DNA, at nuclear matrix- or scaffold-associated regions. Thought to recognize the sugar-phosphate structure of double-stranded DNA. Transcription factor controlling nuclear gene expression, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin-loop remodeling. Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Required for the initiation of the upper-layer neurons (UL1) specific genetic program and for the inactivation of deep-layer neurons (DL) and UL2 specific genes, probably by modulating BCL11B expression. Repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex. May play an important role in palate formation. Acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation. {ECO:0000269|PubMed:14701874}.
Q9Y230 RUVBL2 S342 ochoa RuvB-like 2 (EC 3.6.4.12) (48 kDa TATA box-binding protein-interacting protein) (48 kDa TBP-interacting protein) (51 kDa erythrocyte cytosolic protein) (ECP-51) (INO80 complex subunit J) (Repressing pontin 52) (Reptin 52) (TIP49b) (TIP60-associated protein 54-beta) (TAP54-beta) Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:10428817, PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400 (PubMed:14966270). NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). May also inhibit the transcriptional activity of ATF2 (PubMed:11713276). Involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway where it negatively regulates expression of ER stress response genes (PubMed:25652260). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:10428817, ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11713276, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:25652260, ECO:0000269|PubMed:28561026, ECO:0000269|PubMed:33205750}.
Q9Y2H2 INPP5F S123 ochoa Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}.
Q9Y2I7 PIKFYVE S88 ochoa 1-phosphatidylinositol 3-phosphate 5-kinase (Phosphatidylinositol 3-phosphate 5-kinase) (EC 2.7.1.150) (FYVE finger-containing phosphoinositide kinase) (PIKfyve) (Phosphatidylinositol 3-phosphate 5-kinase type III) (PIPkin-III) (Type III PIP kinase) (Serine-protein kinase PIKFYVE) (EC 2.7.11.1) Dual specificity kinase implicated in myriad essential cellular processes such as maintenance of endomembrane homeostasis, and endocytic-vacuolar pathway, lysosomal trafficking, nuclear transport, stress- or hormone-induced signaling and cell cycle progression (PubMed:23086417). The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Sole enzyme to catalyze the phosphorylation of phosphatidylinositol 3-phosphate on the fifth hydroxyl of the myo-inositol ring, to form (PtdIns(3,5)P2) (PubMed:17556371). Also catalyzes the phosphorylation of phosphatidylinositol on the fifth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 5-phosphate (PtdIns(5)P) (PubMed:22621786). Has serine-protein kinase activity and is able to autophosphorylate and transphosphorylate. Autophosphorylation inhibits its own phosphatidylinositol 3-phosphate 5-kinase activity, stimulates FIG4 lipid phosphatase activity and down-regulates lipid product formation (PubMed:33098764). Involved in key endosome operations such as fission and fusion in the course of endosomal cargo transport (PubMed:22621786). Required for the maturation of early into late endosomes, phagosomes and lysosomes (PubMed:30612035). Regulates vacuole maturation and nutrient recovery following engulfment of macromolecules, initiates the redistribution of accumulated lysosomal contents back into the endosome network (PubMed:27623384). Critical regulator of the morphology, degradative activity, and protein turnover of the endolysosomal system in macrophages and platelets (By similarity). In neutrophils, critical to perform chemotaxis, generate ROS, and undertake phagosome fusion with lysosomes (PubMed:28779020). Plays a key role in the processing and presentation of antigens by major histocompatibility complex class II (MHC class II) mediated by CTSS (PubMed:30612035). Regulates melanosome biogenesis by controlling the delivery of proteins from the endosomal compartment to the melanosome (PubMed:29584722). Essential for systemic glucose homeostasis, mediates insulin-induced signals for endosome/actin remodeling in the course of GLUT4 translocation/glucose uptake activation (By similarity). Supports microtubule-based endosome-to-trans-Golgi network cargo transport, through association with SPAG9 and RABEPK (By similarity). Mediates EGFR trafficking to the nucleus (PubMed:17909029). {ECO:0000250|UniProtKB:Q9Z1T6, ECO:0000269|PubMed:17556371, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:22621786, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:28779020, ECO:0000269|PubMed:29584722, ECO:0000269|PubMed:30612035, ECO:0000269|PubMed:33098764, ECO:0000303|PubMed:23086417}.; FUNCTION: (Microbial infection) Required for cell entry of coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus EMC (HCoV-EMC) by endocytosis. {ECO:0000269|PubMed:32221306}.
Q9Y2U8 LEMD3 S402 ochoa|psp Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y4B5 MTCL1 S1278 ochoa Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}.
Q9Y4G8 RAPGEF2 S1080 ochoa Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}.
Q9Y4J8 DTNA S662 ochoa Dystrobrevin alpha (DTN-A) (Alpha-dystrobrevin) (Dystrophin-related protein 3) May be involved in the formation and stability of synapses as well as being involved in the clustering of nicotinic acetylcholine receptors.
Q9Y4W2 LAS1L S617 ochoa Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}.
Q9Y597 KCTD3 S711 ochoa BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}.
Q9Y6R1 SLC4A4 S245 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q5R3I4 TTC38 S362 Sugiyama Tetratricopeptide repeat protein 38 (TPR repeat protein 38) None
P15311 EZR Y85 Sugiyama Ezrin (Cytovillin) (Villin-2) (p81) Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis. {ECO:0000269|PubMed:17881735, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19111582}.
Q12879 GRIN2A S1232 ELM Glutamate receptor ionotropic, NMDA 2A (GluN2A) (Glutamate [NMDA] receptor subunit epsilon-1) (N-methyl D-aspartate receptor subtype 2A) (NMDAR2A) (NR2A) (hNR2A) Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:20890276, PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:28242877, PubMed:36117210, PubMed:38538865, PubMed:8768735). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the slow phase of excitatory postsynaptic current, long-term synaptic potentiation, and learning (By similarity). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:23933818, PubMed:23933819, PubMed:23933820, PubMed:24504326, PubMed:26875626, PubMed:26919761, PubMed:27288002, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28182669, PubMed:29644724, PubMed:38307912, PubMed:8768735). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761). Participates in the synaptic plasticity regulation through activation by the L-glutamate releaseed by BEST1, into the synaptic cleft, upon F2R/PAR-1 activation in astrocyte (By similarity). {ECO:0000250|UniProtKB:P35436, ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:20890276, ECO:0000269|PubMed:23933818, ECO:0000269|PubMed:23933819, ECO:0000269|PubMed:23933820, ECO:0000269|PubMed:24504326, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27288002, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28182669, ECO:0000269|PubMed:28242877, ECO:0000269|PubMed:29644724, ECO:0000269|PubMed:36117210, ECO:0000269|PubMed:38307912, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:8768735}.
P26038 MSN Y85 Sugiyama Moesin (Membrane-organizing extension spike protein) Ezrin-radixin-moesin (ERM) family protein that connects the actin cytoskeleton to the plasma membrane and thereby regulates the structure and function of specific domains of the cell cortex. Tethers actin filaments by oscillating between a resting and an activated state providing transient interactions between moesin and the actin cytoskeleton (PubMed:10212266). Once phosphorylated on its C-terminal threonine, moesin is activated leading to interaction with F-actin and cytoskeletal rearrangement (PubMed:10212266). These rearrangements regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction (PubMed:12387735, PubMed:15039356). The role of moesin is particularly important in immunity acting on both T and B-cells homeostasis and self-tolerance, regulating lymphocyte egress from lymphoid organs (PubMed:9298994, PubMed:9616160). Modulates phagolysosomal biogenesis in macrophages (By similarity). Also participates in immunologic synapse formation (PubMed:27405666). {ECO:0000250|UniProtKB:P26041, ECO:0000269|PubMed:10212266, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:15039356, ECO:0000269|PubMed:27405666, ECO:0000269|PubMed:9298994, ECO:0000269|PubMed:9616160}.
P52788 SMS S145 Sugiyama Spermine synthase (SPMSY) (EC 2.5.1.22) (Spermidine aminopropyltransferase) Catalyzes the production of spermine from spermidine and decarboxylated S-adenosylmethionine (dcSAM). {ECO:0000269|PubMed:18367445, ECO:0000269|PubMed:18550699, ECO:0000269|PubMed:23696453, ECO:0000269|PubMed:23897707}.
O60318 MCM3AP S508 SIGNOR Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}.
P51451 BLK S190 Sugiyama Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}.
P42261 GRIA1 S645 SIGNOR|iPTMNet Glutamate receptor 1 (GluR-1) (AMPA-selective glutamate receptor 1) (GluR-A) (GluR-K1) (Glutamate receptor ionotropic, AMPA 1) Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:1311100, PubMed:20805473, PubMed:21172611, PubMed:28628100, PubMed:35675825). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed:21172611). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity). {ECO:0000250|UniProtKB:P19490, ECO:0000269|PubMed:1311100, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611, ECO:0000269|PubMed:28628100, ECO:0000269|PubMed:35675825}.
Download
reactome_id name p -log10_p
R-HSA-212436 Generic Transcription Pathway 3.152360e-07 6.501
R-HSA-73857 RNA Polymerase II Transcription 9.847925e-07 6.007
R-HSA-74160 Gene expression (Transcription) 6.570425e-07 6.182
R-HSA-8878159 Transcriptional regulation by RUNX3 9.840985e-06 5.007
R-HSA-3247509 Chromatin modifying enzymes 1.568472e-05 4.805
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 5.187785e-05 4.285
R-HSA-453279 Mitotic G1 phase and G1/S transition 4.376716e-05 4.359
R-HSA-4839726 Chromatin organization 4.039163e-05 4.394
R-HSA-8986944 Transcriptional Regulation by MECP2 6.313748e-05 4.200
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 7.588172e-05 4.120
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 9.693288e-05 4.014
R-HSA-3214847 HATs acetylate histones 1.680275e-04 3.775
R-HSA-69206 G1/S Transition 1.988283e-04 3.702
R-HSA-1640170 Cell Cycle 2.767663e-04 3.558
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 2.603547e-04 3.584
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 3.223160e-04 3.492
R-HSA-69205 G1/S-Specific Transcription 3.787332e-04 3.422
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 5.004782e-04 3.301
R-HSA-8951911 RUNX3 regulates RUNX1-mediated transcription 5.842259e-04 3.233
R-HSA-68962 Activation of the pre-replicative complex 6.727390e-04 3.172
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 6.727390e-04 3.172
R-HSA-3700989 Transcriptional Regulation by TP53 6.346742e-04 3.197
R-HSA-69481 G2/M Checkpoints 6.909865e-04 3.161
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 7.807447e-04 3.107
R-HSA-1538133 G0 and Early G1 9.185249e-04 3.037
R-HSA-8878171 Transcriptional regulation by RUNX1 1.041522e-03 2.982
R-HSA-9022692 Regulation of MECP2 expression and activity 1.065394e-03 2.972
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 1.049609e-03 2.979
R-HSA-9700206 Signaling by ALK in cancer 1.140227e-03 2.943
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 1.140227e-03 2.943
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 1.340257e-03 2.873
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 1.618890e-03 2.791
R-HSA-8941333 RUNX2 regulates genes involved in differentiation of myeloid cells 1.859759e-03 2.731
R-HSA-8941326 RUNX2 regulates bone development 1.846044e-03 2.734
R-HSA-5688426 Deubiquitination 1.791395e-03 2.747
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 2.245000e-03 2.649
R-HSA-77042 Formation of editosomes by ADAR proteins 2.965192e-03 2.528
R-HSA-9022534 Loss of MECP2 binding ability to 5hmC-DNA 2.965192e-03 2.528
R-HSA-8939247 RUNX1 regulates transcription of genes involved in interleukin signaling 2.868379e-03 2.542
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 2.868379e-03 2.542
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 2.597941e-03 2.585
R-HSA-68949 Orc1 removal from chromatin 3.057824e-03 2.515
R-HSA-8878166 Transcriptional regulation by RUNX2 2.961356e-03 2.529
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 4.158892e-03 2.381
R-HSA-8941856 RUNX3 regulates NOTCH signaling 4.025949e-03 2.395
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 4.075812e-03 2.390
R-HSA-69620 Cell Cycle Checkpoints 4.305750e-03 2.366
R-HSA-69278 Cell Cycle, Mitotic 4.301227e-03 2.366
R-HSA-176187 Activation of ATR in response to replication stress 5.025349e-03 2.299
R-HSA-381038 XBP1(S) activates chaperone genes 5.235760e-03 2.281
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 5.539553e-03 2.257
R-HSA-164944 Nef and signal transduction 5.752101e-03 2.240
R-HSA-418885 DCC mediated attractive signaling 7.301158e-03 2.137
R-HSA-381070 IRE1alpha activates chaperones 7.865175e-03 2.104
R-HSA-9755511 KEAP1-NFE2L2 pathway 8.562017e-03 2.067
R-HSA-157118 Signaling by NOTCH 8.905608e-03 2.050
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 9.911474e-03 2.004
R-HSA-9675151 Disorders of Developmental Biology 1.024893e-02 1.989
R-HSA-381119 Unfolded Protein Response (UPR) 1.055127e-02 1.977
R-HSA-75064 mRNA Editing: A to I Conversion 1.125906e-02 1.948
R-HSA-6804754 Regulation of TP53 Expression 1.125906e-02 1.948
R-HSA-75102 C6 deamination of adenosine 1.125906e-02 1.948
R-HSA-5620971 Pyroptosis 1.209093e-02 1.918
R-HSA-5218859 Regulated Necrosis 1.183830e-02 1.927
R-HSA-9012852 Signaling by NOTCH3 1.378115e-02 1.861
R-HSA-9022538 Loss of MECP2 binding ability to 5mC-DNA 1.714247e-02 1.766
R-HSA-9709603 Impaired BRCA2 binding to PALB2 1.595631e-02 1.797
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 1.822426e-02 1.739
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.822426e-02 1.739
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.822426e-02 1.739
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 1.822426e-02 1.739
R-HSA-69052 Switching of origins to a post-replicative state 1.668007e-02 1.778
R-HSA-373752 Netrin-1 signaling 1.852366e-02 1.732
R-HSA-9013694 Signaling by NOTCH4 1.779774e-02 1.750
R-HSA-9758941 Gastrulation 1.746450e-02 1.758
R-HSA-373753 Nephrin family interactions 1.822426e-02 1.739
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 1.862972e-02 1.730
R-HSA-1980143 Signaling by NOTCH1 2.019250e-02 1.695
R-HSA-9930044 Nuclear RNA decay 2.051043e-02 1.688
R-HSA-1912408 Pre-NOTCH Transcription and Translation 1.971879e-02 1.705
R-HSA-5689603 UCH proteinases 2.019250e-02 1.695
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 2.051043e-02 1.688
R-HSA-5357801 Programmed Cell Death 1.939389e-02 1.712
R-HSA-9793380 Formation of paraxial mesoderm 2.139268e-02 1.670
R-HSA-9022927 MECP2 regulates transcription of genes involved in GABA signaling 2.405610e-02 1.619
R-HSA-8952158 RUNX3 regulates BCL2L11 (BIM) transcription 2.405610e-02 1.619
R-HSA-6807070 PTEN Regulation 2.362215e-02 1.627
R-HSA-69002 DNA Replication Pre-Initiation 2.424970e-02 1.615
R-HSA-9711123 Cellular response to chemical stress 2.304512e-02 1.637
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 2.540699e-02 1.595
R-HSA-350054 Notch-HLH transcription pathway 2.618502e-02 1.582
R-HSA-9697154 Disorders of Nervous System Development 2.642043e-02 1.578
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 2.642043e-02 1.578
R-HSA-9005895 Pervasive developmental disorders 2.642043e-02 1.578
R-HSA-9796292 Formation of axial mesoderm 3.079868e-02 1.511
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 2.923465e-02 1.534
R-HSA-8941284 RUNX2 regulates chondrocyte maturation 3.191143e-02 1.496
R-HSA-9022535 Loss of phosphorylation of MECP2 at T308 3.191143e-02 1.496
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 3.205621e-02 1.494
R-HSA-5689896 Ovarian tumor domain proteases 3.205621e-02 1.494
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 3.206754e-02 1.494
R-HSA-9700649 Drug resistance of ALK mutants 3.878683e-02 1.411
R-HSA-9717323 ceritinib-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9723905 Loss of function of TP53 in cancer due to loss of tetramerization ability 3.878683e-02 1.411
R-HSA-9717319 brigatinib-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9717316 alectinib-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9717329 lorlatinib-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9717264 ASP-3026-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9717326 crizotinib-resistant ALK mutants 3.878683e-02 1.411
R-HSA-9717301 NVP-TAE684-resistant ALK mutants 3.878683e-02 1.411
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 3.878683e-02 1.411
R-HSA-9723907 Loss of Function of TP53 in Cancer 3.878683e-02 1.411
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 3.594068e-02 1.444
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 3.550564e-02 1.450
R-HSA-212165 Epigenetic regulation of gene expression 3.505921e-02 1.455
R-HSA-68689 CDC6 association with the ORC:origin complex 4.062525e-02 1.391
R-HSA-9764302 Regulation of CDH19 Expression and Function 4.062525e-02 1.391
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 4.062525e-02 1.391
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 4.605294e-02 1.337
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 4.408060e-02 1.356
R-HSA-5693532 DNA Double-Strand Break Repair 4.252840e-02 1.371
R-HSA-9945266 Differentiation of T cells 4.605294e-02 1.337
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 4.605294e-02 1.337
R-HSA-6804116 TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 4.605294e-02 1.337
R-HSA-9018519 Estrogen-dependent gene expression 4.401751e-02 1.356
R-HSA-8953897 Cellular responses to stimuli 4.454658e-02 1.351
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 4.605294e-02 1.337
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 4.587326e-02 1.338
R-HSA-193648 NRAGE signals death through JNK 4.383384e-02 1.358
R-HSA-9948011 CASP5 inflammasome assembly 7.607151e-02 1.119
R-HSA-9673013 Diseases of Telomere Maintenance 7.607151e-02 1.119
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 7.607151e-02 1.119
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 7.607151e-02 1.119
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 7.607151e-02 1.119
R-HSA-9699150 Defective DNA double strand break response due to BARD1 loss of function 7.607151e-02 1.119
R-HSA-9663199 Defective DNA double strand break response due to BRCA1 loss of function 7.607151e-02 1.119
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 7.607151e-02 1.119
R-HSA-3304347 Loss of Function of SMAD4 in Cancer 1.119121e-01 0.951
R-HSA-3311021 SMAD4 MH2 Domain Mutants in Cancer 1.119121e-01 0.951
R-HSA-3315487 SMAD2/3 MH2 Domain Mutants in Cancer 1.119121e-01 0.951
R-HSA-5619054 Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... 1.119121e-01 0.951
R-HSA-5674404 PTEN Loss of Function in Cancer 1.119121e-01 0.951
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 1.463645e-01 0.835
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 1.463645e-01 0.835
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 1.463645e-01 0.835
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 1.463645e-01 0.835
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 1.463645e-01 0.835
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 1.463645e-01 0.835
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 1.463645e-01 0.835
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 1.463645e-01 0.835
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 1.463645e-01 0.835
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 1.463645e-01 0.835
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 1.463645e-01 0.835
R-HSA-9022707 MECP2 regulates transcription factors 6.032032e-02 1.220
R-HSA-418886 Netrin mediated repulsion signals 6.032032e-02 1.220
R-HSA-8948747 Regulation of PTEN localization 6.032032e-02 1.220
R-HSA-9960519 CASP4-mediated substrate cleavage 1.794824e-01 0.746
R-HSA-844455 The NLRP1 inflammasome 1.794824e-01 0.746
R-HSA-9960525 CASP5-mediated substrate cleavage 1.794824e-01 0.746
R-HSA-4717374 Defective DPM1 causes DPM1-CDG 1.794824e-01 0.746
R-HSA-5660862 Defective SLC7A7 causes lysinuric protein intolerance (LPI) 1.794824e-01 0.746
R-HSA-4719360 Defective DPM3 causes DPM3-CDG 1.794824e-01 0.746
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 1.794824e-01 0.746
R-HSA-4719377 Defective DPM2 causes DPM2-CDG 1.794824e-01 0.746
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 1.794824e-01 0.746
R-HSA-196025 Formation of annular gap junctions 7.115920e-02 1.148
R-HSA-190873 Gap junction degradation 8.257136e-02 1.083
R-HSA-9700645 ALK mutants bind TKIs 8.257136e-02 1.083
R-HSA-5083630 Defective LFNG causes SCDO3 2.113174e-01 0.675
R-HSA-2644605 FBXW7 Mutants and NOTCH1 in Cancer 2.113174e-01 0.675
R-HSA-2644607 Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling 2.113174e-01 0.675
R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 9.449615e-02 1.025
R-HSA-77595 Processing of Intronless Pre-mRNAs 5.182529e-02 1.285
R-HSA-8941332 RUNX2 regulates genes involved in cell migration 1.068768e-01 0.971
R-HSA-4839744 Signaling by APC mutants 1.068768e-01 0.971
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 1.068768e-01 0.971
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 1.068768e-01 0.971
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 1.068768e-01 0.971
R-HSA-399710 Activation of AMPA receptors 2.419191e-01 0.616
R-HSA-111463 SMAC (DIABLO) binds to IAPs 2.419191e-01 0.616
R-HSA-111464 SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes 2.419191e-01 0.616
R-HSA-428540 Activation of RAC1 1.196601e-01 0.922
R-HSA-5339716 Signaling by GSK3beta mutants 1.196601e-01 0.922
R-HSA-8951936 RUNX3 regulates p14-ARF 1.327964e-01 0.877
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 1.327964e-01 0.877
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 1.327964e-01 0.877
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 1.327964e-01 0.877
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 1.327964e-01 0.877
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 1.327964e-01 0.877
R-HSA-111469 SMAC, XIAP-regulated apoptotic response 2.713352e-01 0.566
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 2.713352e-01 0.566
R-HSA-2660825 Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant 2.713352e-01 0.566
R-HSA-2660826 Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant 2.713352e-01 0.566
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 2.713352e-01 0.566
R-HSA-182218 Nef Mediated CD8 Down-regulation 2.713352e-01 0.566
R-HSA-111459 Activation of caspases through apoptosome-mediated cleavage 2.713352e-01 0.566
R-HSA-170660 Adenylate cyclase activating pathway 1.462392e-01 0.835
R-HSA-9686114 Non-canonical inflammasome activation 1.599449e-01 0.796
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 2.996115e-01 0.523
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 2.996115e-01 0.523
R-HSA-6803529 FGFR2 alternative splicing 1.009655e-01 0.996
R-HSA-170670 Adenylate cyclase inhibitory pathway 1.738732e-01 0.760
R-HSA-3270619 IRF3-mediated induction of type I IFN 1.738732e-01 0.760
R-HSA-196299 Beta-catenin phosphorylation cascade 1.738732e-01 0.760
R-HSA-73780 RNA Polymerase III Chain Elongation 1.738732e-01 0.760
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 7.089167e-02 1.149
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 1.879861e-01 0.726
R-HSA-9708530 Regulation of BACH1 activity 1.879861e-01 0.726
R-HSA-8949275 RUNX3 Regulates Immune Response and Cell Migration 3.267923e-01 0.486
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 3.267923e-01 0.486
R-HSA-163767 PP2A-mediated dephosphorylation of key metabolic factors 3.267923e-01 0.486
R-HSA-1912399 Pre-NOTCH Processing in the Endoplasmic Reticulum 3.267923e-01 0.486
R-HSA-72731 Recycling of eIF2:GDP 3.267923e-01 0.486
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 1.349319e-01 0.870
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 6.544835e-02 1.184
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 1.439702e-01 0.842
R-HSA-9768778 Regulation of NPAS4 mRNA translation 3.529198e-01 0.452
R-HSA-2644603 Signaling by NOTCH1 in Cancer 5.553684e-02 1.255
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 5.553684e-02 1.255
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 5.553684e-02 1.255
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 5.553684e-02 1.255
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 5.553684e-02 1.255
R-HSA-8943724 Regulation of PTEN gene transcription 5.553684e-02 1.255
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 1.532018e-01 0.815
R-HSA-113418 Formation of the Early Elongation Complex 1.532018e-01 0.815
R-HSA-8939902 Regulation of RUNX2 expression and activity 5.872983e-02 1.231
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 2.310930e-01 0.636
R-HSA-418217 G beta:gamma signalling through PLC beta 2.310930e-01 0.636
R-HSA-73980 RNA Polymerase III Transcription Termination 2.310930e-01 0.636
R-HSA-9709570 Impaired BRCA2 binding to RAD51 1.626140e-01 0.789
R-HSA-8941858 Regulation of RUNX3 expression and activity 1.181297e-01 0.928
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 1.181297e-01 0.928
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 6.543835e-02 1.184
R-HSA-380259 Loss of Nlp from mitotic centrosomes 6.543835e-02 1.184
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 2.456163e-01 0.610
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 1.316412e-01 0.881
R-HSA-167161 HIV Transcription Initiation 1.316412e-01 0.881
R-HSA-75953 RNA Polymerase II Transcription Initiation 1.316412e-01 0.881
R-HSA-8854518 AURKA Activation by TPX2 7.630688e-02 1.117
R-HSA-72649 Translation initiation complex formation 1.021906e-01 0.991
R-HSA-389513 Co-inhibition by CTLA4 2.601715e-01 0.585
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 8.408648e-02 1.075
R-HSA-73776 RNA Polymerase II Promoter Escape 1.457550e-01 0.836
R-HSA-72702 Ribosomal scanning and start codon recognition 1.126991e-01 0.948
R-HSA-9948001 CASP4 inflammasome assembly 4.021765e-01 0.396
R-HSA-68952 DNA replication initiation 4.021765e-01 0.396
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 1.604271e-01 0.795
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 1.053679e-01 0.977
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 2.892819e-01 0.539
R-HSA-380287 Centrosome maturation 1.145937e-01 0.941
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.833817e-01 0.737
R-HSA-8943723 Regulation of PTEN mRNA translation 3.182513e-01 0.497
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 3.182513e-01 0.497
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 3.182513e-01 0.497
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 1.658282e-01 0.780
R-HSA-112382 Formation of RNA Pol II elongation complex 2.155075e-01 0.667
R-HSA-75955 RNA Polymerase II Transcription Elongation 2.237706e-01 0.650
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 2.321144e-01 0.634
R-HSA-141424 Amplification of signal from the kinetochores 1.720139e-01 0.764
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 1.720139e-01 0.764
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 2.852277e-01 0.545
R-HSA-8874081 MET activates PTK2 signaling 3.611262e-01 0.442
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 1.894312e-01 0.723
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 3.752028e-01 0.426
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 3.752028e-01 0.426
R-HSA-977444 GABA B receptor activation 3.173304e-01 0.498
R-HSA-991365 Activation of GABAB receptors 3.173304e-01 0.498
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 3.173304e-01 0.498
R-HSA-167287 HIV elongation arrest and recovery 3.891505e-01 0.410
R-HSA-167290 Pausing and recovery of HIV elongation 3.891505e-01 0.410
R-HSA-383280 Nuclear Receptor transcription pathway 2.558868e-01 0.592
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 4.029579e-01 0.395
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 3.494841e-01 0.457
R-HSA-774815 Nucleosome assembly 3.494841e-01 0.457
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 3.601747e-01 0.443
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 3.395668e-01 0.469
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 3.624980e-01 0.441
R-HSA-72689 Formation of a pool of free 40S subunits 4.089610e-01 0.388
R-HSA-1989781 PPARA activates gene expression 3.778545e-01 0.423
R-HSA-167172 Transcription of the HIV genome 1.854161e-01 0.732
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 3.896938e-01 0.409
R-HSA-167169 HIV Transcription Elongation 2.852277e-01 0.545
R-HSA-8948751 Regulation of PTEN stability and activity 9.712832e-02 1.013
R-HSA-72086 mRNA Capping 4.029579e-01 0.395
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 1.462392e-01 0.835
R-HSA-5696395 Formation of Incision Complex in GG-NER 1.181297e-01 0.928
R-HSA-9948299 Ribosome-associated quality control 1.656550e-01 0.781
R-HSA-69239 Synthesis of DNA 4.999513e-02 1.301
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 3.611262e-01 0.442
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 1.777442e-01 0.750
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 3.267923e-01 0.486
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 8.160988e-02 1.088
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 2.852277e-01 0.545
R-HSA-9924644 Developmental Lineages of the Mammary Gland 3.896887e-01 0.409
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 1.599449e-01 0.796
R-HSA-437239 Recycling pathway of L1 3.708390e-01 0.431
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 6.036255e-02 1.219
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 4.089610e-01 0.388
R-HSA-5696398 Nucleotide Excision Repair 3.188877e-01 0.496
R-HSA-195253 Degradation of beta-catenin by the destruction complex 9.228818e-02 1.035
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 1.532548e-01 0.815
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 2.490205e-01 0.604
R-HSA-167590 Nef Mediated CD4 Down-regulation 6.032032e-02 1.220
R-HSA-448706 Interleukin-1 processing 3.780348e-01 0.422
R-HSA-69190 DNA strand elongation 1.918087e-01 0.717
R-HSA-9762292 Regulation of CDH11 function 4.021765e-01 0.396
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 2.155075e-01 0.667
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 2.745799e-01 0.561
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 3.752028e-01 0.426
R-HSA-1234174 Cellular response to hypoxia 3.275738e-01 0.485
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 8.160988e-02 1.088
R-HSA-9690406 Transcriptional regulation of testis differentiation 2.022485e-01 0.694
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 1.918087e-01 0.717
R-HSA-72737 Cap-dependent Translation Initiation 4.091307e-01 0.388
R-HSA-72613 Eukaryotic Translation Initiation 4.091307e-01 0.388
R-HSA-418889 Caspase activation via Dependence Receptors in the absence of ligand 8.257136e-02 1.083
R-HSA-8939242 RUNX1 regulates transcription of genes involved in differentiation of keratinocy... 3.529198e-01 0.452
R-HSA-73863 RNA Polymerase I Transcription Termination 3.752028e-01 0.426
R-HSA-1912422 Pre-NOTCH Expression and Processing 6.379461e-02 1.195
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 1.293874e-01 0.888
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 6.556372e-02 1.183
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 3.037939e-01 0.517
R-HSA-9851151 MDK and PTN in ALK signaling 2.113174e-01 0.675
R-HSA-674695 RNA Polymerase II Pre-transcription Events 1.099310e-01 0.959
R-HSA-5693607 Processing of DNA double-strand break ends 1.445801e-01 0.840
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 2.745799e-01 0.561
R-HSA-68867 Assembly of the pre-replicative complex 5.510134e-02 1.259
R-HSA-5693537 Resolution of D-Loop Structures 7.615541e-02 1.118
R-HSA-201556 Signaling by ALK 1.116129e-01 0.952
R-HSA-1257604 PIP3 activates AKT signaling 1.887780e-01 0.724
R-HSA-9907900 Proteasome assembly 3.387746e-01 0.470
R-HSA-5633007 Regulation of TP53 Activity 5.422196e-02 1.266
R-HSA-75072 mRNA Editing 8.257136e-02 1.083
R-HSA-1606341 IRF3 mediated activation of type 1 IFN 2.419191e-01 0.616
R-HSA-8849472 PTK6 Down-Regulation 2.419191e-01 0.616
R-HSA-937041 IKK complex recruitment mediated by RIP1 7.109468e-02 1.148
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 1.599449e-01 0.796
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 7.089167e-02 1.149
R-HSA-8849473 PTK6 Expression 3.267923e-01 0.486
R-HSA-6804760 Regulation of TP53 Activity through Methylation 2.310930e-01 0.636
R-HSA-5362768 Hh mutants are degraded by ERAD 1.248075e-01 0.904
R-HSA-2025928 Calcineurin activates NFAT 3.780348e-01 0.422
R-HSA-204626 Hypusine synthesis from eIF5A-lysine 3.780348e-01 0.422
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 2.018185e-01 0.695
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 2.534216e-01 0.596
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 2.073311e-01 0.683
R-HSA-5674135 MAP2K and MAPK activation 3.066123e-01 0.513
R-HSA-73762 RNA Polymerase I Transcription Initiation 3.173304e-01 0.498
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 3.395668e-01 0.469
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 3.395668e-01 0.469
R-HSA-69306 DNA Replication 1.453101e-01 0.838
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 2.349394e-01 0.629
R-HSA-389356 Co-stimulation by CD28 3.814699e-01 0.419
R-HSA-9839394 TGFBR3 expression 3.469328e-01 0.460
R-HSA-2467813 Separation of Sister Chromatids 1.892017e-01 0.723
R-HSA-5693606 DNA Double Strand Break Response 1.787943e-01 0.748
R-HSA-69560 Transcriptional activation of p53 responsive genes 2.113174e-01 0.675
R-HSA-69895 Transcriptional activation of cell cycle inhibitor p21 2.113174e-01 0.675
R-HSA-8951430 RUNX3 regulates WNT signaling 3.267923e-01 0.486
R-HSA-156584 Cytosolic sulfonation of small molecules 8.739811e-02 1.058
R-HSA-450341 Activation of the AP-1 family of transcription factors 3.780348e-01 0.422
R-HSA-428542 Regulation of commissural axon pathfinding by SLIT and ROBO 3.780348e-01 0.422
R-HSA-5221030 TET1,2,3 and TDG demethylate DNA 4.021765e-01 0.396
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 3.037939e-01 0.517
R-HSA-5693538 Homology Directed Repair 8.268058e-02 1.083
R-HSA-9707616 Heme signaling 3.010724e-01 0.521
R-HSA-5685942 HDR through Homologous Recombination (HRR) 3.453212e-01 0.462
R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 1.462392e-01 0.835
R-HSA-5387390 Hh mutants abrogate ligand secretion 1.457550e-01 0.836
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 2.018185e-01 0.695
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 2.959084e-01 0.529
R-HSA-9656223 Signaling by RAF1 mutants 3.066123e-01 0.513
R-HSA-9649948 Signaling downstream of RAS mutants 3.601747e-01 0.443
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 3.601747e-01 0.443
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 3.601747e-01 0.443
R-HSA-69618 Mitotic Spindle Checkpoint 2.782012e-01 0.556
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 1.721942e-01 0.764
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 5.182529e-02 1.285
R-HSA-6802957 Oncogenic MAPK signaling 3.085265e-01 0.511
R-HSA-397795 G-protein beta:gamma signalling 2.018185e-01 0.695
R-HSA-5628897 TP53 Regulates Metabolic Genes 2.465901e-01 0.608
R-HSA-9006925 Intracellular signaling by second messengers 1.940435e-01 0.712
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 8.725166e-02 1.059
R-HSA-69242 S Phase 6.959343e-02 1.157
R-HSA-446343 Localization of the PINCH-ILK-PARVIN complex to focal adhesions 1.463645e-01 0.835
R-HSA-8985801 Regulation of cortical dendrite branching 1.463645e-01 0.835
R-HSA-844623 The IPAF inflammasome 1.794824e-01 0.746
R-HSA-176974 Unwinding of DNA 8.257136e-02 1.083
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 1.196601e-01 0.922
R-HSA-4839748 Signaling by AMER1 mutants 1.196601e-01 0.922
R-HSA-4839735 Signaling by AXIN mutants 1.196601e-01 0.922
R-HSA-8849932 Synaptic adhesion-like molecules 6.435543e-02 1.191
R-HSA-162699 Synthesis of dolichyl-phosphate mannose 2.713352e-01 0.566
R-HSA-3304349 Loss of Function of SMAD2/3 in Cancer 2.713352e-01 0.566
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 1.174860e-01 0.930
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 8.160988e-02 1.088
R-HSA-3214858 RMTs methylate histone arginines 5.764336e-02 1.239
R-HSA-193634 Axonal growth inhibition (RHOA activation) 3.529198e-01 0.452
R-HSA-164378 PKA activation in glucagon signalling 2.310930e-01 0.636
R-HSA-500657 Presynaptic function of Kainate receptors 2.310930e-01 0.636
R-HSA-113510 E2F mediated regulation of DNA replication 2.456163e-01 0.610
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 1.819299e-01 0.740
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 4.021765e-01 0.396
R-HSA-5678895 Defective CFTR causes cystic fibrosis 1.604271e-01 0.795
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 2.892819e-01 0.539
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 3.037939e-01 0.517
R-HSA-9909396 Circadian clock 7.334943e-02 1.135
R-HSA-9764561 Regulation of CDH1 Function 2.575712e-01 0.589
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 3.601747e-01 0.443
R-HSA-388841 Regulation of T cell activation by CD28 family 2.095216e-01 0.679
R-HSA-6806003 Regulation of TP53 Expression and Degradation 2.745799e-01 0.561
R-HSA-9843745 Adipogenesis 1.332902e-01 0.875
R-HSA-9824272 Somitogenesis 6.147543e-02 1.211
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 2.166276e-01 0.664
R-HSA-69541 Stabilization of p53 1.116129e-01 0.952
R-HSA-76046 RNA Polymerase III Transcription Initiation 4.166151e-01 0.380
R-HSA-389948 Co-inhibition by PD-1 1.641530e-01 0.785
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 2.018185e-01 0.695
R-HSA-381042 PERK regulates gene expression 2.325153e-01 0.634
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 1.912623e-01 0.718
R-HSA-69563 p53-Dependent G1 DNA Damage Response 1.912623e-01 0.718
R-HSA-8939211 ESR-mediated signaling 2.230185e-01 0.652
R-HSA-9909648 Regulation of PD-L1(CD274) expression 1.412964e-01 0.850
R-HSA-6802949 Signaling by RAS mutants 3.601747e-01 0.443
R-HSA-4420097 VEGFA-VEGFR2 Pathway 1.435140e-01 0.843
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 2.166276e-01 0.664
R-HSA-9759475 Regulation of CDH11 Expression and Function 4.029579e-01 0.395
R-HSA-2559580 Oxidative Stress Induced Senescence 2.916407e-01 0.535
R-HSA-5676594 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway 1.462392e-01 0.835
R-HSA-202433 Generation of second messenger molecules 2.852277e-01 0.545
R-HSA-201451 Signaling by BMP 3.752028e-01 0.426
R-HSA-69231 Cyclin D associated events in G1 3.387746e-01 0.470
R-HSA-69236 G1 Phase 3.387746e-01 0.470
R-HSA-194138 Signaling by VEGF 1.944439e-01 0.711
R-HSA-139915 Activation of PUMA and translocation to mitochondria 6.032032e-02 1.220
R-HSA-111448 Activation of NOXA and translocation to mitochondria 2.113174e-01 0.675
R-HSA-9823739 Formation of the anterior neural plate 1.738732e-01 0.760
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 8.160988e-02 1.088
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 1.052620e-01 0.978
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 3.037939e-01 0.517
R-HSA-73894 DNA Repair 1.802642e-01 0.744
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 1.462392e-01 0.835
R-HSA-70635 Urea cycle 1.349319e-01 0.870
R-HSA-193697 p75NTR regulates axonogenesis 3.780348e-01 0.422
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 2.155075e-01 0.667
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 2.119473e-01 0.674
R-HSA-73886 Chromosome Maintenance 1.704180e-01 0.768
R-HSA-202403 TCR signaling 2.122201e-01 0.673
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 9.308350e-02 1.031
R-HSA-9758274 Regulation of NF-kappa B signaling 1.879861e-01 0.726
R-HSA-9768759 Regulation of NPAS4 gene expression 2.166276e-01 0.664
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 1.819299e-01 0.740
R-HSA-6794362 Protein-protein interactions at synapses 3.085265e-01 0.511
R-HSA-162906 HIV Infection 2.764165e-01 0.558
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 3.611262e-01 0.442
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 3.182513e-01 0.497
R-HSA-5357905 Regulation of TNFR1 signaling 3.601747e-01 0.443
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 1.553018e-01 0.809
R-HSA-376172 DSCAM interactions 1.463645e-01 0.835
R-HSA-9840373 Cellular response to mitochondrial stress 8.257136e-02 1.083
R-HSA-5357786 TNFR1-induced proapoptotic signaling 8.546989e-02 1.068
R-HSA-180024 DARPP-32 events 5.180069e-02 1.286
R-HSA-8857538 PTK6 promotes HIF1A stabilization 2.996115e-01 0.523
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 1.738732e-01 0.760
R-HSA-9733709 Cardiogenesis 7.089167e-02 1.149
R-HSA-434316 Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion 1.879861e-01 0.726
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 2.022485e-01 0.694
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 2.310930e-01 0.636
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 7.630688e-02 1.117
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 1.918087e-01 0.717
R-HSA-426048 Arachidonate production from DAG 4.021765e-01 0.396
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 1.237046e-01 0.908
R-HSA-69473 G2/M DNA damage checkpoint 1.099310e-01 0.959
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 2.221834e-01 0.653
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.325153e-01 0.634
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 2.325153e-01 0.634
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 1.607906e-01 0.794
R-HSA-5689901 Metalloprotease DUBs 3.611262e-01 0.442
R-HSA-9932298 Degradation of CRY and PER proteins 3.066123e-01 0.513
R-HSA-5610780 Degradation of GLI1 by the proteasome 3.066123e-01 0.513
R-HSA-389357 CD28 dependent PI3K/Akt signaling 3.752028e-01 0.426
R-HSA-69615 G1/S DNA Damage Checkpoints 3.098835e-01 0.509
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 3.708390e-01 0.431
R-HSA-68877 Mitotic Prometaphase 1.403696e-01 0.853
R-HSA-112040 G-protein mediated events 3.453212e-01 0.462
R-HSA-68882 Mitotic Anaphase 3.338677e-01 0.476
R-HSA-8853884 Transcriptional Regulation by VENTX 2.959084e-01 0.529
R-HSA-8953750 Transcriptional Regulation by E2F6 2.745799e-01 0.561
R-HSA-2555396 Mitotic Metaphase and Anaphase 3.387423e-01 0.470
R-HSA-9766229 Degradation of CDH1 1.912623e-01 0.718
R-HSA-429914 Deadenylation-dependent mRNA decay 2.748390e-01 0.561
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 3.010724e-01 0.521
R-HSA-1251985 Nuclear signaling by ERBB4 1.181297e-01 0.928
R-HSA-9860931 Response of endothelial cells to shear stress 1.746195e-01 0.758
R-HSA-111885 Opioid Signalling 8.994655e-02 1.046
R-HSA-195721 Signaling by WNT 2.813217e-01 0.551
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 5.011936e-02 1.300
R-HSA-9818749 Regulation of NFE2L2 gene expression 2.996115e-01 0.523
R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 2.996115e-01 0.523
R-HSA-399997 Acetylcholine regulates insulin secretion 2.022485e-01 0.694
R-HSA-622312 Inflammasomes 1.532018e-01 0.815
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 2.325153e-01 0.634
R-HSA-9830674 Formation of the ureteric bud 3.182513e-01 0.497
R-HSA-4641258 Degradation of DVL 2.534216e-01 0.596
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 2.745799e-01 0.561
R-HSA-9620244 Long-term potentiation 3.469328e-01 0.460
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 3.752028e-01 0.426
R-HSA-376176 Signaling by ROBO receptors 1.749302e-01 0.757
R-HSA-2262752 Cellular responses to stress 6.821201e-02 1.166
R-HSA-3214841 PKMTs methylate histone lysines 1.248075e-01 0.904
R-HSA-8983711 OAS antiviral response 1.327964e-01 0.877
R-HSA-5358346 Hedgehog ligand biogenesis 2.073311e-01 0.683
R-HSA-1834941 STING mediated induction of host immune responses 2.456163e-01 0.610
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 3.611262e-01 0.442
R-HSA-382556 ABC-family proteins mediated transport 2.782012e-01 0.556
R-HSA-844615 The AIM2 inflammasome 1.463645e-01 0.835
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 8.257136e-02 1.083
R-HSA-9707587 Regulation of HMOX1 expression and activity 2.113174e-01 0.675
R-HSA-9706374 FLT3 signaling through SRC family kinases 2.113174e-01 0.675
R-HSA-444821 Relaxin receptors 2.713352e-01 0.566
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 1.462392e-01 0.835
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 3.267923e-01 0.486
R-HSA-163615 PKA activation 2.310930e-01 0.636
R-HSA-180585 Vif-mediated degradation of APOBEC3G 2.429317e-01 0.615
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 2.429317e-01 0.615
R-HSA-400451 Free fatty acids regulate insulin secretion 3.182513e-01 0.497
R-HSA-4641257 Degradation of AXIN 2.534216e-01 0.596
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 2.534216e-01 0.596
R-HSA-429947 Deadenylation of mRNA 3.326363e-01 0.478
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 4.029579e-01 0.395
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 3.601425e-01 0.444
R-HSA-9855142 Cellular responses to mechanical stimuli 2.349394e-01 0.629
R-HSA-166166 MyD88-independent TLR4 cascade 5.662310e-02 1.247
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 3.719648e-01 0.429
R-HSA-69275 G2/M Transition 6.794114e-02 1.168
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 5.662310e-02 1.247
R-HSA-9819196 Zygotic genome activation (ZGA) 8.546989e-02 1.068
R-HSA-6783589 Interleukin-6 family signaling 3.326363e-01 0.478
R-HSA-453274 Mitotic G2-G2/M phases 7.200024e-02 1.143
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 1.260996e-01 0.899
R-HSA-201681 TCF dependent signaling in response to WNT 2.814270e-01 0.551
R-HSA-8876725 Protein methylation 1.738732e-01 0.760
R-HSA-9768777 Regulation of NPAS4 gene transcription 3.780348e-01 0.422
R-HSA-4086398 Ca2+ pathway 3.985262e-01 0.400
R-HSA-5617833 Cilium Assembly 2.103341e-01 0.677
R-HSA-68886 M Phase 3.339724e-01 0.476
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 6.895392e-02 1.161
R-HSA-3000171 Non-integrin membrane-ECM interactions 4.161318e-01 0.381
R-HSA-1500931 Cell-Cell communication 3.541359e-01 0.451
R-HSA-114452 Activation of BH3-only proteins 4.166151e-01 0.380
R-HSA-1852241 Organelle biogenesis and maintenance 2.758973e-01 0.559
R-HSA-9675135 Diseases of DNA repair 1.679582e-01 0.775
R-HSA-162909 Host Interactions of HIV factors 3.071657e-01 0.513
R-HSA-1483255 PI Metabolism 2.916407e-01 0.535
R-HSA-73887 Death Receptor Signaling 1.490640e-01 0.827
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 2.419191e-01 0.616
R-HSA-446353 Cell-extracellular matrix interactions 1.738732e-01 0.760
R-HSA-180534 Vpu mediated degradation of CD4 2.119473e-01 0.674
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 2.221834e-01 0.653
R-HSA-169911 Regulation of Apoptosis 2.325153e-01 0.634
R-HSA-9932444 ATP-dependent chromatin remodelers 3.469328e-01 0.460
R-HSA-9932451 SWI/SNF chromatin remodelers 3.469328e-01 0.460
R-HSA-5689880 Ub-specific processing proteases 8.368289e-02 1.077
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 3.066123e-01 0.513
R-HSA-5610783 Degradation of GLI2 by the proteasome 3.066123e-01 0.513
R-HSA-5658442 Regulation of RAS by GAPs 4.026045e-01 0.395
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 3.719648e-01 0.429
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 3.464933e-01 0.460
R-HSA-109581 Apoptosis 5.792578e-02 1.237
R-HSA-3858494 Beta-catenin independent WNT signaling 2.626279e-01 0.581
R-HSA-1236394 Signaling by ERBB4 4.073419e-01 0.390
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 3.161827e-01 0.500
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 3.098835e-01 0.509
R-HSA-8848021 Signaling by PTK6 3.098835e-01 0.509
R-HSA-8852135 Protein ubiquitination 4.161318e-01 0.381
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 1.738732e-01 0.760
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 3.611262e-01 0.442
R-HSA-9007101 Rab regulation of trafficking 2.643890e-01 0.578
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 3.719429e-01 0.430
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 2.155016e-01 0.667
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 1.462392e-01 0.835
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 8.160988e-02 1.088
R-HSA-9627069 Regulation of the apoptosome activity 4.021765e-01 0.396
R-HSA-5689877 Josephin domain DUBs 4.021765e-01 0.396
R-HSA-9604323 Negative regulation of NOTCH4 signaling 2.852277e-01 0.545
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 2.959084e-01 0.529
R-HSA-451326 Activation of kainate receptors upon glutamate binding 3.891505e-01 0.410
R-HSA-909733 Interferon alpha/beta signaling 1.435140e-01 0.843
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 3.752735e-01 0.426
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 2.127482e-01 0.672
R-HSA-163765 ChREBP activates metabolic gene expression 1.068768e-01 0.971
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 3.896887e-01 0.409
R-HSA-9614085 FOXO-mediated transcription 2.715362e-01 0.566
R-HSA-163685 Integration of energy metabolism 2.626279e-01 0.581
R-HSA-69202 Cyclin E associated events during G1/S transition 1.989203e-01 0.701
R-HSA-9833482 PKR-mediated signaling 2.707210e-01 0.567
R-HSA-9833110 RSV-host interactions 1.798062e-01 0.745
R-HSA-111931 PKA-mediated phosphorylation of CREB 2.747341e-01 0.561
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 2.745799e-01 0.561
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 3.752028e-01 0.426
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 3.387746e-01 0.470
R-HSA-4608870 Asymmetric localization of PCP proteins 3.494841e-01 0.457
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 3.542041e-01 0.451
R-HSA-73933 Resolution of Abasic Sites (AP sites) 2.959084e-01 0.529
R-HSA-9707564 Cytoprotection by HMOX1 2.932987e-01 0.533
R-HSA-110357 Displacement of DNA glycosylase by APEX1 3.267923e-01 0.486
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 2.490205e-01 0.604
R-HSA-9692914 SARS-CoV-1-host interactions 1.903708e-01 0.720
R-HSA-112043 PLC beta mediated events 2.922910e-01 0.534
R-HSA-5687128 MAPK6/MAPK4 signaling 3.085265e-01 0.511
R-HSA-202424 Downstream TCR signaling 3.547503e-01 0.450
R-HSA-9759194 Nuclear events mediated by NFE2L2 9.170394e-02 1.038
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 3.066123e-01 0.513
R-HSA-351202 Metabolism of polyamines 2.835448e-01 0.547
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 2.018185e-01 0.695
R-HSA-168638 NOD1/2 Signaling Pathway 8.160988e-02 1.088
R-HSA-844456 The NLRP3 inflammasome 2.456163e-01 0.610
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 2.959084e-01 0.529
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 3.494841e-01 0.457
R-HSA-111465 Apoptotic cleavage of cellular proteins 6.582177e-02 1.182
R-HSA-111458 Formation of apoptosome 4.021765e-01 0.396
R-HSA-1169091 Activation of NF-kappaB in B cells 4.130955e-01 0.384
R-HSA-9926550 Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... 2.310930e-01 0.636
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 3.494841e-01 0.457
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 3.494841e-01 0.457
R-HSA-9856651 MITF-M-dependent gene expression 3.483822e-01 0.458
R-HSA-9753281 Paracetamol ADME 2.405330e-01 0.619
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 3.752028e-01 0.426
R-HSA-193704 p75 NTR receptor-mediated signalling 1.497026e-01 0.825
R-HSA-75153 Apoptotic execution phase 1.679582e-01 0.775
R-HSA-5213460 RIPK1-mediated regulated necrosis 2.639745e-01 0.578
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 3.387746e-01 0.470
R-HSA-416482 G alpha (12/13) signalling events 1.291654e-01 0.889
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 1.053679e-01 0.977
R-HSA-5675482 Regulation of necroptotic cell death 2.018185e-01 0.695
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 4.085262e-01 0.389
R-HSA-162582 Signal Transduction 4.203458e-01 0.376
R-HSA-72187 mRNA 3'-end processing 4.235278e-01 0.373
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 4.235278e-01 0.373
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 4.235278e-01 0.373
R-HSA-157579 Telomere Maintenance 4.243697e-01 0.372
R-HSA-9759811 Regulation of CDH11 mRNA translation by microRNAs 4.253825e-01 0.371
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 4.253825e-01 0.371
R-HSA-192814 vRNA Synthesis 4.253825e-01 0.371
R-HSA-9832991 Formation of the posterior neural plate 4.253825e-01 0.371
R-HSA-425381 Bicarbonate transporters 4.253825e-01 0.371
R-HSA-210990 PECAM1 interactions 4.253825e-01 0.371
R-HSA-9020558 Interleukin-2 signaling 4.253825e-01 0.371
R-HSA-399719 Trafficking of AMPA receptors 4.301129e-01 0.366
R-HSA-5694530 Cargo concentration in the ER 4.301129e-01 0.366
R-HSA-186763 Downstream signal transduction 4.301129e-01 0.366
R-HSA-975871 MyD88 cascade initiated on plasma membrane 4.320468e-01 0.364
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 4.320468e-01 0.364
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 4.320468e-01 0.364
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 4.336193e-01 0.363
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 4.338957e-01 0.363
R-HSA-1221632 Meiotic synapsis 4.338957e-01 0.363
R-HSA-445355 Smooth Muscle Contraction 4.338957e-01 0.363
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 4.338957e-01 0.363
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 4.338957e-01 0.363
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 4.361221e-01 0.360
R-HSA-5619084 ABC transporter disorders 4.423097e-01 0.354
R-HSA-4086400 PCP/CE pathway 4.423097e-01 0.354
R-HSA-4791275 Signaling by WNT in cancer 4.434432e-01 0.353
R-HSA-9937080 Developmental Lineage of Multipotent Pancreatic Progenitor Cells 4.434432e-01 0.353
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 4.437784e-01 0.353
R-HSA-9734767 Developmental Cell Lineages 4.441870e-01 0.352
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 4.441941e-01 0.352
R-HSA-5610787 Hedgehog 'off' state 4.473339e-01 0.349
R-HSA-9006931 Signaling by Nuclear Receptors 4.475209e-01 0.349
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 4.476891e-01 0.349
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 4.476891e-01 0.349
R-HSA-202670 ERKs are inactivated 4.476891e-01 0.349
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 4.476891e-01 0.349
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 4.476891e-01 0.349
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 4.476891e-01 0.349
R-HSA-111461 Cytochrome c-mediated apoptotic response 4.476891e-01 0.349
R-HSA-168898 Toll-like Receptor Cascades 4.505226e-01 0.346
R-HSA-9659379 Sensory processing of sound 4.509599e-01 0.346
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 4.544180e-01 0.343
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 4.544180e-01 0.343
R-HSA-9020702 Interleukin-1 signaling 4.549388e-01 0.342
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 4.565985e-01 0.340
R-HSA-354192 Integrin signaling 4.565985e-01 0.340
R-HSA-9816359 Maternal to zygotic transition (MZT) 4.575314e-01 0.340
R-HSA-9842860 Regulation of endogenous retroelements 4.625148e-01 0.335
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 4.645626e-01 0.333
R-HSA-75893 TNF signaling 4.645626e-01 0.333
R-HSA-109606 Intrinsic Pathway for Apoptosis 4.645626e-01 0.333
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 4.645626e-01 0.333
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 4.681266e-01 0.330
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 4.691311e-01 0.329
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 4.691311e-01 0.329
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 4.691311e-01 0.329
R-HSA-69109 Leading Strand Synthesis 4.691311e-01 0.329
R-HSA-69091 Polymerase switching 4.691311e-01 0.329
R-HSA-4641265 Repression of WNT target genes 4.691311e-01 0.329
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 4.691311e-01 0.329
R-HSA-418890 Role of second messengers in netrin-1 signaling 4.691311e-01 0.329
R-HSA-380615 Serotonin clearance from the synaptic cleft 4.691311e-01 0.329
R-HSA-8866427 VLDLR internalisation and degradation 4.691311e-01 0.329
R-HSA-877312 Regulation of IFNG signaling 4.691311e-01 0.329
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 4.691311e-01 0.329
R-HSA-390522 Striated Muscle Contraction 4.695724e-01 0.328
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 4.695724e-01 0.328
R-HSA-5696394 DNA Damage Recognition in GG-NER 4.695724e-01 0.328
R-HSA-163359 Glucagon signaling in metabolic regulation 4.695724e-01 0.328
R-HSA-5223345 Miscellaneous transport and binding events 4.695724e-01 0.328
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 4.695724e-01 0.328
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 4.723188e-01 0.326
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 4.775710e-01 0.321
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 4.780009e-01 0.321
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 4.780009e-01 0.321
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 4.780009e-01 0.321
R-HSA-5696400 Dual Incision in GG-NER 4.823592e-01 0.317
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 4.823592e-01 0.317
R-HSA-8951664 Neddylation 4.830390e-01 0.316
R-HSA-6782135 Dual incision in TC-NER 4.845969e-01 0.315
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 4.845969e-01 0.315
R-HSA-8877330 RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) 4.897419e-01 0.310
R-HSA-389359 CD28 dependent Vav1 pathway 4.897419e-01 0.310
R-HSA-9956593 Microbial factors inhibit CASP4 activity 4.897419e-01 0.310
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 4.897419e-01 0.310
R-HSA-6811555 PI5P Regulates TP53 Acetylation 4.897419e-01 0.310
R-HSA-6793080 rRNA modification in the mitochondrion 4.897419e-01 0.310
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 4.934973e-01 0.307
R-HSA-180786 Extension of Telomeres 4.944785e-01 0.306
R-HSA-186712 Regulation of beta-cell development 4.944785e-01 0.306
R-HSA-2559585 Oncogene Induced Senescence 4.949538e-01 0.305
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 5.013094e-01 0.300
R-HSA-9678108 SARS-CoV-1 Infection 5.013094e-01 0.300
R-HSA-1500620 Meiosis 5.018418e-01 0.299
R-HSA-977443 GABA receptor activation 5.042649e-01 0.297
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 5.073520e-01 0.295
R-HSA-74158 RNA Polymerase III Transcription 5.073520e-01 0.295
R-HSA-6804757 Regulation of TP53 Degradation 5.073520e-01 0.295
R-HSA-3371511 HSF1 activation 5.073520e-01 0.295
R-HSA-111933 Calmodulin induced events 5.073520e-01 0.295
R-HSA-111997 CaM pathway 5.073520e-01 0.295
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 5.091318e-01 0.293
R-HSA-69166 Removal of the Flap Intermediate 5.095537e-01 0.293
R-HSA-177504 Retrograde neurotrophin signalling 5.095537e-01 0.293
R-HSA-9764562 Regulation of CDH1 mRNA translation by microRNAs 5.095537e-01 0.293
R-HSA-1433559 Regulation of KIT signaling 5.095537e-01 0.293
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 5.095537e-01 0.293
R-HSA-5578768 Physiological factors 5.095537e-01 0.293
R-HSA-9856872 Malate-aspartate shuttle 5.095537e-01 0.293
R-HSA-391160 Signal regulatory protein family interactions 5.095537e-01 0.293
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 5.101257e-01 0.292
R-HSA-73856 RNA Polymerase II Transcription Termination 5.139527e-01 0.289
R-HSA-450294 MAP kinase activation 5.139527e-01 0.289
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 5.145540e-01 0.289
R-HSA-8953854 Metabolism of RNA 5.149564e-01 0.288
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 5.183468e-01 0.285
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 5.195499e-01 0.284
R-HSA-549127 SLC-mediated transport of organic cations 5.195499e-01 0.284
R-HSA-975155 MyD88 dependent cascade initiated on endosome 5.218222e-01 0.282
R-HSA-1268020 Mitochondrial protein import 5.235389e-01 0.281
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 5.235389e-01 0.281
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 5.235389e-01 0.281
R-HSA-8948700 Competing endogenous RNAs (ceRNAs) regulate PTEN translation 5.285974e-01 0.277
R-HSA-69183 Processive synthesis on the lagging strand 5.285974e-01 0.277
R-HSA-174430 Telomere C-strand synthesis initiation 5.285974e-01 0.277
R-HSA-1502540 Signaling by Activin 5.285974e-01 0.277
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 5.285974e-01 0.277
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 5.285974e-01 0.277
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 5.285974e-01 0.277
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 5.285974e-01 0.277
R-HSA-8875878 MET promotes cell motility 5.315445e-01 0.274
R-HSA-156902 Peptide chain elongation 5.345911e-01 0.272
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 5.433332e-01 0.265
R-HSA-1483249 Inositol phosphate metabolism 5.433384e-01 0.265
R-HSA-9711097 Cellular response to starvation 5.454312e-01 0.263
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 5.469028e-01 0.262
R-HSA-5083636 Defective GALNT12 causes CRCS1 5.469028e-01 0.262
R-HSA-5083625 Defective GALNT3 causes HFTC 5.469028e-01 0.262
R-HSA-5099900 WNT5A-dependent internalization of FZD4 5.469028e-01 0.262
R-HSA-9634600 Regulation of glycolysis by fructose 2,6-bisphosphate metabolism 5.469028e-01 0.262
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 5.469028e-01 0.262
R-HSA-975577 N-Glycan antennae elongation 5.469028e-01 0.262
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 5.469028e-01 0.262
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 5.469028e-01 0.262
R-HSA-9664420 Killing mechanisms 5.469028e-01 0.262
R-HSA-9678110 Attachment and Entry 5.469028e-01 0.262
R-HSA-9706369 Negative regulation of FLT3 5.469028e-01 0.262
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 5.504089e-01 0.259
R-HSA-9670095 Inhibition of DNA recombination at telomere 5.549138e-01 0.256
R-HSA-9646399 Aggrephagy 5.549138e-01 0.256
R-HSA-3371568 Attenuation phase 5.549138e-01 0.256
R-HSA-8964616 G beta:gamma signalling through CDC42 5.644984e-01 0.248
R-HSA-9912633 Antigen processing: Ub, ATP-independent proteasomal degradation 5.644984e-01 0.248
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 5.644984e-01 0.248
R-HSA-918233 TRAF3-dependent IRF activation pathway 5.644984e-01 0.248
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 5.644984e-01 0.248
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 5.644984e-01 0.248
R-HSA-1483148 Synthesis of PG 5.644984e-01 0.248
R-HSA-400511 Synthesis, secretion, and inactivation of Glucose-dependent Insulinotropic Polyp... 5.644984e-01 0.248
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 5.644984e-01 0.248
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 5.662320e-01 0.247
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 5.662847e-01 0.247
R-HSA-5218920 VEGFR2 mediated vascular permeability 5.662847e-01 0.247
R-HSA-9607240 FLT3 Signaling 5.662847e-01 0.247
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 5.712959e-01 0.243
R-HSA-9730414 MITF-M-regulated melanocyte development 5.737116e-01 0.241
R-HSA-156842 Eukaryotic Translation Elongation 5.739552e-01 0.241
R-HSA-2682334 EPH-Ephrin signaling 5.739552e-01 0.241
R-HSA-8868773 rRNA processing in the nucleus and cytosol 5.740708e-01 0.241
R-HSA-5358351 Signaling by Hedgehog 5.760584e-01 0.240
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 5.774448e-01 0.238
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 5.774448e-01 0.238
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 5.787737e-01 0.237
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 5.814118e-01 0.236
R-HSA-5083632 Defective C1GALT1C1 causes TNPS 5.814118e-01 0.236
R-HSA-2028269 Signaling by Hippo 5.814118e-01 0.236
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 5.814118e-01 0.236
R-HSA-209905 Catecholamine biosynthesis 5.814118e-01 0.236
R-HSA-5210891 Uptake and function of anthrax toxins 5.814118e-01 0.236
R-HSA-373760 L1CAM interactions 5.849370e-01 0.233
R-HSA-111996 Ca-dependent events 5.883933e-01 0.230
R-HSA-9837999 Mitochondrial protein degradation 5.891663e-01 0.230
R-HSA-1592230 Mitochondrial biogenesis 5.916688e-01 0.228
R-HSA-448424 Interleukin-17 signaling 5.962662e-01 0.225
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 5.966515e-01 0.224
R-HSA-3928664 Ephrin signaling 5.976693e-01 0.224
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 5.976693e-01 0.224
R-HSA-9613829 Chaperone Mediated Autophagy 5.976693e-01 0.224
R-HSA-111471 Apoptotic factor-mediated response 5.976693e-01 0.224
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 5.976693e-01 0.224
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 5.976693e-01 0.224
R-HSA-9665348 Signaling by ERBB2 ECD mutants 5.976693e-01 0.224
R-HSA-428643 Organic anion transport by SLC5/17/25 transporters 5.976693e-01 0.224
R-HSA-4419969 Depolymerization of the Nuclear Lamina 5.976693e-01 0.224
R-HSA-432142 Platelet sensitization by LDL 5.976693e-01 0.224
R-HSA-180292 GAB1 signalosome 5.976693e-01 0.224
R-HSA-8854214 TBC/RABGAPs 5.991298e-01 0.222
R-HSA-9675108 Nervous system development 5.996274e-01 0.222
R-HSA-72764 Eukaryotic Translation Termination 6.040548e-01 0.219
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 6.048329e-01 0.218
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 6.048329e-01 0.218
R-HSA-453276 Regulation of mitotic cell cycle 6.048329e-01 0.218
R-HSA-5632684 Hedgehog 'on' state 6.048329e-01 0.218
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 6.049499e-01 0.218
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 6.049499e-01 0.218
R-HSA-190828 Gap junction trafficking 6.096542e-01 0.215
R-HSA-5607764 CLEC7A (Dectin-1) signaling 6.113752e-01 0.214
R-HSA-1912420 Pre-NOTCH Processing in Golgi 6.132963e-01 0.212
R-HSA-9754189 Germ layer formation at gastrulation 6.132963e-01 0.212
R-HSA-8851708 Signaling by FGFR2 IIIa TM 6.132963e-01 0.212
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 6.132963e-01 0.212
R-HSA-110320 Translesion Synthesis by POLH 6.132963e-01 0.212
R-HSA-9694631 Maturation of nucleoprotein 6.132963e-01 0.212
R-HSA-170834 Signaling by TGF-beta Receptor Complex 6.186116e-01 0.209
R-HSA-76009 Platelet Aggregation (Plug Formation) 6.199668e-01 0.208
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 6.199668e-01 0.208
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 6.199668e-01 0.208
R-HSA-1489509 DAG and IP3 signaling 6.199668e-01 0.208
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 6.244008e-01 0.205
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 6.244008e-01 0.205
R-HSA-9909620 Regulation of PD-L1(CD274) translation 6.283173e-01 0.202
R-HSA-9823730 Formation of definitive endoderm 6.283173e-01 0.202
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 6.283173e-01 0.202
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 6.283173e-01 0.202
R-HSA-1181150 Signaling by NODAL 6.283173e-01 0.202
R-HSA-6807004 Negative regulation of MET activity 6.283173e-01 0.202
R-HSA-9839373 Signaling by TGFBR3 6.300682e-01 0.201
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 6.300682e-01 0.201
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 6.300682e-01 0.201
R-HSA-2132295 MHC class II antigen presentation 6.307556e-01 0.200
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 6.378793e-01 0.195
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 6.378793e-01 0.195
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 6.399592e-01 0.194
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 6.399592e-01 0.194
R-HSA-69186 Lagging Strand Synthesis 6.427556e-01 0.192
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 6.427556e-01 0.192
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 6.427556e-01 0.192
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 6.427556e-01 0.192
R-HSA-198753 ERK/MAPK targets 6.427556e-01 0.192
R-HSA-210991 Basigin interactions 6.427556e-01 0.192
R-HSA-73854 RNA Polymerase I Promoter Clearance 6.458321e-01 0.190
R-HSA-2408557 Selenocysteine synthesis 6.467009e-01 0.189
R-HSA-422475 Axon guidance 6.473715e-01 0.189
R-HSA-9634597 GPER1 signaling 6.496410e-01 0.187
R-HSA-1266738 Developmental Biology 6.526071e-01 0.185
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 6.535056e-01 0.185
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 6.566340e-01 0.183
R-HSA-8876384 Listeria monocytogenes entry into host cells 6.566340e-01 0.183
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 6.566340e-01 0.183
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 6.566340e-01 0.183
R-HSA-9694614 Attachment and Entry 6.566340e-01 0.183
R-HSA-157858 Gap junction trafficking and regulation 6.591148e-01 0.181
R-HSA-192823 Viral mRNA Translation 6.602222e-01 0.180
R-HSA-73864 RNA Polymerase I Transcription 6.613644e-01 0.180
R-HSA-446652 Interleukin-1 family signaling 6.640392e-01 0.178
R-HSA-72312 rRNA processing 6.653920e-01 0.177
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 6.699740e-01 0.174
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 6.699740e-01 0.174
R-HSA-9669938 Signaling by KIT in disease 6.699740e-01 0.174
R-HSA-166208 mTORC1-mediated signalling 6.699740e-01 0.174
R-HSA-912694 Regulation of IFNA/IFNB signaling 6.699740e-01 0.174
R-HSA-8964038 LDL clearance 6.699740e-01 0.174
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 6.733894e-01 0.172
R-HSA-5619507 Activation of HOX genes during differentiation 6.733894e-01 0.172
R-HSA-6806834 Signaling by MET 6.763978e-01 0.170
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 6.763978e-01 0.170
R-HSA-5654738 Signaling by FGFR2 6.763978e-01 0.170
R-HSA-3371571 HSF1-dependent transactivation 6.774449e-01 0.169
R-HSA-912446 Meiotic recombination 6.774449e-01 0.169
R-HSA-168273 Influenza Viral RNA Transcription and Replication 6.801887e-01 0.167
R-HSA-977068 Termination of O-glycan biosynthesis 6.827965e-01 0.166
R-HSA-1369062 ABC transporters in lipid homeostasis 6.827965e-01 0.166
R-HSA-9937008 Mitochondrial mRNA modification 6.827965e-01 0.166
R-HSA-982772 Growth hormone receptor signaling 6.827965e-01 0.166
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 6.827965e-01 0.166
R-HSA-3000170 Syndecan interactions 6.827965e-01 0.166
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 6.827965e-01 0.166
R-HSA-73772 RNA Polymerase I Promoter Escape 6.863048e-01 0.163
R-HSA-6794361 Neurexins and neuroligins 6.863048e-01 0.163
R-HSA-9634815 Transcriptional Regulation by NPAS4 6.863048e-01 0.163
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 6.924709e-01 0.160
R-HSA-9639288 Amino acids regulate mTORC1 6.949641e-01 0.158
R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 6.951216e-01 0.158
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 6.951216e-01 0.158
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 6.951216e-01 0.158
R-HSA-5669034 TNFs bind their physiological receptors 6.951216e-01 0.158
R-HSA-8863678 Neurodegenerative Diseases 6.951216e-01 0.158
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 6.951216e-01 0.158
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 6.958278e-01 0.157
R-HSA-8856688 Golgi-to-ER retrograde transport 6.962062e-01 0.157
R-HSA-112315 Transmission across Chemical Synapses 7.044257e-01 0.152
R-HSA-9006936 Signaling by TGFB family members 7.059670e-01 0.151
R-HSA-1296041 Activation of G protein gated Potassium channels 7.069685e-01 0.151
R-HSA-1296059 G protein gated Potassium channels 7.069685e-01 0.151
R-HSA-997272 Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits 7.069685e-01 0.151
R-HSA-3000157 Laminin interactions 7.069685e-01 0.151
R-HSA-3214842 HDMs demethylate histones 7.069685e-01 0.151
R-HSA-174411 Polymerase switching on the C-strand of the telomere 7.069685e-01 0.151
R-HSA-203927 MicroRNA (miRNA) biogenesis 7.069685e-01 0.151
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 7.069685e-01 0.151
R-HSA-3214815 HDACs deacetylate histones 7.116895e-01 0.148
R-HSA-418597 G alpha (z) signalling events 7.116895e-01 0.148
R-HSA-199991 Membrane Trafficking 7.151338e-01 0.146
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 7.183557e-01 0.144
R-HSA-9703465 Signaling by FLT3 fusion proteins 7.183557e-01 0.144
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 7.183557e-01 0.144
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 7.183557e-01 0.144
R-HSA-9638630 Attachment of bacteria to epithelial cells 7.183557e-01 0.144
R-HSA-1855183 Synthesis of IP2, IP, and Ins in the cytosol 7.183557e-01 0.144
R-HSA-177929 Signaling by EGFR 7.197604e-01 0.143
R-HSA-927802 Nonsense-Mediated Decay (NMD) 7.224825e-01 0.141
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 7.224825e-01 0.141
R-HSA-418990 Adherens junctions interactions 7.243049e-01 0.140
R-HSA-1483166 Synthesis of PA 7.276402e-01 0.138
R-HSA-445095 Interaction between L1 and Ankyrins 7.293012e-01 0.137
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 7.293012e-01 0.137
R-HSA-8949613 Cristae formation 7.293012e-01 0.137
R-HSA-174414 Processive synthesis on the C-strand of the telomere 7.293012e-01 0.137
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 7.293012e-01 0.137
R-HSA-264876 Insulin processing 7.293012e-01 0.137
R-HSA-438064 Post NMDA receptor activation events 7.315767e-01 0.136
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 7.353315e-01 0.134
R-HSA-9645723 Diseases of programmed cell death 7.379252e-01 0.132
R-HSA-77387 Insulin receptor recycling 7.398218e-01 0.131
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 7.398218e-01 0.131
R-HSA-171319 Telomere Extension By Telomerase 7.398218e-01 0.131
R-HSA-446728 Cell junction organization 7.410142e-01 0.130
R-HSA-194441 Metabolism of non-coding RNA 7.428372e-01 0.129
R-HSA-191859 snRNP Assembly 7.428372e-01 0.129
R-HSA-1236974 ER-Phagosome pathway 7.441543e-01 0.128
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 7.446551e-01 0.128
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 7.461395e-01 0.127
R-HSA-9615710 Late endosomal microautophagy 7.499343e-01 0.125
R-HSA-9664565 Signaling by ERBB2 KD Mutants 7.499343e-01 0.125
R-HSA-983189 Kinesins 7.501599e-01 0.125
R-HSA-73884 Base Excision Repair 7.502650e-01 0.125
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 7.553695e-01 0.122
R-HSA-445717 Aquaporin-mediated transport 7.573025e-01 0.121
R-HSA-162599 Late Phase of HIV Life Cycle 7.579898e-01 0.120
R-HSA-2424491 DAP12 signaling 7.596542e-01 0.119
R-HSA-1227990 Signaling by ERBB2 in Cancer 7.596542e-01 0.119
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 7.596542e-01 0.119
R-HSA-9008059 Interleukin-37 signaling 7.596542e-01 0.119
R-HSA-888590 GABA synthesis, release, reuptake and degradation 7.596542e-01 0.119
R-HSA-8863795 Downregulation of ERBB2 signaling 7.596542e-01 0.119
R-HSA-112311 Neurotransmitter clearance 7.596542e-01 0.119
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 7.626456e-01 0.118
R-HSA-9616222 Transcriptional regulation of granulopoiesis 7.642681e-01 0.117
R-HSA-186797 Signaling by PDGF 7.642681e-01 0.117
R-HSA-2219528 PI3K/AKT Signaling in Cancer 7.658893e-01 0.116
R-HSA-9833109 Evasion by RSV of host interferon responses 7.689970e-01 0.114
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 7.689970e-01 0.114
R-HSA-9764265 Regulation of CDH1 Expression and Function 7.704490e-01 0.113
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 7.704490e-01 0.113
R-HSA-6790901 rRNA modification in the nucleus and cytosol 7.710595e-01 0.113
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 7.745063e-01 0.111
R-HSA-1296065 Inwardly rectifying K+ channels 7.779771e-01 0.109
R-HSA-9675126 Diseases of mitotic cell cycle 7.779771e-01 0.109
R-HSA-5673001 RAF/MAP kinase cascade 7.791531e-01 0.108
R-HSA-3371556 Cellular response to heat stress 7.807375e-01 0.107
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 7.841319e-01 0.106
R-HSA-5683057 MAPK family signaling cascades 7.842385e-01 0.106
R-HSA-68616 Assembly of the ORC complex at the origin of replication 7.866086e-01 0.104
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 7.866086e-01 0.104
R-HSA-1839124 FGFR1 mutant receptor activation 7.866086e-01 0.104
R-HSA-5609975 Diseases associated with glycosylation precursor biosynthesis 7.866086e-01 0.104
R-HSA-159418 Recycling of bile acids and salts 7.866086e-01 0.104
R-HSA-9679191 Potential therapeutics for SARS 7.936334e-01 0.100
R-HSA-168255 Influenza Infection 7.946353e-01 0.100
R-HSA-114508 Effects of PIP2 hydrolysis 7.949051e-01 0.100
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 7.949051e-01 0.100
R-HSA-189483 Heme degradation 7.949051e-01 0.100
R-HSA-9830369 Kidney development 7.965441e-01 0.099
R-HSA-2559583 Cellular Senescence 7.984698e-01 0.098
R-HSA-5684996 MAPK1/MAPK3 signaling 8.012412e-01 0.096
R-HSA-913709 O-linked glycosylation of mucins 8.025103e-01 0.096
R-HSA-1980145 Signaling by NOTCH2 8.028795e-01 0.095
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 8.028795e-01 0.095
R-HSA-5673000 RAF activation 8.028795e-01 0.095
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 8.028795e-01 0.095
R-HSA-422356 Regulation of insulin secretion 8.050992e-01 0.094
R-HSA-190236 Signaling by FGFR 8.050992e-01 0.094
R-HSA-9609507 Protein localization 8.058940e-01 0.094
R-HSA-913531 Interferon Signaling 8.089996e-01 0.092
R-HSA-397014 Muscle contraction 8.108806e-01 0.091
R-HSA-204005 COPII-mediated vesicle transport 8.139784e-01 0.089
R-HSA-9682385 FLT3 signaling in disease 8.179115e-01 0.087
R-HSA-1839126 FGFR2 mutant receptor activation 8.179115e-01 0.087
R-HSA-114604 GPVI-mediated activation cascade 8.179115e-01 0.087
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 8.194865e-01 0.086
R-HSA-427413 NoRC negatively regulates rRNA expression 8.194865e-01 0.086
R-HSA-162587 HIV Life Cycle 8.213352e-01 0.085
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 8.248480e-01 0.084
R-HSA-199418 Negative regulation of the PI3K/AKT network 8.248814e-01 0.084
R-HSA-933541 TRAF6 mediated IRF7 activation 8.249927e-01 0.084
R-HSA-877300 Interferon gamma signaling 8.286768e-01 0.082
R-HSA-1474165 Reproduction 8.288627e-01 0.082
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 8.300660e-01 0.081
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 8.317989e-01 0.080
R-HSA-9931953 Biofilm formation 8.317989e-01 0.080
R-HSA-9958790 SLC-mediated transport of inorganic anions 8.317989e-01 0.080
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 8.328739e-01 0.079
R-HSA-1226099 Signaling by FGFR in disease 8.351435e-01 0.078
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 8.383408e-01 0.077
R-HSA-8964043 Plasma lipoprotein clearance 8.383408e-01 0.077
R-HSA-421270 Cell-cell junction organization 8.400486e-01 0.076
R-HSA-71403 Citric acid cycle (TCA cycle) 8.400837e-01 0.076
R-HSA-9658195 Leishmania infection 8.412623e-01 0.075
R-HSA-9824443 Parasitic Infection Pathways 8.412623e-01 0.075
R-HSA-9854311 Maturation of TCA enzymes and regulation of TCA cycle 8.446287e-01 0.073
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 8.446287e-01 0.073
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 8.446287e-01 0.073
R-HSA-8868766 rRNA processing in the mitochondrion 8.446287e-01 0.073
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 8.446287e-01 0.073
R-HSA-975576 N-glycan antennae elongation in the medial/trans-Golgi 8.446287e-01 0.073
R-HSA-379726 Mitochondrial tRNA aminoacylation 8.446287e-01 0.073
R-HSA-451927 Interleukin-2 family signaling 8.446287e-01 0.073
R-HSA-9020591 Interleukin-12 signaling 8.448893e-01 0.073
R-HSA-72163 mRNA Splicing - Major Pathway 8.465013e-01 0.072
R-HSA-9694635 Translation of Structural Proteins 8.495636e-01 0.071
R-HSA-9694548 Maturation of spike protein 8.506723e-01 0.070
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 8.506723e-01 0.070
R-HSA-1236975 Antigen processing-Cross presentation 8.533549e-01 0.069
R-HSA-5655302 Signaling by FGFR1 in disease 8.564812e-01 0.067
R-HSA-6811438 Intra-Golgi traffic 8.564812e-01 0.067
R-HSA-442660 SLC-mediated transport of neurotransmitters 8.564812e-01 0.067
R-HSA-5675221 Negative regulation of MAPK pathway 8.564812e-01 0.067
R-HSA-9925561 Developmental Lineage of Pancreatic Acinar Cells 8.585294e-01 0.066
R-HSA-165159 MTOR signalling 8.620645e-01 0.064
R-HSA-110329 Cleavage of the damaged pyrimidine 8.620645e-01 0.064
R-HSA-73928 Depyrimidination 8.620645e-01 0.064
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 8.620645e-01 0.064
R-HSA-400508 Incretin synthesis, secretion, and inactivation 8.620645e-01 0.064
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 8.628268e-01 0.064
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 8.628268e-01 0.064
R-HSA-1433557 Signaling by SCF-KIT 8.674310e-01 0.062
R-HSA-9710421 Defective pyroptosis 8.674310e-01 0.062
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 8.674310e-01 0.062
R-HSA-9664422 FCGR3A-mediated phagocytosis 8.678795e-01 0.062
R-HSA-9664417 Leishmania phagocytosis 8.678795e-01 0.062
R-HSA-9664407 Parasite infection 8.678795e-01 0.062
R-HSA-418555 G alpha (s) signalling events 8.706059e-01 0.060
R-HSA-5621481 C-type lectin receptors (CLRs) 8.706059e-01 0.060
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 8.710162e-01 0.060
R-HSA-1632852 Macroautophagy 8.710162e-01 0.060
R-HSA-2172127 DAP12 interactions 8.725889e-01 0.059
R-HSA-3928662 EPHB-mediated forward signaling 8.725889e-01 0.059
R-HSA-72172 mRNA Splicing 8.773414e-01 0.057
R-HSA-6783310 Fanconi Anemia Pathway 8.775465e-01 0.057
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 8.775465e-01 0.057
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 8.789483e-01 0.056
R-HSA-8856828 Clathrin-mediated endocytosis 8.800443e-01 0.055
R-HSA-72165 mRNA Splicing - Minor Pathway 8.823114e-01 0.054
R-HSA-2299718 Condensation of Prophase Chromosomes 8.823114e-01 0.054
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 8.868913e-01 0.052
R-HSA-199977 ER to Golgi Anterograde Transport 8.912260e-01 0.050
R-HSA-5620924 Intraflagellar transport 8.912931e-01 0.050
R-HSA-70263 Gluconeogenesis 8.912931e-01 0.050
R-HSA-9031628 NGF-stimulated transcription 8.912931e-01 0.050
R-HSA-390466 Chaperonin-mediated protein folding 8.931229e-01 0.049
R-HSA-447115 Interleukin-12 family signaling 8.931229e-01 0.049
R-HSA-73893 DNA Damage Bypass 8.955239e-01 0.048
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 8.955239e-01 0.048
R-HSA-9663891 Selective autophagy 8.964397e-01 0.047
R-HSA-5655253 Signaling by FGFR2 in disease 8.995903e-01 0.046
R-HSA-6798695 Neutrophil degranulation 9.015340e-01 0.045
R-HSA-112310 Neurotransmitter release cycle 9.027877e-01 0.044
R-HSA-9864848 Complex IV assembly 9.034987e-01 0.044
R-HSA-5339562 Uptake and actions of bacterial toxins 9.072552e-01 0.042
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 9.074608e-01 0.042
R-HSA-432722 Golgi Associated Vesicle Biogenesis 9.108657e-01 0.041
R-HSA-391251 Protein folding 9.116319e-01 0.040
R-HSA-9772573 Late SARS-CoV-2 Infection Events 9.116319e-01 0.040
R-HSA-9612973 Autophagy 9.131019e-01 0.039
R-HSA-73929 Base-Excision Repair, AP Site Formation 9.143358e-01 0.039
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 9.144085e-01 0.039
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 9.171031e-01 0.038
R-HSA-112316 Neuronal System 9.172004e-01 0.038
R-HSA-114608 Platelet degranulation 9.195196e-01 0.036
R-HSA-5578775 Ion homeostasis 9.208766e-01 0.036
R-HSA-209776 Metabolism of amine-derived hormones 9.208766e-01 0.036
R-HSA-3299685 Detoxification of Reactive Oxygen Species 9.208766e-01 0.036
R-HSA-187037 Signaling by NTRK1 (TRKA) 9.217522e-01 0.035
R-HSA-2980766 Nuclear Envelope Breakdown 9.239575e-01 0.034
R-HSA-5621480 Dectin-2 family 9.239575e-01 0.034
R-HSA-983169 Class I MHC mediated antigen processing & presentation 9.245519e-01 0.034
R-HSA-6807878 COPI-mediated anterograde transport 9.247164e-01 0.034
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 9.247164e-01 0.034
R-HSA-9772572 Early SARS-CoV-2 Infection Events 9.269187e-01 0.033
R-HSA-2408522 Selenoamino acid metabolism 9.291644e-01 0.032
R-HSA-8957275 Post-translational protein phosphorylation 9.294205e-01 0.032
R-HSA-9033241 Peroxisomal protein import 9.297647e-01 0.032
R-HSA-352230 Amino acid transport across the plasma membrane 9.297647e-01 0.032
R-HSA-1483257 Phospholipid metabolism 9.306971e-01 0.031
R-HSA-1227986 Signaling by ERBB2 9.325001e-01 0.030
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 9.325001e-01 0.030
R-HSA-379724 tRNA Aminoacylation 9.325001e-01 0.030
R-HSA-70171 Glycolysis 9.338461e-01 0.030
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 9.339995e-01 0.030
R-HSA-168325 Viral Messenger RNA Synthesis 9.351291e-01 0.029
R-HSA-211976 Endogenous sterols 9.351291e-01 0.029
R-HSA-9009391 Extra-nuclear estrogen signaling 9.359591e-01 0.029
R-HSA-948021 Transport to the Golgi and subsequent modification 9.369594e-01 0.028
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 9.376558e-01 0.028
R-HSA-375165 NCAM signaling for neurite out-growth 9.376558e-01 0.028
R-HSA-6784531 tRNA processing in the nucleus 9.376558e-01 0.028
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 9.380080e-01 0.028
R-HSA-6799198 Complex I biogenesis 9.400843e-01 0.027
R-HSA-9824446 Viral Infection Pathways 9.406109e-01 0.027
R-HSA-936837 Ion transport by P-type ATPases 9.424184e-01 0.026
R-HSA-72766 Translation 9.425605e-01 0.026
R-HSA-76002 Platelet activation, signaling and aggregation 9.454033e-01 0.024
R-HSA-9679506 SARS-CoV Infections 9.464802e-01 0.024
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.468176e-01 0.024
R-HSA-196807 Nicotinate metabolism 9.488897e-01 0.023
R-HSA-9958863 SLC-mediated transport of amino acids 9.488897e-01 0.023
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.488897e-01 0.023
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.508812e-01 0.022
R-HSA-418594 G alpha (i) signalling events 9.514391e-01 0.022
R-HSA-5619115 Disorders of transmembrane transporters 9.527108e-01 0.021
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 9.546348e-01 0.020
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.546348e-01 0.020
R-HSA-9764560 Regulation of CDH1 Gene Transcription 9.546348e-01 0.020
R-HSA-2871837 FCERI mediated NF-kB activation 9.547095e-01 0.020
R-HSA-5620920 Cargo trafficking to the periciliary membrane 9.564027e-01 0.019
R-HSA-3000178 ECM proteoglycans 9.564027e-01 0.019
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 9.564027e-01 0.019
R-HSA-189445 Metabolism of porphyrins 9.564027e-01 0.019
R-HSA-2871796 FCERI mediated MAPK activation 9.567995e-01 0.019
R-HSA-5653656 Vesicle-mediated transport 9.575389e-01 0.019
R-HSA-199992 trans-Golgi Network Vesicle Budding 9.581019e-01 0.019
R-HSA-5578749 Transcriptional regulation by small RNAs 9.581019e-01 0.019
R-HSA-166520 Signaling by NTRKs 9.597442e-01 0.018
R-HSA-1280215 Cytokine Signaling in Immune system 9.601205e-01 0.018
R-HSA-1280218 Adaptive Immune System 9.605211e-01 0.017
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.608920e-01 0.017
R-HSA-1169408 ISG15 antiviral mechanism 9.628129e-01 0.016
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.634110e-01 0.016
R-HSA-70326 Glucose metabolism 9.657738e-01 0.015
R-HSA-2980736 Peptide hormone metabolism 9.657738e-01 0.015
R-HSA-9955298 SLC-mediated transport of organic anions 9.669948e-01 0.015
R-HSA-191273 Cholesterol biosynthesis 9.669948e-01 0.015
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 9.673387e-01 0.014
R-HSA-9705683 SARS-CoV-2-host interactions 9.678937e-01 0.014
R-HSA-68875 Mitotic Prophase 9.690452e-01 0.014
R-HSA-977225 Amyloid fiber formation 9.707072e-01 0.013
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 9.718496e-01 0.012
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 9.718496e-01 0.012
R-HSA-449147 Signaling by Interleukins 9.724071e-01 0.012
R-HSA-6809371 Formation of the cornified envelope 9.729416e-01 0.012
R-HSA-390918 Peroxisomal lipid metabolism 9.740026e-01 0.011
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.755489e-01 0.011
R-HSA-156580 Phase II - Conjugation of compounds 9.758791e-01 0.011
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.769277e-01 0.010
R-HSA-9694516 SARS-CoV-2 Infection 9.784463e-01 0.009
R-HSA-420499 Class C/3 (Metabotropic glutamate/pheromone receptors) 9.786929e-01 0.009
R-HSA-5576891 Cardiac conduction 9.800545e-01 0.009
R-HSA-168249 Innate Immune System 9.800701e-01 0.009
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 9.825381e-01 0.008
R-HSA-74752 Signaling by Insulin receptor 9.825381e-01 0.008
R-HSA-8957322 Metabolism of steroids 9.828284e-01 0.008
R-HSA-1474290 Collagen formation 9.838746e-01 0.007
R-HSA-611105 Respiratory electron transport 9.842832e-01 0.007
R-HSA-5173105 O-linked glycosylation 9.842987e-01 0.007
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 9.845040e-01 0.007
R-HSA-9748784 Drug ADME 9.847358e-01 0.007
R-HSA-1296071 Potassium Channels 9.856903e-01 0.006
R-HSA-3781865 Diseases of glycosylation 9.869636e-01 0.006
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 9.872268e-01 0.006
R-HSA-192105 Synthesis of bile acids and bile salts 9.873018e-01 0.006
R-HSA-375276 Peptide ligand-binding receptors 9.877552e-01 0.005
R-HSA-597592 Post-translational protein modification 9.884866e-01 0.005
R-HSA-163125 Post-translational modification: synthesis of GPI-anchored proteins 9.900015e-01 0.004
R-HSA-418346 Platelet homeostasis 9.907674e-01 0.004
R-HSA-211000 Gene Silencing by RNA 9.911281e-01 0.004
R-HSA-194068 Bile acid and bile salt metabolism 9.921279e-01 0.003
R-HSA-2029485 Role of phospholipids in phagocytosis 9.940449e-01 0.003
R-HSA-388396 GPCR downstream signalling 9.942505e-01 0.003
R-HSA-5619102 SLC transporter disorders 9.946569e-01 0.002
R-HSA-72306 tRNA processing 9.953596e-01 0.002
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.958263e-01 0.002
R-HSA-9664433 Leishmania parasite growth and survival 9.958263e-01 0.002
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.970961e-01 0.001
R-HSA-1474228 Degradation of the extracellular matrix 9.972098e-01 0.001
R-HSA-1643685 Disease 9.976081e-01 0.001
R-HSA-1474244 Extracellular matrix organization 9.981870e-01 0.001
R-HSA-9640148 Infection with Enterobacteria 9.985698e-01 0.001
R-HSA-1483206 Glycerophospholipid biosynthesis 9.985698e-01 0.001
R-HSA-5663205 Infectious disease 9.986504e-01 0.001
R-HSA-446203 Asparagine N-linked glycosylation 9.987051e-01 0.001
R-HSA-6805567 Keratinization 9.987618e-01 0.001
R-HSA-109582 Hemostasis 9.987832e-01 0.001
R-HSA-372790 Signaling by GPCR 9.989225e-01 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 9.989878e-01 0.000
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.990514e-01 0.000
R-HSA-416476 G alpha (q) signalling events 9.990711e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.991543e-01 0.000
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.993642e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.994817e-01 0.000
R-HSA-202733 Cell surface interactions at the vascular wall 9.995987e-01 0.000
R-HSA-168256 Immune System 9.996217e-01 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.996587e-01 0.000
R-HSA-983712 Ion channel transport 9.997469e-01 0.000
R-HSA-9609690 HCMV Early Events 9.998088e-01 0.000
R-HSA-392499 Metabolism of proteins 9.998802e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999348e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.999512e-01 0.000
R-HSA-382551 Transport of small molecules 9.999722e-01 0.000
R-HSA-9609646 HCMV Infection 9.999790e-01 0.000
R-HSA-211859 Biological oxidations 9.999822e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999905e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999932e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999965e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999971e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999994e-01 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.999999e-01 0.000
R-HSA-500792 GPCR ligand binding 9.999999e-01 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CDK17CDK17 0.888 0.897 1 0.832
CDK19CDK19 0.887 0.858 1 0.779
CDK18CDK18 0.886 0.873 1 0.796
P38GP38G 0.886 0.913 1 0.841
CDK8CDK8 0.883 0.863 1 0.739
JNK2JNK2 0.882 0.918 1 0.792
CDK3CDK3 0.881 0.794 1 0.823
CDK16CDK16 0.878 0.855 1 0.817
CDK7CDK7 0.878 0.850 1 0.742
ERK1ERK1 0.877 0.869 1 0.775
P38DP38D 0.877 0.888 1 0.838
HIPK2HIPK2 0.876 0.792 1 0.776
KISKIS 0.875 0.768 1 0.712
CDK1CDK1 0.875 0.853 1 0.772
CDK13CDK13 0.875 0.862 1 0.766
CDK12CDK12 0.872 0.862 1 0.790
CDK5CDK5 0.872 0.830 1 0.711
P38BP38B 0.872 0.865 1 0.758
JNK3JNK3 0.871 0.902 1 0.761
CDK9CDK9 0.868 0.853 1 0.758
DYRK2DYRK2 0.868 0.781 1 0.679
CDK14CDK14 0.866 0.845 1 0.750
ERK2ERK2 0.866 0.875 1 0.719
P38AP38A 0.863 0.839 1 0.679
DYRK4DYRK4 0.862 0.791 1 0.785
CDK10CDK10 0.862 0.795 1 0.768
DYRK1BDYRK1B 0.860 0.767 1 0.737
CDK4CDK4 0.859 0.847 1 0.799
HIPK1HIPK1 0.858 0.724 1 0.657
CDK6CDK6 0.857 0.821 1 0.771
NLKNLK 0.854 0.773 1 0.452
CDK2CDK2 0.853 0.686 1 0.637
HIPK4HIPK4 0.851 0.487 1 0.449
HIPK3HIPK3 0.850 0.707 1 0.628
CLK3CLK3 0.850 0.494 1 0.416
JNK1JNK1 0.849 0.807 1 0.794
DYRK1ADYRK1A 0.848 0.638 1 0.636
ERK5ERK5 0.845 0.433 1 0.367
SRPK1SRPK1 0.839 0.345 -3 0.776
DYRK3DYRK3 0.839 0.574 1 0.619
CLK1CLK1 0.836 0.439 -3 0.774
MTORMTOR 0.831 0.225 1 0.242
ICKICK 0.830 0.374 -3 0.870
CLK4CLK4 0.830 0.397 -3 0.791
SRPK2SRPK2 0.829 0.279 -3 0.701
CDKL5CDKL5 0.827 0.173 -3 0.829
MAKMAK 0.826 0.511 -2 0.765
CLK2CLK2 0.824 0.409 -3 0.770
COTCOT 0.824 -0.085 2 0.896
CDKL1CDKL1 0.824 0.153 -3 0.835
MOKMOK 0.821 0.485 1 0.541
PRP4PRP4 0.820 0.473 -3 0.780
TBK1TBK1 0.818 -0.157 1 0.037
CDC7CDC7 0.816 -0.118 1 0.068
SRPK3SRPK3 0.815 0.235 -3 0.748
PRPKPRPK 0.814 -0.114 -1 0.869
ERK7ERK7 0.814 0.295 2 0.586
PRKD1PRKD1 0.814 0.000 -3 0.861
ULK2ULK2 0.814 -0.159 2 0.821
PKN3PKN3 0.812 -0.036 -3 0.860
MOSMOS 0.812 -0.062 1 0.107
MST4MST4 0.812 -0.022 2 0.875
GCN2GCN2 0.812 -0.185 2 0.816
IKKEIKKE 0.812 -0.171 1 0.037
CAMK1BCAMK1B 0.812 -0.026 -3 0.895
RAF1RAF1 0.811 -0.179 1 0.049
DSTYKDSTYK 0.811 -0.118 2 0.904
WNK1WNK1 0.811 -0.062 -2 0.905
NUAK2NUAK2 0.811 0.018 -3 0.867
PDHK4PDHK4 0.810 -0.151 1 0.115
NEK6NEK6 0.810 -0.069 -2 0.889
PRKD2PRKD2 0.809 0.012 -3 0.802
ATRATR 0.809 -0.071 1 0.104
NDR2NDR2 0.808 -0.040 -3 0.862
BMPR2BMPR2 0.808 -0.170 -2 0.928
PDHK1PDHK1 0.807 -0.159 1 0.094
IKKBIKKB 0.807 -0.174 -2 0.812
NIKNIK 0.807 -0.053 -3 0.912
PIM3PIM3 0.807 -0.061 -3 0.857
PKCDPKCD 0.807 -0.019 2 0.821
NEK7NEK7 0.807 -0.143 -3 0.888
ULK1ULK1 0.805 -0.144 -3 0.862
CHAK2CHAK2 0.805 -0.054 -1 0.916
AMPKA1AMPKA1 0.804 -0.059 -3 0.882
TGFBR2TGFBR2 0.804 -0.091 -2 0.835
PKN2PKN2 0.804 -0.066 -3 0.868
NDR1NDR1 0.803 -0.066 -3 0.861
WNK3WNK3 0.803 -0.171 1 0.049
MARK4MARK4 0.803 -0.065 4 0.880
TSSK1TSSK1 0.803 -0.028 -3 0.900
IRE1IRE1 0.802 -0.089 1 0.048
CAMLCKCAMLCK 0.802 -0.035 -2 0.881
CAMK2GCAMK2G 0.802 -0.108 2 0.816
HUNKHUNK 0.802 -0.143 2 0.816
NUAK1NUAK1 0.801 -0.014 -3 0.822
RIPK3RIPK3 0.801 -0.157 3 0.778
PIM1PIM1 0.801 0.009 -3 0.802
MAPKAPK3MAPKAPK3 0.801 -0.060 -3 0.811
LATS2LATS2 0.800 -0.043 -5 0.788
RSK2RSK2 0.800 -0.027 -3 0.802
P90RSKP90RSK 0.800 -0.026 -3 0.804
MLK1MLK1 0.800 -0.158 2 0.846
PRKD3PRKD3 0.799 0.003 -3 0.778
DAPK2DAPK2 0.799 -0.062 -3 0.902
NEK9NEK9 0.799 -0.160 2 0.867
AMPKA2AMPKA2 0.799 -0.045 -3 0.849
TSSK2TSSK2 0.799 -0.069 -5 0.866
IKKAIKKA 0.799 -0.095 -2 0.797
NIM1NIM1 0.798 -0.080 3 0.810
BCKDKBCKDK 0.798 -0.150 -1 0.837
SKMLCKSKMLCK 0.798 -0.085 -2 0.876
PINK1PINK1 0.798 0.197 1 0.269
MNK2MNK2 0.798 -0.030 -2 0.814
RSK3RSK3 0.798 -0.042 -3 0.798
MELKMELK 0.797 -0.061 -3 0.840
IRE2IRE2 0.797 -0.086 2 0.802
MLK2MLK2 0.796 -0.138 2 0.845
PHKG1PHKG1 0.796 -0.065 -3 0.853
PKRPKR 0.796 -0.058 1 0.066
MAPKAPK2MAPKAPK2 0.796 -0.035 -3 0.758
P70S6KBP70S6KB 0.796 -0.031 -3 0.828
CAMK2DCAMK2D 0.796 -0.103 -3 0.881
DNAPKDNAPK 0.796 -0.044 1 0.107
RIPK1RIPK1 0.795 -0.183 1 0.038
AURCAURC 0.794 -0.004 -2 0.668
PKCBPKCB 0.794 -0.033 2 0.774
ATMATM 0.793 -0.085 1 0.077
LATS1LATS1 0.793 -0.004 -3 0.875
PKACGPKACG 0.793 -0.053 -2 0.759
ANKRD3ANKRD3 0.793 -0.171 1 0.063
PKCZPKCZ 0.793 -0.043 2 0.816
MLK3MLK3 0.793 -0.078 2 0.773
MASTLMASTL 0.792 -0.201 -2 0.858
PKCAPKCA 0.792 -0.033 2 0.766
TGFBR1TGFBR1 0.792 -0.048 -2 0.854
NEK2NEK2 0.792 -0.117 2 0.841
GRK5GRK5 0.792 -0.192 -3 0.875
VRK2VRK2 0.792 0.027 1 0.151
ALK4ALK4 0.791 -0.062 -2 0.881
BMPR1BBMPR1B 0.791 -0.057 1 0.042
GRK1GRK1 0.791 -0.072 -2 0.822
QIKQIK 0.791 -0.090 -3 0.873
PAK6PAK6 0.791 -0.027 -2 0.737
MPSK1MPSK1 0.791 0.027 1 0.123
DLKDLK 0.790 -0.219 1 0.062
PKCGPKCG 0.790 -0.051 2 0.766
PAK3PAK3 0.790 -0.091 -2 0.808
MNK1MNK1 0.790 -0.026 -2 0.825
CAMK4CAMK4 0.790 -0.121 -3 0.850
QSKQSK 0.790 -0.043 4 0.864
FAM20CFAM20C 0.788 0.005 2 0.667
PKCHPKCH 0.788 -0.063 2 0.763
PAK1PAK1 0.788 -0.072 -2 0.802
SIKSIK 0.788 -0.047 -3 0.792
CHAK1CHAK1 0.788 -0.132 2 0.792
PLK1PLK1 0.787 -0.139 -2 0.848
CHK1CHK1 0.787 -0.050 -3 0.859
GRK6GRK6 0.787 -0.164 1 0.048
YSK4YSK4 0.786 -0.174 1 0.039
TTBK2TTBK2 0.786 -0.207 2 0.725
SGK3SGK3 0.786 -0.026 -3 0.792
MSK2MSK2 0.786 -0.061 -3 0.770
IRAK4IRAK4 0.786 -0.103 1 0.029
PHKG2PHKG2 0.785 -0.069 -3 0.829
WNK4WNK4 0.785 -0.102 -2 0.895
AURBAURB 0.785 -0.031 -2 0.666
AKT2AKT2 0.784 0.009 -3 0.715
BRSK2BRSK2 0.784 -0.100 -3 0.851
SMG1SMG1 0.784 -0.103 1 0.094
PLK4PLK4 0.784 -0.125 2 0.653
MARK2MARK2 0.784 -0.052 4 0.791
GRK7GRK7 0.783 -0.041 1 0.086
MEK1MEK1 0.783 -0.164 2 0.844
CAMK2BCAMK2B 0.783 -0.076 2 0.786
PKG2PKG2 0.783 -0.035 -2 0.691
CAMK1GCAMK1G 0.783 -0.053 -3 0.796
PKCTPKCT 0.783 -0.055 2 0.773
MARK3MARK3 0.783 -0.049 4 0.823
PIM2PIM2 0.782 -0.003 -3 0.778
RSK4RSK4 0.781 -0.030 -3 0.765
MLK4MLK4 0.781 -0.130 2 0.760
MEKK1MEKK1 0.781 -0.147 1 0.060
PKACBPKACB 0.781 -0.012 -2 0.685
PERKPERK 0.781 -0.143 -2 0.883
ACVR2AACVR2A 0.780 -0.107 -2 0.835
DCAMKL1DCAMKL1 0.780 -0.054 -3 0.810
HRIHRI 0.780 -0.156 -2 0.889
BRSK1BRSK1 0.780 -0.084 -3 0.822
ALK2ALK2 0.780 -0.080 -2 0.860
PAK2PAK2 0.780 -0.101 -2 0.790
MAPKAPK5MAPKAPK5 0.780 -0.091 -3 0.760
SSTKSSTK 0.780 -0.050 4 0.858
CAMK2ACAMK2A 0.780 -0.057 2 0.784
PKCIPKCI 0.779 -0.027 2 0.785
ZAKZAK 0.779 -0.161 1 0.047
GSK3AGSK3A 0.779 0.171 4 0.421
ACVR2BACVR2B 0.779 -0.112 -2 0.845
BRAFBRAF 0.779 -0.122 -4 0.864
TLK2TLK2 0.779 -0.152 1 0.042
NEK5NEK5 0.778 -0.136 1 0.044
SNRKSNRK 0.778 -0.161 2 0.723
MYLK4MYLK4 0.778 -0.064 -2 0.792
MST3MST3 0.778 -0.070 2 0.855
AKT1AKT1 0.777 -0.009 -3 0.734
MARK1MARK1 0.777 -0.080 4 0.846
MEK5MEK5 0.777 -0.175 2 0.847
GRK4GRK4 0.777 -0.212 -2 0.851
DCAMKL2DCAMKL2 0.777 -0.057 -3 0.838
MSK1MSK1 0.776 -0.053 -3 0.777
DRAK1DRAK1 0.776 -0.165 1 0.032
BMPR1ABMPR1A 0.775 -0.064 1 0.035
TAO3TAO3 0.775 -0.065 1 0.084
MEKK2MEKK2 0.775 -0.143 2 0.834
PLK3PLK3 0.775 -0.141 2 0.777
PRKXPRKX 0.774 0.009 -3 0.694
PKN1PKN1 0.774 -0.034 -3 0.761
SMMLCKSMMLCK 0.773 -0.051 -3 0.854
BUB1BUB1 0.773 0.032 -5 0.845
GAKGAK 0.772 -0.038 1 0.106
MEKK3MEKK3 0.772 -0.195 1 0.057
LKB1LKB1 0.772 -0.051 -3 0.878
PKCEPKCE 0.771 -0.012 2 0.755
TAO2TAO2 0.771 -0.073 2 0.874
P70S6KP70S6K 0.770 -0.053 -3 0.744
NEK11NEK11 0.770 -0.147 1 0.077
GRK2GRK2 0.770 -0.115 -2 0.742
NEK4NEK4 0.770 -0.136 1 0.035
TLK1TLK1 0.769 -0.165 -2 0.858
PAK5PAK5 0.769 -0.062 -2 0.656
AURAAURA 0.769 -0.060 -2 0.632
PDK1PDK1 0.769 -0.083 1 0.091
NEK8NEK8 0.769 -0.154 2 0.854
MAP3K15MAP3K15 0.769 -0.108 1 0.062
CAMK1DCAMK1D 0.769 -0.040 -3 0.716
MEKK6MEKK6 0.769 -0.108 1 0.060
SBKSBK 0.768 0.111 -3 0.596
HGKHGK 0.768 -0.085 3 0.899
PBKPBK 0.767 -0.033 1 0.095
IRAK1IRAK1 0.767 -0.195 -1 0.804
CAMKK1CAMKK1 0.767 -0.165 -2 0.834
HASPINHASPIN 0.766 0.037 -1 0.793
TNIKTNIK 0.766 -0.062 3 0.902
GSK3BGSK3B 0.766 0.018 4 0.412
PKACAPKACA 0.765 -0.025 -2 0.634
CAMKK2CAMKK2 0.765 -0.127 -2 0.828
MINKMINK 0.765 -0.122 1 0.038
LRRK2LRRK2 0.764 -0.028 2 0.873
LOKLOK 0.764 -0.078 -2 0.815
GCKGCK 0.764 -0.107 1 0.063
PAK4PAK4 0.764 -0.056 -2 0.660
NEK3NEK3 0.764 -0.082 1 0.063
NEK1NEK1 0.764 -0.135 1 0.029
TTBK1TTBK1 0.763 -0.176 2 0.643
MST2MST2 0.763 -0.138 1 0.046
BIKEBIKE 0.763 -0.009 1 0.110
CHK2CHK2 0.763 -0.023 -3 0.662
PASKPASK 0.763 -0.091 -3 0.874
CAMK1ACAMK1A 0.762 -0.022 -3 0.680
KHS1KHS1 0.762 -0.070 1 0.058
AAK1AAK1 0.762 0.024 1 0.128
AKT3AKT3 0.761 -0.006 -3 0.648
SGK1SGK1 0.760 0.012 -3 0.632
DAPK3DAPK3 0.760 -0.062 -3 0.823
HPK1HPK1 0.760 -0.105 1 0.065
KHS2KHS2 0.759 -0.043 1 0.069
EEF2KEEF2K 0.759 -0.102 3 0.862
YSK1YSK1 0.759 -0.110 2 0.843
MRCKBMRCKB 0.759 -0.021 -3 0.768
CK1ECK1E 0.759 -0.073 -3 0.516
MST1MST1 0.757 -0.140 1 0.037
ROCK2ROCK2 0.757 -0.029 -3 0.813
RIPK2RIPK2 0.757 -0.198 1 0.034
MRCKAMRCKA 0.756 -0.035 -3 0.783
VRK1VRK1 0.756 -0.180 2 0.870
SLKSLK 0.756 -0.078 -2 0.753
TAK1TAK1 0.756 -0.193 1 0.038
CK2A2CK2A2 0.755 -0.088 1 0.038
PDHK3_TYRPDHK3_TYR 0.753 0.107 4 0.915
DMPK1DMPK1 0.752 0.007 -3 0.784
STK33STK33 0.752 -0.136 2 0.627
CK1DCK1D 0.751 -0.048 -3 0.464
MEK2MEK2 0.751 -0.197 2 0.826
DAPK1DAPK1 0.750 -0.072 -3 0.805
PKG1PKG1 0.750 -0.048 -2 0.609
LIMK2_TYRLIMK2_TYR 0.749 0.112 -3 0.931
CK1G1CK1G1 0.749 -0.112 -3 0.505
GRK3GRK3 0.748 -0.128 -2 0.689
CRIKCRIK 0.747 -0.007 -3 0.733
TAO1TAO1 0.747 -0.090 1 0.059
TESK1_TYRTESK1_TYR 0.747 0.014 3 0.910
PKMYT1_TYRPKMYT1_TYR 0.746 0.102 3 0.884
ROCK1ROCK1 0.746 -0.033 -3 0.781
ASK1ASK1 0.745 -0.134 1 0.063
CK2A1CK2A1 0.745 -0.099 1 0.032
CK1A2CK1A2 0.744 -0.076 -3 0.463
MYO3BMYO3B 0.744 -0.085 2 0.851
PLK2PLK2 0.742 -0.104 -3 0.807
OSR1OSR1 0.742 -0.107 2 0.822
PDHK4_TYRPDHK4_TYR 0.742 0.020 2 0.888
TTKTTK 0.742 -0.100 -2 0.850
MYO3AMYO3A 0.741 -0.099 1 0.056
MAP2K7_TYRMAP2K7_TYR 0.739 -0.110 2 0.874
MAP2K4_TYRMAP2K4_TYR 0.739 -0.046 -1 0.886
PINK1_TYRPINK1_TYR 0.739 -0.120 1 0.106
LIMK1_TYRLIMK1_TYR 0.739 0.007 2 0.879
MAP2K6_TYRMAP2K6_TYR 0.737 -0.027 -1 0.893
RETRET 0.735 -0.151 1 0.076
TYK2TYK2 0.735 -0.182 1 0.063
JAK2JAK2 0.735 -0.121 1 0.086
BMPR2_TYRBMPR2_TYR 0.735 -0.025 -1 0.875
NEK10_TYRNEK10_TYR 0.735 -0.089 1 0.068
MST1RMST1R 0.734 -0.111 3 0.862
CSF1RCSF1R 0.732 -0.103 3 0.850
PDHK1_TYRPDHK1_TYR 0.732 -0.103 -1 0.899
TNNI3K_TYRTNNI3K_TYR 0.732 -0.039 1 0.091
ALPHAK3ALPHAK3 0.731 -0.115 -1 0.784
ROS1ROS1 0.731 -0.143 3 0.838
TYRO3TYRO3 0.729 -0.167 3 0.862
TNK1TNK1 0.729 -0.060 3 0.837
JAK1JAK1 0.728 -0.100 1 0.061
EPHA6EPHA6 0.728 -0.124 -1 0.858
JAK3JAK3 0.728 -0.132 1 0.071
FGFR1FGFR1 0.727 -0.034 3 0.821
STLK3STLK3 0.725 -0.195 1 0.034
DDR1DDR1 0.725 -0.140 4 0.835
FGFR2FGFR2 0.725 -0.056 3 0.826
TEKTEK 0.724 -0.019 3 0.795
EPHB4EPHB4 0.724 -0.158 -1 0.831
ABL2ABL2 0.724 -0.135 -1 0.813
YES1YES1 0.723 -0.117 -1 0.843
PDGFRBPDGFRB 0.722 -0.185 3 0.861
FLT3FLT3 0.722 -0.160 3 0.855
TNK2TNK2 0.722 -0.126 3 0.807
TXKTXK 0.721 -0.115 1 0.036
ABL1ABL1 0.720 -0.137 -1 0.807
KDRKDR 0.720 -0.104 3 0.811
INSRRINSRR 0.720 -0.151 3 0.798
KITKIT 0.718 -0.146 3 0.846
PDGFRAPDGFRA 0.718 -0.195 3 0.863
HCKHCK 0.718 -0.162 -1 0.813
LCKLCK 0.717 -0.124 -1 0.813
FGRFGR 0.717 -0.205 1 0.038
YANK3YANK3 0.716 -0.093 2 0.404
FERFER 0.715 -0.217 1 0.051
AXLAXL 0.715 -0.179 3 0.828
ITKITK 0.715 -0.169 -1 0.795
BLKBLK 0.715 -0.109 -1 0.825
EPHA4EPHA4 0.715 -0.120 2 0.770
EPHB1EPHB1 0.713 -0.198 1 0.033
SRMSSRMS 0.713 -0.201 1 0.027
DDR2DDR2 0.713 -0.054 3 0.780
WEE1_TYRWEE1_TYR 0.713 -0.097 -1 0.754
EPHB3EPHB3 0.712 -0.189 -1 0.814
FGFR3FGFR3 0.711 -0.081 3 0.800
EPHB2EPHB2 0.711 -0.175 -1 0.803
MERTKMERTK 0.711 -0.183 3 0.826
METMET 0.710 -0.148 3 0.837
ALKALK 0.709 -0.173 3 0.783
FLT4FLT4 0.709 -0.150 3 0.795
TECTEC 0.708 -0.160 -1 0.733
ERBB2ERBB2 0.707 -0.174 1 0.051
BTKBTK 0.707 -0.225 -1 0.756
FRKFRK 0.706 -0.165 -1 0.821
INSRINSR 0.706 -0.170 3 0.776
BMXBMX 0.706 -0.152 -1 0.691
FYNFYN 0.705 -0.113 -1 0.788
LTKLTK 0.705 -0.187 3 0.799
NTRK2NTRK2 0.705 -0.212 3 0.805
EPHA1EPHA1 0.705 -0.183 3 0.823
NTRK1NTRK1 0.705 -0.225 -1 0.817
EGFREGFR 0.704 -0.119 1 0.037
FLT1FLT1 0.704 -0.164 -1 0.836
EPHA7EPHA7 0.704 -0.159 2 0.782
PTK2BPTK2B 0.703 -0.125 -1 0.777
MUSKMUSK 0.702 -0.137 1 0.020
CK1ACK1A 0.702 -0.100 -3 0.364
NTRK3NTRK3 0.701 -0.175 -1 0.757
PTK6PTK6 0.700 -0.225 -1 0.730
LYNLYN 0.700 -0.160 3 0.768
EPHA3EPHA3 0.699 -0.173 2 0.752
MATKMATK 0.699 -0.124 -1 0.747
SRCSRC 0.697 -0.140 -1 0.793
EPHA8EPHA8 0.696 -0.144 -1 0.796
FGFR4FGFR4 0.695 -0.125 -1 0.760
EPHA5EPHA5 0.695 -0.169 2 0.763
CSKCSK 0.694 -0.171 2 0.785
PTK2PTK2 0.691 -0.090 -1 0.782
ERBB4ERBB4 0.689 -0.113 1 0.036
SYKSYK 0.687 -0.120 -1 0.753
IGF1RIGF1R 0.687 -0.166 3 0.712
EPHA2EPHA2 0.685 -0.156 -1 0.748
CK1G3CK1G3 0.681 -0.102 -3 0.313
YANK2YANK2 0.681 -0.113 2 0.421
ZAP70ZAP70 0.673 -0.099 -1 0.680
FESFES 0.672 -0.165 -1 0.679
CK1G2CK1G2 0.655 -0.112 -3 0.416